research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal, electronic structure and hydrogenation properties of the Mg5.57Ni16Ge7.43 cluster phase with a new type of polyhedron

crossmark logo

aDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine, and bInstitute of Chemistry, Jan Dlugosz University, al. Armii Krajowej 13/15, Czestochowa 42200, Poland
*Correspondence e-mail: vpavlyuk2002@yahoo.com

Edited by G. P. A. Yap, University of Delaware, USA (Received 7 March 2024; accepted 11 April 2024; online 24 April 2024)

The ternary germanide Mg5.57Ni16Ge7.43 (cubic, space group Fm[\overline{3}]m, cF116) belongs to the structural family based on the Th6Mn23-type. The Ge1 and Ge2 atoms fully occupy the 4a (m[\overline{3}]m symmetry) and 24d (m.mm) sites, respectively. The Ni1 and Ni2 atoms both fully occupy two 32f sites (.3m symmetry). The Mg/Ge statistical mixture occupies the 24e site with 4m.m symmetry. The structure of the title com­pound contains a three-core-shell cluster. At (0,0,0), there is a Ge1 atom which is surrounded by eight Ni atoms at the vertices of a cube and consequently six Mg atoms at the vertices of an octa­hedron. These surrounded eight Ni and six Mg atoms form a [Ge1Ni8(Mg/Ge)6] rhombic dodeca­hedron with a coordination number of 14. The [GeNi8(Mg/Ge)6] rhombic dodeca­hedron is encapsulated within the [Ni24] rhombicubocta­hedron, which is again encapsulated within an [Ni32(Mg/Ge)24] penta­conta­tetra­hedron; thus, the three-core-shell cluster [GeNi8(Mg/Ge)6@Ni24@Ni32(Mg/Ge)24] results. The penta­conta­tetra­hedron is a new representative of Pavlyuk's polyhedra group based on penta­gonal, tetra­gonal and trigonal faces. The dominance of the metallic type of bonding between atoms in the Mg5.57Ni16Ge7.43 structure is confirmed by the results of the electronic structure calculations. The hydrogen sorption capacity of this inter­metallic at 570 K reaches 0.70 wt% H2.

1. Introduction

Magnesium alloys and inter­metallics, in addition to their unique mechanical properties, show great potential for use in various types of energy storage systems. These are in particular as hydrogen sorption materials for storage systems and metal hydride batteries (Edalati et al., 2018[Edalati, K., Uehiro, R., Ikeda, Y., Li, H. W., Emami, H., Filinchuk, Y., Arita, M., Sauvage, X., Tanaka, I., Akiba, E. & Horita, Z. (2018). Acta Mater. 149, 88-96.]; Ouyang et al., 2020[Ouyang, L., Liu, F., Wang, H., Liu, J., Yang, X. S., Sun, L. & Zhu, M. (2020). J. Alloys Compd. 832, 154865.]; Hitam et al., 2021[Hitam, C. N. C., Aziz, M. A. A., Ruhaimi, A. H. & Taib, M. R. (2021). Int. J. Hydrogen Energy, 46, 31067-31083.]). Binary alloys of magnesium with transition metals, such as Fe, Co, Ni, Zn and others, as well as ternary alloys with the additional involvement of p-elements, such as Al, Ga, Si, Ge, Sn, rare earth metals and others, have attracted special attention (Kalisvaart et al., 2010[Kalisvaart, W. P., Harrower, C. T., Haagsma, J., Zahiri, B., Luber, E. J., Ophus, C., Poirier, E., Fritzsche, H. & Mitlin, D. (2010). Int. J. Hydrogen Energy, 35, 2091-2103.]; Zhang et al., 2011[Zhang, Y. H., Li, B. W., Ren, H. P., Li, X., Qi, Y. & Zhao, D. L. (2011). Materials, 4, 274-287.]; Pavlyuk et al., 2012[Pavlyuk, V., Marciniak, B. & Różycka-Sokołowska, E. (2012). Intermetallics, 20, 8-15.], 2022a[Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Chumak, I., Indris, S. & Ehrenberg, H. (2022a). J. Phase Equilib. Diffus. 43, 458-470.]; Shtender et al., 2015[Shtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V. & Pavlyuk, V. V. (2015). J. Solid State Chem. 232, 228-235.]). Due to the com­plexities of the synthesis of magnesium alloys and the com­plex nature of the physicochemical inter­action of magnesium with other elements, ternary metallic systems are still not sufficiently studied. For example, study of the ternary Mg–Ni–Ge system began more than 60 years ago when the first results of analyzing the structures of MgNi1.6Ge0.4 and Mg6Ni16Ge7 by the powder Debye–Scherrer method were reported (Teslyuk & Markiv, 1962[Teslyuk, M. Y. & Markiv, V. Y. (1962). Sov. Phys. Crystallogr. 7, 103-104.]). MgNi1.6Ge0.4 (cubic, Fd[\overline{3}]m, a = 6.911 Å) belongs to the cubic Laves phase with the MgCu2 structure type. For Mg6Ni16Ge7 (cubic, Fm[\overline{3}]m, a = 11.532 Å), the Mg6Cu16Si7 structure type was proposed. Buchholz & Schuster (1981[Buchholz, W. & Schuster, H. U. (1981). Z. Anorg. Allg. Chem. 482, 40-48.]) described the crystal structure of MgNi6Ge6 (hexa­gonal, P6/mmm, a = 5.067 and c = 3.860 Å) with the YCo6Ge6-type. The equiatomic MgNiGe phase (ortho­rhom­bic, Pnma, a = 6.4742, b = 4.0716 and c = 6.9426 Å) belongs to the TiNiSi-type (Hlukhyy et al., 2013[Hlukhyy, V., Hoffmann, A. V. & Fässler, T. F. (2013). J. Solid State Chem. 203, 232-239.]). The Mg-rich com­pound Mg3Ni2Ge (cubic, Fd[\overline{3}]m, a = 11.521 Å) crystallizes in the Mn3Ni2Si-type (Gennari et al., 2003[Gennari, F. C., Urretavizcaya, G., Andrade Gamboa, J. J. & Meyer, G. (2003). J. Alloys Compd. 354, 187-192.]). Subsequently, the crystal structures of the two Laves phases Mg2Ni3Ge (R[\overline{3}]m, a = 5.0300 and c = 11.330 Å) and MgNi2–xGex (x = 0.5, P63/mcm, a = 8.6946 and c = 7.8127 Å) were investigated using single-crystal X-ray diffraction methods (Siggelkow et al., 2017[Siggelkow, L., Hlukhyy, V. & Fässler, T. F. (2017). Z. Anorg. Allg. Chem. 643, 1424-1430.]).

During our investigation of Ni-rich alloys of the ternary Mg–Ni–Ge system, we obtained a good-quality single crystal of the Mg5.57Ni16Ge7.43 ternary phase and report its crystal structure here.

2. Experimental

2.1. Synthesis and crystallization

The target Mg20Ni55Ge25 species was prepared from the following reactants: magnesium, nickel and germanium (purity of elements is more than 99.99 wt%). Appropriate amounts of Mg, Ni and Ge pure elements were mixed according to the aimed-for stoichiometry of the product and filled into a tan­ta­lum crucible in a glove box using a purified argon atmosphere. The Ta crucible was sealed by arc welding under a dry argon atmosphere. The reaction between the elements was carried out in an induction furnace at 1100 °C. After 20 min, the samples were cooled rapidly to room temperature by removing the crucibles from the furnace. The Ta container was placed in an evacuated quartz vial and thermally annealed to obtain good-quality single crystals suitable for structure determination. This heating process was carried out at a rate of 5 °C min−1 to T = 800 °C in a resistance furnace and held at this temperature for 15–20 min with a thermal cycle controller. The sample was then cooled slowly (0.1 °C min−1) to 400 °C and the furnace was switched off. After cooling to room temperature, the sample could be separated from the tantalum container. The alloy is stable in air and includes single crystals, which exhibit metallic luster and could be isolated by mechanical fragmentation.

2.2. Refinement

The structure was solved by direct methods after an analytical absorption correction.

The Mg atom in the 24e site showed a displacement parameter that was different from the others, i.e. the Ni and Ge atoms.

Several important factors indicate that the 24e position is occupied mainly by Mg atoms with a small fraction of germanium (a statistical mixture of Mg/Ge). First, the title com­pound is isostructural with the Mg6Cu16Si7 structure type, where the 24e site is also occupied by Mg atoms. Second, analysis of the inter­atomic distances indicates that they are typical of the largest atom in this structure, which is magnesium. Thirdly, Fourier difference electron-density maps show the electron density to be associated with the Mg atom. During the first cycles of refinement of the Mg atom in the 24e site, we noticed that, in addition to magnesium, there is also a small proportion of the heavier Ge or Ni atom in this site. The best refinement results are for the Mg/Ge statistical mixture. The refined com­position of the com­pound from single-crystal data correlates well with the energy-dispersive X-ray spectroscopy (EDS) analysis.

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula Mg5.57Ni16Ge7.43
Mr 6454.98
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 293
a (Å) 11.5036 (6)
V3) 1522.3 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 33.86
Crystal size (mm) 0.06 × 0.05 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur3 CCD
Absorption correction Analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.470, 0.683
No. of measured, independent and observed [I > 2σ(I)] reflections 12619, 131, 120
Rint 0.074
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.028, 1.25
No. of reflections 131
No. of parameters 14
Δρmax, Δρmin (e Å−3) 0.63, −0.63
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.]) and SHELX97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Ger­many.]).

2.3. Hydrogenation

The hydrogen absorption and desorption measurements for the Mg5.57Ni16Ge7.43 alloy were performed using an IMI–COR (Hiden Isochema) manometric hydrogen-storage analyzer. The Sieverts method, up to a pressure of 12 bar (1 bar = 105 Pa) at a temperature of 573 K, was used.

3. Results and discussion

As part of a systematic study of Mg–Ni–Ge alloys, the ternary Mg5.57Ni16Ge7.43 phase was detected in the Ni-rich region. A small irregularly shaped single crystal was selected from the annealed sample by mechanical fragmentation. Intensity data were measured at room temperature on an Oxford Diffraction Xcalibur3 automatic diffractometer with a CCD detector (Mo Kα radiation, graphite monochromator, ω scan).

The title com­pound crystallizes in a cubic Mg6Cu16Si7 structure type (Nagorsen & Witte, 1953[Nagorsen, G. & Witte, H. (1953). Z. Anorg. Allg. Chem. 271, 144-149.]), which is an ordered superstructure of the Th6Mn23-type (Florio et al., 1952[Florio, J. V., Rundle, R. E. & Snow, A. I. (1952). Acta Cryst. 5, 449-457.]). The unit cell and coordination polyhedra of the crystallographically distinct atoms are shown in Fig. 1[link]. The Mg/Ge atom (site symmetry 4m.m) is surrounded by 16 adjacent atoms, which form a pseudo-Frank–Kasper [(Mg/Ge)Ni8(Mg/Ge)4Ge4] polyhedron. The coordination polyhedra of the Ni1 and Ni2 atoms (.3m symmetry) are icosa­hedral [Ni1Ge3Ni6(Mg/Ge)3] and pseudo-Frank–Kasper polyhedral (CN = 13) [Ni2Ge4Ni6(Mg/Ge)3], respectively. At (0,0,0), there is a Ge1 atom surrounded by eight Ni atoms, which occupy the vertices of an [Ni8] cube, and also by six Mg/Ge atoms, which are at the vertices of an [(Mg/Ge)6] octa­hedron. The eight Ni atoms and six Mg/Ge atoms which surround the Ge1 atom form a [Ge1Ni8(Mg/Ge)6] rhombic dodeca­hedron with CN = 14. For the Ge2 atom, the polyhedron is a 14-vertex [Ge2Ni8(Mg/Ge)6] rhombododeca­hedron. In addition to octa­hedra filled by ger­manium, there are also empty [(Mg/Ge)6] octa­hedra, the arrangement of which in the unit cell is shown in Fig. 2[link]. Ni atoms form a three-dimensional network in which [Ni8] cubes are visible, the vertices of which are joined by eight [Ni4] tetra­hedra, which are also connected to other tetra­hedra by one face and three edges, as shown in Fig. 3[link](a). Instead, the Mg and Ge atoms along the z axis form two types of 3- and 4-ring networks, namely, flat at z = 0 and [1 \over 2] [Fig. 3[link](b)], and slightly corrugated at z = [1 \over 4] and [3 \over 4] [Fig. 3[link](c)].

[Figure 1]
Figure 1
A clinographic projection of the Mg5.57Ni16Ge7.43 unit-cell contents and the coordination polyhedra of the atoms.
[Figure 2]
Figure 2
The packing of empty [(Mg/Ge)6] octa­hedra in the unit cell.
[Figure 3]
Figure 3
(a) Three-dimensional network of Ni atoms, (b) flat 3- and 4-ring networks of Mg–Ge atoms at z = 0 and [1 \over 2], and (c) slightly corrugated networks at z = [1 \over 4] and [3 \over 4] in the Mg5.57Ni16Ge7.43 structure.

The ternary germanide Mg5.57Ni16Ge7.43 can also be de­scribed as three-core-shell clusters of [GeNi8(Mg/Ge)6@Ni24@Ni32(Mg/Ge)24] (see Fig. 4[link]). The [GeNi8(Mg/Ge)6] rhombic dodeca­hedron is encapsulated within the [Ni24] rhom­bi­cubocta­hedron, which is again encapsulated within a [Ni32(Mg/Ge)24] penta­conta­tetra­hedron. The [Ni32(Mg/Ge)24] polyhedron has vertices V = 56, faces F = 54 and edges E = 108. The Euler characteristic (χ) was classically defined for the surfaces of polyhedra, according to the formula (Richeson, 2012[Richeson, D. S. (2012). In Euler's gem: the polyhedron formula and the birth of topology. Princeton University Press.]):

[\chi = V - E + F,]

where V, E and F are, respectively, the numbers of vertices (corners), edges and faces in the given polyhedron. For the title structure, the [Ni32(Mg/Ge)24] polyhedron has V = 56, F = 54 and E = 108, which gives a Euler characteristic χ of 2; therefore, [Ni32(Mg/Ge)24] is a new type of convex polyhedron, namely, a penta­conta­tetra­hedron, with the vertex configuration: 24 (3252), 24 (3452) and 8 (53). The penta­conta­tetra­hedron is a new representative of Pavlyuk's group of polyhedra based on penta­gonal, tetra­gonal and trigonal faces. In the penta­conta­tetra­hedron are 24 penta­gonal, six tetra­gonal and 24 trigonal faces (Fig. 5[link]). In the title com­pound, the penta­conta­tetra­hedra exhibits close packing in the unit cell (Fig. 6[link]). Earlier, we described the structure of the cluster phase MgMn4Ga18 (Pavlyuk et al., 2022b[Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Chumak, I., Indris, S., Schwarz, B. & Ehrenberg, H. (2022b). Acta Cryst. C78, 455-461.]), for which we discovered a penta­conta­octa­hedron with V = 40, F = 58 and E = 96, and also a convex polyhedron (χ = 2). We also described previously the formation of clusters in magnesium-containing inter­metallics using the example of the quaternary phase Li20Mg6Cu13Al42 with a 60-atom truncated icosa­hedron (Pavlyuk et al., 2019[Pavlyuk, N., Dmytriv, G., Pavlyuk, V. & Ehrenberg, H. (2019). Acta Cryst. B75, 168-174.]) and new cubic cluster phases in the Mg–Ni–Ga system (Pavlyuk et al., 2020[Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Cichowicz, G., Cyranski, M. K., Chumak, I. & Ehrenberg, H. (2020). Acta Cryst. B76, 534-542.]).

[Figure 4]
Figure 4
The atomic structure of a three-shell cluster [GeNi8(Mg/Ge)6@Ni24@Ni32(Mg/Ge)24].
[Figure 5]
Figure 5
The closed and open faces of the [Ni32(Mg/Ge)24] penta­conta­tetra­hedron.
[Figure 6]
Figure 6
The packing of [Ni32(Mg/Ge)24] penta­conta­tetra­hedra in the unit cell.

The electronic structure calculations were performed for the ordered structure Mg6Ni16Ge7 (the 24e site is fully occupied by Mg) using the tight-binding linear muffin-tin orbital (TB–LMTO) method with the atomic spheres approximation (ASA) in the TB–LMTO–ASA program (Version 4.7; Andersen, 1975[Andersen, O. K. (1975). Phys. Rev. B, 12, 3060-3083.]; Andersen et al., 1984[Andersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571-2574.], 1986[Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.]). Electronic energies were calculated using density functional theory (DFT) based on the local-density approximation (LDA) for the exchange-correlation functional as parameterized by von Barth & Hedin (1972[Barth, U. & Hedin, L. (1972). J. Phys. C.: Solid State Phys. 5, 1629-1642.]). The electronic structure calculations were carried out using the non-spin-polarized approach with a dense k-point mesh in the irreducible Brillouin zones of the crystallographic unit cell (48 irreducible k-points from 512 for NKABC = 8 × 8 × 8). From the calculations, a mapping of the electrons in real space was obtained using the electron localization function (ELF) (Becke & Edgecombe, 1990[Becke, A. D. & Edgecombe, K. E. (1990). J. Chem. Phys. 92, 5397-5403.]). Visualization of the electronic structure calculation data was achieved using wxDragon (Eck, 2012[Eck, B. (2012). wxDragon. Version 1.6.6. RWTH Aachen, Germany. http://schmeling.ac.rwth-aachen.de/cohp/download/wxDragon_Windows.zip.]). The ELF is a simple measure of electron localization in atomic and mol­ecular systems (Becke & Edgecombe, 1990[Becke, A. D. & Edgecombe, K. E. (1990). J. Chem. Phys. 92, 5397-5403.]).

If we consider the distribution of the ELF, two types of layers of atoms can be distinguished in the title structure [Figs. 7[link](a) and 7(b)] which are alternately packed along the z axis [Fig. 7[link](c)]. Layers of atoms at z = 0, [1 \over 4], [1 \over 2], [3 \over 4] [Figs. 7[link](a) and 7(c)] consist exclusively of Mg and Ge atoms. The ELF has the highest values (0.709 eV) around the Ge atoms, which is consistent with its higher electronegativity [Figs. 7[link](a) and 7(d)]. Slightly corrugated layers of atoms at approximately z = [1 \over 8], [1 \over 3], [2 \over 3] and [7 \over 8] [Figs. 7[link](a) and 7(c)] consist exclusively of Ni atoms. The entire space of this layer has an average value of the distribution of the ELF function of 0.350 eV (indicated in green), which corresponds to delocalized electrons, which are typical for the metallic type of bonding between atoms. The dominance of the metallic bond is also reflected in the density of states (DOS) at the Fermi level, the partial and total DOS are shown in Fig. 8[link].

[Figure 7]
Figure 7
Two-dimensional representation of the ELF for layers of atoms at (a) z = 0 and (b) z = [1 \over 8]. (c) Packing layers along the z axis and (d) a three-dimensional representation of the isosurfaces of the ELF around the Ge atoms at the 0.75 level.
[Figure 8]
Figure 8
Total and partial DOS for Mg5.57Ni16Ge7.43 from TB–LMTO–ASA calculations.

The prepared Mg5.57Ni16Ge7.43 sample was hydrogenated by hydrogen gas at a pressure up to 12 bar and a temperature of 573 K. The PCT (pressure, com­position and temperature) isotherms for the hydrogenation and de­hydrogenation processes are presented in Fig. 9[link]. At this condition, Mg5.57Ni16Ge7.43 absorbs up to 0.7 wt% H2. Crystallographic analysis of the structure made it possible to determine the geometrically acceptable coordinates of the sites that can be occupied by hydrogen, namely, 4b ([1 \over 2], [1 \over 2], [1 \over 2]) and 48h ([1 \over 8], [1 \over 8], 0). These coordinates are the centres of the octa­hedral voids. In the 4b site, there is an [(Mg/Ge)6] octa­hedron, and in the 48h site, there is an octa­hedron of com­position [(Mg/Ge)2Ni2Ge2], which is slightly deformed. In the case of full occupation of these sites with hydrogen, the hydrogen capacity reached 0.81 wt% H2. A slight difference in the hydrogen content in hydride from experimental data and that calculated from geometric considerations indicates that these positions are partially occupied by H atoms (approximately 86%).

[Figure 9]
Figure 9
The PCT (pressure, com­position and temperature) isotherms for hydrogenation and de­hydrogenation processes.

The bulk alloy from which the single crystal was selected was examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and powder X-ray diffraction (PXRD). A scanning electron microscope (TES­CAN Vega3 LMU) equipped with an Oxford Instruments energy-dispersive X-ray analyzer (Aztec ONE system) was used to determine the chemical com­position of the alloy (Fig. 10[link]). The EDS data from three selected spots give the average com­position (in at%) of Mg19.3 (3)Ni55.2 (2)Ge25.5 (1) that correlates well with the PXRD data (Mg19.21Ni55.17Ge25.62).

[Figure 10]
Figure 10
The secondary electron image and representative EDS spectra for the Mg5.57Ni16Ge7.43 sample.

The PXRD analysis of the sample before and after hydrogenation was carried out using a Rigaku Mini Flex D-600 powder diffractometer with Cu Kα radiation. As shown in Fig. 11[link], the structure of the inter­metallic is preserved, and the shift of reflexes for the pattern after hydrogenation indicates an increase of the unit-cell dimension of the crystal lattice from a = 11.5036 (6) Å to a = 11.5753 (6) Å during the in­cor­poration of hydrogen into the structural voids.

[Figure 11]
Figure 11
(a) Observed (red), calculated (black line) and difference (bottom blue line) PXRD patterns of the Mg5.57Ni16Ge7.43 sample after Rietveld refinement. (b) Comparison powder patterns before (blue) and after (red) hydrogenation.

Supporting information


Computing details top

Magnesium nickel germanide top
Crystal data top
Mg5.57Ni16Ge7.43Mo Kα radiation, λ = 0.71073 Å
Mr = 6454.98Cell parameters from 131 reflections
Cubic, Fm3mθ = 3.1–28.3°
a = 11.5036 (6) ŵ = 33.85 mm1
V = 1522.3 (2) Å3T = 293 K
Z = 1Prism, metallic light grey
F(000) = 3010.10.06 × 0.05 × 0.03 mm
Dx = 7.041 Mg m3
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
120 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1515
Tmin = 0.470, Tmax = 0.683k = 1515
12619 measured reflectionsl = 1515
131 independent reflections
Refinement top
Refinement on F214 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + 35.3811P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.028(Δ/σ)max < 0.001
S = 1.25Δρmax = 0.63 e Å3
131 reflectionsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.00000.00000.00000.0040 (4)
Ge20.00000.25000.25000.00442 (18)
Ni10.33129 (4)0.33129 (4)0.33129 (4)0.00491 (19)
Ni20.11860 (4)0.11860 (4)0.11860 (4)0.00509 (19)
Mg0.2959 (2)0.00000.00000.0048 (4)0.929 (4)
Ge0.2959 (2)0.00000.00000.0048 (4)0.071 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0040 (4)0.0040 (4)0.0040 (4)0.0000.0000.000
Ge20.0039 (4)0.0047 (2)0.0047 (2)0.0000.0000.0002 (3)
Ni10.00491 (19)0.00491 (19)0.00491 (19)0.00057 (18)0.00057 (18)0.00057 (18)
Ni20.00509 (19)0.00509 (19)0.00509 (19)0.00015 (18)0.00015 (18)0.00015 (18)
Mg0.0073 (10)0.0035 (6)0.0035 (6)0.0000.0000.000
Ge0.0073 (10)0.0035 (6)0.0035 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Ge1—Ni22.3631 (8)Ni1—Ni1x2.6450 (14)
Ge1—Ni2i2.3632 (8)Ni1—Ni1xii2.6450 (14)
Ge1—Ni2ii2.3632 (8)Ni1—Gexx2.7747 (7)
Ge1—Ni2iii2.3632 (8)Ni1—Mgxxi2.7747 (7)
Ge1—Ni2iv2.3632 (8)Ni1—Mgxxii2.7747 (7)
Ge1—Ni2v2.3632 (8)Ni2—Ge2xvii2.5359 (3)
Ge1—Ni2vi2.3632 (8)Ni2—Ge2xv2.5359 (3)
Ge1—Ni2vii2.3632 (8)Ni2—Ni1ix2.5789 (7)
Ge2—Ni1viii2.3485 (1)Ni2—Ni1xii2.5789 (7)
Ge2—Ni1ix2.3485 (1)Ni2—Ni1x2.5789 (7)
Ge2—Ni1x2.3485 (1)Ni2—Ni2ii2.7288 (9)
Ge2—Ni1xi2.3485 (1)Ni2—Ni2vi2.7288 (9)
Ge2—Ni2ii2.5359 (3)Ni2—Ni2iv2.7288 (9)
Ge2—Ni2xii2.5359 (3)Ni2—Gexvii2.8075 (17)
Ge2—Ni2xiii2.5359 (3)Ni2—Gexv2.8075 (17)
Ge2—Ni22.5359 (3)Mg—Ni1xii2.7747 (7)
Ge2—Gexiv2.9239 (4)Mg—Ni1xxiii2.7747 (7)
Ge2—Mgxv2.9239 (4)Mg—Ni1xxiv2.7747 (7)
Ge2—Mgxvi2.9239 (4)Mg—Ni1xxv2.7747 (7)
Ge2—Mgxvii2.9239 (4)Mg—Ni2vii2.8075 (17)
Ni1—Ge2xviii2.3485 (1)Mg—Ni2vi2.8075 (17)
Ni1—Ge2x2.3485 (1)Mg—Ni2iv2.8075 (17)
Ni1—Ge2xix2.3485 (1)Mg—Ge2xxvi2.9239 (4)
Ni1—Ni2x2.5788 (7)Mg—Ge2xxvii2.9239 (4)
Ni1—Ni2xii2.5788 (7)Mg—Ge2xv2.9239 (4)
Ni1—Ni2ix2.5788 (7)Mg—Ge2xvii2.9239 (4)
Ni1—Ni1ix2.6450 (14)
Ni2—Ge1—Ni2i180.00 (4)Ni1x—Ni1—Mgxxi113.00 (4)
Ni2—Ge1—Ni2ii70.5Ni1xii—Ni1—Mgxxi171.56 (5)
Ni2i—Ge1—Ni2ii109.5Gexx—Ni1—Mgxxi73.5
Ni2—Ge1—Ni2iii109.5Ge2xviii—Ni1—Mgxxii69.03 (2)
Ni2i—Ge1—Ni2iii70.5Ge2x—Ni1—Mgxxii69.03 (2)
Ni2ii—Ge1—Ni2iii70.5Ge2xix—Ni1—Mgxxii132.71 (6)
Ni2—Ge1—Ni2iv70.5Ni2x—Ni1—Mgxxii122.689 (18)
Ni2i—Ge1—Ni2iv109.5Ni2xii—Ni1—Mgxxii122.689 (18)
Ni2ii—Ge1—Ni2iv109.5Ni2ix—Ni1—Mgxxii63.13 (5)
Ni2iii—Ge1—Ni2iv180.00 (6)Ni1ix—Ni1—Mgxxii171.56 (5)
Ni2—Ge1—Ni2v109.5Ni1x—Ni1—Mgxxii113.00 (4)
Ni2i—Ge1—Ni2v70.529 (1)Ni1xii—Ni1—Mgxxii113.00 (4)
Ni2ii—Ge1—Ni2v70.5Gexx—Ni1—Mgxxii73.5
Ni2iii—Ge1—Ni2v109.5Mgxxi—Ni1—Mgxxii73.51 (7)
Ni2iv—Ge1—Ni2v70.5Ge1—Ni2—Ge2xvii112.187 (17)
Ni2—Ge1—Ni2vi70.5Ge1—Ni2—Ge2112.187 (17)
Ni2i—Ge1—Ni2vi109.5Ge2xvii—Ni2—Ge2106.624 (19)
Ni2ii—Ge1—Ni2vi109.5Ge1—Ni2—Ge2xv112.187 (17)
Ni2iii—Ge1—Ni2vi70.5Ge2xvii—Ni2—Ge2xv106.624 (19)
Ni2iv—Ge1—Ni2vi109.5Ge2—Ni2—Ge2xv106.624 (19)
Ni2v—Ge1—Ni2vi180.00 (6)Ge1—Ni2—Ni1ix143.69 (2)
Ni2—Ge1—Ni2vii109.5Ge2xvii—Ni2—Ni1ix54.658 (12)
Ni2i—Ge1—Ni2vii70.5Ge2—Ni2—Ni1ix54.658 (12)
Ni2ii—Ge1—Ni2vii180.00 (4)Ge2xv—Ni2—Ni1ix104.12 (3)
Ni2iii—Ge1—Ni2vii109.5Ge1—Ni2—Ni1xii143.69 (2)
Ni2iv—Ge1—Ni2vii70.5Ge2xvii—Ni2—Ni1xii54.658 (12)
Ni2v—Ge1—Ni2vii109.5Ge2—Ni2—Ni1xii104.12 (3)
Ni2vi—Ge1—Ni2vii70.5Ge2xv—Ni2—Ni1xii54.658 (12)
Ni1viii—Ge2—Ni1ix180.0Ni1ix—Ni2—Ni1xii61.70 (3)
Ni1viii—Ge2—Ni1x111.46 (4)Ge1—Ni2—Ni1x143.69 (2)
Ni1ix—Ge2—Ni1x68.54 (4)Ge2xvii—Ni2—Ni1x104.12 (3)
Ni1viii—Ge2—Ni1xi68.54 (4)Ge2—Ni2—Ni1x54.658 (12)
Ni1ix—Ge2—Ni1xi111.46 (4)Ge2xv—Ni2—Ni1x54.658 (12)
Ni1x—Ge2—Ni1xi180.0Ni1ix—Ni2—Ni1x61.70 (3)
Ni1viii—Ge2—Ni2ii63.601 (15)Ni1xii—Ni2—Ni1x61.70 (3)
Ni1ix—Ge2—Ni2ii116.399 (15)Ge1—Ni2—Ni2ii54.7
Ni1x—Ge2—Ni2ii116.399 (15)Ge2xvii—Ni2—Ni2ii126.587 (8)
Ni1xi—Ge2—Ni2ii63.601 (15)Ge2—Ni2—Ni2ii57.451 (17)
Ni1viii—Ge2—Ni2xii116.399 (15)Ge2xv—Ni2—Ni2ii126.587 (8)
Ni1ix—Ge2—Ni2xii63.601 (15)Ni1ix—Ni2—Ni2ii102.914 (14)
Ni1x—Ge2—Ni2xii63.601 (15)Ni1xii—Ni2—Ni2ii161.57 (2)
Ni1xi—Ge2—Ni2xii116.399 (15)Ni1x—Ni2—Ni2ii102.914 (14)
Ni2ii—Ge2—Ni2xii180.00 (3)Ge1—Ni2—Ni2vi54.7
Ni1viii—Ge2—Ni2xiii63.601 (15)Ge2xvii—Ni2—Ni2vi126.587 (8)
Ni1ix—Ge2—Ni2xiii116.399 (15)Ge2—Ni2—Ni2vi126.587 (8)
Ni1x—Ge2—Ni2xiii116.399 (15)Ge2xv—Ni2—Ni2vi57.451 (17)
Ni1xi—Ge2—Ni2xiii63.601 (15)Ni1ix—Ni2—Ni2vi161.57 (2)
Ni2ii—Ge2—Ni2xiii114.90 (3)Ni1xii—Ni2—Ni2vi102.914 (14)
Ni2xii—Ge2—Ni2xiii65.10 (3)Ni1x—Ni2—Ni2vi102.914 (14)
Ni1viii—Ge2—Ni2116.398 (15)Ni2ii—Ni2—Ni2vi90.0
Ni1ix—Ge2—Ni263.602 (15)Ge1—Ni2—Ni2iv54.7
Ni1x—Ge2—Ni263.602 (15)Ge2xvii—Ni2—Ni2iv57.451 (17)
Ni1xi—Ge2—Ni2116.398 (15)Ge2—Ni2—Ni2iv126.587 (8)
Ni2ii—Ge2—Ni265.10 (3)Ge2xv—Ni2—Ni2iv126.587 (8)
Ni2xii—Ge2—Ni2114.90 (3)Ni1ix—Ni2—Ni2iv102.914 (14)
Ni2xiii—Ge2—Ni2180.0Ni1xii—Ni2—Ni2iv102.914 (14)
Ni1viii—Ge2—Gexiv117.61 (2)Ni1x—Ni2—Ni2iv161.57 (2)
Ni1ix—Ge2—Gexiv62.39 (2)Ni2ii—Ni2—Ni2iv90.0
Ni1x—Ge2—Gexiv117.61 (2)Ni2vi—Ni2—Ni2iv90.0
Ni1xi—Ge2—Gexiv62.39 (2)Ge1—Ni2—Gexvii81.85 (4)
Ni2ii—Ge2—Gexiv118.60 (4)Ge2xvii—Ni2—Gexvii165.96 (5)
Ni2xii—Ge2—Gexiv61.40 (4)Ge2—Ni2—Gexvii66.123 (16)
Ni2xiii—Ge2—Gexiv61.40 (4)Ge2xv—Ni2—Gexvii66.123 (16)
Ni2—Ge2—Gexiv118.60 (4)Ni1ix—Ni2—Gexvii114.04 (3)
Ni1viii—Ge2—Mgxv117.61 (2)Ni1xii—Ni2—Gexvii114.04 (3)
Ni1ix—Ge2—Mgxv62.39 (2)Ni1x—Ni2—Gexvii61.84 (4)
Ni1x—Ge2—Mgxv117.61 (2)Ni2ii—Ni2—Gexvii60.92 (2)
Ni1xi—Ge2—Mgxv62.39 (2)Ni2vi—Ni2—Gexvii60.92 (2)
Ni2ii—Ge2—Mgxv61.40 (4)Ni2iv—Ni2—Gexvii136.59 (4)
Ni2xii—Ge2—Mgxv118.60 (4)Ge1—Ni2—Gexv81.85 (4)
Ni2xiii—Ge2—Mgxv118.60 (4)Ge2xvii—Ni2—Gexv66.123 (16)
Ni2—Ge2—Mgxv61.40 (4)Ge2—Ni2—Gexv66.123 (16)
Gexiv—Ge2—Mgxv69.2Ge2xv—Ni2—Gexv165.96 (5)
Ni1viii—Ge2—Mgxvi62.39 (2)Ni1ix—Ni2—Gexv61.84 (4)
Ni1ix—Ge2—Mgxvi117.61 (2)Ni1xii—Ni2—Gexv114.04 (3)
Ni1x—Ge2—Mgxvi62.39 (2)Ni1x—Ni2—Gexv114.04 (3)
Ni1xi—Ge2—Mgxvi117.61 (2)Ni2ii—Ni2—Gexv60.92 (2)
Ni2ii—Ge2—Mgxvi118.60 (4)Ni2vi—Ni2—Gexv136.59 (4)
Ni2xii—Ge2—Mgxvi61.40 (4)Ni2iv—Ni2—Gexv60.92 (2)
Ni2xiii—Ge2—Mgxvi61.40 (4)Gexvii—Ni2—Gexv118.025 (17)
Ni2—Ge2—Mgxvi118.60 (4)Ni1xii—Mg—Ni1xxiii163.12 (10)
Gexiv—Ge2—Mgxvi110.8Ni1xii—Mg—Ni1xxiv88.766 (14)
Mgxv—Ge2—Mgxvi180.0Ni1xxiii—Mg—Ni1xxiv88.766 (14)
Ni1viii—Ge2—Mgxvii62.39 (2)Ni1xii—Mg—Ni1xxv88.766 (14)
Ni1ix—Ge2—Mgxvii117.61 (2)Ni1xxiii—Mg—Ni1xxv88.766 (14)
Ni1x—Ge2—Mgxvii62.39 (2)Ni1xxiv—Mg—Ni1xxv163.12 (10)
Ni1xi—Ge2—Mgxvii117.61 (2)Ni1xii—Mg—Ni255.03 (2)
Ni2ii—Ge2—Mgxvii61.40 (4)Ni1xxiii—Mg—Ni2141.85 (8)
Ni2xii—Ge2—Mgxvii118.60 (4)Ni1xxiv—Mg—Ni296.12 (3)
Ni2xiii—Ge2—Mgxvii118.60 (4)Ni1xxv—Mg—Ni296.12 (3)
Ni2—Ge2—Mgxvii61.40 (4)Ni1xii—Mg—Ni2vii141.85 (8)
Gexiv—Ge2—Mgxvii180.0Ni1xxiii—Mg—Ni2vii55.03 (2)
Mgxv—Ge2—Mgxvii110.80 (9)Ni1xxiv—Mg—Ni2vii96.12 (3)
Mgxvi—Ge2—Mgxvii69.20 (9)Ni1xxv—Mg—Ni2vii96.12 (3)
Ge2xviii—Ni1—Ge2x119.970 (1)Ni2—Mg—Ni2vii86.83 (7)
Ge2xviii—Ni1—Ge2xix119.970 (1)Ni1xii—Mg—Ni2vi96.12 (3)
Ge2x—Ni1—Ge2xix119.970 (1)Ni1xxiii—Mg—Ni2vi96.12 (3)
Ge2xviii—Ni1—Ni2x164.15 (4)Ni1xxiv—Mg—Ni2vi141.85 (8)
Ge2x—Ni1—Ni2x61.740 (4)Ni1xxv—Mg—Ni2vi55.03 (2)
Ge2xix—Ni1—Ni2x61.740 (4)Ni2—Mg—Ni2vi58.15 (4)
Ge2xviii—Ni1—Ni2xii61.740 (4)Ni2vii—Mg—Ni2vi58.15 (4)
Ge2x—Ni1—Ni2xii164.15 (4)Ni1xii—Mg—Ni2iv96.12 (3)
Ge2xix—Ni1—Ni2xii61.740 (4)Ni1xxiii—Mg—Ni2iv96.12 (3)
Ni2x—Ni1—Ni2xii111.970 (18)Ni1xxiv—Mg—Ni2iv55.03 (2)
Ge2xviii—Ni1—Ni2ix61.740 (4)Ni1xxv—Mg—Ni2iv141.85 (8)
Ge2x—Ni1—Ni2ix61.740 (4)Ni2—Mg—Ni2iv58.15 (4)
Ge2xix—Ni1—Ni2ix164.15 (4)Ni2vii—Mg—Ni2iv58.15 (4)
Ni2x—Ni1—Ni2ix111.970 (18)Ni2vi—Mg—Ni2iv86.83 (7)
Ni2xii—Ni1—Ni2ix111.970 (18)Ni1xii—Mg—Ge2xxvi135.598 (4)
Ge2xviii—Ni1—Ni1ix107.624 (17)Ni1xxiii—Mg—Ge2xxvi48.589 (5)
Ge2x—Ni1—Ni1ix107.624 (17)Ni1xxiv—Mg—Ge2xxvi48.589 (5)
Ge2xix—Ni1—Ni1ix55.73 (2)Ni1xxv—Mg—Ge2xxvi135.598 (4)
Ni2x—Ni1—Ni1ix59.148 (17)Ni2—Mg—Ge2xxvi110.29 (6)
Ni2xii—Ni1—Ni1ix59.148 (17)Ni2vii—Mg—Ge2xxvi52.47 (2)
Ni2ix—Ni1—Ni1ix108.43 (2)Ni2vi—Mg—Ge2xxvi110.29 (6)
Ge2xviii—Ni1—Ni1x55.73 (2)Ni2iv—Mg—Ge2xxvi52.47 (2)
Ge2x—Ni1—Ni1x107.624 (17)Ni1xii—Mg—Ge2xxvii135.598 (4)
Ge2xix—Ni1—Ni1x107.624 (17)Ni1xxiii—Mg—Ge2xxvii48.589 (5)
Ni2x—Ni1—Ni1x108.43 (2)Ni1xxiv—Mg—Ge2xxvii135.598 (4)
Ni2xii—Ni1—Ni1x59.148 (17)Ni1xxv—Mg—Ge2xxvii48.589 (5)
Ni2ix—Ni1—Ni1x59.148 (17)Ni2—Mg—Ge2xxvii110.29 (6)
Ni1ix—Ni1—Ni1x60.0Ni2vii—Mg—Ge2xxvii52.47 (2)
Ge2xviii—Ni1—Ni1xii107.624 (17)Ni2vi—Mg—Ge2xxvii52.47 (2)
Ge2x—Ni1—Ni1xii55.73 (2)Ni2iv—Mg—Ge2xxvii110.29 (6)
Ge2xix—Ni1—Ni1xii107.624 (17)Ge2xxvi—Mg—Ge2xxvii88.132 (16)
Ni2x—Ni1—Ni1xii59.148 (17)Ni1xii—Mg—Ge2xv48.589 (5)
Ni2xii—Ni1—Ni1xii108.43 (2)Ni1xxiii—Mg—Ge2xv135.598 (4)
Ni2ix—Ni1—Ni1xii59.148 (17)Ni1xxiv—Mg—Ge2xv135.598 (4)
Ni1ix—Ni1—Ni1xii60.0Ni1xxv—Mg—Ge2xv48.589 (5)
Ni1x—Ni1—Ni1xii60.0Ni2—Mg—Ge2xv52.47 (2)
Ge2xviii—Ni1—Gexx132.71 (6)Ni2vii—Mg—Ge2xv110.29 (6)
Ge2x—Ni1—Gexx69.03 (2)Ni2vi—Mg—Ge2xv52.47 (2)
Ge2xix—Ni1—Gexx69.03 (2)Ni2iv—Mg—Ge2xv110.29 (6)
Ni2x—Ni1—Gexx63.13 (5)Ge2xxvi—Mg—Ge2xv159.20 (9)
Ni2xii—Ni1—Gexx122.689 (18)Ge2xxvii—Mg—Ge2xv88.132 (16)
Ni2ix—Ni1—Gexx122.689 (18)Ni1xii—Mg—Ge2xvii48.589 (5)
Ni1ix—Ni1—Gexx113.00 (4)Ni1xxiii—Mg—Ge2xvii135.598 (4)
Ni1x—Ni1—Gexx171.56 (5)Ni1xxiv—Mg—Ge2xvii48.589 (5)
Ni1xii—Ni1—Gexx113.00 (4)Ni1xxv—Mg—Ge2xvii135.598 (4)
Ge2xviii—Ni1—Mgxxi69.03 (2)Ni2—Mg—Ge2xvii52.47 (2)
Ge2x—Ni1—Mgxxi132.71 (6)Ni2vii—Mg—Ge2xvii110.29 (6)
Ge2xix—Ni1—Mgxxi69.03 (2)Ni2vi—Mg—Ge2xvii110.29 (6)
Ni2x—Ni1—Mgxxi122.689 (18)Ni2iv—Mg—Ge2xvii52.47 (2)
Ni2xii—Ni1—Mgxxi63.13 (5)Ge2xxvi—Mg—Ge2xvii88.132 (16)
Ni2ix—Ni1—Mgxxi122.689 (18)Ge2xxvii—Mg—Ge2xvii159.20 (9)
Ni1ix—Ni1—Mgxxi113.00 (4)Ge2xv—Mg—Ge2xvii88.132 (16)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x, y, z; (v) x, y, z; (vi) x, y, z; (vii) x, y, z; (viii) x1/2, y+1/2, z; (ix) x+1/2, y, z+1/2; (x) x+1/2, y+1/2, z; (xi) x1/2, y, z+1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y+1/2, z+1/2; (xiv) y, z+1/2, x+1/2; (xv) z, x, y; (xvi) z, x+1/2, y+1/2; (xvii) y, z, x; (xviii) y+1/2, z, x+1/2; (xix) z, x+1/2, y+1/2; (xx) y+1/2, z+1/2, x; (xxi) x, y+1/2, z+1/2; (xxii) z+1/2, x, y+1/2; (xxiii) x, y1/2, z1/2; (xxiv) x, y+1/2, z1/2; (xxv) x, y1/2, z+1/2; (xxvi) z, x, y; (xxvii) y+1/2, z1/2, x.
 

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (grant No. 2022.01/0064).

References

First citationAndersen, O. K. (1975). Phys. Rev. B, 12, 3060–3083.  CrossRef CAS Web of Science Google Scholar
First citationAndersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571–2574.  CrossRef CAS Web of Science Google Scholar
First citationAndersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253–5269.  CrossRef CAS Web of Science Google Scholar
First citationBarth, U. & Hedin, L. (1972). J. Phys. C.: Solid State Phys. 5, 1629–1642.  CrossRef Web of Science Google Scholar
First citationBecke, A. D. & Edgecombe, K. E. (1990). J. Chem. Phys. 92, 5397–5403.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuchholz, W. & Schuster, H. U. (1981). Z. Anorg. Allg. Chem. 482, 40–48.  CrossRef ICSD CAS Google Scholar
First citationEck, B. (2012). wxDragon. Version 1.6.6. RWTH Aachen, Germany. http://schmeling.ac.rwth-aachen.de/cohp/download/wxDragon_Windows.zipGoogle Scholar
First citationEdalati, K., Uehiro, R., Ikeda, Y., Li, H. W., Emami, H., Filinchuk, Y., Arita, M., Sauvage, X., Tanaka, I., Akiba, E. & Horita, Z. (2018). Acta Mater. 149, 88–96.  CrossRef CAS Google Scholar
First citationFlorio, J. V., Rundle, R. E. & Snow, A. I. (1952). Acta Cryst. 5, 449–457.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationGennari, F. C., Urretavizcaya, G., Andrade Gamboa, J. J. & Meyer, G. (2003). J. Alloys Compd. 354, 187–192.  CrossRef CAS Google Scholar
First citationHitam, C. N. C., Aziz, M. A. A., Ruhaimi, A. H. & Taib, M. R. (2021). Int. J. Hydrogen Energy, 46, 31067–31083.  CrossRef CAS Google Scholar
First citationHlukhyy, V., Hoffmann, A. V. & Fässler, T. F. (2013). J. Solid State Chem. 203, 232–239.  CrossRef ICSD CAS Google Scholar
First citationKalisvaart, W. P., Harrower, C. T., Haagsma, J., Zahiri, B., Luber, E. J., Ophus, C., Poirier, E., Fritzsche, H. & Mitlin, D. (2010). Int. J. Hydrogen Energy, 35, 2091–2103.  CrossRef CAS Google Scholar
First citationNagorsen, G. & Witte, H. (1953). Z. Anorg. Allg. Chem. 271, 144–149.  CrossRef ICSD CAS Google Scholar
First citationOuyang, L., Liu, F., Wang, H., Liu, J., Yang, X. S., Sun, L. & Zhu, M. (2020). J. Alloys Compd. 832, 154865.  CrossRef Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPavlyuk, N., Dmytriv, G., Pavlyuk, V., Chumak, I., Indris, S. & Ehrenberg, H. (2022a). J. Phase Equilib. Diffus. 43, 458–470.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPavlyuk, N., Dmytriv, G., Pavlyuk, V., Chumak, I., Indris, S., Schwarz, B. & Ehrenberg, H. (2022b). Acta Cryst. C78, 455–461.  CrossRef ICSD IUCr Journals Google Scholar
First citationPavlyuk, N., Dmytriv, G., Pavlyuk, V. & Ehrenberg, H. (2019). Acta Cryst. B75, 168–174.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationPavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Cichowicz, G., Cyranski, M. K., Chumak, I. & Ehrenberg, H. (2020). Acta Cryst. B76, 534–542.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationPavlyuk, V., Marciniak, B. & Różycka-Sokołowska, E. (2012). Intermetallics, 20, 8–15.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRicheson, D. S. (2012). In Euler's gem: the polyhedron formula and the birth of topology. Princeton University Press.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Ger­many.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V. & Pavlyuk, V. V. (2015). J. Solid State Chem. 232, 228–235.  CrossRef ICSD CAS Google Scholar
First citationSiggelkow, L., Hlukhyy, V. & Fässler, T. F. (2017). Z. Anorg. Allg. Chem. 643, 1424–1430.  CrossRef ICSD CAS Google Scholar
First citationTeslyuk, M. Y. & Markiv, V. Y. (1962). Sov. Phys. Crystallogr. 7, 103–104.  Google Scholar
First citationZhang, Y. H., Li, B. W., Ren, H. P., Li, X., Qi, Y. & Zhao, D. L. (2011). Materials, 4, 274–287.  CrossRef PubMed Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds