crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis, characterization and structural analysis of com­plexes from 2,2′:6′,2′′-terpyridine derivatives with transition metals

crossmark logo

aGrupo de Investigación Química de Productos Naturales (QPN), Facultad de Ciencias Naturales, Exactas y de la educación, Universidad del Cauca, Popayán 19003, Colombia, and bSão Carlos Institute of Physics, University of São Paulo, CEP 13.566-590, São Carlos, SP, Brazil
*Correspondence e-mail: richard.dvries@unicauca.edu.co, albertolenis@unicauca.edu.co

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 6 February 2024; accepted 7 May 2024; online 16 May 2024)

The synthesis and structural characterization of three families of coordination com­plexes synthesized from 4′-phenyl-2,2′:6′,2′′-terpyridine (8, Ph-TPY), 4′-(4-chloro­phen­yl)-2,2′:6′,2′′-terpyridine (9, ClPh-TPY) and 4′-(4-meth­oxy­phen­yl)-2,2′:6′,2′′-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The com­pounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of com­plexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supra­molecular features were determinated by single-crystal X-ray diffraction for bis­(4′-phenyl-2,2′:6′,2′′-terpyridine)­nickel(II) bis­(per­chlo­rate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis­[4′-(4-meth­oxy­phen­yl)-2,2′:6′,2′′-terpyridine]­manganese(II) bis­(per­chlo­rate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis­(4′-phenyl-2,2′:6′,2′′-ter­py­ridine)­manganese(II) bis­(per­chlo­rate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the com­plexes present distorted octa­hedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π inter­actions. All the com­pounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods.

1. Introduction

Terpyridine derivatives, e.g. 2,2′:6′,2′′-terpyridines (2-TPY), have been the most important and recognized nitro­genous com­pounds since their discovery (Castro Agudelo et al., 2012[Castro Agudelo, B., Ochoa Puentes, C. & Sierra, C. A. (2012). Rev. Colomb. Quim. 41, 167-178.]; Morgan & Burstall, 1932[Morgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20-30.]) and have been of great inter­est in different areas of chemistry research, mainly in coordination chemistry, materials science and metal-based drug development (Panicker & Sivaramakrishna, 2022[Panicker, R. R. & Sivaramakrishna, A. (2022). Coord. Chem. Rev. 459, 214426.]; Luo et al., 2007[Luo, H.-Y., Jiang, J.-H., Zhang, X.-B., Li, C.-Y., Shen, G.-L. & Yu, R.-Q. (2007). Talanta, 72, 575-581.]; Musiol et al., 2022[Musiol, R., Malecki, P., Pacholczyk, M. & Mularski, J. (2022). Exp. Opin. Drug. Discov. 17, 259-271.]; Gil-Moles & Concepción Gimeno, 2024[Gil-Moles, M. & Concepción Gimeno, M. (2024). ChemMedChem, 19, e202300645.]). From the family of nitro­gen-based ligands, terpyridines and their derivatives have been widely used as precursors for the synthesis of several transition-metal com­plexes with exciting chemical and physical properties (Winter & Schubert, 2020[Winter, A. & Schubert, U. S. (2020). ChemCatChem, 12, 2890-2941.]; Fu et al., 2023[Fu, F., Liu, D., Zhao, L., Li, H., Bai, X., Chen, M., Jiang, Z., Su, P., Zhong, W., Li, Y., Liao, W., He, J. & Wang, P. (2023). Dalton Trans. 52, 3033-3039.]). The ability of TPY to chelate a variety of metal ions has turned it and its derivatives into valuable ligands for the synthesis of com­plexes with a variety of architectures, which allows them to display a range of important properties. They can be of value in the synthesis of com­pounds with photophysical and electrochemical properties, broad absorption spectrum and long excited-state lifetimes, characteristics which are of potential value in different applications (Kohle et al., 1997[Kohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. (1997). Adv. Mater. 9, 904-906.]; Nazeeruddin et al., 1999[Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.-H. & Grätzel, M. (1999). Inorg. Chem. 38, 6298-6305.]; Romain et al., 2009[Romain, S., Duboc, C., Neese, F., Rivière, E., Hanton, L. R., Blackman, A. G., Philouze, C., Leprêtre, J.-C., Deronzier, A. & Collomb, M.-N. (2009). Chem. A Eur. J. 15, 980-988.]; Mom­eni et al., 2024[Momeni, B. Z., Davarzani, N., Janczak, J., Ma, N. & Abd-El-Aziz, A. S. (2024). Coord. Chem. Rev. 506, 215619.]). Among the most important structural pro­perties are the structural flexibility, tridentate planar–tor­sional shape and the high electronic conjugation of the three pyridine rings (Gibson & Spitzmesser, 2003[Gibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283-316.]), which makes them very inter­esting ligands for the construction of new materials (Liu et al., 2020[Liu, P., Shi, G. & Chen, X. (2020). Front. Chem. 8, 592055.]). The appropriate spatial distribution of the three N atoms allows 2-TPY to act as a tridentate pincer ligand with the ability to coordinate with a wide range of metals (Husson & Knorr, 2012[Husson, J. & Knorr, M. (2012). Beilstein J. Org. Chem. 8, 379-389.]; Abhijnakrishna et al., 2023[Abhijnakrishna, R., Magesh, K., Ayushi, A. & Velmathi, S. (2023). Coord. Chem. Rev. 496, 215380.]).

For these reasons, the synthesis of such nitro­gen-based ligands has been widely studied and Kröhnke-type reaction methods are the most used (Sasaki, 2016[Sasaki, I. (2016). Synthesis, 48, 1974-1992.]; Tu et al., 2005[Tu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005). Synthesis, 2005, 3045-3050.], 2007[Tu, S., Jia, R., Jiang, B., Zhang, J., Zhang, Y., Yao, C. & Ji, S. (2007). Tetrahedron, 63, 381-388.]; Zych et al., 2017[Zych, D., Slodek, A., Matussek, M., Filapek, M., Szafraniec-Gorol, G., Maślanka, S., Krompiec, S., Kotowicz, S., Schab-Balcerzak, E., Smolarek, K., Maćkowski, S., Olejnik, M. & Danikiewicz, W. (2017). Dyes Pigments, 146, 331-343.]; Fajardo Perafan et al., 2023[Fajardo Perafan, D. A., Arteaga, D. & Lenis Velasquez, L. A. (2023). Educ. Quim. 34, 63-88.]). Because the 2-TPY ligand has an excellent ability to form chelate-like coordination com­plexes, of the type [M(R-TPY)2]X2, with high stability, the synthesis of these com­plexes is straightforward to achieve. The com­plexes are generally synthesized by refluxing the metal salt and the ligand in a 1:2 ratio. Due to the size of the com­plex formed, it is necessary to exchange the anion (X = SO42−, PF6 and ClO4) to stabilize the charge of the com­plex cation formed and to enhance the formation of crystalline solids (Indumathy et al., 2007[Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434-443.]). The considerable thermal and chemical stability of these com­plexes (Jantunen et al., 2006[Jantunen, K. C., Scott, B. L., Hay, P. J., Gordon, J. C. & Kiplinger, J. L. (2006). J. Am. Chem. Soc. 128, 6322-6323.]) is associated with the strong retrodonation from the metal centre to the ligand (dπ*), as well as with the chelating effect (Schubert et al., 2006[Schubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). Chemistry and Properties of Terpyridine Metal Complexes, in Modern Terpyridine Chemistry, ch. 3, pp. 37-68. Chichester: John Wiley and Sons.]). The importance of obtaining these coordination com­plexes lies in their excellent chemical and physical properties that give them great biological applicability and high potential in medicinal chemistry (Clarke, 2003[Clarke, M. J. (2003). Coord. Chem. Rev. 236, 209-233.]; Zou et al., 2016[Zou, H.-H., Wei, J.-G., Qin, X.-H., Mo, S.-G., Qin, Q.-P., Liu, Y.-C., Liang, F.-P., Zhang, Y.-L. & Chen, Z.-F. (2016). MedChemComm, 7, 1132-1137.]; Gil-Moles & Concepción Gimeno, 2024[Gil-Moles, M. & Concepción Gimeno, M. (2024). ChemMedChem, 19, e202300645.]), ion sensors (Fermi et al., 2014[Fermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. (2014). J. Am. Chem. Soc. 136, 6395-6400.]), materials science (Saccone et al., 2016[Saccone, D., Magistris, C., Barbero, N., Quagliotto, P., Barolo, C. & Viscardi, G. (2016). Materials, 9, 137.]), supra­molecular polymers (Zheng et al., 2014[Zheng, Z., Opilik, L., Schiffmann, F., Liu, W., Bergamini, G., Ceroni, P., Lee, L.-T., Schütz, A., Sakamoto, J., Zenobi, R., VandeVondele, J. & Schlüter, A. D. (2014). J. Am. Chem. Soc. 136, 6103-6110.]), coordination polymer (CP) synthesis (Momeni & Heydari, 2015[Momeni, B. Z. & Heydari, S. (2015). Polyhedron, 97, 94-102.]; Young et al., 2017[Young, D. C., Yang, H., Telfer, S. G. & Kruger, P. E. (2017). Inorg. Chem. 56, 12224-12231.]; Elahi et al., 2021[Elahi, S. M., Raizada, M., Sahu, P. K. & Konar, S. (2021). Chem. A Eur. J. 27, 5858-5870.]), catalysis (Husson & Guyard, 2018[Husson, J. & Guyard, L. (2018). Molbank, 2018, M1032.]; Liu et al., 2022[Liu, S.-L., Chen, Q.-W., Zhang, Z.-W., Chen, Q., Wei, L.-Q. & Lin, N. (2022). J. Solid State Chem. 310, 123045.]), optics (Tan et al., 2015[Tan, J., Li, R., Li, D., Zhang, Q., Li, S., Zhou, H., Yang, J., Wu, J. & Tian, Y. (2015). Dalton Trans. 44, 1473-1482.]; Zhang et al., 2017[Zhang, Y., Zhou, P., Liang, B., Huang, L., Zhou, Y. & Ma, Z. (2017). J. Mol. Struct. 1146, 504-511.]) and the electronics field (Ozawa et al., 2015[Ozawa, H., Yamamoto, Y., Kawaguchi, H., Shimizu, R. & Arakawa, H. (2015). Appl. Mater. Interfaces, 7, 3152-3161.]; Zych et al., 2017[Zych, D., Slodek, A., Matussek, M., Filapek, M., Szafraniec-Gorol, G., Maślanka, S., Krompiec, S., Kotowicz, S., Schab-Balcerzak, E., Smolarek, K., Maćkowski, S., Olejnik, M. & Danikiewicz, W. (2017). Dyes Pigments, 146, 331-343.]; Laschuk et al., 2020[Laschuk, N. O., Ahmad, R., Ebralidze, I. I., Poisson, J., Easton, E. B. & Zenkina, O. V. (2020). Appl. Mater. Interfaces, 12, 41749-41757.]), all influenced by the electronic nature of the terpyridine lig­ands used (Aroua et al., 2017[Aroua, S., Todorova, T. K., Hommes, P., Chamoreau, L.-M., Reissig, H.-U., Mougel, V. & Fontecave, M. (2017). Inorg. Chem. 56, 5930-5940.]). Based on the above considerations, in the present investigation, we report the synthesis, spectroscopic, thermal and structural characterization of 12 transition-metal coordination com­plexes with the general formula [M(R-TPY)2](ClO4)2. The three families of coordination com­plexes were obtained with good reaction yields from three 4-substituted terpyridine ligands (R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY) and four divalent metal cations (M = Co2+, Fe2+, Mn2+ and Ni2+), using the per­chlo­rate anion (ClO4−) as the counter-ion. On this occasion, it was possible to determine and study the structures and crystal packing of [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) from single-crystal X-ray diffraction data.

2. Experimental

2.1. Materials and methods

All reagents and solvents for the synthesis were purchased from Sigma–Aldrich and were used as received without further purification. For all air-sensitive reactions, the syn­thetic procedures were conducted under an N2 atmosphere, and the solvents employed were dried according to standard procedures. FT–IR spectra (KBr) were recorded using a Thermo Nicolet iS10 spectrophotometer. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were obtained on a Bruker Ultra Shield Avance II spectrometer at room tem­per­a­ture (298 K) using deuterated solvents, such as dimethyl sulfoxide (DMSO). The chemical shift values (δ) are reported in parts per million (ppm). Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet). The UV–Vis measurements were recorded on a Thermo Genesys 6 spectrophotometer with diluted solutions prepared with anhydrous aceto­nitrile (ACN). Thermal analysis (TGA–DSC) was performed in a TA instrument (Discovery SDT 650) under the following conditions: tem­per­a­ture range 25–900 °C, nitro­gen atmosphere (100 ml min−1 flow) and heating rate 20 °C min−1.

2.2. Synthesis

2.2.1. Synthesis of the R-TPY ligands

The R-TPY ligands were obtained following a Kröhnke-type reaction with some synthetic modification as reported by us in previous work (Fajardo Perafan et al., 2023[Fajardo Perafan, D. A., Arteaga, D. & Lenis Velasquez, L. A. (2023). Educ. Quim. 34, 63-88.]). To a 100 ml round-bottomed flask containing 20 ml of EtOH were added 0.3961 g (6 mmol) of KOH and the resulting mixture stirred until com­plete dissolution was achieved. To this solution were added slowly 450 µl (4 mmol) of 2-acetyl­pyridine and the appropriate aro­matic aldehyde (2 mmol). The resulting solution was stirred at room tem­per­a­ture for 2 h. After this time, an excess of 30% NH4OH (aq, 5 ml) was added slowly to the mixture, which was stirred for 5 min at room tem­per­a­ture. The flask was con­nected to a reflux system within microwave irradiation equipment for synthesis and irradiated continuously for 12 min at 70 W with a non-variable tem­per­a­ture (50 °C). The reaction progress was followed by thin-layer chromatography (TLC). The reaction mixture was cooled to room tem­per­a­ture and quenched with cold deionized water (50 ml). The precipitate which formed was collected by vacuum filtration and washed several times with EtOH/H2O. The solid was allowed to dry overnight at 70 °C and was then purified by recrystallization from EtOH. TLC was carried out using a mobile phase of an isobutyl alcohol–acetone–chloro­form mixture (4:3:3 v/v/v) with the addition of two drops of dilute acetic acid.

Ph-TPY: yield: 68.97 ± 0.09%; m.p. 200.3–202.0 °C. FT–IR (KBr pellet, cm−1): 3051.88, 2000.00–1700.00, 1600.75–1439.15, 146.17, 1392.42, 761.48. UV–Vis (ACN acidified, 200.0–800.0 nm): 277.5, 311.5. 1H NMR (400 MHz, CDCl3): δ 8.802 (s, 2H, H3′,5′), 8.771 (d, 2H, H3,3′′), 8.72 (d, 2H, H6,6′′), 7.959–7.910 (m, 4H, H4,4′′, HII,VI), 7.556–7.456 (m, 3H, HIII,IV,V), 7.395 (dd, 2H, H5,5′′). 13C NMR (100 MHz, CDCl3): δ 155.88 (C2′,6′), 155.55 (C2,2′′), 150.47 (C4′), 148.78 (C6,6′′), 138.31 (CI), 137.32 (C4,4′′), 129.11 (CII,VI), 127.39 (CIII,IV,V), 123.94, (C5,5′′), 121.6 (C3,3′′), 119.2 (C3′,5′). MS (solid probe, EI): 309.10.

ClPh-TPY: yield: 57.26 ± 0.08%; m.p. 168.0–171.9 °C. FT–IR (KBr pellet, cm−1): 3061.44, 3016.84, 2000.00–1700.00, 1606.03–1443.86, 1496.04, 1384.90, 1091.29, 786.47. UV–Vis (ACN acidified, 200.0–800.0 nm): 278.0, 311.0. 1H NMR (400 MHz, CDCl3): δ 8.753–8.744 (m, 4H, H3,3′,5′,3′′), 8.697 (d, 2H, H6,6′′), 7.939–7.859 (m, 4H, H4,4′′, HII,VI), 7.495 (d, 2H, HIII,V), 7.390 (dd, 2H, H5,5′′). 13C NMR (100 MHz, CDCl3): δ 156.24 (C2′,6′), 155.74 (C2,2′′), 149.24 (C4′), 148.81 (C6,6′′), 137.4 (C4,4′′), 136.82 (CI), 135.3 (CIV), 129.23 (CII,VI), 128.65 (CIII,V), 123.96 (C5,5′′), 121.65 (C3,3′′), 118.83 (C3′,5′). MS (solid probe, EI): 343.25.

MeOPh-TPY: yield: 48.91 ± 0.08%; m.p. 167.1–168.9 °C. FT–IR (KBr pellet, cm−1): 3050.59, 3013.18, 2963.42, 2935.19, 2841.78, 2000.00–1700.00, 1600.67–1438.82, 1467.72, 1391.55, 1265.04, 1040.60, 1187.15, 833.18, 790.65. UV–Vis (ACN acidified, 200.0–800.0 nm): 290.0, 315.0. 1H NMR (400 MHz, CDCl3): δ 8.795–8.76, (m, 4H, H3,3′,5′,3′′), 8.71 (d, 2H, H6,6′′), 7.940–7.913 (m, 4H, H4,4′′,II,VI), 7.396 (d, 2H, HIII,V), 7.055 (dd, 2H, H5,5′′), 3.90 (s, 3H, OCH3). 13C NMR (100 MHz, CDCl3): δ 160.57 (CIV), 156.15 (C2′,6′), 155.59 (C2,2′′), 149.81 (C4′), 148.88 (C6,6′′), 137.08 (C4,4′′), 130.63 (CI), 128.55 (CII,VI), 123.81 (C5,5′′), 121.48 (C3,3′′), 118.41 (C3′,5′), 114.35 (CIII,V), 55.38 (OCH3). MS (solid probe, EI): 339.20.

2.2.2. Synthesis of [M(R-TPY)](ClO4)2

All the obtained com­pounds were synthesized following the same procedure: 2 mmol of R-TPY (R = Ph, –PhCl or –PhOMe) were added to 20 ml of hot MetOH until com­plete dissolution was achieved. 1 mmol of MCl2 (M = Co2+, Fe2+, Mn2+ or Ni2+) was dissolved in 10 ml of deionized water. Both solutions are mixed in a 50 ml round-bottomed flask under constant stirring and re­fluxed for 2 h. After cooling, 10 ml of a 0.5 M aqueous NaClO4 solution was added slowly with caution (CAUTION: per­chlo­rate salts are considered toxic substances and sensitive explosives) and stirred for 30 min. The reaction mixture was cooled in ice and a solid precipitate formed which was filtered off under vacuum and washed with cold methanol. The solid obtained was dried overnight at 60 °C and purified by recrystallization from MetOH–ACN (2:1 v/v).

2.2.3. Coordination com­plex series A (15a–d)

[Co(Ph-TPY)2](ClO4)2: yield: 90.41%. FT–IR (KBr pellet, cm−1): 3060.98, 1615.94–1548.05, 1471.45, 1384.46, 1089.19, 764.90, 623.53, 473.53. UV–Vis (ACN, nm): 287.5, 325.0, 520.0. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 9.822 (s, 2H, H3′,5′), 9.226 (d, 2H, H3,3′′), 8.583 (d, 2H, H6,6′′), 7.595 (dd, 2H, H4,4′′), 7.661 (d, 2H, HII,VI), 7.270 (m, 3H, HIII,IV,V), 7.000 (dd, 2H, H5,5′′).

[Fe(Ph-TPY)2](ClO4)2: yield: 88.58%. FT–IR (KBr pellet, cm−1): 3063.84, 1616.66, 1467.58, 1384.23, 1121.02–1106.53, 765.88, 623.94, 479.18. UV–Vis (ACN, nm): 287.0, 324.0, 568.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.688 (s, 2H, H3′,5′), 9.090 (d, 2H, H3,3′′), 8.572 (d, 2H, H6,6′′), 8.043 (dd, 2H, H4,4′′), 7.836 (dd, 2H, HII,VI), 7.312 (d, 2H, HIII,V), 7.212 (dd, 3H, IV), 7.043 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): 163.23 (C2′6′), 159.89 (C2,2′′), 157.86 (C4′), 152.78 (C6,6′′), 142.23 (CI), 141.48 (CIV), 138.73 (C4,4′′), 130.72 (CII,VI), 129.47 (CIII, V), 127.63 (C5,5′′), 124.09 (C3,3′′), 120.86 (C3′,5′).

[Mn(Ph-TPY)2](ClO4)2: yield: 80.45%. FT–IR (KBr pellet, cm−1): 3060.70, 1614.39–1548.45, 1475.65, 1384.57, 1087.43, 767.45, 622.75, 477.13. UV–Vis (ACN, 200.0–800.0 nm): 289.5, 329.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.630 (s, 2H, H3′,5′), 8.335 (d, 2H, H3,3′′), 7.935 (d, 2H, H6,6′′), 7.466 (m, 4H, H4,4′′,II,VI), 7.130 (d, 2H, HIII,V), 6.091 (dd, 2H, HIV), 6.697 (dd, 2H, H5,5′′).

[Ni(Ph-TPY)2](ClO4)2: yield: 57.78%. FT–IR (KBr pellet, cm−1): 3061.40, 1615.17–1554.62, 1473.55, 1384.43, 1089.23, 765.47, 624.21, 470.65 cm−1. UV–Vis (ACN, nm): 287.5, 328.0. Solid colour: green.

2.2.4. Coordination com­plex series B (16a–d)

[Co(ClPh-TPY)2](ClO4)2: yield: 68.78%. FT–IR (KBr pellet, cm−1): 3055.94, 1615.96–1547.88, 1492.49, 1384.53, 1089.63, 791.37, 620.20, 479.18. UV–Vis (ACN, 200.0–800.0 nm): 287.0, 324.0, 520.5. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 10.400 (s, 2H, H3′,5′), 8.742 (d, 2H, H3,3′′), 8.420 (d, 2H, H6,6′′), 7.630 (dd, 2H, H4,4′′), 7.543 (d, 2H, HII,VI), 7.250 (d, 2H, HIII,V), 6.940 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): δ 163.10 (C2′6′), 154.00 (C2,2′′), 153.46 (C4′), 147.30 (C6,6′′), 141.15 (CI), 140.62 (CIV), 136.64 (C4,4′′), 129.49 (CII,VI), 127.58 (CIII, V), 121.82 (C5,5′′), 120.89 (C3,3′′), 120.26 (C3′,5′).

[Fe(ClPh-TPY)2](ClO4)2: yield: 71.37%. FT–IR (KBr pel­let, cm−1): 3055.95, 1615.96, 1492.26, 1384.51, 1087.82, 790.28, 621.86, 481.42. UV–Vis (ACN, nm): 287.0, 326.0, 568.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.703 (s, 2H, H3′,5′), 8.617 (d, 2H, H3,3′′), 8.431 (d, 2H, H6,6′′), 7.637 (dd, 2H, H4,4′′), 7.544 (d, 2H, HII,VI), 7.265 (d, 2H, HIII,V), 6.941 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): δ 163.11 (C2′6′), 159.96 (C2,2′′), 157.78 (C4′), 152.81 (C6,6′′), 141.16 (CI), 140.64 (CIV), 136.65 (C4,4′′), 129.50 (CII,VI), 127.59 (CIII, V), 121.83 (C5,5′′), 120.95 (C3,3′′), 120.27 (C3′,5′).

[Mn(ClPh-TPY)2](ClO4)2: yield: 64.26%. FT–IR (KBr pellet, cm−1): 3072.21, 1614.87–1546.09, 1476.35, 1384.50, 1090.59, 791.47, 622.45, 508.91. UV–Vis (ACN, nm): 290.0, 330.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.693 (s, 2H, H3′,5′), 8.635 (d, 2H, H3,3′′), 8.375 (d, 2H, H6,6′′), 7.981 (dd, 2H, H4,4′′), 7.584 (d, 2H, HII,VI), 7.204 (d, 2H, HIII,V), 6.840 (dd, 2H, H5,5′′).

[Ni(ClPh-TPY)2](ClO4)2: yield: 64.98%. FT–IR (KBr pellet, cm−1): 3072.56, 1614.12–1550.62, 1473.57, 1384.53, 1090.59, 792.26, 622.80, 505.93. UV–Vis (ACN, nm): 289.0, 326.0. Solid colour: green.

2.2.5. Coordination com­plex series C (17a–d)

[Co(MeOPh-TPY)2](ClO4)2: yield: 72.81%. FT–IR (KBr pellet, cm−1): 3073.62, 2931.48, 2840.23, 1601.74–1530.34, 1470.96, 1384.34, 1244.15, 1185.33, 1089.07, 832.42, 793.07, 622.92, 522.14. UV–Vis (ACN, nm): 284.5, 330.0, 522.0. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 9.752 (s, 2H, H3′,5′), 9.203 (d, 2H, H3,3′′), 8.614 (d, 2H, H6,6′′), 7.512 (dd, 2H, H4,4′′), 7.649 (d, 2H, HII,VI), 7.442 (d, 2H, HIII,V), 7.100 (dd, 2H, H5,5′′), 4.013 (s, 3H, OCH3).

[Fe(MeOPh-TPY)2](ClO4)2: yield: 88.36%. FT–IR (KBr pellet, cm−1): 3073.09, 2934.42, 2843.17, 1603.13–1518.22, 1467.77, 1384.53, 1244.89, 1184.84, 1088.69, 831.57, 791.42, 623.09, 514.11. UV–Vis (ACN, nm): 285.0, 326.5, 570.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.630 (s, 2H, H3′,5′), 9.069 (d, 2H, H3,3′′), 8.678 (d, 2H, H6,6′′), 7.528 (dd, 2H, H4,4′′), 7.378 (d, 2H, HII,VI), 7.280 (d, 2H, HIII,V), 7.169 (dd, 2H, H5,5′′), 3.851 (s, 3H, OCH3). 13C NMR (100 MHz, DMSO): δ 161.47 (CIV), 160.45 (C2′6′), 157.98 (C2,2′′), 155.04 (C4′), 152.77 (C6,6′′), 138.63 (C4,4′′), 129.55 (CII,VI), 127.98 (CI), 123.96 (C5,5′′), 120.25 (C3,3′′), 117.28 (C3′,5′), 114.80 (CIII, V), 55.61 (OCH3).

[Mn(MeOPh-TPY)2](ClO4)2: yield: 92.08%. FT–IR (KBr pellet, cm−1): 3058.05, 2937.37, 2837.29, 1601.50–1519.26, 1476.33, 1384.34, 1245.26, 1185.59, 1090.53, 832.71, 794.36, 622.99, 514.80. UV–Vis (ACN, nm): 288.0, 344.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.622 (m, 6H, H3′,5′,3,3′′,6,6′′), 7.862 (m, 2H, H4,4′′,II,VI), 7.458 (d, 2H, HIII,IV), 7.084 (dd, 2H, H5,5′′), 3.794 (s, 3H, OCH3).

[Ni(MeOPh-TPY)2](ClO4)2: yield: 81.02%. FT–IR (KBr pellet, cm−1): 3072.77, 2937.37, 2837.29, 1602.82–1519.47, 1473.73, 1384.40, 1243.43, 1183.89, 1091.29, 831.89, 792.66, 622.84, 522.95. UV–Vis (ACN, nm): 282.5, 344.0. Solid colour: green.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model. Mn com­pound 15c was refined using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) to decrease the contribution of the disordered solvent (water mol­ecule) in order to calculate the structure factors and improve the refinement values.

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. The absorption correction was Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H-atom parameters were constrained.

  [Ni(Ph-TPY)2](ClO4)2 (15d) [Mn(MeOPh-TPY)2](ClO4)2 (17c) [Mn(Ph-TPY)2](ClO4)2 (15c)
Crystal data
Chemical formula [Ni(C21H15N3)2](ClO4)2 [Mn(C22H17N3O)2](ClO4)2 [Mn(C21H15N3)2](ClO4)2
Mr 876.33 932.61 872.56
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/c
a, b, c (Å) 9.3581 (2), 12.6255 (3), 31.4046 (8) 8.93282 (10), 12.32698 (13), 18.86081 (19) 9.51026 (18), 12.5149 (2), 31.2962 (6)
α, β, γ (°) 90, 97.038 (2), 90 89.8757 (8), 85.6122 (8), 83.5667 (9) 90, 96.8780 (18), 90
V3) 3682.52 (15) 2057.68 (4) 3698.07 (12)
Z 4 2 4
μ (mm−1) 0.74 0.52 0.57
Crystal size (mm) 0.10 × 0.08 × 0.06 0.15 × 0.10 × 0.08 0.30 × 0.11 × 0.03
 
Data collection
Tmin, Tmax 0.815, 1.000 0.662, 1.000 ?, ?
No. of measured, independent and observed [I > 2σ(I)] reflections 52589, 9514, 7295 57826, 10630, 9347 63288, 9547, 8250
Rint 0.053 0.029 0.032
(sin θ/λ)max−1) 0.676 0.676 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.02 0.031, 0.083, 1.07 0.031, 0.084, 1.04
No. of reflections 9514 10630 9547
No. of parameters 560 570 560
No. of restraints 435 0 3
Δρmax, Δρmin (e Å−3) 0.64, −0.54 0.49, −0.42 0.43, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg et al., 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

3.1. Synthesis

The synthetic approach to prepare the metal coordination com­plexes 15a–d, 16a–d and 17a–d was performed according to known synthetic procedures (see Fig. 1[link]). The initial step was the preparation of organic terpyridine ligands 8–10 from 2-acetyl­pyridine and aromatic 4-substituted aldehydes fol­lowing Kröhnke-type reaction methods (Wang & Hanan, 2005[Wang, J. & Hanan, G. S. (2005). Synlett, 2005, 1251-1254.]; Fajardo Perafan et al., 2023[Fajardo Perafan, D. A., Arteaga, D. & Lenis Velasquez, L. A. (2023). Educ. Quim. 34, 63-88.]). These ligands are notable for the type of aromatic ring substituent: neutral (–H), electron-attracting (–Cl) and electron-donating (–OMe). The electronic properties of these substituents may be a key factor in the formation of the com­plexes, as will be discussed below (although the size of the cation may also have some influence). The experimental details of this synthesis were listed in the Experimental section, as well as in the supporting information (Scheme S1).

[Figure 1]
Figure 1
Synthesis route for the preparation of metal coordination com­plexes 15a–d, 16a–d and 17a–d.

The synthesis route for com­plexes 15a–d, 16a–d and 17a–d was by direct reaction between 2 molar equivalents of the terpyridine derivative (8, 9 or 10) and one molar equivalent of the metal salt (11, 12, 13 or 14) in methanol (MeOH) as reaction medium (Indumathy et al., 2007[Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434-443.]). Upon mixing the dissolved ligand with the metal salt solution, there was a noticeable change in the colouration of the mixture, i.e. red for com­plexes 15–17a, violet for 15–17b, yellow for 15–17c and green for 15–17d. At this point, the com­plexes formed in solution are [M(R-TPY)2]Cl2. To isolate them as crystalline solids, it was necessary to add sodium per­chlo­rate (NaClO4) in order to carry out an exchange of counter-ion, because ClO4 is a bulkier ion that favours the formation of crystalline packing. Thus, all the com­plexes formed were isolated as per­chlo­rate salts, which importantly retain the colourations of the solutions from which they came. Additionally, from the reaction yield values of the obtained com­plexes, the influence of the substituent of each ligand on this value is highlighted. The com­plexes with the –OMe substituent (17a–d) were obtained in higher yield than those with the –Cl substituent (16a–d). This can be attributed to the first substituent being an electron donor, which generates a more negative electronic environment on the ligand and favours coordination. In contrast, the second substituent is an electron attractor, so, in this case, the ligand will have a more positive electron density, which translates into a lower coordination capacity. The structures of the com­pounds obtained in this research were confirmed by spectroscopic techniques, such as 1H NMR, 13C NMR, FT–IR and mass spectrometry (MS), and the spectral data correlated with the structures. In addition, com­plexes [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) were obtained as crystals suitable for single-crystal X-ray diffraction analysis. The solids obtained for the other com­pounds show crystals that eventually lose their crystallinity by desolvation and are thus not suitable for measurement by single-crystal diffraction.

3.2. Structural analysis

Displacement ellipsoid plots (50% probability level) for the asymmetric units of [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) are presented in Fig. 2[link]. The crystallographic and re­finement data for the com­pounds are reported in Table 1[link].

[Figure 2]
Figure 2
Displacement ellipsoid diagrams drawn at the 50% probability level for (a) [Ni(Ph-TPY)2](ClO4)2, (b) [Mn(MeOPh-TPY)2](ClO4)2 and (c) [Mn(Ph-TPY)2](ClO4)2. One per­chlo­rate anion and the H atoms have been omitted for clarity.

[Ni(Ph-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 crystallize in the monoclinic space group P21/c. Both mol­ecules present similar unit-cell parameters and crystal packing. On the other hand, [Mn(MeOPh-TPY)2](ClO4)2 crystallizes in the triclinic space group P[\overline{1}]. In all cases, the asymmetric unit is formed by one divalent cation, two R-TPY ligands (where R = –Ph or –OMe) and two per­chlo­rate anions as counter-ions. Each R-TPY ligand is coordinated through three N atoms to the metal centre. The coordinated ligands are positioned perpendicular with respect to each other, forming a distorted octa­hedral polyhedron (MN6) in a propeller-like arrangement (Fig. 3[link]) (Carmona-Vargas et al., 2019[Carmona-Vargas, C. C., Aristizábal, S. L., Belalcázar, M. I., D'Vries, R. F. & Chaur, M. N. (2019). Inorg. Chim. Acta, 487, 275-280.]). Table 2[link] shows the coordination M—N distances, where the shortest distances are between the N atoms of the central pyridine ring (N2 and N5). Substituent group influence is observed, making the M—N bond longer for the central ring of the electron-donating substituent (15c and 17c). The influence of the ionic radius on the bond distances can also be observed, being shorter for the Ni2+ com­plex (ionic radii, Ni = 0.69 Å and Mn = 0.83 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]), sug­gesting a high-spin configuration for the Mn2+ com­plexes.

Table 2
Selected bond lengths (Å) for [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(Ph-TPY)2](ClO4)2 (17c) and [Mn(MeOPh-TPY)2](ClO4)2 (15c)

  15d 17c 15c
M—N1 2.1263 (15) 2.2723 (12) 2.2664 (12)
M—N2 2.0014 (17) 2.2093 (14) 2.2080 (10)
M—N3 2.1175 (15) 2.2423 (12) 2.2738 (11)
M—N4 2.1313 (16) 2.2537 (12) 2.2375 (11)
M—N5 1.9956 (17) 2.1877 (11) 2.2002 (10)
M—N6 2.1147 (16) 2.2571 (12) 2.2970 (11)
[Figure 3]
Figure 3
Structural diagram in a polyhedral representation for (a) [Ni(Ph-TPY)2](ClO4)2 and (b) [Mn(MeOPh-TPY)2](ClO4)2.

In both cases, the coordinated ligands present a planarity distortion around the TPY core (see Table 3[link] and Fig. 3[link]) by rotation around the C—C bond of TPY substituted with Ph and MeOPh, with values between 5.23 and 43.24° (see Table 3[link] and Fig. 3[link]).

Table 3
Torsion and ring-to-ring angles (°) for [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(Ph-TPY)2](ClO4)2 (17c) and [Mn(MeOPh-TPY)2](ClO4)2 (15c)

See Fig. 3 for ring definitions.

  15d 17c 15c
N1—C5—N3—C11 −8.59 −10.072 −3.66
N4—C26—N6—C32 −4.5 −3.412 −0.47
C17—C16—C8—C7 31.77 31.98 5.23
C30—C29—C37—C42 43.24 40.09 −27.63
Ring 1–Ring 2 7.28 8.496 1.49
Ring 3–Ring 4 14.39 14.38 16.63

[Ni(Ph-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 are iso­structural and present similar packing. [Ni(Ph-TPY)2](ClO4)2 is used to describe the observed inter­actions. The crystal packing is formed by C—H⋯π inter­actions between the substituted arene ring and the TPY core, with C18—H18⋯π, C21—H21⋯π and C34—H34⋯π distances of 3.487 (14), 3.668 (18) and 3.561 (10) Å, respectively (Fig. 4[link]). Each per­chlo­rate anion is surrounded by five com­plex mol­ecules [Fig. 4[link](b)]. Therefore, C—H⋯O inter­actions are presented between the aromatic rings and the O atoms of the per­chlo­rate anion, with distances ranging from 3.046 (18) to 3.480 (16) Å (Fig. 4[link]). All H-atom contacts are summarized in the supporting information (Tables S21–S22).

[Figure 4]
Figure 4
(a) C—H⋯π inter­actions, (b) the per­chlo­rate anion surrounded by five metal com­plexes and (c) a crystal packing representation for [Ni(Ph-TPY)2](ClO4)2.

The packing of [Mn(MeOPh-TPY)2](ClO4)2 is stabilized by C—H⋯O and ππ slipped-stacking inter­actions between the com­plex mol­ecules along the [011] direction, with distances of 3.047 (14) and 3.803 (18) Å, respectively (Fig. 5[link]). The chains are joined by C—H⋯O inter­actions between per­chlo­rate O atoms and the aromatic rings of the ligand, with distances ranging from 3.109 (8) to 3.430 (10) Å (Fig. 5[link]). All H-atom contacts are summarized in the supporting information (Table S23).

[Figure 5]
Figure 5
(a) C—H⋯O and ππ slipped-stacking inter­actions, (b) the per­chlo­rate anion surrounded by five metal com­plexes and (c) a crystal packing representation for [Mn(MeOPh-TPY)2](ClO4)2.

3.3. IR spectroscopy analysis

The FT–IR spectra of coordination com­plexes 15a–d, 16a–d and 17a–d are shown in Fig. 6[link]. All the synthesized com­pounds present a similar IR profile. Compared with the spectra of the R-TPY free ligands (Fig. S1 in the supporting information), the bands are shifted to higher wavenumbers and the intensity of the C=N band (∼1450 cm−1) increases, indicating the formation of the com­plexes. Additionally, bands due to in-plane and out-of-plane vibrations for ClO4 are observed around 1100 and 600 cm−1, respectively. In addition, vibrations generated by the metal–ligand bonds are found above 500 cm−1, which are higher than those found with the other ligands, indicating that M—N bonds require higher energy to vibrate, which is an indication of their higher structural stability (Nakamoto, 2008[Nakamoto, K., (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, p. 36. Hoboken, NJ: John Wiley & Sons Inc.]).

[Figure 6]
Figure 6
FT–IR (KBr) spectra of the metal coordination com­plexes: (a) 15a–d, (b) 16a–d and (c) 17a–d.

3.4. UV–Vis spectrophotometry

The electronic absorption spectra for coordination com­plexes 15a–d, 16a–d and 17a–d were recorded in aceto­nitrile solutions and are illustrated in Figs. 7[link] and 8[link]; the corresponding data for the absorption bands and absorption maxima (λmax) are summarized in the supporting information (Table S1). These com­plexes exhibit two types of transfer bands, namely, ππ* transitions originating from transfer bands of types CLCT (centred ligand charge transfer) and MLCT (metal-to-ligand charge transfer) due to 4dπ* transitions. The absorption bands at lower energies represent MLCT transitions, while the highest energy transitions correspond to CLCT transitions.

[Figure 7]
Figure 7
UV–Vis absorption spectra for (a) the Co coordination com­plexes and (b) the Fe coordination com­plexes in dilute solutions of aceto­nitrile.
[Figure 8]
Figure 8
UV–Vis absorption spectra and (a) the Mn coordination com­plexes and (b) the Ni coordination com­plexes in dilute solutions of aceto­nitrile.

In [M(Ph-TPY)2](ClO4)2, [M(ClPh-TPY)2](ClO4)2 and [M(MeOPh-TPY)2](ClO4)2 (M = Co2+ and Fe2+), the bands around 287 and 325 nm are due to ππ* transitions within the aromatic residues of the ligand (pyridine and arene rings) and C=N bonds, respectively. The low-intensity bands observed around 520 nm in the Co com­plexes correspond to dd transitions (Fig. 7[link]) (Mughal et al., 2020[Mughal, E. U., Mirzaei, M., Sadiq, A., Fatima, S., Naseem, A., Naeem, N., Fatima, N., Kausar, S., Altaf, A. A., Zafar, M. N. & Khan, B. A. (2020). R. Soc. Open Sci. 7, 201208.]). In the case of the Fe com­plexes, a medium-intensity band around 570 nm is associated with MLCT, i.e. FeII(dπ)–π*(ligand) (Mukherjee et al., 2018[Mukherjee, S., Pal, P., Bar, M. & Baitalik, S. (2018). J. Chem. Sci. 130, 84.]). It is now evident that both bands associated with the ligand in the three com­plexes are at longer wavelengths than in the ligands, so a bathochromic shift (lower energy) is being generated, which is expected due to the formation of the coordinate bonds between the metal cation and the N atoms of the ligand. In both cases, the com­plexes with the MeOPh-TPY ligand present a splitting of the band associated with the ligand and an increase in the intensity of the resultant band. This phenomenon may be due to MLCT as a result of the coordination of the metal with the N atom.

[M(Ph-TPY)2](ClO4)2, [M(ClPh-TPY)2](ClO4)2 and [M(MeOPh-TPY)2](ClO4)2 (M = Mn2+ and Ni2+) present similar bands associated with ππ* transitions in aromatic rings and C=N bonds around 290 and 330 nm, respectively. In com­parison with the free ligand, a higher bathochromic shift is observed. Similar to the Co and Fe com­plexes, the com­plexes with the MeOPh-TPY ligand present a splitting of the band and an increase in the intensity of the band at 344 nm, indicating increased LMCT. This behaviour may also be associated with the presence of an electron-donor group in the TPY system (Fig. 8[link]).

3.5. NMR spectroscopy

1H NMR and 13C NMR measurements for terpyridine lig­ands and the coordination com­plexes 15a–d, 16a–d and 17a–d were recorded in DMSO-d6 solutions; all the spectra are illustrated in the supporting information (Figs. S3–S21) and the assignments of signals are given in the Experimental section (§2[link]). NMR spectroscopy allows us to characterize each ligand and confirm the coordination of the 2-TPY ligands (8–10) with the metal cations (Co2+, Fe2+ and Mn2+, except for Ni2+). It is important to highlight that the com­plexes formed have an octa­hedral coordination sphere symmetry where the d orbitals split in T2g eg sets of orbitals. This behaviour gives rise to the generation of paramagnetic centres that can inter­fere with NMR measurements. This effect is strong in Ni2+ (d8 = T2g6 eg2) com­plexes, because the resolution of the signals was not possible. However, if we com­pare the signal type integration and the chemical shifts (δ) in the 1H NMR and 13C NMR spectra of the ligands (Figs. S3–S8 and Tables S2–S7 in the supporting information) and the coordination com­plexes (Figs. S9–S21 and Tables S8–S20), it is evident that in all cases there are notable changes. For example, in the 1H NMR spectra for the different ligands (Figs. S3, S5 and S7), a singlet signal is seen at 8.750–8.738 ppm due to the magnetically equivalent protons H3′ and H5′, while in the 1H NMR spectra of the coordination com­plexes, this singlet signal has shifted to higher values of δ (low field) in the range 10.4–9.63 ppm. This behaviour suggests the formation of the proposed coordination com­plexes, which indicates the strong inter­actions generated between metal and ligand (Mughal et al., 2022[Mughal, E. U., Obaid, R. J., Sadiq, A., Alsharif, M. A., Naeem, N., Kausar, S., Altaf, A. A., Jassas, R. S., Ahmed, S., Alsantali, R. I. & Ahmed, S. A. (2022). Dyes Pigments, 201, 110248.]). In general, the observed signals for the com­plexes are displaced to a low field due to an electron-deficient metal cation in the structure. It is also important to indicate that the signals associated with the 1H and 13C atoms close to the pyridine N atom coordinated to the metal atoms present a higher deprotection and shift in their δ values com­pared with the free ligand. It is also possible to note that, in some spectra, low-intensity signals are observed due to a leaching process resulting from the decoordination of the ligands in solution.

3.6. Thermal stability

To determine the thermal stability of the com­plexes obtained, a TGA–DSC (thermogravimetric analysis–differential scanning calorimetry) study was performed in the tem­per­a­ture range 25–900 °C under an N2 atmosphere (Fig. 9[link]). In all cases, mass loss at low tem­per­a­tures is associated with the presence of adsorbed solvent mol­ecules. The thermal decom­position processes start at a relatively low tem­per­a­ture in the range 270–380 °C. The Mn com­pounds show an anomalous behaviour, with decom­position at tem­per­a­tures below 100 °C, indicating low thermal stability, possibly due to the decom­position processes of the per­chlo­rate anion. This decom­position process is more clearly ob­served in the DSC analysis. The peaks in the DSC profiles show the decom­position or explosion tem­per­a­ture for each com­plex, determined by the presence of the per­chlo­rate anion in the structure (Singh et al., 2009[Singh, G., Kapoor, I. P. S., Kumar, D., Singh, U. P. & Goel, N. (2009). Inorg. Chim. Acta, 362, 4091-4098.]).

[Figure 9]
Figure 9
TGA–DSC thermal analysis for the series of com­plexes 15a–d, 16a–d and 17a–d.

4. Conclusion

In this work, we have discussed the synthesis and spectroscopic and structural characterization of 12 transition-metal coordination com­plexes with the general formula [M(R-TPY)2](ClO4)2. The new family of com­plexes were obtained from the efficient reaction of four divalent metal ions (M = Co2+, Fe2+, Mn2+ and Ni2+) with nitro­gen-based ligands (R-TPY), where R (R = H, Cl and OCH3) is the substituent at the 4′ position of the 2,2′:6′,2′′-terpyridine core. These substituents have a positive influence on the reaction yield of the com­plexes when R = OMe but a negative influence when R = Cl, probably due to the electron-donor or electron-acceptor nature, respectively. The TPY derivatives were prepared using the Kröhnke methodology assisted by microwave radiation. Crystals suitable for single-crystal X-ray diffraction were obtained for [Ni(Ph-TPY)2](ClO4)2, [Mn(MeOPh-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 by slow evaporation of the solvent. In all cases, the com­plexes present distorted octa­hedral coordination polyhedra (MN6) in a propeller-like arrangement. Due to the aromatic nature of the TPY structure, the crystal packing is formed mainly by weak C—H⋯π, C—H⋯O and ππ inter­actions. As it was impossible to obtain single crystals for all the synthesized com­plexes, they were characterized by spectroscopic techniques.

It is important to clarify that, due to the presence of metal centres with paramagnetic behaviour that inter­feres with the NMR measurements, as in the case for the Ni2+ com­plexes, it was not possible to characterize these com­plexes using this technique. This same effect causes some signals to widen and they cannot be identified clearly. Also, it is important to mention that the presence of unidentified low-intensity signals may be due to a leaching process or an excess of ligand in solution. All other spectroscopic, thermal and diffraction techniques confirm the formation of the com­plexes. The FT–IR and UV–Vis (λ) bands, and NMR signals (chemical shifts, δ) of the metal com­plexes are significantly shifted with respect to those of the precursor 2,2′:6′,2′′-terpyridine ligands, due to strong metal–ligand inter­actions. The absorption bands in the coordination com­plexes are shifted to longer wavelengths; these bathochromic shifts (red-shifted absorption) occur due to the formation of new covalent bonds between the terpyridine N atoms and the d-block transition-metal cation (M—N). A similar behaviour is ob­served in the FT–IR bands, where the per­chlo­rate anion and metal–ligand (M—N) bands are also observed.

The thermal stability of the com­plexes is directly related to the presence of the per­chlo­rate anion in the mol­ecular structure causing low thermal stability. Different functional groups in the pendant ring of TPY allow the formation of different crystalline packings as a result of their nature. The introduction of these groups in TPY is important because they provide specific physicochemical properties that would enable the potential use of each mol­ecule in different fields of application.

Supporting information


Computing details top

Bis[4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine]manganese(II) bis(perchlorate) (MnMeOTPY) top
Crystal data top
[Mn(C22H17N3O)2](ClO4)2Z = 2
Mr = 932.61F(000) = 958
Triclinic, P1Dx = 1.505 Mg m3
a = 8.93282 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.32698 (13) ÅCell parameters from 44860 reflections
c = 18.86081 (19) Åθ = 2.6–34.1°
α = 89.8757 (8)°µ = 0.52 mm1
β = 85.6122 (8)°T = 100 K
γ = 83.5667 (9)°Block, light yellow
V = 2057.68 (4) Å30.15 × 0.10 × 0.08 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
10630 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source9347 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 28.7°, θmin = 2.5°
ω scansh = 1212
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
k = 1616
Tmin = 0.662, Tmax = 1.000l = 2525
57826 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.9933P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
10630 reflectionsΔρmax = 0.49 e Å3
570 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.84071 (2)0.20014 (2)0.74163 (2)0.01322 (5)
Cl20.27866 (3)0.73931 (2)0.86546 (2)0.01663 (7)
Cl10.44773 (4)0.27267 (3)0.51211 (2)0.01862 (7)
O21.04363 (12)0.38092 (8)0.19702 (5)0.0220 (2)
O10.61146 (13)0.26205 (9)1.20844 (5)0.0259 (2)
O80.13467 (11)0.80637 (8)0.87487 (5)0.0219 (2)
O70.32762 (13)0.73117 (9)0.79090 (5)0.0267 (2)
O90.26411 (13)0.63223 (8)0.89400 (6)0.0276 (2)
O100.38971 (12)0.78935 (9)0.90230 (6)0.0276 (2)
N40.71778 (12)0.36568 (9)0.72566 (6)0.0156 (2)
N50.90456 (12)0.25287 (8)0.63304 (5)0.0136 (2)
N10.94458 (12)0.27627 (9)0.83268 (6)0.0147 (2)
N20.78219 (12)0.11127 (8)0.83983 (5)0.01317 (19)
N61.01949 (12)0.06923 (9)0.69056 (6)0.0147 (2)
O50.38629 (13)0.17013 (9)0.52369 (7)0.0359 (3)
N30.68141 (12)0.07699 (9)0.71536 (5)0.0147 (2)
O30.50570 (17)0.27764 (11)0.43929 (6)0.0432 (3)
O60.33038 (15)0.36195 (10)0.52570 (7)0.0391 (3)
O40.56453 (17)0.27922 (11)0.55862 (8)0.0502 (4)
C110.64293 (14)0.00707 (10)0.76733 (6)0.0135 (2)
C100.69668 (13)0.02828 (10)0.83820 (6)0.0128 (2)
C60.83885 (13)0.13535 (10)0.90126 (6)0.0131 (2)
C50.92485 (14)0.23205 (10)0.89801 (6)0.0134 (2)
C70.81556 (14)0.07495 (10)0.96256 (6)0.0138 (2)
H70.8602320.0922421.0046300.017*
C270.83919 (14)0.34763 (10)0.60817 (6)0.0133 (2)
C190.64295 (15)0.19800 (11)1.15164 (7)0.0171 (2)
C370.99495 (14)0.33887 (10)0.41620 (6)0.0153 (2)
C120.56352 (14)0.08050 (10)0.75412 (7)0.0161 (2)
H120.5350700.1273190.7916540.019*
C40.97795 (15)0.27649 (10)0.95764 (7)0.0168 (2)
H40.9628780.2443201.0030770.020*
C160.69693 (14)0.07642 (10)1.02729 (6)0.0130 (2)
C90.66467 (14)0.03336 (10)0.89824 (6)0.0135 (2)
H90.6013770.0900360.8958160.016*
C260.72713 (14)0.40883 (10)0.65978 (6)0.0138 (2)
C180.72148 (14)0.10719 (10)1.15389 (6)0.0157 (2)
H180.7571950.0857781.1973230.019*
C80.72601 (13)0.01167 (10)0.96239 (6)0.0126 (2)
C290.96743 (14)0.31363 (10)0.49237 (6)0.0146 (2)
C170.74767 (14)0.04769 (10)1.09233 (6)0.0152 (2)
H170.8015750.0142721.0944920.018*
C311.00055 (14)0.18737 (10)0.58924 (6)0.0138 (2)
C130.52625 (15)0.09870 (11)0.68529 (7)0.0181 (2)
H130.4739100.1590610.6749750.022*
C250.63432 (15)0.50116 (10)0.64175 (7)0.0174 (2)
H250.6416060.5296120.5949210.021*
C401.03554 (15)0.36605 (10)0.26877 (6)0.0163 (2)
C321.05891 (14)0.08155 (10)0.62066 (6)0.0141 (2)
C150.64223 (15)0.05958 (11)0.64927 (7)0.0180 (2)
H150.6676430.1092850.6129250.022*
C280.87030 (14)0.38170 (10)0.53876 (6)0.0151 (2)
H280.8259800.4504200.5231580.018*
C390.90529 (15)0.41530 (11)0.30658 (7)0.0182 (2)
H390.8303980.4580980.2822860.022*
C21.07214 (15)0.41551 (11)0.88302 (7)0.0193 (3)
H21.1226550.4790370.8764400.023*
C301.03336 (14)0.21484 (10)0.51903 (7)0.0155 (2)
H301.1004920.1667910.4889340.019*
C380.88507 (15)0.40186 (11)0.37951 (7)0.0176 (2)
H380.7961160.4355270.4049550.021*
C331.14230 (15)0.00195 (11)0.58015 (7)0.0183 (2)
H331.1713580.0092680.5314100.022*
C210.61682 (16)0.16794 (11)1.02645 (7)0.0185 (2)
H210.5801200.1892820.9832260.022*
C421.12654 (15)0.29330 (11)0.37761 (7)0.0175 (2)
H421.2032040.2523660.4018740.021*
C240.53044 (16)0.55112 (11)0.69369 (7)0.0204 (3)
H240.4646470.6137680.6825310.024*
C200.59031 (17)0.22761 (11)1.08730 (7)0.0215 (3)
H200.5358220.2893201.0854070.026*
C411.14771 (15)0.30650 (11)0.30466 (7)0.0178 (2)
H411.2381560.2751150.2793200.021*
C341.18242 (15)0.10165 (11)0.61178 (7)0.0196 (3)
H341.2386360.1596980.5849440.023*
C11.01489 (15)0.36672 (10)0.82639 (7)0.0175 (2)
H11.0260350.3990020.7807810.021*
C140.56647 (15)0.02757 (12)0.63175 (7)0.0195 (3)
H140.5425990.0384070.5842330.023*
C361.05989 (15)0.02783 (11)0.72056 (7)0.0173 (2)
H361.0326390.0366980.7697400.021*
C220.61991 (16)0.41617 (11)0.77528 (7)0.0203 (3)
H220.6160450.3872190.8220240.024*
C230.52374 (16)0.50879 (11)0.76177 (8)0.0223 (3)
H230.4549710.5424010.7982740.027*
C351.13919 (15)0.11532 (11)0.68323 (7)0.0192 (3)
H351.1634710.1831540.7059760.023*
C31.05346 (15)0.36884 (11)0.94953 (7)0.0190 (3)
H31.0921400.3998520.9894350.023*
C440.66597 (17)0.23664 (13)1.27535 (7)0.0239 (3)
H44A0.7766240.2428671.2706770.036*
H44B0.6325770.2877561.3115090.036*
H44C0.6259520.1619301.2895600.036*
C431.16290 (18)0.31801 (13)0.15575 (7)0.0268 (3)
H43A1.1515370.3313650.1051010.040*
H43B1.1588590.2402880.1657140.040*
H43C1.2602810.3391290.1680690.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01649 (10)0.01185 (9)0.01116 (9)0.00133 (7)0.00057 (7)0.00234 (6)
Cl20.02027 (15)0.01290 (13)0.01747 (14)0.00286 (11)0.00480 (11)0.00059 (10)
Cl10.01966 (15)0.01990 (15)0.01669 (14)0.00161 (11)0.00475 (11)0.00003 (11)
O20.0324 (5)0.0215 (5)0.0112 (4)0.0017 (4)0.0022 (4)0.0034 (3)
O10.0392 (6)0.0274 (5)0.0136 (4)0.0154 (5)0.0022 (4)0.0073 (4)
O80.0209 (5)0.0186 (5)0.0260 (5)0.0003 (4)0.0035 (4)0.0028 (4)
O70.0361 (6)0.0235 (5)0.0181 (5)0.0055 (4)0.0003 (4)0.0000 (4)
O90.0326 (6)0.0167 (5)0.0349 (6)0.0062 (4)0.0066 (5)0.0092 (4)
O100.0264 (5)0.0257 (5)0.0331 (6)0.0076 (4)0.0118 (4)0.0033 (4)
N40.0178 (5)0.0138 (5)0.0150 (5)0.0007 (4)0.0001 (4)0.0015 (4)
N50.0144 (5)0.0129 (5)0.0134 (5)0.0009 (4)0.0019 (4)0.0014 (4)
N10.0165 (5)0.0127 (5)0.0151 (5)0.0018 (4)0.0016 (4)0.0022 (4)
N20.0144 (5)0.0126 (5)0.0125 (5)0.0011 (4)0.0009 (4)0.0006 (4)
N60.0153 (5)0.0140 (5)0.0150 (5)0.0012 (4)0.0029 (4)0.0024 (4)
O50.0305 (6)0.0240 (6)0.0554 (8)0.0103 (5)0.0075 (5)0.0013 (5)
N30.0154 (5)0.0159 (5)0.0128 (5)0.0004 (4)0.0025 (4)0.0024 (4)
O30.0614 (9)0.0381 (7)0.0224 (6)0.0185 (6)0.0113 (5)0.0058 (5)
O60.0411 (7)0.0273 (6)0.0439 (7)0.0083 (5)0.0111 (5)0.0045 (5)
O40.0582 (9)0.0434 (8)0.0599 (9)0.0259 (7)0.0461 (7)0.0206 (6)
C110.0131 (5)0.0139 (5)0.0129 (5)0.0005 (4)0.0012 (4)0.0003 (4)
C100.0129 (5)0.0123 (5)0.0127 (5)0.0007 (4)0.0006 (4)0.0001 (4)
C60.0135 (5)0.0118 (5)0.0138 (5)0.0004 (4)0.0006 (4)0.0001 (4)
C50.0138 (5)0.0117 (5)0.0142 (5)0.0003 (4)0.0003 (4)0.0015 (4)
C70.0159 (6)0.0139 (5)0.0120 (5)0.0018 (4)0.0018 (4)0.0003 (4)
C270.0143 (5)0.0123 (5)0.0135 (5)0.0016 (4)0.0019 (4)0.0007 (4)
C190.0209 (6)0.0172 (6)0.0127 (5)0.0023 (5)0.0012 (5)0.0035 (4)
C370.0170 (6)0.0164 (6)0.0127 (5)0.0027 (5)0.0011 (4)0.0023 (4)
C120.0165 (6)0.0161 (6)0.0157 (6)0.0019 (5)0.0013 (4)0.0002 (4)
C40.0197 (6)0.0160 (6)0.0153 (6)0.0035 (5)0.0026 (5)0.0018 (4)
C160.0143 (5)0.0120 (5)0.0123 (5)0.0003 (4)0.0003 (4)0.0020 (4)
C90.0146 (5)0.0119 (5)0.0143 (5)0.0020 (4)0.0010 (4)0.0004 (4)
C260.0156 (6)0.0120 (5)0.0139 (5)0.0020 (4)0.0011 (4)0.0004 (4)
C180.0175 (6)0.0170 (6)0.0125 (5)0.0013 (5)0.0014 (4)0.0008 (4)
C80.0131 (5)0.0116 (5)0.0125 (5)0.0011 (4)0.0008 (4)0.0009 (4)
C290.0148 (5)0.0169 (6)0.0125 (5)0.0029 (4)0.0009 (4)0.0025 (4)
C170.0173 (6)0.0140 (6)0.0146 (6)0.0018 (4)0.0019 (4)0.0011 (4)
C310.0139 (5)0.0136 (5)0.0137 (5)0.0010 (4)0.0017 (4)0.0010 (4)
C130.0179 (6)0.0180 (6)0.0187 (6)0.0026 (5)0.0033 (5)0.0023 (5)
C250.0204 (6)0.0144 (6)0.0168 (6)0.0009 (5)0.0015 (5)0.0022 (4)
C400.0228 (6)0.0148 (6)0.0120 (5)0.0048 (5)0.0019 (5)0.0027 (4)
C320.0132 (5)0.0138 (5)0.0153 (5)0.0009 (4)0.0029 (4)0.0017 (4)
C150.0192 (6)0.0213 (6)0.0137 (6)0.0016 (5)0.0030 (5)0.0028 (5)
C280.0175 (6)0.0137 (5)0.0142 (5)0.0009 (4)0.0019 (4)0.0030 (4)
C390.0206 (6)0.0164 (6)0.0175 (6)0.0001 (5)0.0047 (5)0.0053 (5)
C20.0214 (6)0.0137 (6)0.0238 (6)0.0046 (5)0.0042 (5)0.0033 (5)
C300.0148 (6)0.0170 (6)0.0143 (6)0.0003 (4)0.0009 (4)0.0009 (4)
C380.0192 (6)0.0165 (6)0.0163 (6)0.0004 (5)0.0008 (5)0.0025 (5)
C330.0190 (6)0.0179 (6)0.0171 (6)0.0008 (5)0.0013 (5)0.0006 (5)
C210.0240 (6)0.0193 (6)0.0134 (6)0.0069 (5)0.0027 (5)0.0010 (5)
C420.0160 (6)0.0208 (6)0.0157 (6)0.0005 (5)0.0025 (4)0.0033 (5)
C240.0208 (6)0.0161 (6)0.0228 (6)0.0033 (5)0.0004 (5)0.0015 (5)
C200.0293 (7)0.0203 (6)0.0172 (6)0.0126 (5)0.0020 (5)0.0027 (5)
C410.0182 (6)0.0211 (6)0.0137 (6)0.0015 (5)0.0001 (4)0.0013 (5)
C340.0178 (6)0.0155 (6)0.0249 (7)0.0017 (5)0.0032 (5)0.0013 (5)
C10.0204 (6)0.0143 (6)0.0181 (6)0.0030 (5)0.0015 (5)0.0042 (5)
C140.0198 (6)0.0248 (7)0.0142 (6)0.0014 (5)0.0046 (5)0.0010 (5)
C360.0171 (6)0.0168 (6)0.0184 (6)0.0024 (5)0.0032 (5)0.0049 (5)
C220.0246 (7)0.0186 (6)0.0161 (6)0.0001 (5)0.0042 (5)0.0030 (5)
C230.0236 (7)0.0183 (6)0.0226 (7)0.0033 (5)0.0060 (5)0.0001 (5)
C350.0170 (6)0.0147 (6)0.0264 (7)0.0011 (5)0.0055 (5)0.0045 (5)
C30.0219 (6)0.0169 (6)0.0196 (6)0.0049 (5)0.0063 (5)0.0002 (5)
C440.0294 (7)0.0297 (7)0.0127 (6)0.0048 (6)0.0005 (5)0.0042 (5)
C430.0310 (8)0.0343 (8)0.0137 (6)0.0001 (6)0.0017 (5)0.0008 (5)
Geometric parameters (Å, º) top
Mn1—N42.2375 (11)C9—C81.4042 (17)
Mn1—N52.2002 (10)C26—C251.3886 (17)
Mn1—N12.2666 (11)C18—H180.9500
Mn1—N22.2081 (10)C18—C171.3906 (17)
Mn1—N62.2970 (11)C29—C281.3951 (17)
Mn1—N32.2738 (11)C29—C301.4017 (17)
Cl2—O81.4480 (10)C17—H170.9500
Cl2—O71.4406 (10)C31—C321.4886 (17)
Cl2—O91.4401 (10)C31—C301.3838 (17)
Cl2—O101.4462 (10)C13—H130.9500
Cl1—O51.4432 (12)C13—C141.3888 (19)
Cl1—O31.4338 (12)C25—H250.9500
Cl1—O61.4413 (12)C25—C241.3911 (18)
Cl1—O41.4226 (12)C40—C391.3956 (19)
O2—C401.3626 (15)C40—C411.3920 (18)
O2—C431.4259 (17)C32—C331.3939 (18)
O1—C191.3602 (15)C15—H150.9500
O1—C441.4344 (17)C15—C141.3856 (19)
N4—C261.3509 (16)C28—H280.9500
N4—C221.3353 (17)C39—H390.9500
N5—C271.3461 (15)C39—C381.3856 (18)
N5—C311.3450 (16)C2—H20.9500
N1—C51.3535 (15)C2—C11.3855 (19)
N1—C11.3403 (16)C2—C31.3852 (18)
N2—C101.3453 (16)C30—H300.9500
N2—C61.3459 (15)C38—H380.9500
N6—C321.3509 (16)C33—H330.9500
N6—C361.3467 (16)C33—C341.3877 (18)
N3—C111.3537 (15)C21—H210.9500
N3—C151.3443 (16)C21—C201.3812 (18)
C11—C101.4878 (16)C42—H420.9500
C11—C121.3894 (17)C42—C411.3863 (17)
C10—C91.3916 (16)C24—H240.9500
C6—C51.4873 (17)C24—C231.3846 (19)
C6—C71.3887 (16)C20—H200.9500
C5—C41.3902 (17)C41—H410.9500
C7—H70.9500C34—H340.9500
C7—C81.4042 (17)C34—C351.3882 (19)
C27—C261.4845 (17)C1—H10.9500
C27—C281.3912 (16)C14—H140.9500
C19—C181.3883 (18)C36—H360.9500
C19—C201.3982 (18)C36—C351.3844 (19)
C37—C291.4773 (16)C22—H220.9500
C37—C381.4057 (17)C22—C231.3853 (19)
C37—C421.3964 (18)C23—H230.9500
C12—H120.9500C35—H350.9500
C12—C131.3895 (17)C3—H30.9500
C4—H40.9500C44—H44A0.9800
C4—C31.3892 (18)C44—H44B0.9800
C16—C81.4820 (16)C44—H44C0.9800
C16—C171.3995 (17)C43—H43A0.9800
C16—C211.4028 (17)C43—H43B0.9800
C9—H90.9500C43—H43C0.9800
N4—Mn1—N186.42 (4)C28—C29—C30117.88 (11)
N4—Mn1—N6143.89 (4)C30—C29—C37119.53 (11)
N4—Mn1—N3106.58 (4)C16—C17—H17119.0
N5—Mn1—N472.05 (4)C18—C17—C16121.92 (12)
N5—Mn1—N1117.76 (4)C18—C17—H17119.0
N5—Mn1—N2167.42 (4)N5—C31—C32114.98 (10)
N5—Mn1—N672.00 (4)N5—C31—C30121.56 (11)
N5—Mn1—N398.94 (4)C30—C31—C32123.34 (11)
N1—Mn1—N6107.36 (4)C12—C13—H13120.4
N1—Mn1—N3143.30 (4)C14—C13—C12119.18 (12)
N2—Mn1—N4118.25 (4)C14—C13—H13120.4
N2—Mn1—N171.82 (4)C26—C25—H25120.7
N2—Mn1—N697.84 (4)C26—C25—C24118.64 (12)
N2—Mn1—N371.82 (4)C24—C25—H25120.7
N3—Mn1—N682.42 (4)O2—C40—C39116.01 (11)
O7—Cl2—O8109.56 (6)O2—C40—C41124.01 (12)
O7—Cl2—O10108.81 (7)C41—C40—C39119.98 (12)
O9—Cl2—O8109.74 (6)N6—C32—C31115.67 (11)
O9—Cl2—O7109.98 (7)N6—C32—C33121.80 (11)
O9—Cl2—O10109.41 (7)C33—C32—C31122.45 (11)
O10—Cl2—O8109.33 (6)N3—C15—H15118.5
O3—Cl1—O5108.85 (8)N3—C15—C14122.99 (12)
O3—Cl1—O6108.44 (7)C14—C15—H15118.5
O6—Cl1—O5109.88 (8)C27—C28—C29119.13 (11)
O4—Cl1—O5108.68 (8)C27—C28—H28120.4
O4—Cl1—O3110.75 (10)C29—C28—H28120.4
O4—Cl1—O6110.22 (9)C40—C39—H39120.0
C40—O2—C43117.30 (11)C38—C39—C40120.08 (12)
C19—O1—C44118.33 (11)C38—C39—H39120.0
C26—N4—Mn1117.98 (8)C1—C2—H2121.0
C22—N4—Mn1122.76 (9)C3—C2—H2121.0
C22—N4—C26118.57 (11)C3—C2—C1117.97 (12)
C27—N5—Mn1120.08 (8)C29—C30—H30120.0
C31—N5—Mn1120.43 (8)C31—C30—C29119.93 (11)
C31—N5—C27119.31 (10)C31—C30—H30120.0
C5—N1—Mn1117.79 (8)C37—C38—H38119.7
C1—N1—Mn1123.69 (8)C39—C38—C37120.61 (12)
C1—N1—C5118.35 (11)C39—C38—H38119.7
C10—N2—Mn1120.46 (8)C32—C33—H33120.4
C10—N2—C6119.11 (10)C34—C33—C32119.28 (12)
C6—N2—Mn1120.32 (8)C34—C33—H33120.4
C32—N6—Mn1116.15 (8)C16—C21—H21119.4
C36—N6—Mn1123.91 (9)C20—C21—C16121.23 (12)
C36—N6—C32118.19 (11)C20—C21—H21119.4
C11—N3—Mn1117.30 (8)C37—C42—H42119.3
C15—N3—Mn1123.53 (9)C41—C42—C37121.41 (12)
C15—N3—C11118.41 (11)C41—C42—H42119.3
N3—C11—C10115.35 (11)C25—C24—H24120.3
N3—C11—C12121.82 (11)C23—C24—C25119.45 (12)
C12—C11—C10122.80 (11)C23—C24—H24120.3
N2—C10—C11114.65 (10)C19—C20—H20119.7
N2—C10—C9121.95 (11)C21—C20—C19120.58 (12)
C9—C10—C11123.38 (11)C21—C20—H20119.7
N2—C6—C5114.61 (10)C40—C41—H41120.2
N2—C6—C7121.95 (11)C42—C41—C40119.56 (12)
C7—C6—C5123.43 (11)C42—C41—H41120.2
N1—C5—C6115.12 (11)C33—C34—H34120.5
N1—C5—C4121.87 (11)C33—C34—C35119.02 (12)
C4—C5—C6122.99 (11)C35—C34—H34120.5
C6—C7—H7120.0N1—C1—C2123.33 (12)
C6—C7—C8120.03 (11)N1—C1—H1118.3
C8—C7—H7120.0C2—C1—H1118.3
N5—C27—C26114.31 (10)C13—C14—H14120.8
N5—C27—C28122.14 (11)C15—C14—C13118.43 (12)
C28—C27—C26123.49 (11)C15—C14—H14120.8
O1—C19—C18124.66 (12)N6—C36—H36118.4
O1—C19—C20116.13 (12)N6—C36—C35123.19 (12)
C18—C19—C20119.20 (11)C35—C36—H36118.4
C38—C37—C29121.13 (11)N4—C22—H22118.5
C42—C37—C29120.39 (11)N4—C22—C23123.05 (12)
C42—C37—C38118.29 (11)C23—C22—H22118.5
C11—C12—H12120.4C24—C23—C22118.28 (12)
C11—C12—C13119.14 (12)C24—C23—H23120.9
C13—C12—H12120.4C22—C23—H23120.9
C5—C4—H4120.6C34—C35—H35120.8
C3—C4—C5118.74 (12)C36—C35—C34118.49 (12)
C3—C4—H4120.6C36—C35—H35120.8
C17—C16—C8120.96 (11)C4—C3—H3120.1
C17—C16—C21117.28 (11)C2—C3—C4119.72 (12)
C21—C16—C8121.75 (11)C2—C3—H3120.1
C10—C9—H9120.0O1—C44—H44A109.5
C10—C9—C8119.92 (11)O1—C44—H44B109.5
C8—C9—H9120.0O1—C44—H44C109.5
N4—C26—C27114.89 (11)H44A—C44—H44B109.5
N4—C26—C25121.96 (11)H44A—C44—H44C109.5
C25—C26—C27123.11 (11)H44B—C44—H44C109.5
C19—C18—H18120.1O2—C43—H43A109.5
C19—C18—C17119.77 (12)O2—C43—H43B109.5
C17—C18—H18120.1O2—C43—H43C109.5
C7—C8—C16121.30 (11)H43A—C43—H43B109.5
C9—C8—C7116.97 (11)H43A—C43—H43C109.5
C9—C8—C16121.73 (11)H43B—C43—H43C109.5
C28—C29—C37122.47 (11)
Mn1—N4—C26—C279.44 (14)C27—N5—C31—C300.27 (18)
Mn1—N4—C26—C25168.29 (10)C27—C26—C25—C24178.49 (12)
Mn1—N4—C22—C23168.08 (11)C19—C18—C17—C160.04 (19)
Mn1—N5—C27—C260.53 (14)C37—C29—C28—C27174.07 (11)
Mn1—N5—C27—C28176.72 (9)C37—C29—C30—C31175.90 (11)
Mn1—N5—C31—C321.14 (14)C37—C42—C41—C400.2 (2)
Mn1—N5—C31—C30174.88 (9)C12—C11—C10—N2174.79 (11)
Mn1—N1—C5—C61.48 (14)C12—C11—C10—C93.98 (19)
Mn1—N1—C5—C4176.77 (9)C12—C13—C14—C150.2 (2)
Mn1—N1—C1—C2177.01 (10)C16—C21—C20—C190.0 (2)
Mn1—N2—C10—C112.43 (14)C26—N4—C22—C232.2 (2)
Mn1—N2—C10—C9176.36 (9)C26—C27—C28—C29174.25 (11)
Mn1—N2—C6—C56.85 (14)C26—C25—C24—C230.9 (2)
Mn1—N2—C6—C7174.19 (9)C18—C19—C20—C210.5 (2)
Mn1—N6—C32—C319.74 (14)C8—C16—C17—C18179.92 (11)
Mn1—N6—C32—C33167.10 (10)C8—C16—C21—C20179.95 (12)
Mn1—N6—C36—C35164.11 (10)C29—C37—C38—C39173.07 (12)
Mn1—N3—C11—C106.67 (13)C29—C37—C42—C41173.18 (12)
Mn1—N3—C11—C12171.06 (9)C17—C16—C8—C75.23 (18)
Mn1—N3—C15—C14168.71 (10)C17—C16—C8—C9174.26 (12)
O2—C40—C39—C38178.05 (12)C17—C16—C21—C200.5 (2)
O2—C40—C41—C42177.99 (12)C31—N5—C27—C26175.70 (11)
O1—C19—C18—C17179.83 (12)C31—N5—C27—C281.55 (18)
O1—C19—C20—C21179.83 (13)C31—C32—C33—C34174.73 (12)
N4—C26—C25—C241.0 (2)C25—C24—C23—C221.2 (2)
N4—C22—C23—C240.4 (2)C40—C39—C38—C370.1 (2)
N5—C27—C26—N45.83 (16)C32—N6—C36—C350.20 (19)
N5—C27—C26—C25171.86 (12)C32—C31—C30—C29176.52 (12)
N5—C27—C28—C292.75 (19)C32—C33—C34—C350.4 (2)
N5—C31—C32—N65.90 (16)C15—N3—C11—C10177.08 (11)
N5—C31—C32—C33170.91 (12)C15—N3—C11—C120.65 (18)
N5—C31—C30—C290.84 (19)C28—C27—C26—N4176.96 (12)
N1—C5—C4—C30.08 (19)C28—C27—C26—C255.3 (2)
N2—C10—C9—C81.93 (18)C28—C29—C30—C310.36 (19)
N2—C6—C5—N15.27 (16)C39—C40—C41—C422.3 (2)
N2—C6—C5—C4172.95 (11)C30—C29—C28—C272.07 (18)
N2—C6—C7—C82.40 (18)C30—C31—C32—N6178.16 (12)
N6—C32—C33—C341.90 (19)C30—C31—C32—C335.02 (19)
N6—C36—C35—C341.6 (2)C38—C37—C29—C2827.63 (19)
N3—C11—C10—N22.91 (16)C38—C37—C29—C30148.45 (13)
N3—C11—C10—C9178.31 (11)C38—C37—C42—C411.9 (2)
N3—C11—C12—C131.86 (19)C33—C34—C35—C361.2 (2)
N3—C15—C14—C131.5 (2)C21—C16—C8—C7175.33 (12)
C11—N3—C15—C141.06 (19)C21—C16—C8—C95.17 (18)
C11—C10—C9—C8176.75 (11)C21—C16—C17—C180.46 (19)
C11—C12—C13—C141.37 (19)C42—C37—C29—C28157.44 (13)
C10—N2—C6—C5176.95 (10)C42—C37—C29—C3026.48 (18)
C10—N2—C6—C72.01 (18)C42—C37—C38—C392.0 (2)
C10—C11—C12—C13175.70 (11)C20—C19—C18—C170.5 (2)
C10—C9—C8—C71.49 (17)C41—C40—C39—C382.2 (2)
C10—C9—C8—C16178.99 (11)C1—N1—C5—C6176.91 (11)
C6—N2—C10—C11178.63 (10)C1—N1—C5—C41.34 (18)
C6—N2—C10—C90.16 (18)C1—C2—C3—C40.6 (2)
C6—C5—C4—C3178.19 (12)C36—N6—C32—C31175.27 (11)
C6—C7—C8—C16178.95 (11)C36—N6—C32—C331.57 (18)
C6—C7—C8—C90.58 (17)C22—N4—C26—C27179.77 (11)
C5—N1—C1—C21.87 (19)C22—N4—C26—C252.51 (19)
C5—C6—C7—C8176.47 (11)C3—C2—C1—N10.9 (2)
C5—C4—C3—C21.0 (2)C44—O1—C19—C181.7 (2)
C7—C6—C5—N1175.78 (11)C44—O1—C19—C20178.59 (13)
C7—C6—C5—C45.99 (19)C43—O2—C40—C39170.34 (12)
C27—N5—C31—C32176.28 (11)C43—O2—C40—C419.96 (19)
Bis(4'-phenyl-2,2':6',2''-terpyridine)manganese(II) bis(perchlorate) (MnPhTPY) top
Crystal data top
[Mn(C21H15N3)2](ClO4)2F(000) = 1788
Mr = 872.56Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.51026 (18) ÅCell parameters from 38088 reflections
b = 12.5149 (2) Åθ = 2.6–34.1°
c = 31.2962 (6) ŵ = 0.57 mm1
β = 96.8780 (18)°T = 100 K
V = 3698.07 (12) Å3Block, yellow
Z = 40.30 × 0.11 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
9547 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source8250 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 28.7°, θmin = 2.6°
ω scansh = 1314
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
k = 1919
l = 4845
63288 measured reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.5012P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
9547 reflectionsΔρmax = 0.43 e Å3
560 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.55217 (2)0.66511 (2)0.61483 (2)0.01214 (6)
Cl20.03899 (4)0.78696 (3)0.51551 (2)0.01592 (7)
Cl10.76703 (4)0.90467 (3)0.74675 (2)0.02234 (8)
O80.03068 (13)0.67290 (8)0.50689 (4)0.0236 (2)
O70.02540 (12)0.80943 (9)0.55382 (3)0.0241 (2)
O50.18577 (11)0.81940 (9)0.52167 (3)0.0213 (2)
N50.60249 (12)0.63127 (9)0.68354 (3)0.0132 (2)
O60.03368 (13)0.84378 (9)0.47935 (4)0.0276 (3)
N60.36831 (12)0.72376 (9)0.64782 (4)0.0139 (2)
N20.48224 (12)0.67389 (9)0.54501 (4)0.0123 (2)
N40.77714 (12)0.60523 (9)0.62545 (4)0.0138 (2)
N10.43169 (12)0.51278 (9)0.59496 (4)0.0141 (2)
N30.63622 (12)0.81781 (9)0.59029 (4)0.0137 (2)
O10.65906 (16)0.85930 (12)0.71679 (4)0.0420 (4)
C100.51562 (14)0.75998 (10)0.52251 (4)0.0123 (2)
C110.60971 (14)0.83862 (10)0.54766 (4)0.0129 (2)
C70.33460 (14)0.60963 (11)0.48354 (4)0.0142 (2)
H70.2734130.5556290.4706140.017*
C90.46060 (14)0.77417 (11)0.47975 (4)0.0139 (2)
H90.4876640.8343900.4641580.017*
C270.50548 (15)0.65035 (11)0.71035 (4)0.0150 (3)
O30.7117 (8)0.9230 (7)0.78654 (16)0.0558 (17)0.63 (3)
C320.83040 (15)0.58016 (10)0.66632 (4)0.0134 (2)
C370.69504 (15)0.56670 (11)0.81747 (4)0.0140 (2)
C50.36273 (14)0.50937 (10)0.55456 (4)0.0130 (2)
C390.85716 (15)0.58695 (11)0.88276 (4)0.0165 (3)
H390.9464840.6092580.8967640.020*
C290.66243 (15)0.58427 (11)0.77054 (4)0.0144 (3)
C380.82713 (15)0.59734 (11)0.83840 (4)0.0159 (3)
H380.8968410.6254810.8221660.019*
C280.53130 (15)0.62540 (12)0.75376 (4)0.0175 (3)
H280.4596620.6363530.7720150.021*
C310.72924 (14)0.59099 (10)0.69895 (4)0.0128 (2)
C220.25461 (15)0.77547 (11)0.62823 (4)0.0160 (3)
H220.2491690.7880100.5981350.019*
C300.76353 (15)0.56662 (11)0.74226 (4)0.0149 (3)
H300.8540650.5384370.7525090.018*
C160.29350 (15)0.71704 (10)0.41567 (4)0.0141 (2)
C330.97100 (15)0.55131 (11)0.67687 (5)0.0174 (3)
H331.0062880.5340720.7057350.021*
C260.37499 (15)0.70548 (11)0.69054 (4)0.0156 (3)
C10.40786 (15)0.43499 (11)0.62260 (4)0.0170 (3)
H10.4564320.4374610.6509360.020*
C150.71934 (15)0.88546 (11)0.61525 (4)0.0170 (3)
H150.7378220.8709420.6451900.020*
C230.14478 (15)0.81139 (11)0.64994 (5)0.0177 (3)
H230.0658950.8475330.6349810.021*
C400.75682 (16)0.54398 (11)0.90670 (4)0.0170 (3)
H400.7777780.5358940.9369800.020*
C60.39392 (14)0.59966 (10)0.52607 (4)0.0127 (2)
C120.66710 (15)0.92730 (11)0.52940 (4)0.0162 (3)
H120.6472980.9404440.4993850.019*
C420.59376 (15)0.52416 (11)0.84167 (4)0.0162 (3)
H420.5036340.5030290.8278720.019*
C360.86477 (16)0.60294 (11)0.59492 (4)0.0166 (3)
H360.8281090.6217750.5663350.020*
C351.00601 (16)0.57446 (11)0.60306 (5)0.0183 (3)
H351.0647740.5731730.5805670.022*
C80.36532 (14)0.69952 (11)0.45980 (4)0.0136 (2)
C140.77917 (16)0.97545 (11)0.59913 (5)0.0186 (3)
H140.8367931.0220200.6177330.022*
C240.15228 (16)0.79362 (12)0.69374 (5)0.0213 (3)
H240.0793280.8181950.7095340.026*
C341.05955 (16)0.54793 (12)0.64472 (5)0.0193 (3)
H341.1559590.5275950.6512780.023*
C170.15410 (16)0.68177 (11)0.40447 (4)0.0167 (3)
H170.1058460.6459680.4251770.020*
O20.8790 (7)0.8296 (7)0.7535 (3)0.068 (2)0.63 (3)
C180.08613 (16)0.69891 (12)0.36322 (5)0.0185 (3)
H180.0079890.6740140.3557970.022*
C410.62557 (16)0.51291 (12)0.88606 (4)0.0179 (3)
H410.5568520.4836970.9023990.021*
C210.36073 (16)0.77218 (12)0.38509 (4)0.0196 (3)
H210.4545480.7978560.3923590.023*
C250.26879 (16)0.73902 (13)0.71425 (5)0.0217 (3)
H250.2755780.7248150.7442430.026*
C40.26772 (15)0.42783 (11)0.54152 (4)0.0170 (3)
H40.2194980.4271190.5131260.020*
C130.75362 (16)0.99655 (11)0.55536 (5)0.0187 (3)
H130.7945241.0571860.5433890.022*
C190.15471 (17)0.75212 (13)0.33278 (5)0.0217 (3)
H190.1085140.7626570.3044660.026*
C20.31509 (16)0.35074 (11)0.61163 (5)0.0188 (3)
H20.3008790.2967080.6320040.023*
O40.8043 (11)1.0058 (4)0.7301 (3)0.0469 (14)0.63 (3)
C200.29110 (18)0.78976 (14)0.34403 (5)0.0248 (3)
H200.3374860.8279170.3235190.030*
C30.24407 (16)0.34735 (11)0.57048 (5)0.0188 (3)
H30.1799720.2908430.5620740.023*
O3A0.7150 (9)0.9475 (18)0.7823 (4)0.071 (4)0.37 (3)
O2A0.8771 (11)0.8339 (10)0.7614 (4)0.060 (3)0.37 (3)
O4A0.852 (2)0.9827 (19)0.7260 (5)0.064 (4)0.37 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01269 (10)0.01436 (10)0.00917 (9)0.00060 (7)0.00045 (7)0.00137 (7)
Cl20.01597 (16)0.01960 (16)0.01186 (14)0.00072 (11)0.00028 (11)0.00258 (11)
Cl10.02685 (19)0.02322 (17)0.01604 (16)0.00158 (14)0.00119 (13)0.00172 (13)
O80.0293 (6)0.0202 (5)0.0213 (5)0.0026 (4)0.0025 (4)0.0004 (4)
O70.0227 (6)0.0319 (6)0.0189 (5)0.0048 (5)0.0079 (4)0.0014 (4)
O50.0160 (5)0.0282 (6)0.0198 (5)0.0017 (4)0.0025 (4)0.0006 (4)
N50.0133 (5)0.0149 (5)0.0113 (5)0.0008 (4)0.0009 (4)0.0003 (4)
O60.0316 (7)0.0293 (6)0.0191 (5)0.0003 (5)0.0084 (5)0.0089 (4)
N60.0141 (6)0.0151 (5)0.0122 (5)0.0002 (4)0.0005 (4)0.0023 (4)
N20.0116 (5)0.0133 (5)0.0121 (5)0.0004 (4)0.0013 (4)0.0000 (4)
N40.0151 (6)0.0143 (5)0.0123 (5)0.0001 (4)0.0025 (4)0.0001 (4)
N10.0145 (6)0.0144 (5)0.0134 (5)0.0000 (4)0.0013 (4)0.0015 (4)
N30.0136 (5)0.0148 (5)0.0126 (5)0.0001 (4)0.0011 (4)0.0001 (4)
O10.0525 (9)0.0480 (8)0.0220 (6)0.0249 (7)0.0098 (6)0.0014 (5)
C100.0114 (6)0.0126 (6)0.0133 (6)0.0013 (4)0.0032 (5)0.0004 (4)
C110.0112 (6)0.0146 (6)0.0129 (6)0.0019 (5)0.0012 (5)0.0002 (5)
C70.0141 (6)0.0144 (6)0.0135 (6)0.0009 (5)0.0003 (5)0.0013 (5)
C90.0143 (6)0.0147 (6)0.0129 (6)0.0010 (5)0.0020 (5)0.0017 (5)
C270.0136 (6)0.0189 (6)0.0124 (6)0.0019 (5)0.0012 (5)0.0012 (5)
O30.074 (4)0.079 (3)0.0167 (19)0.008 (2)0.0153 (17)0.009 (2)
C320.0156 (6)0.0123 (6)0.0126 (6)0.0001 (5)0.0022 (5)0.0000 (5)
C370.0157 (6)0.0150 (6)0.0110 (6)0.0026 (5)0.0003 (5)0.0006 (5)
C50.0130 (6)0.0135 (6)0.0127 (6)0.0015 (5)0.0020 (5)0.0003 (4)
C390.0155 (7)0.0190 (6)0.0144 (6)0.0013 (5)0.0011 (5)0.0025 (5)
C290.0164 (7)0.0157 (6)0.0104 (6)0.0000 (5)0.0009 (5)0.0005 (5)
C380.0155 (7)0.0188 (6)0.0134 (6)0.0004 (5)0.0021 (5)0.0002 (5)
C280.0166 (7)0.0237 (7)0.0126 (6)0.0040 (5)0.0037 (5)0.0021 (5)
C310.0129 (6)0.0128 (6)0.0126 (6)0.0003 (5)0.0011 (5)0.0004 (4)
C220.0171 (7)0.0157 (6)0.0145 (6)0.0007 (5)0.0011 (5)0.0031 (5)
C300.0141 (6)0.0170 (6)0.0132 (6)0.0015 (5)0.0003 (5)0.0008 (5)
C160.0169 (7)0.0140 (6)0.0113 (6)0.0029 (5)0.0010 (5)0.0010 (5)
C330.0161 (7)0.0187 (6)0.0173 (6)0.0022 (5)0.0014 (5)0.0023 (5)
C260.0138 (6)0.0187 (6)0.0140 (6)0.0024 (5)0.0001 (5)0.0026 (5)
C10.0186 (7)0.0173 (6)0.0147 (6)0.0003 (5)0.0007 (5)0.0029 (5)
C150.0158 (7)0.0198 (7)0.0150 (6)0.0005 (5)0.0004 (5)0.0014 (5)
C230.0141 (7)0.0176 (6)0.0203 (7)0.0012 (5)0.0022 (5)0.0021 (5)
C400.0218 (7)0.0186 (6)0.0103 (6)0.0031 (5)0.0004 (5)0.0000 (5)
C60.0123 (6)0.0124 (6)0.0136 (6)0.0016 (5)0.0024 (5)0.0003 (4)
C120.0161 (7)0.0172 (6)0.0154 (6)0.0000 (5)0.0023 (5)0.0024 (5)
C420.0146 (7)0.0196 (6)0.0141 (6)0.0009 (5)0.0002 (5)0.0012 (5)
C360.0203 (7)0.0164 (6)0.0138 (6)0.0006 (5)0.0042 (5)0.0005 (5)
C350.0194 (7)0.0169 (6)0.0200 (7)0.0003 (5)0.0084 (5)0.0008 (5)
C80.0139 (6)0.0155 (6)0.0116 (6)0.0031 (5)0.0024 (5)0.0002 (5)
C140.0156 (7)0.0185 (7)0.0211 (7)0.0025 (5)0.0002 (5)0.0031 (5)
C240.0167 (7)0.0264 (7)0.0210 (7)0.0056 (6)0.0032 (6)0.0001 (6)
C340.0144 (7)0.0194 (7)0.0246 (7)0.0030 (5)0.0046 (6)0.0018 (5)
C170.0186 (7)0.0155 (6)0.0157 (6)0.0003 (5)0.0009 (5)0.0018 (5)
O20.043 (3)0.069 (4)0.098 (4)0.025 (3)0.038 (3)0.011 (3)
C180.0179 (7)0.0194 (7)0.0173 (6)0.0014 (5)0.0015 (5)0.0014 (5)
C410.0188 (7)0.0206 (7)0.0146 (6)0.0002 (5)0.0037 (5)0.0028 (5)
C210.0180 (7)0.0266 (7)0.0143 (6)0.0010 (6)0.0025 (5)0.0005 (5)
C250.0196 (7)0.0321 (8)0.0136 (6)0.0071 (6)0.0033 (5)0.0029 (6)
C40.0180 (7)0.0173 (6)0.0151 (6)0.0017 (5)0.0002 (5)0.0006 (5)
C130.0175 (7)0.0158 (6)0.0232 (7)0.0024 (5)0.0035 (6)0.0019 (5)
C190.0231 (8)0.0296 (8)0.0116 (6)0.0027 (6)0.0011 (5)0.0003 (5)
C20.0198 (7)0.0168 (6)0.0201 (7)0.0013 (5)0.0040 (5)0.0045 (5)
O40.053 (3)0.0302 (18)0.052 (2)0.0182 (17)0.014 (2)0.0109 (14)
C200.0255 (8)0.0369 (9)0.0124 (6)0.0022 (6)0.0043 (6)0.0035 (6)
C30.0176 (7)0.0160 (6)0.0229 (7)0.0035 (5)0.0027 (6)0.0001 (5)
O3A0.021 (3)0.112 (8)0.076 (7)0.016 (3)0.005 (3)0.078 (6)
O2A0.054 (6)0.055 (5)0.059 (4)0.032 (4)0.041 (5)0.016 (3)
O4A0.061 (7)0.081 (8)0.044 (4)0.047 (6)0.019 (4)0.030 (5)
Geometric parameters (Å, º) top
Mn1—N52.1876 (11)C38—H380.9500
Mn1—N22.2091 (11)C28—H280.9500
Mn1—N32.2423 (12)C31—C301.3894 (18)
Mn1—N42.2537 (12)C22—C231.387 (2)
Mn1—N62.2571 (12)C22—H220.9500
Mn1—N12.2723 (12)C30—H300.9500
Cl2—O71.4378 (11)C16—C211.396 (2)
Cl2—O61.4412 (11)C16—C171.401 (2)
Cl2—O51.4443 (11)C16—C81.4819 (18)
Cl2—O81.4530 (11)C33—C341.388 (2)
Cl1—O3A1.381 (8)C33—H330.9500
Cl1—O2A1.406 (8)C26—C251.388 (2)
Cl1—O21.417 (6)C1—C21.391 (2)
Cl1—O11.4231 (13)C1—H10.9500
Cl1—O31.427 (5)C15—C141.384 (2)
Cl1—O41.429 (6)C15—H150.9500
Cl1—O4A1.466 (9)C23—C241.382 (2)
N5—C271.3408 (18)C23—H230.9500
N5—C311.3418 (17)C40—C411.391 (2)
N6—C221.3437 (18)C40—H400.9500
N6—C261.3504 (17)C12—C131.389 (2)
N2—C61.3419 (17)C12—H120.9500
N2—C101.3459 (17)C42—C411.3929 (19)
N4—C361.3415 (18)C42—H420.9500
N4—C321.3547 (17)C36—C351.384 (2)
N1—C11.3397 (18)C36—H360.9500
N1—C51.3532 (17)C35—C341.382 (2)
N3—C151.3431 (18)C35—H350.9500
N3—C111.3530 (17)C14—C131.388 (2)
C10—C91.3885 (18)C14—H140.9500
C10—C111.4901 (18)C24—C251.391 (2)
C11—C121.3896 (19)C24—H240.9500
C7—C61.3877 (18)C34—H340.9500
C7—C81.3982 (19)C17—C181.3896 (19)
C7—H70.9500C17—H170.9500
C9—C81.3958 (19)C18—C191.387 (2)
C9—H90.9500C18—H180.9500
C27—C281.3870 (18)C41—H410.9500
C27—C261.4887 (19)C21—C201.391 (2)
C32—C331.3862 (19)C21—H210.9500
C32—C311.4909 (18)C25—H250.9500
C37—C381.3991 (19)C4—C31.391 (2)
C37—C421.400 (2)C4—H40.9500
C37—C291.4807 (18)C13—H130.9500
C5—C41.3914 (19)C19—C201.385 (2)
C5—C61.4911 (18)C19—H190.9500
C39—C381.3895 (19)C2—C31.381 (2)
C39—C401.390 (2)C2—H20.9500
C39—H390.9500C20—H200.9500
C29—C281.3925 (19)C3—H30.9500
C29—C301.4003 (19)
N5—Mn1—N2170.51 (4)C30—C31—C32123.57 (12)
N5—Mn1—N3117.17 (4)N6—C22—C23122.99 (13)
N2—Mn1—N372.32 (4)N6—C22—H22118.5
N5—Mn1—N472.45 (4)C23—C22—H22118.5
N2—Mn1—N4109.30 (4)C31—C30—C29118.90 (12)
N3—Mn1—N487.87 (4)C31—C30—H30120.5
N5—Mn1—N672.76 (4)C29—C30—H30120.5
N2—Mn1—N6106.16 (4)C21—C16—C17118.78 (13)
N3—Mn1—N6101.95 (4)C21—C16—C8120.96 (13)
N4—Mn1—N6144.53 (4)C17—C16—C8120.21 (12)
N5—Mn1—N198.65 (4)C32—C33—C34119.13 (13)
N2—Mn1—N171.87 (4)C32—C33—H33120.4
N3—Mn1—N1144.10 (4)C34—C33—H33120.4
N4—Mn1—N1101.55 (4)N6—C26—C25121.81 (13)
N6—Mn1—N190.29 (4)N6—C26—C27115.39 (12)
O7—Cl2—O6110.25 (7)C25—C26—C27122.77 (12)
O7—Cl2—O5109.58 (7)N1—C1—C2122.87 (13)
O6—Cl2—O5109.33 (7)N1—C1—H1118.6
O7—Cl2—O8109.14 (7)C2—C1—H1118.6
O6—Cl2—O8109.18 (7)N3—C15—C14122.69 (13)
O5—Cl2—O8109.34 (7)N3—C15—H15118.7
O3A—Cl1—O2A107.8 (7)C14—C15—H15118.7
O3A—Cl1—O1112.7 (5)C24—C23—C22118.76 (13)
O2A—Cl1—O1114.5 (5)C24—C23—H23120.6
O2—Cl1—O1107.6 (4)C22—C23—H23120.6
O2—Cl1—O3109.0 (4)C39—C40—C41119.58 (13)
O1—Cl1—O3109.1 (3)C39—C40—H40120.2
O2—Cl1—O4115.2 (5)C41—C40—H40120.2
O1—Cl1—O4107.7 (3)N2—C6—C7121.51 (12)
O3—Cl1—O4108.0 (4)N2—C6—C5114.79 (11)
O3A—Cl1—O4A111.6 (8)C7—C6—C5123.68 (12)
O2A—Cl1—O4A97.9 (10)C13—C12—C11119.48 (13)
O1—Cl1—O4A111.4 (5)C13—C12—H12120.3
C27—N5—C31119.85 (11)C11—C12—H12120.3
C27—N5—Mn1119.65 (9)C41—C42—C37119.78 (13)
C31—N5—Mn1120.50 (9)C41—C42—H42120.1
C22—N6—C26118.25 (12)C37—C42—H42120.1
C22—N6—Mn1124.96 (9)N4—C36—C35123.12 (13)
C26—N6—Mn1116.79 (9)N4—C36—H36118.4
C6—N2—C10119.83 (11)C35—C36—H36118.4
C6—N2—Mn1120.06 (9)C34—C35—C36118.40 (13)
C10—N2—Mn1119.70 (9)C34—C35—H35120.8
C36—N4—C32118.27 (12)C36—C35—H35120.8
C36—N4—Mn1124.18 (9)C9—C8—C7117.82 (12)
C32—N4—Mn1117.22 (9)C9—C8—C16121.33 (12)
C1—N1—C5118.68 (12)C7—C8—C16120.79 (12)
C1—N1—Mn1123.48 (9)C15—C14—C13118.92 (13)
C5—N1—Mn1117.01 (9)C15—C14—H14120.5
C15—N3—C11118.64 (12)C13—C14—H14120.5
C15—N3—Mn1123.18 (9)C23—C24—C25118.70 (14)
C11—N3—Mn1118.02 (9)C23—C24—H24120.7
N2—C10—C9121.43 (12)C25—C24—H24120.7
N2—C10—C11114.62 (11)C35—C34—C33119.31 (14)
C9—C10—C11123.91 (12)C35—C34—H34120.3
N3—C11—C12121.56 (12)C33—C34—H34120.3
N3—C11—C10115.03 (11)C18—C17—C16120.31 (13)
C12—C11—C10123.42 (12)C18—C17—H17119.8
C6—C7—C8119.68 (12)C16—C17—H17119.8
C6—C7—H7120.2C19—C18—C17120.49 (14)
C8—C7—H7120.2C19—C18—H18119.8
C10—C9—C8119.67 (12)C17—C18—H18119.8
C10—C9—H9120.2C40—C41—C42120.72 (13)
C8—C9—H9120.2C40—C41—H41119.6
N5—C27—C28121.24 (13)C42—C41—H41119.6
N5—C27—C26115.07 (12)C20—C21—C16120.36 (14)
C28—C27—C26123.59 (13)C20—C21—H21119.8
N4—C32—C33121.75 (12)C16—C21—H21119.8
N4—C32—C31115.25 (12)C26—C25—C24119.49 (13)
C33—C32—C31122.93 (12)C26—C25—H25120.3
C38—C37—C42119.23 (12)C24—C25—H25120.3
C38—C37—C29119.57 (12)C3—C4—C5119.33 (13)
C42—C37—C29121.15 (12)C3—C4—H4120.3
N1—C5—C4121.48 (12)C5—C4—H4120.3
N1—C5—C6115.21 (12)C14—C13—C12118.70 (13)
C4—C5—C6123.30 (12)C14—C13—H13120.6
C38—C39—C40120.17 (13)C12—C13—H13120.6
C38—C39—H39119.9C20—C19—C18119.45 (13)
C40—C39—H39119.9C20—C19—H19120.3
C28—C29—C30118.14 (12)C18—C19—H19120.3
C28—C29—C37120.05 (12)C3—C2—C1118.56 (13)
C30—C29—C37121.70 (12)C3—C2—H2120.7
C39—C38—C37120.52 (13)C1—C2—H2120.7
C39—C38—H38119.7C19—C20—C21120.58 (14)
C37—C38—H38119.7C19—C20—H20119.7
C27—C28—C29119.88 (13)C21—C20—H20119.7
C27—C28—H28120.1C2—C3—C4119.08 (13)
C29—C28—H28120.1C2—C3—H3120.5
N5—C31—C30121.94 (12)C4—C3—H3120.5
N5—C31—C32114.42 (11)
C6—N2—C10—C90.04 (19)C28—C27—C26—N6179.68 (13)
Mn1—N2—C10—C9172.69 (10)N5—C27—C26—C25174.73 (14)
C6—N2—C10—C11177.57 (12)C28—C27—C26—C251.5 (2)
Mn1—N2—C10—C114.92 (15)C5—N1—C1—C20.1 (2)
C15—N3—C11—C120.5 (2)Mn1—N1—C1—C2169.18 (11)
Mn1—N3—C11—C12175.00 (10)C11—N3—C15—C140.1 (2)
C15—N3—C11—C10179.51 (12)Mn1—N3—C15—C14175.09 (11)
Mn1—N3—C11—C105.02 (15)N6—C22—C23—C240.2 (2)
N2—C10—C11—N36.41 (17)C38—C39—C40—C410.9 (2)
C9—C10—C11—N3171.12 (12)C10—N2—C6—C70.4 (2)
N2—C10—C11—C12173.61 (13)Mn1—N2—C6—C7172.17 (10)
C9—C10—C11—C128.9 (2)C10—N2—C6—C5178.75 (11)
N2—C10—C9—C81.9 (2)Mn1—N2—C6—C56.13 (15)
C11—C10—C9—C8175.48 (12)C8—C7—C6—N20.9 (2)
C31—N5—C27—C282.5 (2)C8—C7—C6—C5177.22 (12)
Mn1—N5—C27—C28177.06 (11)N1—C5—C6—N22.35 (17)
C31—N5—C27—C26173.85 (12)C4—C5—C6—N2176.36 (13)
Mn1—N5—C27—C266.57 (16)N1—C5—C6—C7179.39 (12)
C36—N4—C32—C330.84 (19)C4—C5—C6—C71.9 (2)
Mn1—N4—C32—C33174.46 (10)N3—C11—C12—C130.1 (2)
C36—N4—C32—C31176.34 (12)C10—C11—C12—C13179.88 (13)
Mn1—N4—C32—C312.72 (15)C38—C37—C42—C410.0 (2)
C1—N1—C5—C40.5 (2)C29—C37—C42—C41177.20 (13)
Mn1—N1—C5—C4169.42 (10)C32—N4—C36—C351.1 (2)
C1—N1—C5—C6179.25 (12)Mn1—N4—C36—C35174.29 (10)
Mn1—N1—C5—C69.31 (15)N4—C36—C35—C340.5 (2)
C38—C37—C29—C28136.00 (14)C10—C9—C8—C73.2 (2)
C42—C37—C29—C2841.19 (19)C10—C9—C8—C16173.95 (12)
C38—C37—C29—C3040.11 (19)C6—C7—C8—C92.7 (2)
C42—C37—C29—C30142.71 (14)C6—C7—C8—C16174.43 (12)
C40—C39—C38—C371.2 (2)C21—C16—C8—C932.5 (2)
C42—C37—C38—C390.8 (2)C17—C16—C8—C9145.05 (14)
C29—C37—C38—C39176.49 (13)C21—C16—C8—C7150.48 (14)
N5—C27—C28—C293.0 (2)C17—C16—C8—C731.98 (19)
C26—C27—C28—C29173.07 (13)N3—C15—C14—C130.6 (2)
C30—C29—C28—C271.8 (2)C22—C23—C24—C250.9 (2)
C37—C29—C28—C27174.48 (13)C36—C35—C34—C330.4 (2)
C27—N5—C31—C300.9 (2)C32—C33—C34—C350.7 (2)
Mn1—N5—C31—C30178.69 (10)C21—C16—C17—C181.9 (2)
C27—N5—C31—C32176.25 (12)C8—C16—C17—C18179.45 (13)
Mn1—N5—C31—C324.17 (15)C16—C17—C18—C190.7 (2)
N4—C32—C31—N54.42 (17)C39—C40—C41—C420.1 (2)
C33—C32—C31—N5172.73 (13)C37—C42—C41—C400.3 (2)
N4—C32—C31—C30178.50 (12)C17—C16—C21—C201.2 (2)
C33—C32—C31—C304.4 (2)C8—C16—C21—C20178.81 (14)
C26—N6—C22—C230.5 (2)N6—C26—C25—C240.4 (2)
Mn1—N6—C22—C23179.10 (10)C27—C26—C25—C24177.60 (14)
N5—C31—C30—C290.3 (2)C23—C24—C25—C261.0 (2)
C32—C31—C30—C29177.14 (12)N1—C5—C4—C30.7 (2)
C28—C29—C30—C310.2 (2)C6—C5—C4—C3179.30 (13)
C37—C29—C30—C31175.98 (12)C15—C14—C13—C120.9 (2)
N4—C32—C33—C340.1 (2)C11—C12—C13—C140.6 (2)
C31—C32—C33—C34177.02 (13)C17—C18—C19—C201.1 (2)
C22—N6—C26—C250.3 (2)N1—C1—C2—C30.2 (2)
Mn1—N6—C26—C25179.27 (12)C18—C19—C20—C211.7 (2)
C22—N6—C26—C27178.49 (12)C16—C21—C20—C190.5 (2)
Mn1—N6—C26—C271.11 (16)C1—C2—C3—C40.1 (2)
N5—C27—C26—N63.41 (18)C5—C4—C3—C20.4 (2)
Bis(4'-phenyl-2,2':6',2''-terpyridine)nickel(II) bis(perchlorate) (NiPhTPY) top
Crystal data top
[Ni(C21H15N3)2](ClO4)2F(000) = 1800
Mr = 876.33Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3581 (2) ÅCell parameters from 24227 reflections
b = 12.6255 (3) Åθ = 2.5–33.3°
c = 31.4046 (8) ŵ = 0.74 mm1
β = 97.038 (2)°T = 100 K
V = 3682.52 (15) Å3Block, light orange
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
9514 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source7295 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.0000 pixels mm-1θmax = 28.7°, θmin = 2.5°
ω scansh = 1212
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
k = 1617
Tmin = 0.815, Tmax = 1.000l = 4142
52589 measured reflections
Refinement top
Refinement on F2435 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0352P)2 + 3.3821P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9514 reflectionsΔρmax = 0.64 e Å3
560 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.45313 (2)0.67165 (2)0.38521 (2)0.01333 (7)
Cl20.97887 (5)0.78974 (4)0.49141 (2)0.02213 (11)
Cl10.21363 (5)0.92269 (4)0.24853 (2)0.02422 (11)
O80.97982 (18)0.67651 (12)0.50010 (5)0.0281 (3)
N20.51734 (16)0.68107 (12)0.44827 (5)0.0141 (3)
N50.39922 (17)0.65160 (12)0.32226 (5)0.0149 (3)
N30.36801 (16)0.81949 (12)0.40160 (5)0.0150 (3)
N40.63665 (17)0.73271 (12)0.35939 (5)0.0153 (3)
O71.03924 (17)0.80845 (13)0.45232 (5)0.0300 (4)
O50.83213 (17)0.82817 (13)0.48676 (5)0.0305 (4)
N10.56197 (16)0.52504 (12)0.39778 (5)0.0150 (3)
N60.24101 (17)0.61193 (12)0.38221 (5)0.0148 (3)
O61.0601 (2)0.84318 (14)0.52657 (6)0.0431 (5)
O10.3281 (2)0.86989 (15)0.27412 (6)0.0432 (5)
C110.39025 (19)0.84361 (14)0.44381 (6)0.0150 (4)
C100.48180 (19)0.76651 (14)0.47042 (6)0.0139 (4)
C60.60250 (19)0.60519 (14)0.46752 (6)0.0144 (4)
C90.5328 (2)0.77833 (14)0.51354 (6)0.0158 (4)
H90.5053660.8381690.5289840.019*
C310.27142 (19)0.60874 (14)0.30761 (6)0.0151 (4)
C70.6573 (2)0.61277 (14)0.51031 (6)0.0160 (4)
H70.7166320.5579900.5235230.019*
C320.1769 (2)0.59386 (14)0.34180 (6)0.0150 (4)
C330.0324 (2)0.56748 (15)0.33329 (7)0.0182 (4)
H330.0105070.5555170.3046830.022*
C220.7524 (2)0.78050 (14)0.38051 (7)0.0168 (4)
H220.7584000.7873810.4108010.020*
C150.2843 (2)0.88344 (15)0.37516 (7)0.0182 (4)
H150.2683850.8664000.3454950.022*
C260.6302 (2)0.72212 (15)0.31626 (6)0.0175 (4)
C40.7234 (2)0.43312 (15)0.45043 (7)0.0189 (4)
H40.7711090.4289840.4788800.023*
C280.4712 (2)0.64245 (16)0.25252 (6)0.0187 (4)
H280.5436360.6519770.2341540.022*
C270.4976 (2)0.67007 (15)0.29544 (6)0.0167 (4)
C120.3292 (2)0.93257 (15)0.46021 (7)0.0179 (4)
H120.3467110.9482800.4899810.022*
C10.5830 (2)0.44934 (15)0.36943 (7)0.0185 (4)
H10.5339450.4545870.3411780.022*
C50.63146 (19)0.51687 (14)0.43826 (6)0.0156 (4)
C370.3043 (2)0.57916 (14)0.18980 (6)0.0163 (4)
C160.6910 (2)0.71515 (14)0.57908 (6)0.0157 (4)
C350.0159 (2)0.57788 (15)0.40844 (7)0.0196 (4)
H350.0376840.5725430.4321740.024*
C80.6249 (2)0.70170 (14)0.53421 (6)0.0156 (4)
C290.3376 (2)0.60056 (15)0.23647 (6)0.0173 (4)
C360.1606 (2)0.60499 (15)0.41440 (6)0.0172 (4)
H360.2045850.6192750.4427130.021*
C300.2357 (2)0.58350 (15)0.26470 (6)0.0173 (4)
H300.1436240.5551530.2546800.021*
C340.0484 (2)0.55889 (15)0.36731 (7)0.0207 (4)
H340.1472920.5400380.3622930.025*
C230.8639 (2)0.82028 (15)0.35977 (7)0.0188 (4)
H230.9444000.8536160.3756770.023*
C410.1443 (2)0.59859 (15)0.12386 (6)0.0184 (4)
H410.0550450.6218150.1091310.022*
C380.4062 (2)0.53171 (15)0.16699 (7)0.0184 (4)
H380.4957690.5088380.1815980.022*
C170.8301 (2)0.67636 (15)0.59224 (6)0.0179 (4)
H170.8817220.6410890.5722030.021*
C390.3764 (2)0.51794 (15)0.12283 (7)0.0192 (4)
H390.4456430.4852700.1073950.023*
C400.2459 (2)0.55169 (15)0.10117 (7)0.0194 (4)
H400.2263350.5427190.0709860.023*
C130.2422 (2)0.99840 (15)0.43267 (7)0.0212 (4)
H130.1987721.0593590.4433040.025*
C420.1725 (2)0.61162 (15)0.16785 (7)0.0185 (4)
H420.1019480.6428160.1832230.022*
C140.2201 (2)0.97352 (15)0.38943 (7)0.0203 (4)
H140.1617691.0175050.3698380.024*
C180.8925 (2)0.68926 (15)0.63440 (7)0.0207 (4)
H180.9863270.6622150.6430730.025*
C250.7372 (2)0.76024 (17)0.29377 (7)0.0219 (4)
H250.7297600.7520560.2635070.026*
C20.6733 (2)0.36346 (16)0.37950 (7)0.0217 (4)
H20.6856110.3111020.3585360.026*
C210.6194 (2)0.76877 (16)0.60888 (7)0.0202 (4)
H210.5261640.7969430.6003560.024*
C240.8561 (2)0.81078 (16)0.31587 (7)0.0217 (4)
H240.9303580.8381900.3009560.026*
C190.8188 (2)0.74132 (16)0.66385 (7)0.0227 (4)
H190.8612450.7494200.6927320.027*
C200.6825 (2)0.78154 (17)0.65077 (7)0.0247 (4)
H200.6319910.8181310.6707450.030*
C30.7451 (2)0.35530 (15)0.42056 (7)0.0216 (4)
H30.8081520.2975600.4282170.026*
O30.2592 (13)0.9531 (12)0.2092 (3)0.060 (3)0.54 (2)
O40.1845 (15)1.0198 (6)0.2704 (2)0.061 (2)0.54 (2)
O20.0905 (8)0.8607 (9)0.2423 (3)0.087 (3)0.54 (2)
O3A0.2646 (12)0.9837 (15)0.2166 (5)0.062 (4)0.46 (2)
O4A0.1294 (12)0.9826 (13)0.2744 (2)0.053 (3)0.46 (2)
O2A0.1196 (17)0.8454 (6)0.2258 (6)0.085 (5)0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01241 (11)0.01601 (12)0.01128 (12)0.00111 (9)0.00028 (9)0.00063 (9)
Cl20.0235 (2)0.0274 (2)0.0151 (2)0.00382 (18)0.00064 (19)0.00390 (18)
Cl10.0238 (2)0.0324 (3)0.0158 (2)0.00260 (19)0.00016 (19)0.0049 (2)
O80.0349 (9)0.0294 (8)0.0202 (8)0.0002 (7)0.0036 (7)0.0005 (6)
N20.0116 (7)0.0155 (7)0.0149 (8)0.0020 (6)0.0009 (6)0.0005 (6)
N50.0146 (7)0.0167 (7)0.0132 (8)0.0023 (6)0.0006 (6)0.0001 (6)
N30.0131 (7)0.0170 (7)0.0147 (8)0.0021 (6)0.0003 (6)0.0011 (6)
N40.0140 (7)0.0178 (7)0.0137 (8)0.0005 (6)0.0002 (6)0.0006 (6)
O70.0284 (8)0.0374 (9)0.0254 (9)0.0042 (7)0.0081 (7)0.0011 (7)
O50.0242 (8)0.0382 (9)0.0303 (9)0.0025 (7)0.0078 (7)0.0003 (7)
N10.0131 (7)0.0169 (7)0.0149 (8)0.0022 (6)0.0013 (6)0.0014 (6)
N60.0151 (7)0.0163 (7)0.0127 (8)0.0003 (6)0.0008 (6)0.0001 (6)
O60.0548 (12)0.0402 (10)0.0284 (10)0.0048 (8)0.0185 (9)0.0116 (8)
O10.0499 (11)0.0502 (11)0.0260 (10)0.0235 (9)0.0090 (8)0.0041 (8)
C110.0128 (8)0.0157 (8)0.0163 (10)0.0030 (6)0.0011 (7)0.0013 (7)
C100.0113 (8)0.0160 (8)0.0144 (9)0.0016 (6)0.0022 (7)0.0007 (7)
C60.0141 (8)0.0145 (8)0.0146 (9)0.0007 (6)0.0023 (7)0.0012 (7)
C90.0172 (9)0.0152 (8)0.0152 (10)0.0008 (7)0.0029 (7)0.0007 (7)
C310.0136 (8)0.0169 (9)0.0143 (10)0.0013 (7)0.0005 (7)0.0004 (7)
C70.0147 (8)0.0161 (9)0.0166 (10)0.0004 (7)0.0002 (7)0.0025 (7)
C320.0147 (8)0.0143 (8)0.0159 (10)0.0011 (6)0.0011 (7)0.0003 (7)
C330.0159 (9)0.0197 (9)0.0188 (10)0.0015 (7)0.0004 (8)0.0039 (7)
C220.0163 (9)0.0180 (9)0.0156 (10)0.0001 (7)0.0004 (7)0.0017 (7)
C150.0165 (9)0.0212 (9)0.0159 (10)0.0017 (7)0.0017 (7)0.0033 (7)
C260.0161 (9)0.0216 (9)0.0148 (10)0.0039 (7)0.0012 (7)0.0017 (7)
C40.0176 (9)0.0197 (9)0.0192 (10)0.0001 (7)0.0015 (8)0.0023 (7)
C280.0168 (9)0.0253 (10)0.0143 (10)0.0026 (7)0.0037 (8)0.0006 (7)
C270.0147 (8)0.0191 (9)0.0162 (10)0.0027 (7)0.0015 (7)0.0009 (7)
C120.0181 (9)0.0187 (9)0.0168 (10)0.0014 (7)0.0016 (8)0.0015 (7)
C10.0164 (9)0.0208 (9)0.0184 (10)0.0019 (7)0.0020 (8)0.0037 (8)
C50.0139 (8)0.0164 (8)0.0168 (10)0.0024 (7)0.0031 (7)0.0002 (7)
C370.0186 (9)0.0169 (8)0.0128 (9)0.0038 (7)0.0006 (7)0.0002 (7)
C160.0186 (9)0.0151 (8)0.0129 (9)0.0030 (7)0.0005 (7)0.0027 (7)
C350.0188 (9)0.0204 (9)0.0210 (11)0.0020 (7)0.0083 (8)0.0023 (8)
C80.0148 (8)0.0175 (9)0.0147 (10)0.0030 (7)0.0018 (7)0.0010 (7)
C290.0180 (9)0.0191 (9)0.0142 (10)0.0009 (7)0.0001 (7)0.0005 (7)
C360.0190 (9)0.0172 (9)0.0155 (10)0.0002 (7)0.0019 (7)0.0006 (7)
C300.0149 (9)0.0196 (9)0.0166 (10)0.0024 (7)0.0010 (7)0.0005 (7)
C340.0150 (9)0.0210 (9)0.0265 (11)0.0038 (7)0.0044 (8)0.0046 (8)
C230.0136 (9)0.0192 (9)0.0229 (11)0.0021 (7)0.0005 (8)0.0013 (8)
C410.0174 (9)0.0199 (9)0.0168 (10)0.0010 (7)0.0024 (8)0.0024 (7)
C380.0167 (9)0.0199 (9)0.0177 (10)0.0012 (7)0.0016 (8)0.0001 (7)
C170.0195 (9)0.0184 (9)0.0160 (10)0.0001 (7)0.0027 (8)0.0004 (7)
C390.0201 (9)0.0204 (9)0.0171 (10)0.0003 (7)0.0017 (8)0.0016 (7)
C400.0230 (10)0.0205 (9)0.0141 (10)0.0030 (7)0.0006 (8)0.0010 (7)
C130.0184 (9)0.0171 (9)0.0283 (12)0.0018 (7)0.0033 (8)0.0004 (8)
C420.0174 (9)0.0195 (9)0.0189 (10)0.0006 (7)0.0033 (8)0.0009 (7)
C140.0173 (9)0.0195 (9)0.0233 (11)0.0012 (7)0.0006 (8)0.0058 (8)
C180.0202 (9)0.0223 (10)0.0184 (10)0.0002 (7)0.0020 (8)0.0014 (8)
C250.0185 (9)0.0324 (11)0.0154 (10)0.0045 (8)0.0039 (8)0.0011 (8)
C20.0210 (10)0.0193 (9)0.0250 (11)0.0001 (7)0.0042 (8)0.0060 (8)
C210.0201 (10)0.0240 (10)0.0165 (10)0.0006 (8)0.0024 (8)0.0022 (8)
C240.0169 (9)0.0259 (10)0.0230 (11)0.0052 (8)0.0057 (8)0.0001 (8)
C190.0273 (11)0.0276 (10)0.0125 (10)0.0028 (8)0.0012 (8)0.0019 (8)
C200.0273 (11)0.0318 (11)0.0158 (10)0.0019 (9)0.0063 (9)0.0012 (8)
C30.0200 (10)0.0170 (9)0.0278 (12)0.0024 (7)0.0037 (8)0.0016 (8)
O30.057 (5)0.106 (8)0.022 (3)0.038 (4)0.017 (2)0.031 (3)
O40.077 (5)0.050 (3)0.060 (3)0.026 (3)0.029 (3)0.004 (2)
O20.053 (3)0.144 (7)0.067 (5)0.057 (4)0.019 (4)0.004 (4)
O3A0.018 (3)0.095 (8)0.075 (8)0.002 (4)0.016 (4)0.060 (6)
O4A0.040 (4)0.091 (7)0.030 (3)0.034 (4)0.011 (3)0.003 (3)
O2A0.107 (8)0.049 (4)0.081 (8)0.029 (4)0.069 (6)0.012 (4)
Geometric parameters (Å, º) top
Ni1—N22.0014 (16)C4—C31.390 (3)
Ni1—N51.9956 (16)C28—H280.9500
Ni1—N32.1174 (16)C28—C271.385 (3)
Ni1—N42.1313 (16)C28—C291.394 (3)
Ni1—N12.1263 (16)C12—H120.9500
Ni1—N62.1148 (16)C12—C131.389 (3)
Cl2—O81.4552 (16)C1—H10.9500
Cl2—O71.4325 (17)C1—C21.387 (3)
Cl2—O51.4468 (16)C37—C291.485 (3)
Cl2—O61.4306 (17)C37—C381.396 (3)
Cl1—O11.4239 (17)C37—C421.398 (3)
Cl1—O31.407 (8)C16—C81.478 (3)
Cl1—O41.447 (5)C16—C171.404 (3)
Cl1—O21.387 (8)C16—C211.392 (3)
Cl1—O3A1.394 (9)C35—H350.9500
Cl1—O4A1.417 (6)C35—C361.388 (3)
Cl1—O2A1.443 (7)C35—C341.377 (3)
N2—C101.347 (2)C29—C301.396 (3)
N2—C61.342 (2)C36—H360.9500
N5—C311.342 (2)C30—H300.9500
N5—C271.342 (2)C34—H340.9500
N3—C111.351 (2)C23—H230.9500
N3—C151.340 (2)C23—C241.377 (3)
N4—C221.342 (2)C41—H410.9500
N4—C261.355 (3)C41—C401.389 (3)
N1—C11.337 (2)C41—C421.384 (3)
N1—C51.359 (3)C38—H380.9500
N6—C321.355 (2)C38—C391.391 (3)
N6—C361.335 (2)C17—H170.9500
C11—C101.485 (3)C17—C181.390 (3)
C11—C121.388 (3)C39—H390.9500
C10—C91.387 (3)C39—C401.390 (3)
C6—C71.382 (3)C40—H400.9500
C6—C51.491 (3)C13—H130.9500
C9—H90.9500C13—C141.385 (3)
C9—C81.401 (3)C42—H420.9500
C31—C321.485 (3)C14—H140.9500
C31—C301.385 (3)C18—H180.9500
C7—H70.9500C18—C191.385 (3)
C7—C81.404 (3)C25—H250.9500
C32—C331.387 (3)C25—C241.392 (3)
C33—H330.9500C2—H20.9500
C33—C341.386 (3)C2—C31.383 (3)
C22—H220.9500C21—H210.9500
C22—C231.389 (3)C21—C201.384 (3)
C15—H150.9500C24—H240.9500
C15—C141.386 (3)C19—H190.9500
C26—C271.484 (3)C19—C201.388 (3)
C26—C251.381 (3)C20—H200.9500
C4—H40.9500C3—H30.9500
C4—C51.387 (3)
N2—Ni1—N377.49 (6)C29—C28—H28120.2
N2—Ni1—N4101.35 (6)N5—C27—C26113.66 (17)
N2—Ni1—N177.82 (6)N5—C27—C28120.86 (17)
N2—Ni1—N6103.39 (6)C28—C27—C26125.48 (17)
N5—Ni1—N2175.27 (6)C11—C12—H12120.3
N5—Ni1—N3107.20 (6)C11—C12—C13119.32 (19)
N5—Ni1—N477.68 (6)C13—C12—H12120.3
N5—Ni1—N197.51 (6)N1—C1—H1118.6
N5—Ni1—N677.80 (6)N1—C1—C2122.82 (19)
N3—Ni1—N496.80 (6)C2—C1—H1118.6
N3—Ni1—N1155.25 (6)N1—C5—C6114.67 (16)
N1—Ni1—N489.75 (6)N1—C5—C4121.68 (18)
N6—Ni1—N386.91 (6)C4—C5—C6123.63 (18)
N6—Ni1—N4155.20 (6)C38—C37—C29120.70 (17)
N6—Ni1—N197.09 (6)C38—C37—C42119.30 (18)
O7—Cl2—O8109.18 (10)C42—C37—C29119.91 (17)
O7—Cl2—O5109.10 (10)C17—C16—C8120.36 (17)
O5—Cl2—O8109.41 (10)C21—C16—C8121.14 (17)
O6—Cl2—O8109.16 (10)C21—C16—C17118.48 (18)
O6—Cl2—O7110.83 (11)C36—C35—H35120.8
O6—Cl2—O5109.14 (11)C34—C35—H35120.8
O1—Cl1—O4107.5 (4)C34—C35—C36118.44 (19)
O1—Cl1—O2A109.5 (4)C9—C8—C7117.73 (18)
O3—Cl1—O1109.5 (5)C9—C8—C16121.64 (17)
O3—Cl1—O4106.3 (6)C7—C8—C16120.59 (17)
O2—Cl1—O1111.7 (4)C28—C29—C37119.75 (17)
O2—Cl1—O3111.5 (6)C28—C29—C30118.76 (18)
O2—Cl1—O4110.1 (5)C30—C29—C37121.44 (17)
O3A—Cl1—O1111.4 (5)N6—C36—C35123.06 (19)
O3A—Cl1—O4A112.3 (7)N6—C36—H36118.5
O3A—Cl1—O2A105.0 (7)C35—C36—H36118.5
O4A—Cl1—O1111.1 (3)C31—C30—C29118.68 (17)
O4A—Cl1—O2A107.2 (6)C31—C30—H30120.7
C10—N2—Ni1119.70 (13)C29—C30—H30120.7
C6—N2—Ni1119.55 (12)C33—C34—H34120.2
C6—N2—C10120.63 (16)C35—C34—C33119.51 (18)
C31—N5—Ni1119.83 (13)C35—C34—H34120.2
C31—N5—C27120.40 (17)C22—C23—H23120.4
C27—N5—Ni1119.35 (13)C24—C23—C22119.15 (18)
C11—N3—Ni1114.82 (12)C24—C23—H23120.4
C15—N3—Ni1126.11 (13)C40—C41—H41119.9
C15—N3—C11118.69 (16)C42—C41—H41119.9
C22—N4—Ni1127.86 (13)C42—C41—C40120.24 (18)
C22—N4—C26118.20 (16)C37—C38—H38120.0
C26—N4—Ni1113.93 (12)C39—C38—C37119.92 (18)
C1—N1—Ni1127.21 (14)C39—C38—H38120.0
C1—N1—C5118.43 (16)C16—C17—H17119.8
C5—N1—Ni1113.78 (12)C18—C17—C16120.40 (19)
C32—N6—Ni1114.04 (12)C18—C17—H17119.8
C36—N6—Ni1127.06 (13)C38—C39—H39119.8
C36—N6—C32118.18 (16)C40—C39—C38120.42 (18)
N3—C11—C10114.42 (16)C40—C39—H39119.8
N3—C11—C12121.72 (17)C41—C40—C39119.69 (19)
C12—C11—C10123.85 (18)C41—C40—H40120.2
N2—C10—C11113.33 (16)C39—C40—H40120.2
N2—C10—C9120.86 (17)C12—C13—H13120.6
C9—C10—C11125.77 (16)C14—C13—C12118.75 (18)
N2—C6—C7121.19 (17)C14—C13—H13120.6
N2—C6—C5113.53 (16)C37—C42—H42119.8
C7—C6—C5125.28 (17)C41—C42—C37120.41 (18)
C10—C9—H9120.1C41—C42—H42119.8
C10—C9—C8119.76 (17)C15—C14—H14120.5
C8—C9—H9120.1C13—C14—C15118.98 (18)
N5—C31—C32112.85 (16)C13—C14—H14120.5
N5—C31—C30121.69 (17)C17—C18—H18119.8
C30—C31—C32125.46 (17)C19—C18—C17120.38 (19)
C6—C7—H7120.1C19—C18—H18119.8
C6—C7—C8119.77 (17)C26—C25—H25120.3
C8—C7—H7120.1C26—C25—C24119.34 (19)
N6—C32—C31114.91 (16)C24—C25—H25120.3
N6—C32—C33122.05 (18)C1—C2—H2120.5
C33—C32—C31123.00 (18)C3—C2—C1118.93 (19)
C32—C33—H33120.6C3—C2—H2120.5
C34—C33—C32118.75 (19)C16—C21—H21119.6
C34—C33—H33120.6C20—C21—C16120.78 (19)
N4—C22—H22118.7C20—C21—H21119.6
N4—C22—C23122.51 (19)C23—C24—C25118.72 (18)
C23—C22—H22118.7C23—C24—H24120.6
N3—C15—H15118.7C25—C24—H24120.6
N3—C15—C14122.54 (19)C18—C19—H19120.3
C14—C15—H15118.7C18—C19—C20119.4 (2)
N4—C26—C27114.62 (16)C20—C19—H19120.3
N4—C26—C25122.07 (18)C21—C20—C19120.5 (2)
C25—C26—C27123.28 (18)C21—C20—H20119.7
C5—C4—H4120.3C19—C20—H20119.7
C5—C4—C3119.32 (19)C4—C3—H3120.6
C3—C4—H4120.3C2—C3—C4118.81 (18)
C27—C28—H28120.2C2—C3—H3120.6
C27—C28—C29119.52 (18)
Ni1—N2—C10—C112.4 (2)C22—N4—C26—C251.0 (3)
Ni1—N2—C10—C9175.73 (13)C22—C23—C24—C250.8 (3)
Ni1—N2—C6—C7175.37 (13)C15—N3—C11—C10178.71 (16)
Ni1—N2—C6—C53.7 (2)C15—N3—C11—C120.2 (3)
Ni1—N5—C31—C327.4 (2)C26—N4—C22—C230.9 (3)
Ni1—N5—C31—C30173.34 (14)C26—C25—C24—C230.6 (3)
Ni1—N5—C27—C2610.1 (2)C28—C29—C30—C310.1 (3)
Ni1—N5—C27—C28170.51 (14)C27—N5—C31—C32179.84 (16)
Ni1—N3—C11—C105.28 (19)C27—N5—C31—C300.9 (3)
Ni1—N3—C11—C12173.62 (14)C27—C26—C25—C24178.11 (19)
Ni1—N3—C15—C14172.82 (14)C27—C28—C29—C37174.92 (17)
Ni1—N4—C22—C23177.83 (14)C27—C28—C29—C302.6 (3)
Ni1—N4—C26—C270.2 (2)C12—C11—C10—N2173.82 (17)
Ni1—N4—C26—C25177.81 (16)C12—C11—C10—C98.1 (3)
Ni1—N1—C1—C2170.22 (14)C12—C13—C14—C150.5 (3)
Ni1—N1—C5—C67.63 (19)C1—N1—C5—C6179.54 (16)
Ni1—N1—C5—C4171.35 (14)C1—N1—C5—C40.6 (3)
Ni1—N6—C32—C315.90 (19)C1—C2—C3—C40.5 (3)
Ni1—N6—C32—C33171.75 (14)C5—N1—C1—C20.5 (3)
Ni1—N6—C36—C35171.14 (14)C5—C6—C7—C8178.28 (17)
N2—C10—C9—C81.3 (3)C5—C4—C3—C20.4 (3)
N2—C6—C7—C80.6 (3)C37—C29—C30—C31177.60 (17)
N2—C6—C5—N13.0 (2)C37—C38—C39—C400.4 (3)
N2—C6—C5—C4175.97 (17)C16—C17—C18—C190.5 (3)
N5—C31—C32—N68.5 (2)C16—C21—C20—C190.2 (3)
N5—C31—C32—C33169.08 (17)C8—C16—C17—C18179.80 (17)
N5—C31—C30—C291.9 (3)C8—C16—C21—C20179.63 (18)
N3—C11—C10—N25.1 (2)C29—C28—C27—N53.7 (3)
N3—C11—C10—C9172.98 (17)C29—C28—C27—C26175.53 (18)
N3—C11—C12—C130.4 (3)C29—C37—C38—C39176.21 (17)
N3—C15—C14—C130.4 (3)C29—C37—C42—C41175.59 (17)
N4—C22—C23—C240.1 (3)C36—N6—C32—C31176.85 (16)
N4—C26—C27—N56.3 (2)C36—N6—C32—C330.8 (3)
N4—C26—C27—C28174.36 (18)C36—C35—C34—C330.1 (3)
N4—C26—C25—C240.3 (3)C30—C31—C32—N6172.21 (18)
N1—C1—C2—C30.0 (3)C30—C31—C32—C3310.2 (3)
N6—C32—C33—C340.3 (3)C34—C35—C36—N61.1 (3)
C11—N3—C15—C140.2 (3)C38—C37—C29—C2843.2 (3)
C11—C10—C9—C8176.58 (17)C38—C37—C29—C30139.3 (2)
C11—C12—C13—C140.5 (3)C38—C37—C42—C411.1 (3)
C10—N2—C6—C70.7 (3)C38—C39—C40—C410.6 (3)
C10—N2—C6—C5179.68 (15)C17—C16—C8—C9145.75 (19)
C10—C11—C12—C13178.43 (17)C17—C16—C8—C731.7 (3)
C10—C9—C8—C72.5 (3)C17—C16—C21—C201.4 (3)
C10—C9—C8—C16175.05 (17)C17—C18—C19—C200.7 (3)
C6—N2—C10—C11178.45 (16)C40—C41—C42—C370.9 (3)
C6—N2—C10—C90.3 (3)C42—C37—C29—C28133.4 (2)
C6—C7—C8—C92.2 (3)C42—C37—C29—C3044.0 (3)
C6—C7—C8—C16175.42 (17)C42—C37—C38—C390.5 (3)
C31—N5—C27—C26177.36 (16)C42—C41—C40—C390.1 (3)
C31—N5—C27—C282.0 (3)C18—C19—C20—C210.8 (3)
C31—C32—C33—C34177.79 (17)C25—C26—C27—N5171.62 (19)
C7—C6—C5—N1178.03 (17)C25—C26—C27—C287.7 (3)
C7—C6—C5—C43.0 (3)C21—C16—C8—C932.4 (3)
C32—N6—C36—C351.5 (3)C21—C16—C8—C7150.07 (19)
C32—C31—C30—C29178.91 (18)C21—C16—C17—C181.6 (3)
C32—C33—C34—C350.8 (3)C3—C4—C5—N10.1 (3)
C22—N4—C26—C27179.02 (16)C3—C4—C5—C6179.01 (18)
Selected bond lengths (Å) for complexes [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(Ph-TPY)2](ClO4)2 (17c) and [Mn(MeOPh-TPY)2](ClO4)2 (15c) top
15d17c15c
M—N12.1263 (15)2.2723 (12)2.2664 (12)
M—N22.0014 (17)2.2093 (14)2.2080 (10)
M—N32.1175 (15)2.2423 (12)2.2738 (11)
M—N42.1313 (16)2.2537 (12)2.2375 (11)
M—N51.9956 (17)2.1877 (11)2.2002 (10)
M—N62.1147 (16)2.2571 (12)2.2970 (11)
Torsion angles (°) and ring-to-ring angle (°) parameters for complexes [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(Ph-TPY)2](ClO4)2 (17c) and [Mn(MeOPh-TPY)2](ClO4)2 (15c) top
15d17c15c
N1—C5—N3—C11-8.59-10.072-3.66
N4—C26—N6—C32-4.5-3.412-0.47
C17—C16—C8—C731.7731.985.23
C30—C29—C37—C4243.2440.09-27.63
Ring 1–Ring 27.288.4961.49
Ring 3–Ring 414.3914.3816.63
 

Acknowledgements

The authors would like to thank the Quimica de Productos Naturales (QPN) research group from the chemistry department at Universidad del Cauca. The results described in this article are part of the research project with ID-5407, financed by Universidad del Cauc. JE is grateful to the Brazilian agencies FAPESP and CNPq. The research group (QPN) from the Universidad del Cauca (Popayán, Colombia) would like to thank Acta Crystallographica Section C: Structural Chemistry for the invitation to participate in this special collection (Crystallography in Latin America: a vibrant community). All the authors declare no com­peting financial inter­est.

Funding information

Funding for this research was provided by: Universidad del Cauca (award No. 501100005682); Fundação de Amparo à Pesquisa do Estado de São Paulo (process No. 2017/15850-0 to J. Ellena); Conselho Nacional de Desenvolvimento Científico e Tecnológico (process No. 312505/2021-3 to J. Ellena).

References

First citationAbhijnakrishna, R., Magesh, K., Ayushi, A. & Velmathi, S. (2023). Coord. Chem. Rev. 496, 215380.  Web of Science CrossRef Google Scholar
First citationAroua, S., Todorova, T. K., Hommes, P., Chamoreau, L.-M., Reissig, H.-U., Mougel, V. & Fontecave, M. (2017). Inorg. Chem. 56, 5930–5940.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarmona-Vargas, C. C., Aristizábal, S. L., Belalcázar, M. I., D'Vries, R. F. & Chaur, M. N. (2019). Inorg. Chim. Acta, 487, 275–280.  CAS Google Scholar
First citationCastro Agudelo, B., Ochoa Puentes, C. & Sierra, C. A. (2012). Rev. Colomb. Quim. 41, 167–178.  Google Scholar
First citationClarke, M. J. (2003). Coord. Chem. Rev. 236, 209–233.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElahi, S. M., Raizada, M., Sahu, P. K. & Konar, S. (2021). Chem. A Eur. J. 27, 5858–5870.  Web of Science CrossRef CAS Google Scholar
First citationFajardo Perafan, D. A., Arteaga, D. & Lenis Velasquez, L. A. (2023). Educ. Quim. 34, 63–88.  Google Scholar
First citationFermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. (2014). J. Am. Chem. Soc. 136, 6395–6400.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFu, F., Liu, D., Zhao, L., Li, H., Bai, X., Chen, M., Jiang, Z., Su, P., Zhong, W., Li, Y., Liao, W., He, J. & Wang, P. (2023). Dalton Trans. 52, 3033–3039.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGil-Moles, M. & Concepción Gimeno, M. (2024). ChemMedChem, 19, e202300645.  PubMed Google Scholar
First citationHusson, J. & Guyard, L. (2018). Molbank, 2018, M1032.  CrossRef Google Scholar
First citationHusson, J. & Knorr, M. (2012). Beilstein J. Org. Chem. 8, 379–389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIndumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434–443.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJantunen, K. C., Scott, B. L., Hay, P. J., Gordon, J. C. & Kiplinger, J. L. (2006). J. Am. Chem. Soc. 128, 6322–6323.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. (1997). Adv. Mater. 9, 904–906.  CrossRef CAS Web of Science Google Scholar
First citationLaschuk, N. O., Ahmad, R., Ebralidze, I. I., Poisson, J., Easton, E. B. & Zenkina, O. V. (2020). Appl. Mater. Interfaces, 12, 41749–41757.  Web of Science CrossRef CAS Google Scholar
First citationLiu, P., Shi, G. & Chen, X. (2020). Front. Chem. 8, 592055.  Web of Science CrossRef PubMed Google Scholar
First citationLiu, S.-L., Chen, Q.-W., Zhang, Z.-W., Chen, Q., Wei, L.-Q. & Lin, N. (2022). J. Solid State Chem. 310, 123045.  Web of Science CSD CrossRef Google Scholar
First citationLuo, H.-Y., Jiang, J.-H., Zhang, X.-B., Li, C.-Y., Shen, G.-L. & Yu, R.-Q. (2007). Talanta, 72, 575–581.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMomeni, B. Z., Davarzani, N., Janczak, J., Ma, N. & Abd-El-Aziz, A. S. (2024). Coord. Chem. Rev. 506, 215619.  Web of Science CrossRef Google Scholar
First citationMomeni, B. Z. & Heydari, S. (2015). Polyhedron, 97, 94–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20–30.  CrossRef Google Scholar
First citationMughal, E. U., Mirzaei, M., Sadiq, A., Fatima, S., Naseem, A., Naeem, N., Fatima, N., Kausar, S., Altaf, A. A., Zafar, M. N. & Khan, B. A. (2020). R. Soc. Open Sci. 7, 201208.  Web of Science CrossRef PubMed Google Scholar
First citationMughal, E. U., Obaid, R. J., Sadiq, A., Alsharif, M. A., Naeem, N., Kausar, S., Altaf, A. A., Jassas, R. S., Ahmed, S., Alsantali, R. I. & Ahmed, S. A. (2022). Dyes Pigments, 201, 110248.  Web of Science CrossRef Google Scholar
First citationMukherjee, S., Pal, P., Bar, M. & Baitalik, S. (2018). J. Chem. Sci. 130, 84.  Web of Science CrossRef Google Scholar
First citationMusiol, R., Malecki, P., Pacholczyk, M. & Mularski, J. (2022). Exp. Opin. Drug. Discov. 17, 259–271.  Web of Science CrossRef CAS Google Scholar
First citationNakamoto, K., (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, p. 36. Hoboken, NJ: John Wiley & Sons Inc.  Google Scholar
First citationNazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.-H. & Grätzel, M. (1999). Inorg. Chem. 38, 6298–6305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzawa, H., Yamamoto, Y., Kawaguchi, H., Shimizu, R. & Arakawa, H. (2015). Appl. Mater. Interfaces, 7, 3152–3161.  Web of Science CrossRef CAS Google Scholar
First citationPanicker, R. R. & Sivaramakrishna, A. (2022). Coord. Chem. Rev. 459, 214426.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRomain, S., Duboc, C., Neese, F., Rivière, E., Hanton, L. R., Blackman, A. G., Philouze, C., Leprêtre, J.-C., Deronzier, A. & Collomb, M.-N. (2009). Chem. A Eur. J. 15, 980–988.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaccone, D., Magistris, C., Barbero, N., Quagliotto, P., Barolo, C. & Viscardi, G. (2016). Materials, 9, 137.  Web of Science CrossRef PubMed Google Scholar
First citationSasaki, I. (2016). Synthesis, 48, 1974–1992.  Web of Science CrossRef CAS Google Scholar
First citationSchubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). Chemistry and Properties of Terpyridine Metal Complexes, in Modern Terpyridine Chemistry, ch. 3, pp. 37–68. Chichester: John Wiley and Sons.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, G., Kapoor, I. P. S., Kumar, D., Singh, U. P. & Goel, N. (2009). Inorg. Chim. Acta, 362, 4091–4098.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, J., Li, R., Li, D., Zhang, Q., Li, S., Zhou, H., Yang, J., Wu, J. & Tian, Y. (2015). Dalton Trans. 44, 1473–1482.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTu, S., Jia, R., Jiang, B., Zhang, J., Zhang, Y., Yao, C. & Ji, S. (2007). Tetrahedron, 63, 381–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationTu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005). Synthesis, 2005, 3045–3050.  Web of Science CrossRef Google Scholar
First citationWang, J. & Hanan, G. S. (2005). Synlett, 2005, 1251–1254.  Google Scholar
First citationWinter, A. & Schubert, U. S. (2020). ChemCatChem, 12, 2890–2941.  Web of Science CrossRef CAS Google Scholar
First citationYoung, D. C., Yang, H., Telfer, S. G. & Kruger, P. E. (2017). Inorg. Chem. 56, 12224–12231.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Zhou, P., Liang, B., Huang, L., Zhou, Y. & Ma, Z. (2017). J. Mol. Struct. 1146, 504–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z., Opilik, L., Schiffmann, F., Liu, W., Bergamini, G., Ceroni, P., Lee, L.-T., Schütz, A., Sakamoto, J., Zenobi, R., VandeVondele, J. & Schlüter, A. D. (2014). J. Am. Chem. Soc. 136, 6103–6110.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZou, H.-H., Wei, J.-G., Qin, X.-H., Mo, S.-G., Qin, Q.-P., Liu, Y.-C., Liang, F.-P., Zhang, Y.-L. & Chen, Z.-F. (2016). MedChemComm, 7, 1132–1137.  Web of Science CSD CrossRef CAS Google Scholar
First citationZych, D., Slodek, A., Matussek, M., Filapek, M., Szafraniec-Gorol, G., Maślanka, S., Krompiec, S., Kotowicz, S., Schab-Balcerzak, E., Smolarek, K., Maćkowski, S., Olejnik, M. & Danikiewicz, W. (2017). Dyes Pigments, 146, 331–343.  Web of Science CrossRef CAS Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds