crystallography in latin america
Synthesis, characterization and structural analysis of complexes from 2,2′:6′,2′′-terpyridine derivatives with transition metals
aGrupo de Investigación Química de Productos Naturales (QPN), Facultad de Ciencias Naturales, Exactas y de la educación, Universidad del Cauca, Popayán 19003, Colombia, and bSão Carlos Institute of Physics, University of São Paulo, CEP 13.566-590, São Carlos, SP, Brazil
*Correspondence e-mail: richard.dvries@unicauca.edu.co, albertolenis@unicauca.edu.co
The synthesis and structural characterization of three families of coordination complexes synthesized from 4′-phenyl-2,2′:6′,2′′-terpyridine (8, Ph-TPY), 4′-(4-chlorophenyl)-2,2′:6′,2′′-terpyridine (9, ClPh-TPY) and 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The compounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of complexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supramolecular features were determinated by single-crystal X-ray diffraction for bis(4′-phenyl-2,2′:6′,2′′-terpyridine)nickel(II) bis(perchlorate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis[4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine]manganese(II) bis(perchlorate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis(4′-phenyl-2,2′:6′,2′′-terpyridine)manganese(II) bis(perchlorate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the complexes present distorted octahedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π interactions. All the compounds (except for the Ni derivatives, for which FT–IR, UV–Vis and are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods.
1. Introduction
Terpyridine derivatives, e.g. 2,2′:6′,2′′-terpyridines (2-TPY), have been the most important and recognized nitrogenous compounds since their discovery (Castro Agudelo et al., 2012; Morgan & Burstall, 1932) and have been of great interest in different areas of chemistry research, mainly in coordination chemistry, materials science and metal-based drug development (Panicker & Sivaramakrishna, 2022; Luo et al., 2007; Musiol et al., 2022; Gil-Moles & Concepción Gimeno, 2024). From the family of nitrogen-based ligands, terpyridines and their derivatives have been widely used as precursors for the synthesis of several transition-metal complexes with exciting chemical and physical properties (Winter & Schubert, 2020; Fu et al., 2023). The ability of TPY to chelate a variety of metal ions has turned it and its derivatives into valuable ligands for the synthesis of complexes with a variety of architectures, which allows them to display a range of important properties. They can be of value in the synthesis of compounds with photophysical and electrochemical properties, broad and long excited-state lifetimes, characteristics which are of potential value in different applications (Kohle et al., 1997; Nazeeruddin et al., 1999; Romain et al., 2009; Momeni et al., 2024). Among the most important structural properties are the structural flexibility, tridentate planar–torsional shape and the high electronic conjugation of the three pyridine rings (Gibson & Spitzmesser, 2003), which makes them very interesting ligands for the construction of new materials (Liu et al., 2020). The appropriate spatial distribution of the three N atoms allows 2-TPY to act as a tridentate pincer ligand with the ability to coordinate with a wide range of metals (Husson & Knorr, 2012; Abhijnakrishna et al., 2023).
For these reasons, the synthesis of such nitrogen-based ligands has been widely studied and Kröhnke-type reaction methods are the most used (Sasaki, 2016; Tu et al., 2005, 2007; Zych et al., 2017; Fajardo Perafan et al., 2023). Because the 2-TPY ligand has an excellent ability to form chelate-like coordination complexes, of the type [M(R-TPY)2]X2, with high stability, the synthesis of these complexes is straightforward to achieve. The complexes are generally synthesized by refluxing the metal salt and the ligand in a 1:2 ratio. Due to the size of the complex formed, it is necessary to exchange the anion (X = SO42−, PF6− and ClO4−) to stabilize the charge of the complex cation formed and to enhance the formation of crystalline solids (Indumathy et al., 2007). The considerable thermal and chemical stability of these complexes (Jantunen et al., 2006) is associated with the strong retrodonation from the metal centre to the ligand (d–π*), as well as with the chelating effect (Schubert et al., 2006). The importance of obtaining these coordination complexes lies in their excellent chemical and physical properties that give them great biological applicability and high potential in medicinal chemistry (Clarke, 2003; Zou et al., 2016; Gil-Moles & Concepción Gimeno, 2024), ion sensors (Fermi et al., 2014), materials science (Saccone et al., 2016), supramolecular polymers (Zheng et al., 2014), coordination polymer (CP) synthesis (Momeni & Heydari, 2015; Young et al., 2017; Elahi et al., 2021), catalysis (Husson & Guyard, 2018; Liu et al., 2022), optics (Tan et al., 2015; Zhang et al., 2017) and the electronics field (Ozawa et al., 2015; Zych et al., 2017; Laschuk et al., 2020), all influenced by the electronic nature of the terpyridine ligands used (Aroua et al., 2017). Based on the above considerations, in the present investigation, we report the synthesis, spectroscopic, thermal and structural characterization of 12 transition-metal coordination complexes with the general formula [M(R-TPY)2](ClO4)2. The three families of coordination complexes were obtained with good reaction yields from three 4-substituted terpyridine ligands (R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY) and four divalent metal cations (M = Co2+, Fe2+, Mn2+ and Ni2+), using the perchlorate anion (ClO4−) as the counter-ion. On this occasion, it was possible to determine and study the structures and crystal packing of [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) from single-crystal X-ray diffraction data.
2. Experimental
2.1. Materials and methods
All reagents and solvents for the synthesis were purchased from Sigma–Aldrich and were used as received without further purification. For all air-sensitive reactions, the synthetic procedures were conducted under an N2 atmosphere, and the solvents employed were dried according to standard procedures. FT–IR spectra (KBr) were recorded using a Thermo Nicolet iS10 spectrophotometer. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were obtained on a Bruker Ultra Shield Avance II spectrometer at room temperature (298 K) using deuterated solvents, such as dimethyl sulfoxide (DMSO). The values (δ) are reported in parts per million (ppm). Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet). The UV–Vis measurements were recorded on a Thermo Genesys 6 spectrophotometer with diluted solutions prepared with anhydrous acetonitrile (ACN). (TGA–DSC) was performed in a TA instrument (Discovery SDT 650) under the following conditions: temperature range 25–900 °C, nitrogen atmosphere (100 ml min−1 flow) and heating rate 20 °C min−1.
2.2. Synthesis
2.2.1. Synthesis of the R-TPY ligands
The R-TPY ligands were obtained following a Kröhnke-type reaction with some synthetic modification as reported by us in previous work (Fajardo Perafan et al., 2023). To a 100 ml round-bottomed flask containing 20 ml of EtOH were added 0.3961 g (6 mmol) of KOH and the resulting mixture stirred until complete dissolution was achieved. To this solution were added slowly 450 µl (4 mmol) of 2-acetylpyridine and the appropriate aromatic aldehyde (2 mmol). The resulting solution was stirred at room temperature for 2 h. After this time, an excess of 30% NH4OH (aq, 5 ml) was added slowly to the mixture, which was stirred for 5 min at room temperature. The flask was connected to a reflux system within microwave irradiation equipment for synthesis and irradiated continuously for 12 min at 70 W with a non-variable temperature (50 °C). The reaction progress was followed by (TLC). The reaction mixture was cooled to room temperature and quenched with cold deionized water (50 ml). The precipitate which formed was collected by vacuum filtration and washed several times with EtOH/H2O. The solid was allowed to dry overnight at 70 °C and was then purified by recrystallization from EtOH. TLC was carried out using a mobile phase of an isobutyl alcohol–acetone–chloroform mixture (4:3:3 v/v/v) with the addition of two drops of dilute acetic acid.
Ph-TPY: yield: 68.97 ± 0.09%; m.p. 200.3–202.0 °C. FT–IR (KBr pellet, cm−1): 3051.88, 2000.00–1700.00, 1600.75–1439.15, 146.17, 1392.42, 761.48. UV–Vis (ACN acidified, 200.0–800.0 nm): 277.5, 311.5. 1H NMR (400 MHz, CDCl3): δ 8.802 (s, 2H, H3′,5′), 8.771 (d, 2H, H3,3′′), 8.72 (d, 2H, H6,6′′), 7.959–7.910 (m, 4H, H4,4′′, HII,VI), 7.556–7.456 (m, 3H, HIII,IV,V), 7.395 (dd, 2H, H5,5′′). 13C NMR (100 MHz, CDCl3): δ 155.88 (C2′,6′), 155.55 (C2,2′′), 150.47 (C4′), 148.78 (C6,6′′), 138.31 (CI), 137.32 (C4,4′′), 129.11 (CII,VI), 127.39 (CIII,IV,V), 123.94, (C5,5′′), 121.6 (C3,3′′), 119.2 (C3′,5′). MS (solid probe, EI): 309.10.
ClPh-TPY: yield: 57.26 ± 0.08%; m.p. 168.0–171.9 °C. FT–IR (KBr pellet, cm−1): 3061.44, 3016.84, 2000.00–1700.00, 1606.03–1443.86, 1496.04, 1384.90, 1091.29, 786.47. UV–Vis (ACN acidified, 200.0–800.0 nm): 278.0, 311.0. 1H NMR (400 MHz, CDCl3): δ 8.753–8.744 (m, 4H, H3,3′,5′,3′′), 8.697 (d, 2H, H6,6′′), 7.939–7.859 (m, 4H, H4,4′′, HII,VI), 7.495 (d, 2H, HIII,V), 7.390 (dd, 2H, H5,5′′). 13C NMR (100 MHz, CDCl3): δ 156.24 (C2′,6′), 155.74 (C2,2′′), 149.24 (C4′), 148.81 (C6,6′′), 137.4 (C4,4′′), 136.82 (CI), 135.3 (CIV), 129.23 (CII,VI), 128.65 (CIII,V), 123.96 (C5,5′′), 121.65 (C3,3′′), 118.83 (C3′,5′). MS (solid probe, EI): 343.25.
MeOPh-TPY: yield: 48.91 ± 0.08%; m.p. 167.1–168.9 °C. FT–IR (KBr pellet, cm−1): 3050.59, 3013.18, 2963.42, 2935.19, 2841.78, 2000.00–1700.00, 1600.67–1438.82, 1467.72, 1391.55, 1265.04, 1040.60, 1187.15, 833.18, 790.65. UV–Vis (ACN acidified, 200.0–800.0 nm): 290.0, 315.0. 1H NMR (400 MHz, CDCl3): δ 8.795–8.76, (m, 4H, H3,3′,5′,3′′), 8.71 (d, 2H, H6,6′′), 7.940–7.913 (m, 4H, H4,4′′,II,VI), 7.396 (d, 2H, HIII,V), 7.055 (dd, 2H, H5,5′′), 3.90 (s, 3H, OCH3). 13C NMR (100 MHz, CDCl3): δ 160.57 (CIV), 156.15 (C2′,6′), 155.59 (C2,2′′), 149.81 (C4′), 148.88 (C6,6′′), 137.08 (C4,4′′), 130.63 (CI), 128.55 (CII,VI), 123.81 (C5,5′′), 121.48 (C3,3′′), 118.41 (C3′,5′), 114.35 (CIII,V), 55.38 (OCH3). MS (solid probe, EI): 339.20.
2.2.2. Synthesis of [M(R-TPY)](ClO4)2
All the obtained compounds were synthesized following the same procedure: 2 mmol of R-TPY (R = Ph, –PhCl or –PhOMe) were added to 20 ml of hot MetOH until complete dissolution was achieved. 1 mmol of MCl2 (M = Co2+, Fe2+, Mn2+ or Ni2+) was dissolved in 10 ml of deionized water. Both solutions are mixed in a 50 ml round-bottomed flask under constant stirring and refluxed for 2 h. After cooling, 10 ml of a 0.5 M aqueous NaClO4 solution was added slowly with caution (CAUTION: perchlorate salts are considered toxic substances and sensitive explosives) and stirred for 30 min. The reaction mixture was cooled in ice and a solid precipitate formed which was filtered off under vacuum and washed with cold methanol. The solid obtained was dried overnight at 60 °C and purified by recrystallization from MetOH–ACN (2:1 v/v).
2.2.3. Coordination complex series A (15a–d)
[Co(Ph-TPY)2](ClO4)2: yield: 90.41%. FT–IR (KBr pellet, cm−1): 3060.98, 1615.94–1548.05, 1471.45, 1384.46, 1089.19, 764.90, 623.53, 473.53. UV–Vis (ACN, nm): 287.5, 325.0, 520.0. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 9.822 (s, 2H, H3′,5′), 9.226 (d, 2H, H3,3′′), 8.583 (d, 2H, H6,6′′), 7.595 (dd, 2H, H4,4′′), 7.661 (d, 2H, HII,VI), 7.270 (m, 3H, HIII,IV,V), 7.000 (dd, 2H, H5,5′′).
[Fe(Ph-TPY)2](ClO4)2: yield: 88.58%. FT–IR (KBr pellet, cm−1): 3063.84, 1616.66, 1467.58, 1384.23, 1121.02–1106.53, 765.88, 623.94, 479.18. UV–Vis (ACN, nm): 287.0, 324.0, 568.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.688 (s, 2H, H3′,5′), 9.090 (d, 2H, H3,3′′), 8.572 (d, 2H, H6,6′′), 8.043 (dd, 2H, H4,4′′), 7.836 (dd, 2H, HII,VI), 7.312 (d, 2H, HIII,V), 7.212 (dd, 3H, IV), 7.043 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): 163.23 (C2′6′), 159.89 (C2,2′′), 157.86 (C4′), 152.78 (C6,6′′), 142.23 (CI), 141.48 (CIV), 138.73 (C4,4′′), 130.72 (CII,VI), 129.47 (CIII, V), 127.63 (C5,5′′), 124.09 (C3,3′′), 120.86 (C3′,5′).
[Mn(Ph-TPY)2](ClO4)2: yield: 80.45%. FT–IR (KBr pellet, cm−1): 3060.70, 1614.39–1548.45, 1475.65, 1384.57, 1087.43, 767.45, 622.75, 477.13. UV–Vis (ACN, 200.0–800.0 nm): 289.5, 329.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.630 (s, 2H, H3′,5′), 8.335 (d, 2H, H3,3′′), 7.935 (d, 2H, H6,6′′), 7.466 (m, 4H, H4,4′′,II,VI), 7.130 (d, 2H, HIII,V), 6.091 (dd, 2H, HIV), 6.697 (dd, 2H, H5,5′′).
[Ni(Ph-TPY)2](ClO4)2: yield: 57.78%. FT–IR (KBr pellet, cm−1): 3061.40, 1615.17–1554.62, 1473.55, 1384.43, 1089.23, 765.47, 624.21, 470.65 cm−1. UV–Vis (ACN, nm): 287.5, 328.0. Solid colour: green.
2.2.4. Coordination complex series B (16a–d)
[Co(ClPh-TPY)2](ClO4)2: yield: 68.78%. FT–IR (KBr pellet, cm−1): 3055.94, 1615.96–1547.88, 1492.49, 1384.53, 1089.63, 791.37, 620.20, 479.18. UV–Vis (ACN, 200.0–800.0 nm): 287.0, 324.0, 520.5. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 10.400 (s, 2H, H3′,5′), 8.742 (d, 2H, H3,3′′), 8.420 (d, 2H, H6,6′′), 7.630 (dd, 2H, H4,4′′), 7.543 (d, 2H, HII,VI), 7.250 (d, 2H, HIII,V), 6.940 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): δ 163.10 (C2′6′), 154.00 (C2,2′′), 153.46 (C4′), 147.30 (C6,6′′), 141.15 (CI), 140.62 (CIV), 136.64 (C4,4′′), 129.49 (CII,VI), 127.58 (CIII, V), 121.82 (C5,5′′), 120.89 (C3,3′′), 120.26 (C3′,5′).
[Fe(ClPh-TPY)2](ClO4)2: yield: 71.37%. FT–IR (KBr pellet, cm−1): 3055.95, 1615.96, 1492.26, 1384.51, 1087.82, 790.28, 621.86, 481.42. UV–Vis (ACN, nm): 287.0, 326.0, 568.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.703 (s, 2H, H3′,5′), 8.617 (d, 2H, H3,3′′), 8.431 (d, 2H, H6,6′′), 7.637 (dd, 2H, H4,4′′), 7.544 (d, 2H, HII,VI), 7.265 (d, 2H, HIII,V), 6.941 (dd, 2H, H5,5′′). 13C NMR (100 MHz, DMSO): δ 163.11 (C2′6′), 159.96 (C2,2′′), 157.78 (C4′), 152.81 (C6,6′′), 141.16 (CI), 140.64 (CIV), 136.65 (C4,4′′), 129.50 (CII,VI), 127.59 (CIII, V), 121.83 (C5,5′′), 120.95 (C3,3′′), 120.27 (C3′,5′).
[Mn(ClPh-TPY)2](ClO4)2: yield: 64.26%. FT–IR (KBr pellet, cm−1): 3072.21, 1614.87–1546.09, 1476.35, 1384.50, 1090.59, 791.47, 622.45, 508.91. UV–Vis (ACN, nm): 290.0, 330.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.693 (s, 2H, H3′,5′), 8.635 (d, 2H, H3,3′′), 8.375 (d, 2H, H6,6′′), 7.981 (dd, 2H, H4,4′′), 7.584 (d, 2H, HII,VI), 7.204 (d, 2H, HIII,V), 6.840 (dd, 2H, H5,5′′).
[Ni(ClPh-TPY)2](ClO4)2: yield: 64.98%. FT–IR (KBr pellet, cm−1): 3072.56, 1614.12–1550.62, 1473.57, 1384.53, 1090.59, 792.26, 622.80, 505.93. UV–Vis (ACN, nm): 289.0, 326.0. Solid colour: green.
2.2.5. Coordination complex series C (17a–d)
[Co(MeOPh-TPY)2](ClO4)2: yield: 72.81%. FT–IR (KBr pellet, cm−1): 3073.62, 2931.48, 2840.23, 1601.74–1530.34, 1470.96, 1384.34, 1244.15, 1185.33, 1089.07, 832.42, 793.07, 622.92, 522.14. UV–Vis (ACN, nm): 284.5, 330.0, 522.0. Solid colour: red. 1H NMR (400 MHz, DMSO): δ 9.752 (s, 2H, H3′,5′), 9.203 (d, 2H, H3,3′′), 8.614 (d, 2H, H6,6′′), 7.512 (dd, 2H, H4,4′′), 7.649 (d, 2H, HII,VI), 7.442 (d, 2H, HIII,V), 7.100 (dd, 2H, H5,5′′), 4.013 (s, 3H, OCH3).
[Fe(MeOPh-TPY)2](ClO4)2: yield: 88.36%. FT–IR (KBr pellet, cm−1): 3073.09, 2934.42, 2843.17, 1603.13–1518.22, 1467.77, 1384.53, 1244.89, 1184.84, 1088.69, 831.57, 791.42, 623.09, 514.11. UV–Vis (ACN, nm): 285.0, 326.5, 570.0. Solid colour: purple. 1H NMR (400 MHz, DMSO): δ 9.630 (s, 2H, H3′,5′), 9.069 (d, 2H, H3,3′′), 8.678 (d, 2H, H6,6′′), 7.528 (dd, 2H, H4,4′′), 7.378 (d, 2H, HII,VI), 7.280 (d, 2H, HIII,V), 7.169 (dd, 2H, H5,5′′), 3.851 (s, 3H, OCH3). 13C NMR (100 MHz, DMSO): δ 161.47 (CIV), 160.45 (C2′6′), 157.98 (C2,2′′), 155.04 (C4′), 152.77 (C6,6′′), 138.63 (C4,4′′), 129.55 (CII,VI), 127.98 (CI), 123.96 (C5,5′′), 120.25 (C3,3′′), 117.28 (C3′,5′), 114.80 (CIII, V), 55.61 (OCH3).
[Mn(MeOPh-TPY)2](ClO4)2: yield: 92.08%. FT–IR (KBr pellet, cm−1): 3058.05, 2937.37, 2837.29, 1601.50–1519.26, 1476.33, 1384.34, 1245.26, 1185.59, 1090.53, 832.71, 794.36, 622.99, 514.80. UV–Vis (ACN, nm): 288.0, 344.0. Solid colour: yellow. 1H NMR (400 MHz, DMSO): δ 8.622 (m, 6H, H3′,5′,3,3′′,6,6′′), 7.862 (m, 2H, H4,4′′,II,VI), 7.458 (d, 2H, HIII,IV), 7.084 (dd, 2H, H5,5′′), 3.794 (s, 3H, OCH3).
[Ni(MeOPh-TPY)2](ClO4)2: yield: 81.02%. FT–IR (KBr pellet, cm−1): 3072.77, 2937.37, 2837.29, 1602.82–1519.47, 1473.73, 1384.40, 1243.43, 1183.89, 1091.29, 831.89, 792.66, 622.84, 522.95. UV–Vis (ACN, nm): 282.5, 344.0. Solid colour: green.
2.3. Refinement
Crystal data, data collection and structure . In all cases, non-H atoms were clearly resolved and full-matrix least-squares with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model. Mn compound 15c was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) in order to calculate the structure factors and improve the values.
details are summarized in Table 13. Results and discussion
3.1. Synthesis
The synthetic approach to prepare the metal coordination complexes 15a–d, 16a–d and 17a–d was performed according to known synthetic procedures (see Fig. 1). The initial step was the preparation of organic terpyridine ligands 8–10 from 2-acetylpyridine and aromatic 4-substituted following Kröhnke-type reaction methods (Wang & Hanan, 2005; Fajardo Perafan et al., 2023). These ligands are notable for the type of aromatic ring substituent: neutral (–H), electron-attracting (–Cl) and electron-donating (–OMe). The electronic properties of these substituents may be a key factor in the formation of the complexes, as will be discussed below (although the size of the cation may also have some influence). The experimental details of this synthesis were listed in the Experimental section, as well as in the supporting information (Scheme S1).
The synthesis route for complexes 15a–d, 16a–d and 17a–d was by direct reaction between 2 molar equivalents of the terpyridine derivative (8, 9 or 10) and one molar equivalent of the metal salt (11, 12, 13 or 14) in methanol (MeOH) as reaction medium (Indumathy et al., 2007). Upon mixing the dissolved ligand with the metal salt solution, there was a noticeable change in the colouration of the mixture, i.e. red for complexes 15–17a, violet for 15–17b, yellow for 15–17c and green for 15–17d. At this point, the complexes formed in solution are [M(R-TPY)2]Cl2. To isolate them as crystalline solids, it was necessary to add sodium perchlorate (NaClO4) in order to carry out an exchange of counter-ion, because ClO4− is a bulkier ion that favours the formation of crystalline packing. Thus, all the complexes formed were isolated as perchlorate salts, which importantly retain the colourations of the solutions from which they came. Additionally, from the reaction yield values of the obtained complexes, the influence of the substituent of each ligand on this value is highlighted. The complexes with the –OMe substituent (17a–d) were obtained in higher yield than those with the –Cl substituent (16a–d). This can be attributed to the first substituent being an which generates a more negative electronic environment on the ligand and favours coordination. In contrast, the second substituent is an electron attractor, so, in this case, the ligand will have a more positive electron density, which translates into a lower coordination capacity. The structures of the compounds obtained in this research were confirmed by spectroscopic techniques, such as 1H NMR, 13C NMR, FT–IR and (MS), and the spectral data correlated with the structures. In addition, complexes [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) were obtained as crystals suitable for single-crystal X-ray The solids obtained for the other compounds show crystals that eventually lose their crystallinity by and are thus not suitable for measurement by single-crystal diffraction.
3.2. Structural analysis
Displacement ellipsoid plots (50% probability level) for the asymmetric units of [Ni(Ph-TPY)2](ClO4)2 (15d), [Mn(MeOPh-TPY)2](ClO4)2 (17c) and [Mn(Ph-TPY)2](ClO4)2 (15c) are presented in Fig. 2. The crystallographic and refinement data for the compounds are reported in Table 1.
[Ni(Ph-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 crystallize in the monoclinic P21/c. Both molecules present similar unit-cell parameters and crystal packing. On the other hand, [Mn(MeOPh-TPY)2](ClO4)2 crystallizes in the triclinic P. In all cases, the is formed by one divalent cation, two R-TPY ligands (where R = –Ph or –OMe) and two perchlorate anions as counter-ions. Each R-TPY ligand is coordinated through three N atoms to the metal centre. The coordinated ligands are positioned perpendicular with respect to each other, forming a distorted octahedral polyhedron (MN6) in a propeller-like arrangement (Fig. 3) (Carmona-Vargas et al., 2019). Table 2 shows the coordination M—N distances, where the shortest distances are between the N atoms of the central pyridine ring (N2 and N5). Substituent group influence is observed, making the M—N bond longer for the central ring of the electron-donating substituent (15c and 17c). The influence of the ionic radius on the bond distances can also be observed, being shorter for the Ni2+ complex (ionic radii, Ni = 0.69 Å and Mn = 0.83 Å; Shannon, 1976), suggesting a high-spin configuration for the Mn2+ complexes.
|
In both cases, the coordinated ligands present a planarity distortion around the TPY core (see Table 3 and Fig. 3) by rotation around the C—C bond of TPY substituted with Ph and MeOPh, with values between 5.23 and 43.24° (see Table 3 and Fig. 3).
|
[Ni(Ph-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 are isostructural and present similar packing. [Ni(Ph-TPY)2](ClO4)2 is used to describe the observed interactions. The crystal packing is formed by C—H⋯π interactions between the substituted arene ring and the TPY core, with C18—H18⋯π, C21—H21⋯π and C34—H34⋯π distances of 3.487 (14), 3.668 (18) and 3.561 (10) Å, respectively (Fig. 4). Each perchlorate anion is surrounded by five complex molecules [Fig. 4(b)]. Therefore, C—H⋯O interactions are presented between the aromatic rings and the O atoms of the perchlorate anion, with distances ranging from 3.046 (18) to 3.480 (16) Å (Fig. 4). All H-atom contacts are summarized in the supporting information (Tables S21–S22).
The packing of [Mn(MeOPh-TPY)2](ClO4)2 is stabilized by C—H⋯O and π–π slipped-stacking interactions between the complex molecules along the [011] direction, with distances of 3.047 (14) and 3.803 (18) Å, respectively (Fig. 5). The chains are joined by C—H⋯O interactions between perchlorate O atoms and the aromatic rings of the ligand, with distances ranging from 3.109 (8) to 3.430 (10) Å (Fig. 5). All H-atom contacts are summarized in the supporting information (Table S23).
3.3. IR spectroscopy analysis
The FT–IR spectra of coordination complexes 15a–d, 16a–d and 17a–d are shown in Fig. 6. All the synthesized compounds present a similar IR profile. Compared with the spectra of the R-TPY free ligands (Fig. S1 in the supporting information), the bands are shifted to higher wavenumbers and the intensity of the C=N band (∼1450 cm−1) increases, indicating the formation of the complexes. Additionally, bands due to in-plane and out-of-plane vibrations for ClO4− are observed around 1100 and 600 cm−1, respectively. In addition, vibrations generated by the metal–ligand bonds are found above 500 cm−1, which are higher than those found with the other ligands, indicating that M—N bonds require higher energy to vibrate, which is an indication of their higher structural stability (Nakamoto, 2008).
3.4. UV–Vis spectrophotometry
The electronic absorption spectra for coordination complexes 15a–d, 16a–d and 17a–d were recorded in acetonitrile solutions and are illustrated in Figs. 7 and 8; the corresponding data for the absorption bands and absorption maxima (λmax) are summarized in the supporting information (Table S1). These complexes exhibit two types of transfer bands, namely, π–π* transitions originating from transfer bands of types CLCT (centred ligand charge transfer) and MLCT (metal-to-ligand charge transfer) due to 4d–π* transitions. The absorption bands at lower energies represent MLCT transitions, while the highest energy transitions correspond to CLCT transitions.
In [M(Ph-TPY)2](ClO4)2, [M(ClPh-TPY)2](ClO4)2 and [M(MeOPh-TPY)2](ClO4)2 (M = Co2+ and Fe2+), the bands around 287 and 325 nm are due to π–π* transitions within the aromatic residues of the ligand (pyridine and arene rings) and C=N bonds, respectively. The low-intensity bands observed around 520 nm in the Co complexes correspond to d–d transitions (Fig. 7) (Mughal et al., 2020). In the case of the Fe complexes, a medium-intensity band around 570 nm is associated with MLCT, i.e. FeII(dπ)–π*(ligand) (Mukherjee et al., 2018). It is now evident that both bands associated with the ligand in the three complexes are at longer wavelengths than in the ligands, so a (lower energy) is being generated, which is expected due to the formation of the coordinate bonds between the metal cation and the N atoms of the ligand. In both cases, the complexes with the MeOPh-TPY ligand present a splitting of the band associated with the ligand and an increase in the intensity of the resultant band. This phenomenon may be due to MLCT as a result of the coordination of the metal with the N atom.
[M(Ph-TPY)2](ClO4)2, [M(ClPh-TPY)2](ClO4)2 and [M(MeOPh-TPY)2](ClO4)2 (M = Mn2+ and Ni2+) present similar bands associated with π–π* transitions in aromatic rings and C=N bonds around 290 and 330 nm, respectively. In comparison with the free ligand, a higher is observed. Similar to the Co and Fe complexes, the complexes with the MeOPh-TPY ligand present a splitting of the band and an increase in the intensity of the band at 344 nm, indicating increased LMCT. This behaviour may also be associated with the presence of an electron-donor group in the TPY system (Fig. 8).
3.5. NMR spectroscopy
1H NMR and 13C NMR measurements for terpyridine ligands and the coordination complexes 15a–d, 16a–d and 17a–d were recorded in DMSO-d6 solutions; all the spectra are illustrated in the supporting information (Figs. S3–S21) and the assignments of signals are given in the Experimental section (§2). NMR spectroscopy allows us to characterize each ligand and confirm the coordination of the 2-TPY ligands (8–10) with the metal cations (Co2+, Fe2+ and Mn2+, except for Ni2+). It is important to highlight that the complexes formed have an octahedral coordination sphere symmetry where the d orbitals split in T2g eg sets of orbitals. This behaviour gives rise to the generation of paramagnetic centres that can interfere with NMR measurements. This effect is strong in Ni2+ (d8 = T2g6 eg2) complexes, because the resolution of the signals was not possible. However, if we compare the signal type integration and the chemical shifts (δ) in the 1H NMR and 13C NMR spectra of the ligands (Figs. S3–S8 and Tables S2–S7 in the supporting information) and the coordination complexes (Figs. S9–S21 and Tables S8–S20), it is evident that in all cases there are notable changes. For example, in the 1H NMR spectra for the different ligands (Figs. S3, S5 and S7), a singlet signal is seen at 8.750–8.738 ppm due to the magnetically equivalent protons H3′ and H5′, while in the 1H NMR spectra of the coordination complexes, this singlet signal has shifted to higher values of δ (low field) in the range 10.4–9.63 ppm. This behaviour suggests the formation of the proposed coordination complexes, which indicates the strong interactions generated between metal and ligand (Mughal et al., 2022). In general, the observed signals for the complexes are displaced to a low field due to an electron-deficient metal cation in the structure. It is also important to indicate that the signals associated with the 1H and 13C atoms close to the pyridine N atom coordinated to the metal atoms present a higher deprotection and shift in their δ values compared with the free ligand. It is also possible to note that, in some spectra, low-intensity signals are observed due to a leaching process resulting from the decoordination of the ligands in solution.
3.6. Thermal stability
To determine the thermal stability of the complexes obtained, a TGA–DSC (thermogravimetric analysis–differential scanning calorimetry) study was performed in the temperature range 25–900 °C under an N2 atmosphere (Fig. 9). In all cases, mass loss at low temperatures is associated with the presence of adsorbed solvent molecules. The thermal decomposition processes start at a relatively low temperature in the range 270–380 °C. The Mn compounds show an anomalous behaviour, with decomposition at temperatures below 100 °C, indicating low thermal stability, possibly due to the decomposition processes of the perchlorate anion. This decomposition process is more clearly observed in the DSC analysis. The peaks in the DSC profiles show the decomposition or explosion temperature for each complex, determined by the presence of the perchlorate anion in the structure (Singh et al., 2009).
4. Conclusion
In this work, we have discussed the synthesis and spectroscopic and structural characterization of 12 transition-metal coordination complexes with the general formula [M(R-TPY)2](ClO4)2. The new family of complexes were obtained from the efficient reaction of four divalent metal ions (M = Co2+, Fe2+, Mn2+ and Ni2+) with nitrogen-based ligands (R-TPY), where R (R = H, Cl and OCH3) is the substituent at the 4′ position of the 2,2′:6′,2′′-terpyridine core. These substituents have a positive influence on the reaction yield of the complexes when R = OMe but a negative influence when R = Cl, probably due to the electron-donor or electron-acceptor nature, respectively. The TPY derivatives were prepared using the Kröhnke methodology assisted by microwave radiation. Crystals suitable for single-crystal X-ray diffraction were obtained for [Ni(Ph-TPY)2](ClO4)2, [Mn(MeOPh-TPY)2](ClO4)2 and [Mn(Ph-TPY)2](ClO4)2 by slow evaporation of the solvent. In all cases, the complexes present distorted octahedral coordination polyhedra (MN6) in a propeller-like arrangement. Due to the aromatic nature of the TPY structure, the crystal packing is formed mainly by weak C—H⋯π, C—H⋯O and π–π interactions. As it was impossible to obtain single crystals for all the synthesized complexes, they were characterized by spectroscopic techniques.
It is important to clarify that, due to the presence of metal centres with paramagnetic behaviour that interferes with the NMR measurements, as in the case for the Ni2+ complexes, it was not possible to characterize these complexes using this technique. This same effect causes some signals to widen and they cannot be identified clearly. Also, it is important to mention that the presence of unidentified low-intensity signals may be due to a leaching process or an excess of ligand in solution. All other spectroscopic, thermal and diffraction techniques confirm the formation of the complexes. The FT–IR and UV–Vis (λ) bands, and NMR signals (chemical shifts, δ) of the metal complexes are significantly shifted with respect to those of the precursor 2,2′:6′,2′′-terpyridine ligands, due to strong metal–ligand interactions. The absorption bands in the coordination complexes are shifted to longer wavelengths; these bathochromic shifts (red-shifted absorption) occur due to the formation of new covalent bonds between the terpyridine N atoms and the d-block transition-metal cation (M—N). A similar behaviour is observed in the FT–IR bands, where the perchlorate anion and metal–ligand (M—N) bands are also observed.
The thermal stability of the complexes is directly related to the presence of the perchlorate anion in the molecular structure causing low thermal stability. Different functional groups in the pendant ring of TPY allow the formation of different crystalline packings as a result of their nature. The introduction of these groups in TPY is important because they provide specific physicochemical properties that would enable the potential use of each molecule in different fields of application.
Supporting information
https://doi.org/10.1107/S2053229624004224/zo3044sup1.cif
contains datablocks MnMeOTPY, MnPhTPY, NiPhTPY, global. DOI:Structure factors: contains datablock NiPhTPY. DOI: https://doi.org/10.1107/S2053229624004224/zo3044NiPhTPYsup2.hkl
Structure factors: contains datablock MnMeOTPY. DOI: https://doi.org/10.1107/S2053229624004224/zo3044MnMeOTPYsup3.hkl
Structure factors: contains datablock MnPhTPY. DOI: https://doi.org/10.1107/S2053229624004224/zo3044MnPhTPYsup4.hkl
Additional schemes, figures and tables. DOI: https://doi.org/10.1107/S2053229624004224/zo3044sup5.pdf
[Mn(C22H17N3O)2](ClO4)2 | Z = 2 |
Mr = 932.61 | F(000) = 958 |
Triclinic, P1 | Dx = 1.505 Mg m−3 |
a = 8.93282 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.32698 (13) Å | Cell parameters from 44860 reflections |
c = 18.86081 (19) Å | θ = 2.6–34.1° |
α = 89.8757 (8)° | µ = 0.52 mm−1 |
β = 85.6122 (8)° | T = 100 K |
γ = 83.5667 (9)° | Block, light yellow |
V = 2057.68 (4) Å3 | 0.15 × 0.10 × 0.08 mm |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 10630 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 9347 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 28.7°, θmin = 2.5° |
ω scans | h = −12→12 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | k = −16→16 |
Tmin = 0.662, Tmax = 1.000 | l = −25→25 |
57826 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0393P)2 + 0.9933P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
10630 reflections | Δρmax = 0.49 e Å−3 |
570 parameters | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.84071 (2) | 0.20014 (2) | 0.74163 (2) | 0.01322 (5) | |
Cl2 | 0.27866 (3) | 0.73931 (2) | 0.86546 (2) | 0.01663 (7) | |
Cl1 | 0.44773 (4) | 0.27267 (3) | 0.51211 (2) | 0.01862 (7) | |
O2 | 1.04363 (12) | 0.38092 (8) | 0.19702 (5) | 0.0220 (2) | |
O1 | 0.61146 (13) | −0.26205 (9) | 1.20844 (5) | 0.0259 (2) | |
O8 | 0.13467 (11) | 0.80637 (8) | 0.87487 (5) | 0.0219 (2) | |
O7 | 0.32762 (13) | 0.73117 (9) | 0.79090 (5) | 0.0267 (2) | |
O9 | 0.26411 (13) | 0.63223 (8) | 0.89400 (6) | 0.0276 (2) | |
O10 | 0.38971 (12) | 0.78935 (9) | 0.90230 (6) | 0.0276 (2) | |
N4 | 0.71778 (12) | 0.36568 (9) | 0.72566 (6) | 0.0156 (2) | |
N5 | 0.90456 (12) | 0.25287 (8) | 0.63304 (5) | 0.0136 (2) | |
N1 | 0.94458 (12) | 0.27627 (9) | 0.83268 (6) | 0.0147 (2) | |
N2 | 0.78219 (12) | 0.11127 (8) | 0.83983 (5) | 0.01317 (19) | |
N6 | 1.01949 (12) | 0.06923 (9) | 0.69056 (6) | 0.0147 (2) | |
O5 | 0.38629 (13) | 0.17013 (9) | 0.52369 (7) | 0.0359 (3) | |
N3 | 0.68141 (12) | 0.07699 (9) | 0.71536 (5) | 0.0147 (2) | |
O3 | 0.50570 (17) | 0.27764 (11) | 0.43929 (6) | 0.0432 (3) | |
O6 | 0.33038 (15) | 0.36195 (10) | 0.52570 (7) | 0.0391 (3) | |
O4 | 0.56453 (17) | 0.27922 (11) | 0.55862 (8) | 0.0502 (4) | |
C11 | 0.64293 (14) | 0.00707 (10) | 0.76733 (6) | 0.0135 (2) | |
C10 | 0.69668 (13) | 0.02828 (10) | 0.83820 (6) | 0.0128 (2) | |
C6 | 0.83885 (13) | 0.13535 (10) | 0.90126 (6) | 0.0131 (2) | |
C5 | 0.92485 (14) | 0.23205 (10) | 0.89801 (6) | 0.0134 (2) | |
C7 | 0.81556 (14) | 0.07495 (10) | 0.96256 (6) | 0.0138 (2) | |
H7 | 0.860232 | 0.092242 | 1.004630 | 0.017* | |
C27 | 0.83919 (14) | 0.34763 (10) | 0.60817 (6) | 0.0133 (2) | |
C19 | 0.64295 (15) | −0.19800 (11) | 1.15164 (7) | 0.0171 (2) | |
C37 | 0.99495 (14) | 0.33887 (10) | 0.41620 (6) | 0.0153 (2) | |
C12 | 0.56352 (14) | −0.08050 (10) | 0.75412 (7) | 0.0161 (2) | |
H12 | 0.535070 | −0.127319 | 0.791654 | 0.019* | |
C4 | 0.97795 (15) | 0.27649 (10) | 0.95764 (7) | 0.0168 (2) | |
H4 | 0.962878 | 0.244320 | 1.003077 | 0.020* | |
C16 | 0.69693 (14) | −0.07642 (10) | 1.02729 (6) | 0.0130 (2) | |
C9 | 0.66467 (14) | −0.03336 (10) | 0.89824 (6) | 0.0135 (2) | |
H9 | 0.601377 | −0.090036 | 0.895816 | 0.016* | |
C26 | 0.72713 (14) | 0.40883 (10) | 0.65978 (6) | 0.0138 (2) | |
C18 | 0.72148 (14) | −0.10719 (10) | 1.15389 (6) | 0.0157 (2) | |
H18 | 0.757195 | −0.085778 | 1.197323 | 0.019* | |
C8 | 0.72601 (13) | −0.01167 (10) | 0.96239 (6) | 0.0126 (2) | |
C29 | 0.96743 (14) | 0.31363 (10) | 0.49237 (6) | 0.0146 (2) | |
C17 | 0.74767 (14) | −0.04769 (10) | 1.09233 (6) | 0.0152 (2) | |
H17 | 0.801575 | 0.014272 | 1.094492 | 0.018* | |
C31 | 1.00055 (14) | 0.18737 (10) | 0.58924 (6) | 0.0138 (2) | |
C13 | 0.52625 (15) | −0.09870 (11) | 0.68529 (7) | 0.0181 (2) | |
H13 | 0.473910 | −0.159061 | 0.674975 | 0.022* | |
C25 | 0.63432 (15) | 0.50116 (10) | 0.64175 (7) | 0.0174 (2) | |
H25 | 0.641606 | 0.529612 | 0.594921 | 0.021* | |
C40 | 1.03554 (15) | 0.36605 (10) | 0.26877 (6) | 0.0163 (2) | |
C32 | 1.05891 (14) | 0.08155 (10) | 0.62066 (6) | 0.0141 (2) | |
C15 | 0.64223 (15) | 0.05958 (11) | 0.64927 (7) | 0.0180 (2) | |
H15 | 0.667643 | 0.109285 | 0.612925 | 0.022* | |
C28 | 0.87030 (14) | 0.38170 (10) | 0.53876 (6) | 0.0151 (2) | |
H28 | 0.825980 | 0.450420 | 0.523158 | 0.018* | |
C39 | 0.90529 (15) | 0.41530 (11) | 0.30658 (7) | 0.0182 (2) | |
H39 | 0.830398 | 0.458098 | 0.282286 | 0.022* | |
C2 | 1.07214 (15) | 0.41551 (11) | 0.88302 (7) | 0.0193 (3) | |
H2 | 1.122655 | 0.479037 | 0.876440 | 0.023* | |
C30 | 1.03336 (14) | 0.21484 (10) | 0.51903 (7) | 0.0155 (2) | |
H30 | 1.100492 | 0.166791 | 0.488934 | 0.019* | |
C38 | 0.88507 (15) | 0.40186 (11) | 0.37951 (7) | 0.0176 (2) | |
H38 | 0.796116 | 0.435527 | 0.404955 | 0.021* | |
C33 | 1.14230 (15) | −0.00195 (11) | 0.58015 (7) | 0.0183 (2) | |
H33 | 1.171358 | 0.009268 | 0.531410 | 0.022* | |
C21 | 0.61682 (16) | −0.16794 (11) | 1.02645 (7) | 0.0185 (2) | |
H21 | 0.580120 | −0.189282 | 0.983226 | 0.022* | |
C42 | 1.12654 (15) | 0.29330 (11) | 0.37761 (7) | 0.0175 (2) | |
H42 | 1.203204 | 0.252366 | 0.401874 | 0.021* | |
C24 | 0.53044 (16) | 0.55112 (11) | 0.69369 (7) | 0.0204 (3) | |
H24 | 0.464647 | 0.613768 | 0.682531 | 0.024* | |
C20 | 0.59031 (17) | −0.22761 (11) | 1.08730 (7) | 0.0215 (3) | |
H20 | 0.535822 | −0.289320 | 1.085407 | 0.026* | |
C41 | 1.14771 (15) | 0.30650 (11) | 0.30466 (7) | 0.0178 (2) | |
H41 | 1.238156 | 0.275115 | 0.279320 | 0.021* | |
C34 | 1.18242 (15) | −0.10165 (11) | 0.61178 (7) | 0.0196 (3) | |
H34 | 1.238636 | −0.159698 | 0.584944 | 0.023* | |
C1 | 1.01489 (15) | 0.36672 (10) | 0.82639 (7) | 0.0175 (2) | |
H1 | 1.026035 | 0.399002 | 0.780781 | 0.021* | |
C14 | 0.56647 (15) | −0.02757 (12) | 0.63175 (7) | 0.0195 (3) | |
H14 | 0.542599 | −0.038407 | 0.584233 | 0.023* | |
C36 | 1.05989 (15) | −0.02783 (11) | 0.72056 (7) | 0.0173 (2) | |
H36 | 1.032639 | −0.036698 | 0.769740 | 0.021* | |
C22 | 0.61991 (16) | 0.41617 (11) | 0.77528 (7) | 0.0203 (3) | |
H22 | 0.616045 | 0.387219 | 0.822024 | 0.024* | |
C23 | 0.52374 (16) | 0.50879 (11) | 0.76177 (8) | 0.0223 (3) | |
H23 | 0.454971 | 0.542401 | 0.798274 | 0.027* | |
C35 | 1.13919 (15) | −0.11532 (11) | 0.68323 (7) | 0.0192 (3) | |
H35 | 1.163471 | −0.183154 | 0.705976 | 0.023* | |
C3 | 1.05346 (15) | 0.36884 (11) | 0.94953 (7) | 0.0190 (3) | |
H3 | 1.092140 | 0.399852 | 0.989435 | 0.023* | |
C44 | 0.66597 (17) | −0.23664 (13) | 1.27535 (7) | 0.0239 (3) | |
H44A | 0.776624 | −0.242867 | 1.270677 | 0.036* | |
H44B | 0.632577 | −0.287756 | 1.311509 | 0.036* | |
H44C | 0.625952 | −0.161930 | 1.289560 | 0.036* | |
C43 | 1.16290 (18) | 0.31801 (13) | 0.15575 (7) | 0.0268 (3) | |
H43A | 1.151537 | 0.331365 | 0.105101 | 0.040* | |
H43B | 1.158859 | 0.240288 | 0.165714 | 0.040* | |
H43C | 1.260281 | 0.339129 | 0.168069 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01649 (10) | 0.01185 (9) | 0.01116 (9) | −0.00133 (7) | −0.00057 (7) | 0.00234 (6) |
Cl2 | 0.02027 (15) | 0.01290 (13) | 0.01747 (14) | −0.00286 (11) | −0.00480 (11) | 0.00059 (10) |
Cl1 | 0.01966 (15) | 0.01990 (15) | 0.01669 (14) | −0.00161 (11) | −0.00475 (11) | 0.00003 (11) |
O2 | 0.0324 (5) | 0.0215 (5) | 0.0112 (4) | 0.0017 (4) | −0.0022 (4) | 0.0034 (3) |
O1 | 0.0392 (6) | 0.0274 (5) | 0.0136 (4) | −0.0154 (5) | −0.0022 (4) | 0.0073 (4) |
O8 | 0.0209 (5) | 0.0186 (5) | 0.0260 (5) | −0.0003 (4) | −0.0035 (4) | −0.0028 (4) |
O7 | 0.0361 (6) | 0.0235 (5) | 0.0181 (5) | 0.0055 (4) | −0.0003 (4) | 0.0000 (4) |
O9 | 0.0326 (6) | 0.0167 (5) | 0.0349 (6) | −0.0062 (4) | −0.0066 (5) | 0.0092 (4) |
O10 | 0.0264 (5) | 0.0257 (5) | 0.0331 (6) | −0.0076 (4) | −0.0118 (4) | −0.0033 (4) |
N4 | 0.0178 (5) | 0.0138 (5) | 0.0150 (5) | −0.0007 (4) | −0.0001 (4) | 0.0015 (4) |
N5 | 0.0144 (5) | 0.0129 (5) | 0.0134 (5) | −0.0009 (4) | −0.0019 (4) | 0.0014 (4) |
N1 | 0.0165 (5) | 0.0127 (5) | 0.0151 (5) | −0.0018 (4) | −0.0016 (4) | 0.0022 (4) |
N2 | 0.0144 (5) | 0.0126 (5) | 0.0125 (5) | −0.0011 (4) | −0.0009 (4) | 0.0006 (4) |
N6 | 0.0153 (5) | 0.0140 (5) | 0.0150 (5) | −0.0012 (4) | −0.0029 (4) | 0.0024 (4) |
O5 | 0.0305 (6) | 0.0240 (6) | 0.0554 (8) | −0.0103 (5) | −0.0075 (5) | −0.0013 (5) |
N3 | 0.0154 (5) | 0.0159 (5) | 0.0128 (5) | −0.0004 (4) | −0.0025 (4) | 0.0024 (4) |
O3 | 0.0614 (9) | 0.0381 (7) | 0.0224 (6) | 0.0185 (6) | 0.0113 (5) | 0.0058 (5) |
O6 | 0.0411 (7) | 0.0273 (6) | 0.0439 (7) | 0.0083 (5) | 0.0111 (5) | −0.0045 (5) |
O4 | 0.0582 (9) | 0.0434 (8) | 0.0599 (9) | −0.0259 (7) | −0.0461 (7) | 0.0206 (6) |
C11 | 0.0131 (5) | 0.0139 (5) | 0.0129 (5) | 0.0005 (4) | −0.0012 (4) | 0.0003 (4) |
C10 | 0.0129 (5) | 0.0123 (5) | 0.0127 (5) | 0.0007 (4) | −0.0006 (4) | −0.0001 (4) |
C6 | 0.0135 (5) | 0.0118 (5) | 0.0138 (5) | −0.0004 (4) | −0.0006 (4) | −0.0001 (4) |
C5 | 0.0138 (5) | 0.0117 (5) | 0.0142 (5) | −0.0003 (4) | −0.0003 (4) | 0.0015 (4) |
C7 | 0.0159 (6) | 0.0139 (5) | 0.0120 (5) | −0.0018 (4) | −0.0018 (4) | 0.0003 (4) |
C27 | 0.0143 (5) | 0.0123 (5) | 0.0135 (5) | −0.0016 (4) | −0.0019 (4) | 0.0007 (4) |
C19 | 0.0209 (6) | 0.0172 (6) | 0.0127 (5) | −0.0023 (5) | 0.0012 (5) | 0.0035 (4) |
C37 | 0.0170 (6) | 0.0164 (6) | 0.0127 (5) | −0.0027 (5) | −0.0011 (4) | 0.0023 (4) |
C12 | 0.0165 (6) | 0.0161 (6) | 0.0157 (6) | −0.0019 (5) | −0.0013 (4) | 0.0002 (4) |
C4 | 0.0197 (6) | 0.0160 (6) | 0.0153 (6) | −0.0035 (5) | −0.0026 (5) | 0.0018 (4) |
C16 | 0.0143 (5) | 0.0120 (5) | 0.0123 (5) | −0.0003 (4) | 0.0003 (4) | 0.0020 (4) |
C9 | 0.0146 (5) | 0.0119 (5) | 0.0143 (5) | −0.0020 (4) | −0.0010 (4) | 0.0004 (4) |
C26 | 0.0156 (6) | 0.0120 (5) | 0.0139 (5) | −0.0020 (4) | −0.0011 (4) | 0.0004 (4) |
C18 | 0.0175 (6) | 0.0170 (6) | 0.0125 (5) | −0.0013 (5) | −0.0014 (4) | 0.0008 (4) |
C8 | 0.0131 (5) | 0.0116 (5) | 0.0125 (5) | 0.0011 (4) | 0.0008 (4) | 0.0009 (4) |
C29 | 0.0148 (5) | 0.0169 (6) | 0.0125 (5) | −0.0029 (4) | −0.0009 (4) | 0.0025 (4) |
C17 | 0.0173 (6) | 0.0140 (6) | 0.0146 (6) | −0.0018 (4) | −0.0019 (4) | 0.0011 (4) |
C31 | 0.0139 (5) | 0.0136 (5) | 0.0137 (5) | −0.0010 (4) | −0.0017 (4) | 0.0010 (4) |
C13 | 0.0179 (6) | 0.0180 (6) | 0.0187 (6) | −0.0026 (5) | −0.0033 (5) | −0.0023 (5) |
C25 | 0.0204 (6) | 0.0144 (6) | 0.0168 (6) | 0.0009 (5) | −0.0015 (5) | 0.0022 (4) |
C40 | 0.0228 (6) | 0.0148 (6) | 0.0120 (5) | −0.0048 (5) | −0.0019 (5) | 0.0027 (4) |
C32 | 0.0132 (5) | 0.0138 (5) | 0.0153 (5) | −0.0009 (4) | −0.0029 (4) | 0.0017 (4) |
C15 | 0.0192 (6) | 0.0213 (6) | 0.0137 (6) | −0.0016 (5) | −0.0030 (5) | 0.0028 (5) |
C28 | 0.0175 (6) | 0.0137 (5) | 0.0142 (5) | −0.0009 (4) | −0.0019 (4) | 0.0030 (4) |
C39 | 0.0206 (6) | 0.0164 (6) | 0.0175 (6) | 0.0001 (5) | −0.0047 (5) | 0.0053 (5) |
C2 | 0.0214 (6) | 0.0137 (6) | 0.0238 (6) | −0.0046 (5) | −0.0042 (5) | 0.0033 (5) |
C30 | 0.0148 (6) | 0.0170 (6) | 0.0143 (6) | 0.0003 (4) | −0.0009 (4) | 0.0009 (4) |
C38 | 0.0192 (6) | 0.0165 (6) | 0.0163 (6) | 0.0004 (5) | −0.0008 (5) | 0.0025 (5) |
C33 | 0.0190 (6) | 0.0179 (6) | 0.0171 (6) | 0.0008 (5) | −0.0013 (5) | 0.0006 (5) |
C21 | 0.0240 (6) | 0.0193 (6) | 0.0134 (6) | −0.0069 (5) | −0.0027 (5) | 0.0010 (5) |
C42 | 0.0160 (6) | 0.0208 (6) | 0.0157 (6) | −0.0005 (5) | −0.0025 (4) | 0.0033 (5) |
C24 | 0.0208 (6) | 0.0161 (6) | 0.0228 (6) | 0.0033 (5) | 0.0004 (5) | 0.0015 (5) |
C20 | 0.0293 (7) | 0.0203 (6) | 0.0172 (6) | −0.0126 (5) | −0.0020 (5) | 0.0027 (5) |
C41 | 0.0182 (6) | 0.0211 (6) | 0.0137 (6) | −0.0015 (5) | 0.0001 (4) | 0.0013 (5) |
C34 | 0.0178 (6) | 0.0155 (6) | 0.0249 (7) | 0.0017 (5) | −0.0032 (5) | −0.0013 (5) |
C1 | 0.0204 (6) | 0.0143 (6) | 0.0181 (6) | −0.0030 (5) | −0.0015 (5) | 0.0042 (5) |
C14 | 0.0198 (6) | 0.0248 (7) | 0.0142 (6) | −0.0014 (5) | −0.0046 (5) | −0.0010 (5) |
C36 | 0.0171 (6) | 0.0168 (6) | 0.0184 (6) | −0.0024 (5) | −0.0032 (5) | 0.0049 (5) |
C22 | 0.0246 (7) | 0.0186 (6) | 0.0161 (6) | 0.0001 (5) | 0.0042 (5) | 0.0030 (5) |
C23 | 0.0236 (7) | 0.0183 (6) | 0.0226 (7) | 0.0033 (5) | 0.0060 (5) | 0.0001 (5) |
C35 | 0.0170 (6) | 0.0147 (6) | 0.0264 (7) | −0.0011 (5) | −0.0055 (5) | 0.0045 (5) |
C3 | 0.0219 (6) | 0.0169 (6) | 0.0196 (6) | −0.0049 (5) | −0.0063 (5) | 0.0002 (5) |
C44 | 0.0294 (7) | 0.0297 (7) | 0.0127 (6) | −0.0048 (6) | −0.0005 (5) | 0.0042 (5) |
C43 | 0.0310 (8) | 0.0343 (8) | 0.0137 (6) | 0.0001 (6) | 0.0017 (5) | 0.0008 (5) |
Mn1—N4 | 2.2375 (11) | C9—C8 | 1.4042 (17) |
Mn1—N5 | 2.2002 (10) | C26—C25 | 1.3886 (17) |
Mn1—N1 | 2.2666 (11) | C18—H18 | 0.9500 |
Mn1—N2 | 2.2081 (10) | C18—C17 | 1.3906 (17) |
Mn1—N6 | 2.2970 (11) | C29—C28 | 1.3951 (17) |
Mn1—N3 | 2.2738 (11) | C29—C30 | 1.4017 (17) |
Cl2—O8 | 1.4480 (10) | C17—H17 | 0.9500 |
Cl2—O7 | 1.4406 (10) | C31—C32 | 1.4886 (17) |
Cl2—O9 | 1.4401 (10) | C31—C30 | 1.3838 (17) |
Cl2—O10 | 1.4462 (10) | C13—H13 | 0.9500 |
Cl1—O5 | 1.4432 (12) | C13—C14 | 1.3888 (19) |
Cl1—O3 | 1.4338 (12) | C25—H25 | 0.9500 |
Cl1—O6 | 1.4413 (12) | C25—C24 | 1.3911 (18) |
Cl1—O4 | 1.4226 (12) | C40—C39 | 1.3956 (19) |
O2—C40 | 1.3626 (15) | C40—C41 | 1.3920 (18) |
O2—C43 | 1.4259 (17) | C32—C33 | 1.3939 (18) |
O1—C19 | 1.3602 (15) | C15—H15 | 0.9500 |
O1—C44 | 1.4344 (17) | C15—C14 | 1.3856 (19) |
N4—C26 | 1.3509 (16) | C28—H28 | 0.9500 |
N4—C22 | 1.3353 (17) | C39—H39 | 0.9500 |
N5—C27 | 1.3461 (15) | C39—C38 | 1.3856 (18) |
N5—C31 | 1.3450 (16) | C2—H2 | 0.9500 |
N1—C5 | 1.3535 (15) | C2—C1 | 1.3855 (19) |
N1—C1 | 1.3403 (16) | C2—C3 | 1.3852 (18) |
N2—C10 | 1.3453 (16) | C30—H30 | 0.9500 |
N2—C6 | 1.3459 (15) | C38—H38 | 0.9500 |
N6—C32 | 1.3509 (16) | C33—H33 | 0.9500 |
N6—C36 | 1.3467 (16) | C33—C34 | 1.3877 (18) |
N3—C11 | 1.3537 (15) | C21—H21 | 0.9500 |
N3—C15 | 1.3443 (16) | C21—C20 | 1.3812 (18) |
C11—C10 | 1.4878 (16) | C42—H42 | 0.9500 |
C11—C12 | 1.3894 (17) | C42—C41 | 1.3863 (17) |
C10—C9 | 1.3916 (16) | C24—H24 | 0.9500 |
C6—C5 | 1.4873 (17) | C24—C23 | 1.3846 (19) |
C6—C7 | 1.3887 (16) | C20—H20 | 0.9500 |
C5—C4 | 1.3902 (17) | C41—H41 | 0.9500 |
C7—H7 | 0.9500 | C34—H34 | 0.9500 |
C7—C8 | 1.4042 (17) | C34—C35 | 1.3882 (19) |
C27—C26 | 1.4845 (17) | C1—H1 | 0.9500 |
C27—C28 | 1.3912 (16) | C14—H14 | 0.9500 |
C19—C18 | 1.3883 (18) | C36—H36 | 0.9500 |
C19—C20 | 1.3982 (18) | C36—C35 | 1.3844 (19) |
C37—C29 | 1.4773 (16) | C22—H22 | 0.9500 |
C37—C38 | 1.4057 (17) | C22—C23 | 1.3853 (19) |
C37—C42 | 1.3964 (18) | C23—H23 | 0.9500 |
C12—H12 | 0.9500 | C35—H35 | 0.9500 |
C12—C13 | 1.3895 (17) | C3—H3 | 0.9500 |
C4—H4 | 0.9500 | C44—H44A | 0.9800 |
C4—C3 | 1.3892 (18) | C44—H44B | 0.9800 |
C16—C8 | 1.4820 (16) | C44—H44C | 0.9800 |
C16—C17 | 1.3995 (17) | C43—H43A | 0.9800 |
C16—C21 | 1.4028 (17) | C43—H43B | 0.9800 |
C9—H9 | 0.9500 | C43—H43C | 0.9800 |
N4—Mn1—N1 | 86.42 (4) | C28—C29—C30 | 117.88 (11) |
N4—Mn1—N6 | 143.89 (4) | C30—C29—C37 | 119.53 (11) |
N4—Mn1—N3 | 106.58 (4) | C16—C17—H17 | 119.0 |
N5—Mn1—N4 | 72.05 (4) | C18—C17—C16 | 121.92 (12) |
N5—Mn1—N1 | 117.76 (4) | C18—C17—H17 | 119.0 |
N5—Mn1—N2 | 167.42 (4) | N5—C31—C32 | 114.98 (10) |
N5—Mn1—N6 | 72.00 (4) | N5—C31—C30 | 121.56 (11) |
N5—Mn1—N3 | 98.94 (4) | C30—C31—C32 | 123.34 (11) |
N1—Mn1—N6 | 107.36 (4) | C12—C13—H13 | 120.4 |
N1—Mn1—N3 | 143.30 (4) | C14—C13—C12 | 119.18 (12) |
N2—Mn1—N4 | 118.25 (4) | C14—C13—H13 | 120.4 |
N2—Mn1—N1 | 71.82 (4) | C26—C25—H25 | 120.7 |
N2—Mn1—N6 | 97.84 (4) | C26—C25—C24 | 118.64 (12) |
N2—Mn1—N3 | 71.82 (4) | C24—C25—H25 | 120.7 |
N3—Mn1—N6 | 82.42 (4) | O2—C40—C39 | 116.01 (11) |
O7—Cl2—O8 | 109.56 (6) | O2—C40—C41 | 124.01 (12) |
O7—Cl2—O10 | 108.81 (7) | C41—C40—C39 | 119.98 (12) |
O9—Cl2—O8 | 109.74 (6) | N6—C32—C31 | 115.67 (11) |
O9—Cl2—O7 | 109.98 (7) | N6—C32—C33 | 121.80 (11) |
O9—Cl2—O10 | 109.41 (7) | C33—C32—C31 | 122.45 (11) |
O10—Cl2—O8 | 109.33 (6) | N3—C15—H15 | 118.5 |
O3—Cl1—O5 | 108.85 (8) | N3—C15—C14 | 122.99 (12) |
O3—Cl1—O6 | 108.44 (7) | C14—C15—H15 | 118.5 |
O6—Cl1—O5 | 109.88 (8) | C27—C28—C29 | 119.13 (11) |
O4—Cl1—O5 | 108.68 (8) | C27—C28—H28 | 120.4 |
O4—Cl1—O3 | 110.75 (10) | C29—C28—H28 | 120.4 |
O4—Cl1—O6 | 110.22 (9) | C40—C39—H39 | 120.0 |
C40—O2—C43 | 117.30 (11) | C38—C39—C40 | 120.08 (12) |
C19—O1—C44 | 118.33 (11) | C38—C39—H39 | 120.0 |
C26—N4—Mn1 | 117.98 (8) | C1—C2—H2 | 121.0 |
C22—N4—Mn1 | 122.76 (9) | C3—C2—H2 | 121.0 |
C22—N4—C26 | 118.57 (11) | C3—C2—C1 | 117.97 (12) |
C27—N5—Mn1 | 120.08 (8) | C29—C30—H30 | 120.0 |
C31—N5—Mn1 | 120.43 (8) | C31—C30—C29 | 119.93 (11) |
C31—N5—C27 | 119.31 (10) | C31—C30—H30 | 120.0 |
C5—N1—Mn1 | 117.79 (8) | C37—C38—H38 | 119.7 |
C1—N1—Mn1 | 123.69 (8) | C39—C38—C37 | 120.61 (12) |
C1—N1—C5 | 118.35 (11) | C39—C38—H38 | 119.7 |
C10—N2—Mn1 | 120.46 (8) | C32—C33—H33 | 120.4 |
C10—N2—C6 | 119.11 (10) | C34—C33—C32 | 119.28 (12) |
C6—N2—Mn1 | 120.32 (8) | C34—C33—H33 | 120.4 |
C32—N6—Mn1 | 116.15 (8) | C16—C21—H21 | 119.4 |
C36—N6—Mn1 | 123.91 (9) | C20—C21—C16 | 121.23 (12) |
C36—N6—C32 | 118.19 (11) | C20—C21—H21 | 119.4 |
C11—N3—Mn1 | 117.30 (8) | C37—C42—H42 | 119.3 |
C15—N3—Mn1 | 123.53 (9) | C41—C42—C37 | 121.41 (12) |
C15—N3—C11 | 118.41 (11) | C41—C42—H42 | 119.3 |
N3—C11—C10 | 115.35 (11) | C25—C24—H24 | 120.3 |
N3—C11—C12 | 121.82 (11) | C23—C24—C25 | 119.45 (12) |
C12—C11—C10 | 122.80 (11) | C23—C24—H24 | 120.3 |
N2—C10—C11 | 114.65 (10) | C19—C20—H20 | 119.7 |
N2—C10—C9 | 121.95 (11) | C21—C20—C19 | 120.58 (12) |
C9—C10—C11 | 123.38 (11) | C21—C20—H20 | 119.7 |
N2—C6—C5 | 114.61 (10) | C40—C41—H41 | 120.2 |
N2—C6—C7 | 121.95 (11) | C42—C41—C40 | 119.56 (12) |
C7—C6—C5 | 123.43 (11) | C42—C41—H41 | 120.2 |
N1—C5—C6 | 115.12 (11) | C33—C34—H34 | 120.5 |
N1—C5—C4 | 121.87 (11) | C33—C34—C35 | 119.02 (12) |
C4—C5—C6 | 122.99 (11) | C35—C34—H34 | 120.5 |
C6—C7—H7 | 120.0 | N1—C1—C2 | 123.33 (12) |
C6—C7—C8 | 120.03 (11) | N1—C1—H1 | 118.3 |
C8—C7—H7 | 120.0 | C2—C1—H1 | 118.3 |
N5—C27—C26 | 114.31 (10) | C13—C14—H14 | 120.8 |
N5—C27—C28 | 122.14 (11) | C15—C14—C13 | 118.43 (12) |
C28—C27—C26 | 123.49 (11) | C15—C14—H14 | 120.8 |
O1—C19—C18 | 124.66 (12) | N6—C36—H36 | 118.4 |
O1—C19—C20 | 116.13 (12) | N6—C36—C35 | 123.19 (12) |
C18—C19—C20 | 119.20 (11) | C35—C36—H36 | 118.4 |
C38—C37—C29 | 121.13 (11) | N4—C22—H22 | 118.5 |
C42—C37—C29 | 120.39 (11) | N4—C22—C23 | 123.05 (12) |
C42—C37—C38 | 118.29 (11) | C23—C22—H22 | 118.5 |
C11—C12—H12 | 120.4 | C24—C23—C22 | 118.28 (12) |
C11—C12—C13 | 119.14 (12) | C24—C23—H23 | 120.9 |
C13—C12—H12 | 120.4 | C22—C23—H23 | 120.9 |
C5—C4—H4 | 120.6 | C34—C35—H35 | 120.8 |
C3—C4—C5 | 118.74 (12) | C36—C35—C34 | 118.49 (12) |
C3—C4—H4 | 120.6 | C36—C35—H35 | 120.8 |
C17—C16—C8 | 120.96 (11) | C4—C3—H3 | 120.1 |
C17—C16—C21 | 117.28 (11) | C2—C3—C4 | 119.72 (12) |
C21—C16—C8 | 121.75 (11) | C2—C3—H3 | 120.1 |
C10—C9—H9 | 120.0 | O1—C44—H44A | 109.5 |
C10—C9—C8 | 119.92 (11) | O1—C44—H44B | 109.5 |
C8—C9—H9 | 120.0 | O1—C44—H44C | 109.5 |
N4—C26—C27 | 114.89 (11) | H44A—C44—H44B | 109.5 |
N4—C26—C25 | 121.96 (11) | H44A—C44—H44C | 109.5 |
C25—C26—C27 | 123.11 (11) | H44B—C44—H44C | 109.5 |
C19—C18—H18 | 120.1 | O2—C43—H43A | 109.5 |
C19—C18—C17 | 119.77 (12) | O2—C43—H43B | 109.5 |
C17—C18—H18 | 120.1 | O2—C43—H43C | 109.5 |
C7—C8—C16 | 121.30 (11) | H43A—C43—H43B | 109.5 |
C9—C8—C7 | 116.97 (11) | H43A—C43—H43C | 109.5 |
C9—C8—C16 | 121.73 (11) | H43B—C43—H43C | 109.5 |
C28—C29—C37 | 122.47 (11) | ||
Mn1—N4—C26—C27 | −9.44 (14) | C27—N5—C31—C30 | −0.27 (18) |
Mn1—N4—C26—C25 | 168.29 (10) | C27—C26—C25—C24 | 178.49 (12) |
Mn1—N4—C22—C23 | −168.08 (11) | C19—C18—C17—C16 | 0.04 (19) |
Mn1—N5—C27—C26 | 0.53 (14) | C37—C29—C28—C27 | 174.07 (11) |
Mn1—N5—C27—C28 | −176.72 (9) | C37—C29—C30—C31 | −175.90 (11) |
Mn1—N5—C31—C32 | −1.14 (14) | C37—C42—C41—C40 | −0.2 (2) |
Mn1—N5—C31—C30 | 174.88 (9) | C12—C11—C10—N2 | 174.79 (11) |
Mn1—N1—C5—C6 | 1.48 (14) | C12—C11—C10—C9 | −3.98 (19) |
Mn1—N1—C5—C4 | −176.77 (9) | C12—C13—C14—C15 | −0.2 (2) |
Mn1—N1—C1—C2 | 177.01 (10) | C16—C21—C20—C19 | 0.0 (2) |
Mn1—N2—C10—C11 | −2.43 (14) | C26—N4—C22—C23 | 2.2 (2) |
Mn1—N2—C10—C9 | 176.36 (9) | C26—C27—C28—C29 | −174.25 (11) |
Mn1—N2—C6—C5 | 6.85 (14) | C26—C25—C24—C23 | 0.9 (2) |
Mn1—N2—C6—C7 | −174.19 (9) | C18—C19—C20—C21 | 0.5 (2) |
Mn1—N6—C32—C31 | 9.74 (14) | C8—C16—C17—C18 | 179.92 (11) |
Mn1—N6—C32—C33 | −167.10 (10) | C8—C16—C21—C20 | −179.95 (12) |
Mn1—N6—C36—C35 | 164.11 (10) | C29—C37—C38—C39 | −173.07 (12) |
Mn1—N3—C11—C10 | 6.67 (13) | C29—C37—C42—C41 | 173.18 (12) |
Mn1—N3—C11—C12 | −171.06 (9) | C17—C16—C8—C7 | 5.23 (18) |
Mn1—N3—C15—C14 | 168.71 (10) | C17—C16—C8—C9 | −174.26 (12) |
O2—C40—C39—C38 | 178.05 (12) | C17—C16—C21—C20 | −0.5 (2) |
O2—C40—C41—C42 | −177.99 (12) | C31—N5—C27—C26 | 175.70 (11) |
O1—C19—C18—C17 | 179.83 (12) | C31—N5—C27—C28 | −1.55 (18) |
O1—C19—C20—C21 | −179.83 (13) | C31—C32—C33—C34 | −174.73 (12) |
N4—C26—C25—C24 | 1.0 (2) | C25—C24—C23—C22 | −1.2 (2) |
N4—C22—C23—C24 | −0.4 (2) | C40—C39—C38—C37 | 0.1 (2) |
N5—C27—C26—N4 | 5.83 (16) | C32—N6—C36—C35 | −0.20 (19) |
N5—C27—C26—C25 | −171.86 (12) | C32—C31—C30—C29 | 176.52 (12) |
N5—C27—C28—C29 | 2.75 (19) | C32—C33—C34—C35 | −0.4 (2) |
N5—C31—C32—N6 | −5.90 (16) | C15—N3—C11—C10 | 177.08 (11) |
N5—C31—C32—C33 | 170.91 (12) | C15—N3—C11—C12 | −0.65 (18) |
N5—C31—C30—C29 | 0.84 (19) | C28—C27—C26—N4 | −176.96 (12) |
N1—C5—C4—C3 | −0.08 (19) | C28—C27—C26—C25 | 5.3 (2) |
N2—C10—C9—C8 | −1.93 (18) | C28—C29—C30—C31 | 0.36 (19) |
N2—C6—C5—N1 | −5.27 (16) | C39—C40—C41—C42 | 2.3 (2) |
N2—C6—C5—C4 | 172.95 (11) | C30—C29—C28—C27 | −2.07 (18) |
N2—C6—C7—C8 | −2.40 (18) | C30—C31—C32—N6 | 178.16 (12) |
N6—C32—C33—C34 | 1.90 (19) | C30—C31—C32—C33 | −5.02 (19) |
N6—C36—C35—C34 | 1.6 (2) | C38—C37—C29—C28 | −27.63 (19) |
N3—C11—C10—N2 | −2.91 (16) | C38—C37—C29—C30 | 148.45 (13) |
N3—C11—C10—C9 | 178.31 (11) | C38—C37—C42—C41 | −1.9 (2) |
N3—C11—C12—C13 | 1.86 (19) | C33—C34—C35—C36 | −1.2 (2) |
N3—C15—C14—C13 | 1.5 (2) | C21—C16—C8—C7 | −175.33 (12) |
C11—N3—C15—C14 | −1.06 (19) | C21—C16—C8—C9 | 5.17 (18) |
C11—C10—C9—C8 | 176.75 (11) | C21—C16—C17—C18 | 0.46 (19) |
C11—C12—C13—C14 | −1.37 (19) | C42—C37—C29—C28 | 157.44 (13) |
C10—N2—C6—C5 | −176.95 (10) | C42—C37—C29—C30 | −26.48 (18) |
C10—N2—C6—C7 | 2.01 (18) | C42—C37—C38—C39 | 2.0 (2) |
C10—C11—C12—C13 | −175.70 (11) | C20—C19—C18—C17 | −0.5 (2) |
C10—C9—C8—C7 | 1.49 (17) | C41—C40—C39—C38 | −2.2 (2) |
C10—C9—C8—C16 | −178.99 (11) | C1—N1—C5—C6 | 176.91 (11) |
C6—N2—C10—C11 | −178.63 (10) | C1—N1—C5—C4 | −1.34 (18) |
C6—N2—C10—C9 | 0.16 (18) | C1—C2—C3—C4 | −0.6 (2) |
C6—C5—C4—C3 | −178.19 (12) | C36—N6—C32—C31 | 175.27 (11) |
C6—C7—C8—C16 | −178.95 (11) | C36—N6—C32—C33 | −1.57 (18) |
C6—C7—C8—C9 | 0.58 (17) | C22—N4—C26—C27 | 179.77 (11) |
C5—N1—C1—C2 | 1.87 (19) | C22—N4—C26—C25 | −2.51 (19) |
C5—C6—C7—C8 | 176.47 (11) | C3—C2—C1—N1 | −0.9 (2) |
C5—C4—C3—C2 | 1.0 (2) | C44—O1—C19—C18 | −1.7 (2) |
C7—C6—C5—N1 | 175.78 (11) | C44—O1—C19—C20 | 178.59 (13) |
C7—C6—C5—C4 | −5.99 (19) | C43—O2—C40—C39 | −170.34 (12) |
C27—N5—C31—C32 | −176.28 (11) | C43—O2—C40—C41 | 9.96 (19) |
[Mn(C21H15N3)2](ClO4)2 | F(000) = 1788 |
Mr = 872.56 | Dx = 1.567 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.51026 (18) Å | Cell parameters from 38088 reflections |
b = 12.5149 (2) Å | θ = 2.6–34.1° |
c = 31.2962 (6) Å | µ = 0.57 mm−1 |
β = 96.8780 (18)° | T = 100 K |
V = 3698.07 (12) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.11 × 0.03 mm |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 9547 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 8250 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 28.7°, θmin = 2.6° |
ω scans | h = −13→14 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | k = −19→19 |
l = −48→45 | |
63288 measured reflections |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0383P)2 + 2.5012P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
9547 reflections | Δρmax = 0.43 e Å−3 |
560 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.55217 (2) | 0.66511 (2) | 0.61483 (2) | 0.01214 (6) | |
Cl2 | 0.03899 (4) | 0.78696 (3) | 0.51551 (2) | 0.01592 (7) | |
Cl1 | 0.76703 (4) | 0.90467 (3) | 0.74675 (2) | 0.02234 (8) | |
O8 | 0.03068 (13) | 0.67290 (8) | 0.50689 (4) | 0.0236 (2) | |
O7 | −0.02540 (12) | 0.80943 (9) | 0.55382 (3) | 0.0241 (2) | |
O5 | 0.18577 (11) | 0.81940 (9) | 0.52167 (3) | 0.0213 (2) | |
N5 | 0.60249 (12) | 0.63127 (9) | 0.68354 (3) | 0.0132 (2) | |
O6 | −0.03368 (13) | 0.84378 (9) | 0.47935 (4) | 0.0276 (3) | |
N6 | 0.36831 (12) | 0.72376 (9) | 0.64782 (4) | 0.0139 (2) | |
N2 | 0.48224 (12) | 0.67389 (9) | 0.54501 (4) | 0.0123 (2) | |
N4 | 0.77714 (12) | 0.60523 (9) | 0.62545 (4) | 0.0138 (2) | |
N1 | 0.43169 (12) | 0.51278 (9) | 0.59496 (4) | 0.0141 (2) | |
N3 | 0.63622 (12) | 0.81781 (9) | 0.59029 (4) | 0.0137 (2) | |
O1 | 0.65906 (16) | 0.85930 (12) | 0.71679 (4) | 0.0420 (4) | |
C10 | 0.51562 (14) | 0.75998 (10) | 0.52251 (4) | 0.0123 (2) | |
C11 | 0.60971 (14) | 0.83862 (10) | 0.54766 (4) | 0.0129 (2) | |
C7 | 0.33460 (14) | 0.60963 (11) | 0.48354 (4) | 0.0142 (2) | |
H7 | 0.273413 | 0.555629 | 0.470614 | 0.017* | |
C9 | 0.46060 (14) | 0.77417 (11) | 0.47975 (4) | 0.0139 (2) | |
H9 | 0.487664 | 0.834390 | 0.464158 | 0.017* | |
C27 | 0.50548 (15) | 0.65035 (11) | 0.71035 (4) | 0.0150 (3) | |
O3 | 0.7117 (8) | 0.9230 (7) | 0.78654 (16) | 0.0558 (17) | 0.63 (3) |
C32 | 0.83040 (15) | 0.58016 (10) | 0.66632 (4) | 0.0134 (2) | |
C37 | 0.69504 (15) | 0.56670 (11) | 0.81747 (4) | 0.0140 (2) | |
C5 | 0.36273 (14) | 0.50937 (10) | 0.55456 (4) | 0.0130 (2) | |
C39 | 0.85716 (15) | 0.58695 (11) | 0.88276 (4) | 0.0165 (3) | |
H39 | 0.946484 | 0.609258 | 0.896764 | 0.020* | |
C29 | 0.66243 (15) | 0.58427 (11) | 0.77054 (4) | 0.0144 (3) | |
C38 | 0.82713 (15) | 0.59734 (11) | 0.83840 (4) | 0.0159 (3) | |
H38 | 0.896841 | 0.625481 | 0.822166 | 0.019* | |
C28 | 0.53130 (15) | 0.62540 (12) | 0.75376 (4) | 0.0175 (3) | |
H28 | 0.459662 | 0.636353 | 0.772015 | 0.021* | |
C31 | 0.72924 (14) | 0.59099 (10) | 0.69895 (4) | 0.0128 (2) | |
C22 | 0.25461 (15) | 0.77547 (11) | 0.62823 (4) | 0.0160 (3) | |
H22 | 0.249169 | 0.788010 | 0.598135 | 0.019* | |
C30 | 0.76353 (15) | 0.56662 (11) | 0.74226 (4) | 0.0149 (3) | |
H30 | 0.854065 | 0.538437 | 0.752509 | 0.018* | |
C16 | 0.29350 (15) | 0.71704 (10) | 0.41567 (4) | 0.0141 (2) | |
C33 | 0.97100 (15) | 0.55131 (11) | 0.67687 (5) | 0.0174 (3) | |
H33 | 1.006288 | 0.534072 | 0.705735 | 0.021* | |
C26 | 0.37499 (15) | 0.70548 (11) | 0.69054 (4) | 0.0156 (3) | |
C1 | 0.40786 (15) | 0.43499 (11) | 0.62260 (4) | 0.0170 (3) | |
H1 | 0.456432 | 0.437461 | 0.650936 | 0.020* | |
C15 | 0.71934 (15) | 0.88546 (11) | 0.61525 (4) | 0.0170 (3) | |
H15 | 0.737822 | 0.870942 | 0.645190 | 0.020* | |
C23 | 0.14478 (15) | 0.81139 (11) | 0.64994 (5) | 0.0177 (3) | |
H23 | 0.065895 | 0.847533 | 0.634981 | 0.021* | |
C40 | 0.75682 (16) | 0.54398 (11) | 0.90670 (4) | 0.0170 (3) | |
H40 | 0.777778 | 0.535894 | 0.936980 | 0.020* | |
C6 | 0.39392 (14) | 0.59966 (10) | 0.52607 (4) | 0.0127 (2) | |
C12 | 0.66710 (15) | 0.92730 (11) | 0.52940 (4) | 0.0162 (3) | |
H12 | 0.647298 | 0.940444 | 0.499385 | 0.019* | |
C42 | 0.59376 (15) | 0.52416 (11) | 0.84167 (4) | 0.0162 (3) | |
H42 | 0.503634 | 0.503029 | 0.827872 | 0.019* | |
C36 | 0.86477 (16) | 0.60294 (11) | 0.59492 (4) | 0.0166 (3) | |
H36 | 0.828109 | 0.621775 | 0.566335 | 0.020* | |
C35 | 1.00601 (16) | 0.57446 (11) | 0.60306 (5) | 0.0183 (3) | |
H35 | 1.064774 | 0.573173 | 0.580567 | 0.022* | |
C8 | 0.36532 (14) | 0.69952 (11) | 0.45980 (4) | 0.0136 (2) | |
C14 | 0.77917 (16) | 0.97545 (11) | 0.59913 (5) | 0.0186 (3) | |
H14 | 0.836793 | 1.022020 | 0.617733 | 0.022* | |
C24 | 0.15228 (16) | 0.79362 (12) | 0.69374 (5) | 0.0213 (3) | |
H24 | 0.079328 | 0.818195 | 0.709534 | 0.026* | |
C34 | 1.05955 (16) | 0.54793 (12) | 0.64472 (5) | 0.0193 (3) | |
H34 | 1.155959 | 0.527595 | 0.651278 | 0.023* | |
C17 | 0.15410 (16) | 0.68177 (11) | 0.40447 (4) | 0.0167 (3) | |
H17 | 0.105846 | 0.645968 | 0.425177 | 0.020* | |
O2 | 0.8790 (7) | 0.8296 (7) | 0.7535 (3) | 0.068 (2) | 0.63 (3) |
C18 | 0.08613 (16) | 0.69891 (12) | 0.36322 (5) | 0.0185 (3) | |
H18 | −0.007989 | 0.674014 | 0.355797 | 0.022* | |
C41 | 0.62557 (16) | 0.51291 (12) | 0.88606 (4) | 0.0179 (3) | |
H41 | 0.556852 | 0.483697 | 0.902399 | 0.021* | |
C21 | 0.36073 (16) | 0.77218 (12) | 0.38509 (4) | 0.0196 (3) | |
H21 | 0.454548 | 0.797856 | 0.392359 | 0.023* | |
C25 | 0.26879 (16) | 0.73902 (13) | 0.71425 (5) | 0.0217 (3) | |
H25 | 0.275578 | 0.724815 | 0.744243 | 0.026* | |
C4 | 0.26772 (15) | 0.42783 (11) | 0.54152 (4) | 0.0170 (3) | |
H4 | 0.219498 | 0.427119 | 0.513126 | 0.020* | |
C13 | 0.75362 (16) | 0.99655 (11) | 0.55536 (5) | 0.0187 (3) | |
H13 | 0.794524 | 1.057186 | 0.543389 | 0.022* | |
C19 | 0.15471 (17) | 0.75212 (13) | 0.33278 (5) | 0.0217 (3) | |
H19 | 0.108514 | 0.762657 | 0.304466 | 0.026* | |
C2 | 0.31509 (16) | 0.35074 (11) | 0.61163 (5) | 0.0188 (3) | |
H2 | 0.300879 | 0.296708 | 0.632004 | 0.023* | |
O4 | 0.8043 (11) | 1.0058 (4) | 0.7301 (3) | 0.0469 (14) | 0.63 (3) |
C20 | 0.29110 (18) | 0.78976 (14) | 0.34403 (5) | 0.0248 (3) | |
H20 | 0.337486 | 0.827917 | 0.323519 | 0.030* | |
C3 | 0.24407 (16) | 0.34735 (11) | 0.57048 (5) | 0.0188 (3) | |
H3 | 0.179972 | 0.290843 | 0.562074 | 0.023* | |
O3A | 0.7150 (9) | 0.9475 (18) | 0.7823 (4) | 0.071 (4) | 0.37 (3) |
O2A | 0.8771 (11) | 0.8339 (10) | 0.7614 (4) | 0.060 (3) | 0.37 (3) |
O4A | 0.852 (2) | 0.9827 (19) | 0.7260 (5) | 0.064 (4) | 0.37 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01269 (10) | 0.01436 (10) | 0.00917 (9) | −0.00060 (7) | 0.00045 (7) | 0.00137 (7) |
Cl2 | 0.01597 (16) | 0.01960 (16) | 0.01186 (14) | 0.00072 (11) | 0.00028 (11) | 0.00258 (11) |
Cl1 | 0.02685 (19) | 0.02322 (17) | 0.01604 (16) | −0.00158 (14) | −0.00119 (13) | −0.00172 (13) |
O8 | 0.0293 (6) | 0.0202 (5) | 0.0213 (5) | −0.0026 (4) | 0.0025 (4) | 0.0004 (4) |
O7 | 0.0227 (6) | 0.0319 (6) | 0.0189 (5) | 0.0048 (5) | 0.0079 (4) | 0.0014 (4) |
O5 | 0.0160 (5) | 0.0282 (6) | 0.0198 (5) | −0.0017 (4) | 0.0025 (4) | −0.0006 (4) |
N5 | 0.0133 (5) | 0.0149 (5) | 0.0113 (5) | 0.0008 (4) | 0.0009 (4) | 0.0003 (4) |
O6 | 0.0316 (7) | 0.0293 (6) | 0.0191 (5) | −0.0003 (5) | −0.0084 (5) | 0.0089 (4) |
N6 | 0.0141 (6) | 0.0151 (5) | 0.0122 (5) | −0.0002 (4) | 0.0005 (4) | 0.0023 (4) |
N2 | 0.0116 (5) | 0.0133 (5) | 0.0121 (5) | 0.0004 (4) | 0.0013 (4) | 0.0000 (4) |
N4 | 0.0151 (6) | 0.0143 (5) | 0.0123 (5) | −0.0001 (4) | 0.0025 (4) | 0.0001 (4) |
N1 | 0.0145 (6) | 0.0144 (5) | 0.0134 (5) | 0.0000 (4) | 0.0013 (4) | 0.0015 (4) |
N3 | 0.0136 (5) | 0.0148 (5) | 0.0126 (5) | −0.0001 (4) | 0.0011 (4) | 0.0001 (4) |
O1 | 0.0525 (9) | 0.0480 (8) | 0.0220 (6) | −0.0249 (7) | −0.0098 (6) | −0.0014 (5) |
C10 | 0.0114 (6) | 0.0126 (6) | 0.0133 (6) | 0.0013 (4) | 0.0032 (5) | 0.0004 (4) |
C11 | 0.0112 (6) | 0.0146 (6) | 0.0129 (6) | 0.0019 (5) | 0.0012 (5) | −0.0002 (5) |
C7 | 0.0141 (6) | 0.0144 (6) | 0.0135 (6) | 0.0009 (5) | −0.0003 (5) | −0.0013 (5) |
C9 | 0.0143 (6) | 0.0147 (6) | 0.0129 (6) | 0.0010 (5) | 0.0020 (5) | 0.0017 (5) |
C27 | 0.0136 (6) | 0.0189 (6) | 0.0124 (6) | 0.0019 (5) | 0.0012 (5) | 0.0012 (5) |
O3 | 0.074 (4) | 0.079 (3) | 0.0167 (19) | −0.008 (2) | 0.0153 (17) | −0.009 (2) |
C32 | 0.0156 (6) | 0.0123 (6) | 0.0126 (6) | 0.0001 (5) | 0.0022 (5) | 0.0000 (5) |
C37 | 0.0157 (6) | 0.0150 (6) | 0.0110 (6) | 0.0026 (5) | 0.0003 (5) | 0.0006 (5) |
C5 | 0.0130 (6) | 0.0135 (6) | 0.0127 (6) | 0.0015 (5) | 0.0020 (5) | −0.0003 (4) |
C39 | 0.0155 (7) | 0.0190 (6) | 0.0144 (6) | 0.0013 (5) | −0.0011 (5) | −0.0025 (5) |
C29 | 0.0164 (7) | 0.0157 (6) | 0.0104 (6) | 0.0000 (5) | −0.0009 (5) | 0.0005 (5) |
C38 | 0.0155 (7) | 0.0188 (6) | 0.0134 (6) | −0.0004 (5) | 0.0021 (5) | −0.0002 (5) |
C28 | 0.0166 (7) | 0.0237 (7) | 0.0126 (6) | 0.0040 (5) | 0.0037 (5) | 0.0021 (5) |
C31 | 0.0129 (6) | 0.0128 (6) | 0.0126 (6) | 0.0003 (5) | 0.0011 (5) | −0.0004 (4) |
C22 | 0.0171 (7) | 0.0157 (6) | 0.0145 (6) | −0.0007 (5) | −0.0011 (5) | 0.0031 (5) |
C30 | 0.0141 (6) | 0.0170 (6) | 0.0132 (6) | 0.0015 (5) | −0.0003 (5) | 0.0008 (5) |
C16 | 0.0169 (7) | 0.0140 (6) | 0.0113 (6) | 0.0029 (5) | 0.0010 (5) | −0.0010 (5) |
C33 | 0.0161 (7) | 0.0187 (6) | 0.0173 (6) | 0.0022 (5) | 0.0014 (5) | 0.0023 (5) |
C26 | 0.0138 (6) | 0.0187 (6) | 0.0140 (6) | 0.0024 (5) | 0.0001 (5) | 0.0026 (5) |
C1 | 0.0186 (7) | 0.0173 (6) | 0.0147 (6) | −0.0003 (5) | 0.0007 (5) | 0.0029 (5) |
C15 | 0.0158 (7) | 0.0198 (7) | 0.0150 (6) | −0.0005 (5) | 0.0004 (5) | −0.0014 (5) |
C23 | 0.0141 (7) | 0.0176 (6) | 0.0203 (7) | 0.0012 (5) | −0.0022 (5) | 0.0021 (5) |
C40 | 0.0218 (7) | 0.0186 (6) | 0.0103 (6) | 0.0031 (5) | 0.0004 (5) | 0.0000 (5) |
C6 | 0.0123 (6) | 0.0124 (6) | 0.0136 (6) | 0.0016 (5) | 0.0024 (5) | 0.0003 (4) |
C12 | 0.0161 (7) | 0.0172 (6) | 0.0154 (6) | 0.0000 (5) | 0.0023 (5) | 0.0024 (5) |
C42 | 0.0146 (7) | 0.0196 (6) | 0.0141 (6) | 0.0009 (5) | −0.0002 (5) | 0.0012 (5) |
C36 | 0.0203 (7) | 0.0164 (6) | 0.0138 (6) | −0.0006 (5) | 0.0042 (5) | 0.0005 (5) |
C35 | 0.0194 (7) | 0.0169 (6) | 0.0200 (7) | 0.0003 (5) | 0.0084 (5) | 0.0008 (5) |
C8 | 0.0139 (6) | 0.0155 (6) | 0.0116 (6) | 0.0031 (5) | 0.0024 (5) | −0.0002 (5) |
C14 | 0.0156 (7) | 0.0185 (7) | 0.0211 (7) | −0.0025 (5) | 0.0002 (5) | −0.0031 (5) |
C24 | 0.0167 (7) | 0.0264 (7) | 0.0210 (7) | 0.0056 (6) | 0.0032 (6) | −0.0001 (6) |
C34 | 0.0144 (7) | 0.0194 (7) | 0.0246 (7) | 0.0030 (5) | 0.0046 (6) | 0.0018 (5) |
C17 | 0.0186 (7) | 0.0155 (6) | 0.0157 (6) | 0.0003 (5) | 0.0009 (5) | 0.0018 (5) |
O2 | 0.043 (3) | 0.069 (4) | 0.098 (4) | 0.025 (3) | 0.038 (3) | 0.011 (3) |
C18 | 0.0179 (7) | 0.0194 (7) | 0.0173 (6) | 0.0014 (5) | −0.0015 (5) | −0.0014 (5) |
C41 | 0.0188 (7) | 0.0206 (7) | 0.0146 (6) | 0.0002 (5) | 0.0037 (5) | 0.0028 (5) |
C21 | 0.0180 (7) | 0.0266 (7) | 0.0143 (6) | −0.0010 (6) | 0.0025 (5) | 0.0005 (5) |
C25 | 0.0196 (7) | 0.0321 (8) | 0.0136 (6) | 0.0071 (6) | 0.0033 (5) | 0.0029 (6) |
C4 | 0.0180 (7) | 0.0173 (6) | 0.0151 (6) | −0.0017 (5) | 0.0002 (5) | −0.0006 (5) |
C13 | 0.0175 (7) | 0.0158 (6) | 0.0232 (7) | −0.0024 (5) | 0.0035 (6) | 0.0019 (5) |
C19 | 0.0231 (8) | 0.0296 (8) | 0.0116 (6) | 0.0027 (6) | −0.0011 (5) | 0.0003 (5) |
C2 | 0.0198 (7) | 0.0168 (6) | 0.0201 (7) | −0.0013 (5) | 0.0040 (5) | 0.0045 (5) |
O4 | 0.053 (3) | 0.0302 (18) | 0.052 (2) | −0.0182 (17) | −0.014 (2) | 0.0109 (14) |
C20 | 0.0255 (8) | 0.0369 (9) | 0.0124 (6) | −0.0022 (6) | 0.0043 (6) | 0.0035 (6) |
C3 | 0.0176 (7) | 0.0160 (6) | 0.0229 (7) | −0.0035 (5) | 0.0027 (6) | 0.0001 (5) |
O3A | 0.021 (3) | 0.112 (8) | 0.076 (7) | 0.016 (3) | −0.005 (3) | −0.078 (6) |
O2A | 0.054 (6) | 0.055 (5) | 0.059 (4) | 0.032 (4) | −0.041 (5) | −0.016 (3) |
O4A | 0.061 (7) | 0.081 (8) | 0.044 (4) | −0.047 (6) | −0.019 (4) | 0.030 (5) |
Mn1—N5 | 2.1876 (11) | C38—H38 | 0.9500 |
Mn1—N2 | 2.2091 (11) | C28—H28 | 0.9500 |
Mn1—N3 | 2.2423 (12) | C31—C30 | 1.3894 (18) |
Mn1—N4 | 2.2537 (12) | C22—C23 | 1.387 (2) |
Mn1—N6 | 2.2571 (12) | C22—H22 | 0.9500 |
Mn1—N1 | 2.2723 (12) | C30—H30 | 0.9500 |
Cl2—O7 | 1.4378 (11) | C16—C21 | 1.396 (2) |
Cl2—O6 | 1.4412 (11) | C16—C17 | 1.401 (2) |
Cl2—O5 | 1.4443 (11) | C16—C8 | 1.4819 (18) |
Cl2—O8 | 1.4530 (11) | C33—C34 | 1.388 (2) |
Cl1—O3A | 1.381 (8) | C33—H33 | 0.9500 |
Cl1—O2A | 1.406 (8) | C26—C25 | 1.388 (2) |
Cl1—O2 | 1.417 (6) | C1—C2 | 1.391 (2) |
Cl1—O1 | 1.4231 (13) | C1—H1 | 0.9500 |
Cl1—O3 | 1.427 (5) | C15—C14 | 1.384 (2) |
Cl1—O4 | 1.429 (6) | C15—H15 | 0.9500 |
Cl1—O4A | 1.466 (9) | C23—C24 | 1.382 (2) |
N5—C27 | 1.3408 (18) | C23—H23 | 0.9500 |
N5—C31 | 1.3418 (17) | C40—C41 | 1.391 (2) |
N6—C22 | 1.3437 (18) | C40—H40 | 0.9500 |
N6—C26 | 1.3504 (17) | C12—C13 | 1.389 (2) |
N2—C6 | 1.3419 (17) | C12—H12 | 0.9500 |
N2—C10 | 1.3459 (17) | C42—C41 | 1.3929 (19) |
N4—C36 | 1.3415 (18) | C42—H42 | 0.9500 |
N4—C32 | 1.3547 (17) | C36—C35 | 1.384 (2) |
N1—C1 | 1.3397 (18) | C36—H36 | 0.9500 |
N1—C5 | 1.3532 (17) | C35—C34 | 1.382 (2) |
N3—C15 | 1.3431 (18) | C35—H35 | 0.9500 |
N3—C11 | 1.3530 (17) | C14—C13 | 1.388 (2) |
C10—C9 | 1.3885 (18) | C14—H14 | 0.9500 |
C10—C11 | 1.4901 (18) | C24—C25 | 1.391 (2) |
C11—C12 | 1.3896 (19) | C24—H24 | 0.9500 |
C7—C6 | 1.3877 (18) | C34—H34 | 0.9500 |
C7—C8 | 1.3982 (19) | C17—C18 | 1.3896 (19) |
C7—H7 | 0.9500 | C17—H17 | 0.9500 |
C9—C8 | 1.3958 (19) | C18—C19 | 1.387 (2) |
C9—H9 | 0.9500 | C18—H18 | 0.9500 |
C27—C28 | 1.3870 (18) | C41—H41 | 0.9500 |
C27—C26 | 1.4887 (19) | C21—C20 | 1.391 (2) |
C32—C33 | 1.3862 (19) | C21—H21 | 0.9500 |
C32—C31 | 1.4909 (18) | C25—H25 | 0.9500 |
C37—C38 | 1.3991 (19) | C4—C3 | 1.391 (2) |
C37—C42 | 1.400 (2) | C4—H4 | 0.9500 |
C37—C29 | 1.4807 (18) | C13—H13 | 0.9500 |
C5—C4 | 1.3914 (19) | C19—C20 | 1.385 (2) |
C5—C6 | 1.4911 (18) | C19—H19 | 0.9500 |
C39—C38 | 1.3895 (19) | C2—C3 | 1.381 (2) |
C39—C40 | 1.390 (2) | C2—H2 | 0.9500 |
C39—H39 | 0.9500 | C20—H20 | 0.9500 |
C29—C28 | 1.3925 (19) | C3—H3 | 0.9500 |
C29—C30 | 1.4003 (19) | ||
N5—Mn1—N2 | 170.51 (4) | C30—C31—C32 | 123.57 (12) |
N5—Mn1—N3 | 117.17 (4) | N6—C22—C23 | 122.99 (13) |
N2—Mn1—N3 | 72.32 (4) | N6—C22—H22 | 118.5 |
N5—Mn1—N4 | 72.45 (4) | C23—C22—H22 | 118.5 |
N2—Mn1—N4 | 109.30 (4) | C31—C30—C29 | 118.90 (12) |
N3—Mn1—N4 | 87.87 (4) | C31—C30—H30 | 120.5 |
N5—Mn1—N6 | 72.76 (4) | C29—C30—H30 | 120.5 |
N2—Mn1—N6 | 106.16 (4) | C21—C16—C17 | 118.78 (13) |
N3—Mn1—N6 | 101.95 (4) | C21—C16—C8 | 120.96 (13) |
N4—Mn1—N6 | 144.53 (4) | C17—C16—C8 | 120.21 (12) |
N5—Mn1—N1 | 98.65 (4) | C32—C33—C34 | 119.13 (13) |
N2—Mn1—N1 | 71.87 (4) | C32—C33—H33 | 120.4 |
N3—Mn1—N1 | 144.10 (4) | C34—C33—H33 | 120.4 |
N4—Mn1—N1 | 101.55 (4) | N6—C26—C25 | 121.81 (13) |
N6—Mn1—N1 | 90.29 (4) | N6—C26—C27 | 115.39 (12) |
O7—Cl2—O6 | 110.25 (7) | C25—C26—C27 | 122.77 (12) |
O7—Cl2—O5 | 109.58 (7) | N1—C1—C2 | 122.87 (13) |
O6—Cl2—O5 | 109.33 (7) | N1—C1—H1 | 118.6 |
O7—Cl2—O8 | 109.14 (7) | C2—C1—H1 | 118.6 |
O6—Cl2—O8 | 109.18 (7) | N3—C15—C14 | 122.69 (13) |
O5—Cl2—O8 | 109.34 (7) | N3—C15—H15 | 118.7 |
O3A—Cl1—O2A | 107.8 (7) | C14—C15—H15 | 118.7 |
O3A—Cl1—O1 | 112.7 (5) | C24—C23—C22 | 118.76 (13) |
O2A—Cl1—O1 | 114.5 (5) | C24—C23—H23 | 120.6 |
O2—Cl1—O1 | 107.6 (4) | C22—C23—H23 | 120.6 |
O2—Cl1—O3 | 109.0 (4) | C39—C40—C41 | 119.58 (13) |
O1—Cl1—O3 | 109.1 (3) | C39—C40—H40 | 120.2 |
O2—Cl1—O4 | 115.2 (5) | C41—C40—H40 | 120.2 |
O1—Cl1—O4 | 107.7 (3) | N2—C6—C7 | 121.51 (12) |
O3—Cl1—O4 | 108.0 (4) | N2—C6—C5 | 114.79 (11) |
O3A—Cl1—O4A | 111.6 (8) | C7—C6—C5 | 123.68 (12) |
O2A—Cl1—O4A | 97.9 (10) | C13—C12—C11 | 119.48 (13) |
O1—Cl1—O4A | 111.4 (5) | C13—C12—H12 | 120.3 |
C27—N5—C31 | 119.85 (11) | C11—C12—H12 | 120.3 |
C27—N5—Mn1 | 119.65 (9) | C41—C42—C37 | 119.78 (13) |
C31—N5—Mn1 | 120.50 (9) | C41—C42—H42 | 120.1 |
C22—N6—C26 | 118.25 (12) | C37—C42—H42 | 120.1 |
C22—N6—Mn1 | 124.96 (9) | N4—C36—C35 | 123.12 (13) |
C26—N6—Mn1 | 116.79 (9) | N4—C36—H36 | 118.4 |
C6—N2—C10 | 119.83 (11) | C35—C36—H36 | 118.4 |
C6—N2—Mn1 | 120.06 (9) | C34—C35—C36 | 118.40 (13) |
C10—N2—Mn1 | 119.70 (9) | C34—C35—H35 | 120.8 |
C36—N4—C32 | 118.27 (12) | C36—C35—H35 | 120.8 |
C36—N4—Mn1 | 124.18 (9) | C9—C8—C7 | 117.82 (12) |
C32—N4—Mn1 | 117.22 (9) | C9—C8—C16 | 121.33 (12) |
C1—N1—C5 | 118.68 (12) | C7—C8—C16 | 120.79 (12) |
C1—N1—Mn1 | 123.48 (9) | C15—C14—C13 | 118.92 (13) |
C5—N1—Mn1 | 117.01 (9) | C15—C14—H14 | 120.5 |
C15—N3—C11 | 118.64 (12) | C13—C14—H14 | 120.5 |
C15—N3—Mn1 | 123.18 (9) | C23—C24—C25 | 118.70 (14) |
C11—N3—Mn1 | 118.02 (9) | C23—C24—H24 | 120.7 |
N2—C10—C9 | 121.43 (12) | C25—C24—H24 | 120.7 |
N2—C10—C11 | 114.62 (11) | C35—C34—C33 | 119.31 (14) |
C9—C10—C11 | 123.91 (12) | C35—C34—H34 | 120.3 |
N3—C11—C12 | 121.56 (12) | C33—C34—H34 | 120.3 |
N3—C11—C10 | 115.03 (11) | C18—C17—C16 | 120.31 (13) |
C12—C11—C10 | 123.42 (12) | C18—C17—H17 | 119.8 |
C6—C7—C8 | 119.68 (12) | C16—C17—H17 | 119.8 |
C6—C7—H7 | 120.2 | C19—C18—C17 | 120.49 (14) |
C8—C7—H7 | 120.2 | C19—C18—H18 | 119.8 |
C10—C9—C8 | 119.67 (12) | C17—C18—H18 | 119.8 |
C10—C9—H9 | 120.2 | C40—C41—C42 | 120.72 (13) |
C8—C9—H9 | 120.2 | C40—C41—H41 | 119.6 |
N5—C27—C28 | 121.24 (13) | C42—C41—H41 | 119.6 |
N5—C27—C26 | 115.07 (12) | C20—C21—C16 | 120.36 (14) |
C28—C27—C26 | 123.59 (13) | C20—C21—H21 | 119.8 |
N4—C32—C33 | 121.75 (12) | C16—C21—H21 | 119.8 |
N4—C32—C31 | 115.25 (12) | C26—C25—C24 | 119.49 (13) |
C33—C32—C31 | 122.93 (12) | C26—C25—H25 | 120.3 |
C38—C37—C42 | 119.23 (12) | C24—C25—H25 | 120.3 |
C38—C37—C29 | 119.57 (12) | C3—C4—C5 | 119.33 (13) |
C42—C37—C29 | 121.15 (12) | C3—C4—H4 | 120.3 |
N1—C5—C4 | 121.48 (12) | C5—C4—H4 | 120.3 |
N1—C5—C6 | 115.21 (12) | C14—C13—C12 | 118.70 (13) |
C4—C5—C6 | 123.30 (12) | C14—C13—H13 | 120.6 |
C38—C39—C40 | 120.17 (13) | C12—C13—H13 | 120.6 |
C38—C39—H39 | 119.9 | C20—C19—C18 | 119.45 (13) |
C40—C39—H39 | 119.9 | C20—C19—H19 | 120.3 |
C28—C29—C30 | 118.14 (12) | C18—C19—H19 | 120.3 |
C28—C29—C37 | 120.05 (12) | C3—C2—C1 | 118.56 (13) |
C30—C29—C37 | 121.70 (12) | C3—C2—H2 | 120.7 |
C39—C38—C37 | 120.52 (13) | C1—C2—H2 | 120.7 |
C39—C38—H38 | 119.7 | C19—C20—C21 | 120.58 (14) |
C37—C38—H38 | 119.7 | C19—C20—H20 | 119.7 |
C27—C28—C29 | 119.88 (13) | C21—C20—H20 | 119.7 |
C27—C28—H28 | 120.1 | C2—C3—C4 | 119.08 (13) |
C29—C28—H28 | 120.1 | C2—C3—H3 | 120.5 |
N5—C31—C30 | 121.94 (12) | C4—C3—H3 | 120.5 |
N5—C31—C32 | 114.42 (11) | ||
C6—N2—C10—C9 | −0.04 (19) | C28—C27—C26—N6 | 179.68 (13) |
Mn1—N2—C10—C9 | −172.69 (10) | N5—C27—C26—C25 | −174.73 (14) |
C6—N2—C10—C11 | 177.57 (12) | C28—C27—C26—C25 | 1.5 (2) |
Mn1—N2—C10—C11 | 4.92 (15) | C5—N1—C1—C2 | −0.1 (2) |
C15—N3—C11—C12 | 0.5 (2) | Mn1—N1—C1—C2 | 169.18 (11) |
Mn1—N3—C11—C12 | −175.00 (10) | C11—N3—C15—C14 | −0.1 (2) |
C15—N3—C11—C10 | −179.51 (12) | Mn1—N3—C15—C14 | 175.09 (11) |
Mn1—N3—C11—C10 | 5.02 (15) | N6—C22—C23—C24 | 0.2 (2) |
N2—C10—C11—N3 | −6.41 (17) | C38—C39—C40—C41 | −0.9 (2) |
C9—C10—C11—N3 | 171.12 (12) | C10—N2—C6—C7 | −0.4 (2) |
N2—C10—C11—C12 | 173.61 (13) | Mn1—N2—C6—C7 | 172.17 (10) |
C9—C10—C11—C12 | −8.9 (2) | C10—N2—C6—C5 | −178.75 (11) |
N2—C10—C9—C8 | 1.9 (2) | Mn1—N2—C6—C5 | −6.13 (15) |
C11—C10—C9—C8 | −175.48 (12) | C8—C7—C6—N2 | −0.9 (2) |
C31—N5—C27—C28 | −2.5 (2) | C8—C7—C6—C5 | 177.22 (12) |
Mn1—N5—C27—C28 | 177.06 (11) | N1—C5—C6—N2 | −2.35 (17) |
C31—N5—C27—C26 | 173.85 (12) | C4—C5—C6—N2 | 176.36 (13) |
Mn1—N5—C27—C26 | −6.57 (16) | N1—C5—C6—C7 | 179.39 (12) |
C36—N4—C32—C33 | −0.84 (19) | C4—C5—C6—C7 | −1.9 (2) |
Mn1—N4—C32—C33 | −174.46 (10) | N3—C11—C12—C13 | −0.1 (2) |
C36—N4—C32—C31 | 176.34 (12) | C10—C11—C12—C13 | 179.88 (13) |
Mn1—N4—C32—C31 | 2.72 (15) | C38—C37—C42—C41 | 0.0 (2) |
C1—N1—C5—C4 | 0.5 (2) | C29—C37—C42—C41 | −177.20 (13) |
Mn1—N1—C5—C4 | −169.42 (10) | C32—N4—C36—C35 | 1.1 (2) |
C1—N1—C5—C6 | 179.25 (12) | Mn1—N4—C36—C35 | 174.29 (10) |
Mn1—N1—C5—C6 | 9.31 (15) | N4—C36—C35—C34 | −0.5 (2) |
C38—C37—C29—C28 | −136.00 (14) | C10—C9—C8—C7 | −3.2 (2) |
C42—C37—C29—C28 | 41.19 (19) | C10—C9—C8—C16 | 173.95 (12) |
C38—C37—C29—C30 | 40.11 (19) | C6—C7—C8—C9 | 2.7 (2) |
C42—C37—C29—C30 | −142.71 (14) | C6—C7—C8—C16 | −174.43 (12) |
C40—C39—C38—C37 | 1.2 (2) | C21—C16—C8—C9 | 32.5 (2) |
C42—C37—C38—C39 | −0.8 (2) | C17—C16—C8—C9 | −145.05 (14) |
C29—C37—C38—C39 | 176.49 (13) | C21—C16—C8—C7 | −150.48 (14) |
N5—C27—C28—C29 | 3.0 (2) | C17—C16—C8—C7 | 31.98 (19) |
C26—C27—C28—C29 | −173.07 (13) | N3—C15—C14—C13 | −0.6 (2) |
C30—C29—C28—C27 | −1.8 (2) | C22—C23—C24—C25 | −0.9 (2) |
C37—C29—C28—C27 | 174.48 (13) | C36—C35—C34—C33 | −0.4 (2) |
C27—N5—C31—C30 | 0.9 (2) | C32—C33—C34—C35 | 0.7 (2) |
Mn1—N5—C31—C30 | −178.69 (10) | C21—C16—C17—C18 | 1.9 (2) |
C27—N5—C31—C32 | −176.25 (12) | C8—C16—C17—C18 | 179.45 (13) |
Mn1—N5—C31—C32 | 4.17 (15) | C16—C17—C18—C19 | −0.7 (2) |
N4—C32—C31—N5 | −4.42 (17) | C39—C40—C41—C42 | 0.1 (2) |
C33—C32—C31—N5 | 172.73 (13) | C37—C42—C41—C40 | 0.3 (2) |
N4—C32—C31—C30 | 178.50 (12) | C17—C16—C21—C20 | −1.2 (2) |
C33—C32—C31—C30 | −4.4 (2) | C8—C16—C21—C20 | −178.81 (14) |
C26—N6—C22—C23 | 0.5 (2) | N6—C26—C25—C24 | −0.4 (2) |
Mn1—N6—C22—C23 | −179.10 (10) | C27—C26—C25—C24 | 177.60 (14) |
N5—C31—C30—C29 | 0.3 (2) | C23—C24—C25—C26 | 1.0 (2) |
C32—C31—C30—C29 | 177.14 (12) | N1—C5—C4—C3 | −0.7 (2) |
C28—C29—C30—C31 | 0.2 (2) | C6—C5—C4—C3 | −179.30 (13) |
C37—C29—C30—C31 | −175.98 (12) | C15—C14—C13—C12 | 0.9 (2) |
N4—C32—C33—C34 | −0.1 (2) | C11—C12—C13—C14 | −0.6 (2) |
C31—C32—C33—C34 | −177.02 (13) | C17—C18—C19—C20 | −1.1 (2) |
C22—N6—C26—C25 | −0.3 (2) | N1—C1—C2—C3 | −0.2 (2) |
Mn1—N6—C26—C25 | 179.27 (12) | C18—C19—C20—C21 | 1.7 (2) |
C22—N6—C26—C27 | −178.49 (12) | C16—C21—C20—C19 | −0.5 (2) |
Mn1—N6—C26—C27 | 1.11 (16) | C1—C2—C3—C4 | 0.1 (2) |
N5—C27—C26—N6 | 3.41 (18) | C5—C4—C3—C2 | 0.4 (2) |
[Ni(C21H15N3)2](ClO4)2 | F(000) = 1800 |
Mr = 876.33 | Dx = 1.581 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3581 (2) Å | Cell parameters from 24227 reflections |
b = 12.6255 (3) Å | θ = 2.5–33.3° |
c = 31.4046 (8) Å | µ = 0.74 mm−1 |
β = 97.038 (2)° | T = 100 K |
V = 3682.52 (15) Å3 | Block, light orange |
Z = 4 | 0.10 × 0.08 × 0.06 mm |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 9514 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 7295 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 28.7°, θmin = 2.5° |
ω scans | h = −12→12 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | k = −16→17 |
Tmin = 0.815, Tmax = 1.000 | l = −41→42 |
52589 measured reflections |
Refinement on F2 | 435 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0352P)2 + 3.3821P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
9514 reflections | Δρmax = 0.64 e Å−3 |
560 parameters | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single crystals suitable for X-ray analysis were obtained by slow evaporation from acetonitrile using diethyl ether as antisolvent. Diffraction data for all the compounds were collected at room temperature on a Rigaku Synergy S diffractometer using photonjet microfocus source Mo Kα (λ = 0.71073 Å) radiation. The unit-cell parameters were determined using all reflections with CrysAlis PRO software (Agilent, 2014). Data integration and scaling were performed using CrysAlis PRO software (Agilent, 2014). The structures were solved and refined with SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software, respectively, including in OLEX2 (Dolomanov et al., 2009). In all cases, non-H atoms were clearly resolved and full-matrix least-squares refinement with anisotropic displacement parameters was performed. In addition, the H atoms were stereochemically positioned and refined using the riding model (Sheldrick, 2008). The Mn compound [which one?] was refined using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) to decrease the contribution of the disordered solvent (water molecule) to calculate the structure factors and improve the refinement values. Displacement ellipsoid plots for all structures were prepared with DIAMOND (Brandenburg et al., 2006). MERCURY were used for the preparation of artwork (Macrae et al., 2020). The CIF file of the complexes was deposited in the Cambridge Structural Data Base under the codes CCDC 2331329-2331331. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.45313 (2) | 0.67165 (2) | 0.38521 (2) | 0.01333 (7) | |
Cl2 | 0.97887 (5) | 0.78974 (4) | 0.49141 (2) | 0.02213 (11) | |
Cl1 | 0.21363 (5) | 0.92269 (4) | 0.24853 (2) | 0.02422 (11) | |
O8 | 0.97982 (18) | 0.67651 (12) | 0.50010 (5) | 0.0281 (3) | |
N2 | 0.51734 (16) | 0.68107 (12) | 0.44827 (5) | 0.0141 (3) | |
N5 | 0.39922 (17) | 0.65160 (12) | 0.32226 (5) | 0.0149 (3) | |
N3 | 0.36801 (16) | 0.81949 (12) | 0.40160 (5) | 0.0150 (3) | |
N4 | 0.63665 (17) | 0.73271 (12) | 0.35939 (5) | 0.0153 (3) | |
O7 | 1.03924 (17) | 0.80845 (13) | 0.45232 (5) | 0.0300 (4) | |
O5 | 0.83213 (17) | 0.82817 (13) | 0.48676 (5) | 0.0305 (4) | |
N1 | 0.56197 (16) | 0.52504 (12) | 0.39778 (5) | 0.0150 (3) | |
N6 | 0.24101 (17) | 0.61193 (12) | 0.38221 (5) | 0.0148 (3) | |
O6 | 1.0601 (2) | 0.84318 (14) | 0.52657 (6) | 0.0431 (5) | |
O1 | 0.3281 (2) | 0.86989 (15) | 0.27412 (6) | 0.0432 (5) | |
C11 | 0.39025 (19) | 0.84361 (14) | 0.44381 (6) | 0.0150 (4) | |
C10 | 0.48180 (19) | 0.76651 (14) | 0.47042 (6) | 0.0139 (4) | |
C6 | 0.60250 (19) | 0.60519 (14) | 0.46752 (6) | 0.0144 (4) | |
C9 | 0.5328 (2) | 0.77833 (14) | 0.51354 (6) | 0.0158 (4) | |
H9 | 0.505366 | 0.838169 | 0.528984 | 0.019* | |
C31 | 0.27142 (19) | 0.60874 (14) | 0.30761 (6) | 0.0151 (4) | |
C7 | 0.6573 (2) | 0.61277 (14) | 0.51031 (6) | 0.0160 (4) | |
H7 | 0.716632 | 0.557990 | 0.523523 | 0.019* | |
C32 | 0.1769 (2) | 0.59386 (14) | 0.34180 (6) | 0.0150 (4) | |
C33 | 0.0324 (2) | 0.56748 (15) | 0.33329 (7) | 0.0182 (4) | |
H33 | −0.010507 | 0.555517 | 0.304683 | 0.022* | |
C22 | 0.7524 (2) | 0.78050 (14) | 0.38051 (7) | 0.0168 (4) | |
H22 | 0.758400 | 0.787381 | 0.410801 | 0.020* | |
C15 | 0.2843 (2) | 0.88344 (15) | 0.37516 (7) | 0.0182 (4) | |
H15 | 0.268385 | 0.866400 | 0.345495 | 0.022* | |
C26 | 0.6302 (2) | 0.72212 (15) | 0.31626 (6) | 0.0175 (4) | |
C4 | 0.7234 (2) | 0.43312 (15) | 0.45043 (7) | 0.0189 (4) | |
H4 | 0.771109 | 0.428984 | 0.478880 | 0.023* | |
C28 | 0.4712 (2) | 0.64245 (16) | 0.25252 (6) | 0.0187 (4) | |
H28 | 0.543636 | 0.651977 | 0.234154 | 0.022* | |
C27 | 0.4976 (2) | 0.67007 (15) | 0.29544 (6) | 0.0167 (4) | |
C12 | 0.3292 (2) | 0.93257 (15) | 0.46021 (7) | 0.0179 (4) | |
H12 | 0.346711 | 0.948280 | 0.489981 | 0.022* | |
C1 | 0.5830 (2) | 0.44934 (15) | 0.36943 (7) | 0.0185 (4) | |
H1 | 0.533945 | 0.454587 | 0.341178 | 0.022* | |
C5 | 0.63146 (19) | 0.51687 (14) | 0.43826 (6) | 0.0156 (4) | |
C37 | 0.3043 (2) | 0.57916 (14) | 0.18980 (6) | 0.0163 (4) | |
C16 | 0.6910 (2) | 0.71515 (14) | 0.57908 (6) | 0.0157 (4) | |
C35 | 0.0159 (2) | 0.57788 (15) | 0.40844 (7) | 0.0196 (4) | |
H35 | −0.037684 | 0.572543 | 0.432174 | 0.024* | |
C8 | 0.6249 (2) | 0.70170 (14) | 0.53421 (6) | 0.0156 (4) | |
C29 | 0.3376 (2) | 0.60056 (15) | 0.23647 (6) | 0.0173 (4) | |
C36 | 0.1606 (2) | 0.60499 (15) | 0.41440 (6) | 0.0172 (4) | |
H36 | 0.204585 | 0.619275 | 0.442713 | 0.021* | |
C30 | 0.2357 (2) | 0.58350 (15) | 0.26470 (6) | 0.0173 (4) | |
H30 | 0.143624 | 0.555153 | 0.254680 | 0.021* | |
C34 | −0.0484 (2) | 0.55889 (15) | 0.36731 (7) | 0.0207 (4) | |
H34 | −0.147292 | 0.540038 | 0.362293 | 0.025* | |
C23 | 0.8639 (2) | 0.82028 (15) | 0.35977 (7) | 0.0188 (4) | |
H23 | 0.944400 | 0.853616 | 0.375677 | 0.023* | |
C41 | 0.1443 (2) | 0.59859 (15) | 0.12386 (6) | 0.0184 (4) | |
H41 | 0.055045 | 0.621815 | 0.109131 | 0.022* | |
C38 | 0.4062 (2) | 0.53171 (15) | 0.16699 (7) | 0.0184 (4) | |
H38 | 0.495769 | 0.508838 | 0.181598 | 0.022* | |
C17 | 0.8301 (2) | 0.67636 (15) | 0.59224 (6) | 0.0179 (4) | |
H17 | 0.881722 | 0.641089 | 0.572203 | 0.021* | |
C39 | 0.3764 (2) | 0.51794 (15) | 0.12283 (7) | 0.0192 (4) | |
H39 | 0.445643 | 0.485270 | 0.107395 | 0.023* | |
C40 | 0.2459 (2) | 0.55169 (15) | 0.10117 (7) | 0.0194 (4) | |
H40 | 0.226335 | 0.542719 | 0.070986 | 0.023* | |
C13 | 0.2422 (2) | 0.99840 (15) | 0.43267 (7) | 0.0212 (4) | |
H13 | 0.198772 | 1.059359 | 0.443304 | 0.025* | |
C42 | 0.1725 (2) | 0.61162 (15) | 0.16785 (7) | 0.0185 (4) | |
H42 | 0.101948 | 0.642816 | 0.183223 | 0.022* | |
C14 | 0.2201 (2) | 0.97352 (15) | 0.38943 (7) | 0.0203 (4) | |
H14 | 0.161769 | 1.017505 | 0.369838 | 0.024* | |
C18 | 0.8925 (2) | 0.68926 (15) | 0.63440 (7) | 0.0207 (4) | |
H18 | 0.986327 | 0.662215 | 0.643073 | 0.025* | |
C25 | 0.7372 (2) | 0.76024 (17) | 0.29377 (7) | 0.0219 (4) | |
H25 | 0.729760 | 0.752056 | 0.263507 | 0.026* | |
C2 | 0.6733 (2) | 0.36346 (16) | 0.37950 (7) | 0.0217 (4) | |
H2 | 0.685611 | 0.311102 | 0.358536 | 0.026* | |
C21 | 0.6194 (2) | 0.76877 (16) | 0.60888 (7) | 0.0202 (4) | |
H21 | 0.526164 | 0.796943 | 0.600356 | 0.024* | |
C24 | 0.8561 (2) | 0.81078 (16) | 0.31587 (7) | 0.0217 (4) | |
H24 | 0.930358 | 0.838190 | 0.300956 | 0.026* | |
C19 | 0.8188 (2) | 0.74132 (16) | 0.66385 (7) | 0.0227 (4) | |
H19 | 0.861245 | 0.749420 | 0.692732 | 0.027* | |
C20 | 0.6825 (2) | 0.78154 (17) | 0.65077 (7) | 0.0247 (4) | |
H20 | 0.631991 | 0.818131 | 0.670745 | 0.030* | |
C3 | 0.7451 (2) | 0.35530 (15) | 0.42056 (7) | 0.0216 (4) | |
H3 | 0.808152 | 0.297560 | 0.428217 | 0.026* | |
O3 | 0.2592 (13) | 0.9531 (12) | 0.2092 (3) | 0.060 (3) | 0.54 (2) |
O4 | 0.1845 (15) | 1.0198 (6) | 0.2704 (2) | 0.061 (2) | 0.54 (2) |
O2 | 0.0905 (8) | 0.8607 (9) | 0.2423 (3) | 0.087 (3) | 0.54 (2) |
O3A | 0.2646 (12) | 0.9837 (15) | 0.2166 (5) | 0.062 (4) | 0.46 (2) |
O4A | 0.1294 (12) | 0.9826 (13) | 0.2744 (2) | 0.053 (3) | 0.46 (2) |
O2A | 0.1196 (17) | 0.8454 (6) | 0.2258 (6) | 0.085 (5) | 0.46 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01241 (11) | 0.01601 (12) | 0.01128 (12) | −0.00111 (9) | 0.00028 (9) | −0.00063 (9) |
Cl2 | 0.0235 (2) | 0.0274 (2) | 0.0151 (2) | −0.00382 (18) | 0.00064 (19) | −0.00390 (18) |
Cl1 | 0.0238 (2) | 0.0324 (3) | 0.0158 (2) | 0.00260 (19) | −0.00016 (19) | 0.0049 (2) |
O8 | 0.0349 (9) | 0.0294 (8) | 0.0202 (8) | −0.0002 (7) | 0.0036 (7) | −0.0005 (6) |
N2 | 0.0116 (7) | 0.0155 (7) | 0.0149 (8) | −0.0020 (6) | 0.0009 (6) | −0.0005 (6) |
N5 | 0.0146 (7) | 0.0167 (7) | 0.0132 (8) | −0.0023 (6) | 0.0006 (6) | 0.0001 (6) |
N3 | 0.0131 (7) | 0.0170 (7) | 0.0147 (8) | −0.0021 (6) | 0.0003 (6) | 0.0011 (6) |
N4 | 0.0140 (7) | 0.0178 (7) | 0.0137 (8) | −0.0005 (6) | −0.0002 (6) | −0.0006 (6) |
O7 | 0.0284 (8) | 0.0374 (9) | 0.0254 (9) | −0.0042 (7) | 0.0081 (7) | 0.0011 (7) |
O5 | 0.0242 (8) | 0.0382 (9) | 0.0303 (9) | 0.0025 (7) | 0.0078 (7) | −0.0003 (7) |
N1 | 0.0131 (7) | 0.0169 (7) | 0.0149 (8) | −0.0022 (6) | 0.0013 (6) | −0.0014 (6) |
N6 | 0.0151 (7) | 0.0163 (7) | 0.0127 (8) | −0.0003 (6) | 0.0008 (6) | 0.0001 (6) |
O6 | 0.0548 (12) | 0.0402 (10) | 0.0284 (10) | −0.0048 (8) | −0.0185 (9) | −0.0116 (8) |
O1 | 0.0499 (11) | 0.0502 (11) | 0.0260 (10) | 0.0235 (9) | −0.0090 (8) | 0.0041 (8) |
C11 | 0.0128 (8) | 0.0157 (8) | 0.0163 (10) | −0.0030 (6) | 0.0011 (7) | 0.0013 (7) |
C10 | 0.0113 (8) | 0.0160 (8) | 0.0144 (9) | −0.0016 (6) | 0.0022 (7) | 0.0007 (7) |
C6 | 0.0141 (8) | 0.0145 (8) | 0.0146 (9) | −0.0007 (6) | 0.0023 (7) | 0.0012 (7) |
C9 | 0.0172 (9) | 0.0152 (8) | 0.0152 (10) | −0.0008 (7) | 0.0029 (7) | −0.0007 (7) |
C31 | 0.0136 (8) | 0.0169 (9) | 0.0143 (10) | −0.0013 (7) | 0.0005 (7) | 0.0004 (7) |
C7 | 0.0147 (8) | 0.0161 (9) | 0.0166 (10) | −0.0004 (7) | −0.0002 (7) | 0.0025 (7) |
C32 | 0.0147 (8) | 0.0143 (8) | 0.0159 (10) | −0.0011 (6) | 0.0011 (7) | −0.0003 (7) |
C33 | 0.0159 (9) | 0.0197 (9) | 0.0188 (10) | −0.0015 (7) | 0.0004 (8) | −0.0039 (7) |
C22 | 0.0163 (9) | 0.0180 (9) | 0.0156 (10) | 0.0001 (7) | −0.0004 (7) | −0.0017 (7) |
C15 | 0.0165 (9) | 0.0212 (9) | 0.0159 (10) | −0.0017 (7) | −0.0017 (7) | 0.0033 (7) |
C26 | 0.0161 (9) | 0.0216 (9) | 0.0148 (10) | −0.0039 (7) | 0.0012 (7) | −0.0017 (7) |
C4 | 0.0176 (9) | 0.0197 (9) | 0.0192 (10) | 0.0001 (7) | 0.0015 (8) | 0.0023 (7) |
C28 | 0.0168 (9) | 0.0253 (10) | 0.0143 (10) | −0.0026 (7) | 0.0037 (8) | 0.0006 (7) |
C27 | 0.0147 (8) | 0.0191 (9) | 0.0162 (10) | −0.0027 (7) | 0.0015 (7) | 0.0009 (7) |
C12 | 0.0181 (9) | 0.0187 (9) | 0.0168 (10) | −0.0014 (7) | 0.0016 (8) | −0.0015 (7) |
C1 | 0.0164 (9) | 0.0208 (9) | 0.0184 (10) | −0.0019 (7) | 0.0020 (8) | −0.0037 (8) |
C5 | 0.0139 (8) | 0.0164 (8) | 0.0168 (10) | −0.0024 (7) | 0.0031 (7) | −0.0002 (7) |
C37 | 0.0186 (9) | 0.0169 (8) | 0.0128 (9) | −0.0038 (7) | −0.0006 (7) | −0.0002 (7) |
C16 | 0.0186 (9) | 0.0151 (8) | 0.0129 (9) | −0.0030 (7) | 0.0005 (7) | 0.0027 (7) |
C35 | 0.0188 (9) | 0.0204 (9) | 0.0210 (11) | −0.0020 (7) | 0.0083 (8) | −0.0023 (8) |
C8 | 0.0148 (8) | 0.0175 (9) | 0.0147 (10) | −0.0030 (7) | 0.0018 (7) | 0.0010 (7) |
C29 | 0.0180 (9) | 0.0191 (9) | 0.0142 (10) | −0.0009 (7) | −0.0001 (7) | −0.0005 (7) |
C36 | 0.0190 (9) | 0.0172 (9) | 0.0155 (10) | −0.0002 (7) | 0.0019 (7) | −0.0006 (7) |
C30 | 0.0149 (9) | 0.0196 (9) | 0.0166 (10) | −0.0024 (7) | −0.0010 (7) | −0.0005 (7) |
C34 | 0.0150 (9) | 0.0210 (9) | 0.0265 (11) | −0.0038 (7) | 0.0044 (8) | −0.0046 (8) |
C23 | 0.0136 (9) | 0.0192 (9) | 0.0229 (11) | −0.0021 (7) | −0.0005 (8) | −0.0013 (8) |
C41 | 0.0174 (9) | 0.0199 (9) | 0.0168 (10) | −0.0010 (7) | −0.0024 (8) | 0.0024 (7) |
C38 | 0.0167 (9) | 0.0199 (9) | 0.0177 (10) | −0.0012 (7) | −0.0016 (8) | −0.0001 (7) |
C17 | 0.0195 (9) | 0.0184 (9) | 0.0160 (10) | −0.0001 (7) | 0.0027 (8) | −0.0004 (7) |
C39 | 0.0201 (9) | 0.0204 (9) | 0.0171 (10) | −0.0003 (7) | 0.0017 (8) | −0.0016 (7) |
C40 | 0.0230 (10) | 0.0205 (9) | 0.0141 (10) | −0.0030 (7) | −0.0006 (8) | 0.0010 (7) |
C13 | 0.0184 (9) | 0.0171 (9) | 0.0283 (12) | 0.0018 (7) | 0.0033 (8) | 0.0004 (8) |
C42 | 0.0174 (9) | 0.0195 (9) | 0.0189 (10) | −0.0006 (7) | 0.0033 (8) | −0.0009 (7) |
C14 | 0.0173 (9) | 0.0195 (9) | 0.0233 (11) | 0.0012 (7) | −0.0006 (8) | 0.0058 (8) |
C18 | 0.0202 (9) | 0.0223 (10) | 0.0184 (10) | −0.0002 (7) | −0.0020 (8) | 0.0014 (8) |
C25 | 0.0185 (9) | 0.0324 (11) | 0.0154 (10) | −0.0045 (8) | 0.0039 (8) | −0.0011 (8) |
C2 | 0.0210 (10) | 0.0193 (9) | 0.0250 (11) | −0.0001 (7) | 0.0042 (8) | −0.0060 (8) |
C21 | 0.0201 (10) | 0.0240 (10) | 0.0165 (10) | 0.0006 (8) | 0.0024 (8) | 0.0022 (8) |
C24 | 0.0169 (9) | 0.0259 (10) | 0.0230 (11) | −0.0052 (8) | 0.0057 (8) | −0.0001 (8) |
C19 | 0.0273 (11) | 0.0276 (10) | 0.0125 (10) | −0.0028 (8) | −0.0012 (8) | 0.0019 (8) |
C20 | 0.0273 (11) | 0.0318 (11) | 0.0158 (10) | 0.0019 (9) | 0.0063 (9) | −0.0012 (8) |
C3 | 0.0200 (10) | 0.0170 (9) | 0.0278 (12) | 0.0024 (7) | 0.0037 (8) | −0.0016 (8) |
O3 | 0.057 (5) | 0.106 (8) | 0.022 (3) | 0.038 (4) | 0.017 (2) | 0.031 (3) |
O4 | 0.077 (5) | 0.050 (3) | 0.060 (3) | 0.026 (3) | 0.029 (3) | −0.004 (2) |
O2 | 0.053 (3) | 0.144 (7) | 0.067 (5) | −0.057 (4) | 0.019 (4) | −0.004 (4) |
O3A | 0.018 (3) | 0.095 (8) | 0.075 (8) | 0.002 (4) | 0.016 (4) | 0.060 (6) |
O4A | 0.040 (4) | 0.091 (7) | 0.030 (3) | 0.034 (4) | 0.011 (3) | 0.003 (3) |
O2A | 0.107 (8) | 0.049 (4) | 0.081 (8) | −0.029 (4) | −0.069 (6) | 0.012 (4) |
Ni1—N2 | 2.0014 (16) | C4—C3 | 1.390 (3) |
Ni1—N5 | 1.9956 (16) | C28—H28 | 0.9500 |
Ni1—N3 | 2.1174 (16) | C28—C27 | 1.385 (3) |
Ni1—N4 | 2.1313 (16) | C28—C29 | 1.394 (3) |
Ni1—N1 | 2.1263 (16) | C12—H12 | 0.9500 |
Ni1—N6 | 2.1148 (16) | C12—C13 | 1.389 (3) |
Cl2—O8 | 1.4552 (16) | C1—H1 | 0.9500 |
Cl2—O7 | 1.4325 (17) | C1—C2 | 1.387 (3) |
Cl2—O5 | 1.4468 (16) | C37—C29 | 1.485 (3) |
Cl2—O6 | 1.4306 (17) | C37—C38 | 1.396 (3) |
Cl1—O1 | 1.4239 (17) | C37—C42 | 1.398 (3) |
Cl1—O3 | 1.407 (8) | C16—C8 | 1.478 (3) |
Cl1—O4 | 1.447 (5) | C16—C17 | 1.404 (3) |
Cl1—O2 | 1.387 (8) | C16—C21 | 1.392 (3) |
Cl1—O3A | 1.394 (9) | C35—H35 | 0.9500 |
Cl1—O4A | 1.417 (6) | C35—C36 | 1.388 (3) |
Cl1—O2A | 1.443 (7) | C35—C34 | 1.377 (3) |
N2—C10 | 1.347 (2) | C29—C30 | 1.396 (3) |
N2—C6 | 1.342 (2) | C36—H36 | 0.9500 |
N5—C31 | 1.342 (2) | C30—H30 | 0.9500 |
N5—C27 | 1.342 (2) | C34—H34 | 0.9500 |
N3—C11 | 1.351 (2) | C23—H23 | 0.9500 |
N3—C15 | 1.340 (2) | C23—C24 | 1.377 (3) |
N4—C22 | 1.342 (2) | C41—H41 | 0.9500 |
N4—C26 | 1.355 (3) | C41—C40 | 1.389 (3) |
N1—C1 | 1.337 (2) | C41—C42 | 1.384 (3) |
N1—C5 | 1.359 (3) | C38—H38 | 0.9500 |
N6—C32 | 1.355 (2) | C38—C39 | 1.391 (3) |
N6—C36 | 1.335 (2) | C17—H17 | 0.9500 |
C11—C10 | 1.485 (3) | C17—C18 | 1.390 (3) |
C11—C12 | 1.388 (3) | C39—H39 | 0.9500 |
C10—C9 | 1.387 (3) | C39—C40 | 1.390 (3) |
C6—C7 | 1.382 (3) | C40—H40 | 0.9500 |
C6—C5 | 1.491 (3) | C13—H13 | 0.9500 |
C9—H9 | 0.9500 | C13—C14 | 1.385 (3) |
C9—C8 | 1.401 (3) | C42—H42 | 0.9500 |
C31—C32 | 1.485 (3) | C14—H14 | 0.9500 |
C31—C30 | 1.385 (3) | C18—H18 | 0.9500 |
C7—H7 | 0.9500 | C18—C19 | 1.385 (3) |
C7—C8 | 1.404 (3) | C25—H25 | 0.9500 |
C32—C33 | 1.387 (3) | C25—C24 | 1.392 (3) |
C33—H33 | 0.9500 | C2—H2 | 0.9500 |
C33—C34 | 1.386 (3) | C2—C3 | 1.383 (3) |
C22—H22 | 0.9500 | C21—H21 | 0.9500 |
C22—C23 | 1.389 (3) | C21—C20 | 1.384 (3) |
C15—H15 | 0.9500 | C24—H24 | 0.9500 |
C15—C14 | 1.386 (3) | C19—H19 | 0.9500 |
C26—C27 | 1.484 (3) | C19—C20 | 1.388 (3) |
C26—C25 | 1.381 (3) | C20—H20 | 0.9500 |
C4—H4 | 0.9500 | C3—H3 | 0.9500 |
C4—C5 | 1.387 (3) | ||
N2—Ni1—N3 | 77.49 (6) | C29—C28—H28 | 120.2 |
N2—Ni1—N4 | 101.35 (6) | N5—C27—C26 | 113.66 (17) |
N2—Ni1—N1 | 77.82 (6) | N5—C27—C28 | 120.86 (17) |
N2—Ni1—N6 | 103.39 (6) | C28—C27—C26 | 125.48 (17) |
N5—Ni1—N2 | 175.27 (6) | C11—C12—H12 | 120.3 |
N5—Ni1—N3 | 107.20 (6) | C11—C12—C13 | 119.32 (19) |
N5—Ni1—N4 | 77.68 (6) | C13—C12—H12 | 120.3 |
N5—Ni1—N1 | 97.51 (6) | N1—C1—H1 | 118.6 |
N5—Ni1—N6 | 77.80 (6) | N1—C1—C2 | 122.82 (19) |
N3—Ni1—N4 | 96.80 (6) | C2—C1—H1 | 118.6 |
N3—Ni1—N1 | 155.25 (6) | N1—C5—C6 | 114.67 (16) |
N1—Ni1—N4 | 89.75 (6) | N1—C5—C4 | 121.68 (18) |
N6—Ni1—N3 | 86.91 (6) | C4—C5—C6 | 123.63 (18) |
N6—Ni1—N4 | 155.20 (6) | C38—C37—C29 | 120.70 (17) |
N6—Ni1—N1 | 97.09 (6) | C38—C37—C42 | 119.30 (18) |
O7—Cl2—O8 | 109.18 (10) | C42—C37—C29 | 119.91 (17) |
O7—Cl2—O5 | 109.10 (10) | C17—C16—C8 | 120.36 (17) |
O5—Cl2—O8 | 109.41 (10) | C21—C16—C8 | 121.14 (17) |
O6—Cl2—O8 | 109.16 (10) | C21—C16—C17 | 118.48 (18) |
O6—Cl2—O7 | 110.83 (11) | C36—C35—H35 | 120.8 |
O6—Cl2—O5 | 109.14 (11) | C34—C35—H35 | 120.8 |
O1—Cl1—O4 | 107.5 (4) | C34—C35—C36 | 118.44 (19) |
O1—Cl1—O2A | 109.5 (4) | C9—C8—C7 | 117.73 (18) |
O3—Cl1—O1 | 109.5 (5) | C9—C8—C16 | 121.64 (17) |
O3—Cl1—O4 | 106.3 (6) | C7—C8—C16 | 120.59 (17) |
O2—Cl1—O1 | 111.7 (4) | C28—C29—C37 | 119.75 (17) |
O2—Cl1—O3 | 111.5 (6) | C28—C29—C30 | 118.76 (18) |
O2—Cl1—O4 | 110.1 (5) | C30—C29—C37 | 121.44 (17) |
O3A—Cl1—O1 | 111.4 (5) | N6—C36—C35 | 123.06 (19) |
O3A—Cl1—O4A | 112.3 (7) | N6—C36—H36 | 118.5 |
O3A—Cl1—O2A | 105.0 (7) | C35—C36—H36 | 118.5 |
O4A—Cl1—O1 | 111.1 (3) | C31—C30—C29 | 118.68 (17) |
O4A—Cl1—O2A | 107.2 (6) | C31—C30—H30 | 120.7 |
C10—N2—Ni1 | 119.70 (13) | C29—C30—H30 | 120.7 |
C6—N2—Ni1 | 119.55 (12) | C33—C34—H34 | 120.2 |
C6—N2—C10 | 120.63 (16) | C35—C34—C33 | 119.51 (18) |
C31—N5—Ni1 | 119.83 (13) | C35—C34—H34 | 120.2 |
C31—N5—C27 | 120.40 (17) | C22—C23—H23 | 120.4 |
C27—N5—Ni1 | 119.35 (13) | C24—C23—C22 | 119.15 (18) |
C11—N3—Ni1 | 114.82 (12) | C24—C23—H23 | 120.4 |
C15—N3—Ni1 | 126.11 (13) | C40—C41—H41 | 119.9 |
C15—N3—C11 | 118.69 (16) | C42—C41—H41 | 119.9 |
C22—N4—Ni1 | 127.86 (13) | C42—C41—C40 | 120.24 (18) |
C22—N4—C26 | 118.20 (16) | C37—C38—H38 | 120.0 |
C26—N4—Ni1 | 113.93 (12) | C39—C38—C37 | 119.92 (18) |
C1—N1—Ni1 | 127.21 (14) | C39—C38—H38 | 120.0 |
C1—N1—C5 | 118.43 (16) | C16—C17—H17 | 119.8 |
C5—N1—Ni1 | 113.78 (12) | C18—C17—C16 | 120.40 (19) |
C32—N6—Ni1 | 114.04 (12) | C18—C17—H17 | 119.8 |
C36—N6—Ni1 | 127.06 (13) | C38—C39—H39 | 119.8 |
C36—N6—C32 | 118.18 (16) | C40—C39—C38 | 120.42 (18) |
N3—C11—C10 | 114.42 (16) | C40—C39—H39 | 119.8 |
N3—C11—C12 | 121.72 (17) | C41—C40—C39 | 119.69 (19) |
C12—C11—C10 | 123.85 (18) | C41—C40—H40 | 120.2 |
N2—C10—C11 | 113.33 (16) | C39—C40—H40 | 120.2 |
N2—C10—C9 | 120.86 (17) | C12—C13—H13 | 120.6 |
C9—C10—C11 | 125.77 (16) | C14—C13—C12 | 118.75 (18) |
N2—C6—C7 | 121.19 (17) | C14—C13—H13 | 120.6 |
N2—C6—C5 | 113.53 (16) | C37—C42—H42 | 119.8 |
C7—C6—C5 | 125.28 (17) | C41—C42—C37 | 120.41 (18) |
C10—C9—H9 | 120.1 | C41—C42—H42 | 119.8 |
C10—C9—C8 | 119.76 (17) | C15—C14—H14 | 120.5 |
C8—C9—H9 | 120.1 | C13—C14—C15 | 118.98 (18) |
N5—C31—C32 | 112.85 (16) | C13—C14—H14 | 120.5 |
N5—C31—C30 | 121.69 (17) | C17—C18—H18 | 119.8 |
C30—C31—C32 | 125.46 (17) | C19—C18—C17 | 120.38 (19) |
C6—C7—H7 | 120.1 | C19—C18—H18 | 119.8 |
C6—C7—C8 | 119.77 (17) | C26—C25—H25 | 120.3 |
C8—C7—H7 | 120.1 | C26—C25—C24 | 119.34 (19) |
N6—C32—C31 | 114.91 (16) | C24—C25—H25 | 120.3 |
N6—C32—C33 | 122.05 (18) | C1—C2—H2 | 120.5 |
C33—C32—C31 | 123.00 (18) | C3—C2—C1 | 118.93 (19) |
C32—C33—H33 | 120.6 | C3—C2—H2 | 120.5 |
C34—C33—C32 | 118.75 (19) | C16—C21—H21 | 119.6 |
C34—C33—H33 | 120.6 | C20—C21—C16 | 120.78 (19) |
N4—C22—H22 | 118.7 | C20—C21—H21 | 119.6 |
N4—C22—C23 | 122.51 (19) | C23—C24—C25 | 118.72 (18) |
C23—C22—H22 | 118.7 | C23—C24—H24 | 120.6 |
N3—C15—H15 | 118.7 | C25—C24—H24 | 120.6 |
N3—C15—C14 | 122.54 (19) | C18—C19—H19 | 120.3 |
C14—C15—H15 | 118.7 | C18—C19—C20 | 119.4 (2) |
N4—C26—C27 | 114.62 (16) | C20—C19—H19 | 120.3 |
N4—C26—C25 | 122.07 (18) | C21—C20—C19 | 120.5 (2) |
C25—C26—C27 | 123.28 (18) | C21—C20—H20 | 119.7 |
C5—C4—H4 | 120.3 | C19—C20—H20 | 119.7 |
C5—C4—C3 | 119.32 (19) | C4—C3—H3 | 120.6 |
C3—C4—H4 | 120.3 | C2—C3—C4 | 118.81 (18) |
C27—C28—H28 | 120.2 | C2—C3—H3 | 120.6 |
C27—C28—C29 | 119.52 (18) | ||
Ni1—N2—C10—C11 | 2.4 (2) | C22—N4—C26—C25 | −1.0 (3) |
Ni1—N2—C10—C9 | −175.73 (13) | C22—C23—C24—C25 | −0.8 (3) |
Ni1—N2—C6—C7 | 175.37 (13) | C15—N3—C11—C10 | 178.71 (16) |
Ni1—N2—C6—C5 | −3.7 (2) | C15—N3—C11—C12 | −0.2 (3) |
Ni1—N5—C31—C32 | 7.4 (2) | C26—N4—C22—C23 | 0.9 (3) |
Ni1—N5—C31—C30 | −173.34 (14) | C26—C25—C24—C23 | 0.6 (3) |
Ni1—N5—C27—C26 | −10.1 (2) | C28—C29—C30—C31 | −0.1 (3) |
Ni1—N5—C27—C28 | 170.51 (14) | C27—N5—C31—C32 | 179.84 (16) |
Ni1—N3—C11—C10 | 5.28 (19) | C27—N5—C31—C30 | −0.9 (3) |
Ni1—N3—C11—C12 | −173.62 (14) | C27—C26—C25—C24 | 178.11 (19) |
Ni1—N3—C15—C14 | 172.82 (14) | C27—C28—C29—C37 | 174.92 (17) |
Ni1—N4—C22—C23 | −177.83 (14) | C27—C28—C29—C30 | −2.6 (3) |
Ni1—N4—C26—C27 | −0.2 (2) | C12—C11—C10—N2 | 173.82 (17) |
Ni1—N4—C26—C25 | 177.81 (16) | C12—C11—C10—C9 | −8.1 (3) |
Ni1—N1—C1—C2 | 170.22 (14) | C12—C13—C14—C15 | 0.5 (3) |
Ni1—N1—C5—C6 | 7.63 (19) | C1—N1—C5—C6 | 179.54 (16) |
Ni1—N1—C5—C4 | −171.35 (14) | C1—N1—C5—C4 | 0.6 (3) |
Ni1—N6—C32—C31 | 5.90 (19) | C1—C2—C3—C4 | 0.5 (3) |
Ni1—N6—C32—C33 | −171.75 (14) | C5—N1—C1—C2 | −0.5 (3) |
Ni1—N6—C36—C35 | 171.14 (14) | C5—C6—C7—C8 | 178.28 (17) |
N2—C10—C9—C8 | 1.3 (3) | C5—C4—C3—C2 | −0.4 (3) |
N2—C6—C7—C8 | −0.6 (3) | C37—C29—C30—C31 | −177.60 (17) |
N2—C6—C5—N1 | −3.0 (2) | C37—C38—C39—C40 | 0.4 (3) |
N2—C6—C5—C4 | 175.97 (17) | C16—C17—C18—C19 | −0.5 (3) |
N5—C31—C32—N6 | −8.5 (2) | C16—C21—C20—C19 | 0.2 (3) |
N5—C31—C32—C33 | 169.08 (17) | C8—C16—C17—C18 | 179.80 (17) |
N5—C31—C30—C29 | 1.9 (3) | C8—C16—C21—C20 | −179.63 (18) |
N3—C11—C10—N2 | −5.1 (2) | C29—C28—C27—N5 | 3.7 (3) |
N3—C11—C10—C9 | 172.98 (17) | C29—C28—C27—C26 | −175.53 (18) |
N3—C11—C12—C13 | 0.4 (3) | C29—C37—C38—C39 | −176.21 (17) |
N3—C15—C14—C13 | −0.4 (3) | C29—C37—C42—C41 | 175.59 (17) |
N4—C22—C23—C24 | 0.1 (3) | C36—N6—C32—C31 | 176.85 (16) |
N4—C26—C27—N5 | 6.3 (2) | C36—N6—C32—C33 | −0.8 (3) |
N4—C26—C27—C28 | −174.36 (18) | C36—C35—C34—C33 | −0.1 (3) |
N4—C26—C25—C24 | 0.3 (3) | C30—C31—C32—N6 | 172.21 (18) |
N1—C1—C2—C3 | 0.0 (3) | C30—C31—C32—C33 | −10.2 (3) |
N6—C32—C33—C34 | −0.3 (3) | C34—C35—C36—N6 | −1.1 (3) |
C11—N3—C15—C14 | 0.2 (3) | C38—C37—C29—C28 | 43.2 (3) |
C11—C10—C9—C8 | −176.58 (17) | C38—C37—C29—C30 | −139.3 (2) |
C11—C12—C13—C14 | −0.5 (3) | C38—C37—C42—C41 | −1.1 (3) |
C10—N2—C6—C7 | −0.7 (3) | C38—C39—C40—C41 | −0.6 (3) |
C10—N2—C6—C5 | −179.68 (15) | C17—C16—C8—C9 | −145.75 (19) |
C10—C11—C12—C13 | −178.43 (17) | C17—C16—C8—C7 | 31.7 (3) |
C10—C9—C8—C7 | −2.5 (3) | C17—C16—C21—C20 | −1.4 (3) |
C10—C9—C8—C16 | 175.05 (17) | C17—C18—C19—C20 | −0.7 (3) |
C6—N2—C10—C11 | 178.45 (16) | C40—C41—C42—C37 | 0.9 (3) |
C6—N2—C10—C9 | 0.3 (3) | C42—C37—C29—C28 | −133.4 (2) |
C6—C7—C8—C9 | 2.2 (3) | C42—C37—C29—C30 | 44.0 (3) |
C6—C7—C8—C16 | −175.42 (17) | C42—C37—C38—C39 | 0.5 (3) |
C31—N5—C27—C26 | 177.36 (16) | C42—C41—C40—C39 | −0.1 (3) |
C31—N5—C27—C28 | −2.0 (3) | C18—C19—C20—C21 | 0.8 (3) |
C31—C32—C33—C34 | −177.79 (17) | C25—C26—C27—N5 | −171.62 (19) |
C7—C6—C5—N1 | 178.03 (17) | C25—C26—C27—C28 | 7.7 (3) |
C7—C6—C5—C4 | −3.0 (3) | C21—C16—C8—C9 | 32.4 (3) |
C32—N6—C36—C35 | 1.5 (3) | C21—C16—C8—C7 | −150.07 (19) |
C32—C31—C30—C29 | −178.91 (18) | C21—C16—C17—C18 | 1.6 (3) |
C32—C33—C34—C35 | 0.8 (3) | C3—C4—C5—N1 | −0.1 (3) |
C22—N4—C26—C27 | −179.02 (16) | C3—C4—C5—C6 | −179.01 (18) |
15d | 17c | 15c | |
M—N1 | 2.1263 (15) | 2.2723 (12) | 2.2664 (12) |
M—N2 | 2.0014 (17) | 2.2093 (14) | 2.2080 (10) |
M—N3 | 2.1175 (15) | 2.2423 (12) | 2.2738 (11) |
M—N4 | 2.1313 (16) | 2.2537 (12) | 2.2375 (11) |
M—N5 | 1.9956 (17) | 2.1877 (11) | 2.2002 (10) |
M—N6 | 2.1147 (16) | 2.2571 (12) | 2.2970 (11) |
15d | 17c | 15c | |
N1—C5—N3—C11 | -8.59 | -10.072 | -3.66 |
N4—C26—N6—C32 | -4.5 | -3.412 | -0.47 |
C17—C16—C8—C7 | 31.77 | 31.98 | 5.23 |
C30—C29—C37—C42 | 43.24 | 40.09 | -27.63 |
Ring 1–Ring 2 | 7.28 | 8.496 | 1.49 |
Ring 3–Ring 4 | 14.39 | 14.38 | 16.63 |
Acknowledgements
The authors would like to thank the Quimica de Productos Naturales (QPN) research group from the chemistry department at Universidad del Cauca. The results described in this article are part of the research project with ID-5407, financed by Universidad del Cauc. JE is grateful to the Brazilian agencies FAPESP and CNPq. The research group (QPN) from the Universidad del Cauca (Popayán, Colombia) would like to thank Acta Crystallographica Section C: Structural Chemistry for the invitation to participate in this special collection (Crystallography in Latin America: a vibrant community). All the authors declare no competing financial interest.
Funding information
Funding for this research was provided by: Universidad del Cauca (award No. 501100005682); Fundação de Amparo à Pesquisa do Estado de São Paulo (process No. 2017/15850-0 to J. Ellena); Conselho Nacional de Desenvolvimento Científico e Tecnológico (process No. 312505/2021-3 to J. Ellena).
References
Abhijnakrishna, R., Magesh, K., Ayushi, A. & Velmathi, S. (2023). Coord. Chem. Rev. 496, 215380. Web of Science CrossRef Google Scholar
Aroua, S., Todorova, T. K., Hommes, P., Chamoreau, L.-M., Reissig, H.-U., Mougel, V. & Fontecave, M. (2017). Inorg. Chem. 56, 5930–5940. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Carmona-Vargas, C. C., Aristizábal, S. L., Belalcázar, M. I., D'Vries, R. F. & Chaur, M. N. (2019). Inorg. Chim. Acta, 487, 275–280. CAS Google Scholar
Castro Agudelo, B., Ochoa Puentes, C. & Sierra, C. A. (2012). Rev. Colomb. Quim. 41, 167–178. Google Scholar
Clarke, M. J. (2003). Coord. Chem. Rev. 236, 209–233. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elahi, S. M., Raizada, M., Sahu, P. K. & Konar, S. (2021). Chem. A Eur. J. 27, 5858–5870. Web of Science CrossRef CAS Google Scholar
Fajardo Perafan, D. A., Arteaga, D. & Lenis Velasquez, L. A. (2023). Educ. Quim. 34, 63–88. Google Scholar
Fermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. (2014). J. Am. Chem. Soc. 136, 6395–6400. Web of Science CrossRef CAS PubMed Google Scholar
Fu, F., Liu, D., Zhao, L., Li, H., Bai, X., Chen, M., Jiang, Z., Su, P., Zhong, W., Li, Y., Liao, W., He, J. & Wang, P. (2023). Dalton Trans. 52, 3033–3039. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283–316. Web of Science CrossRef PubMed CAS Google Scholar
Gil-Moles, M. & Concepción Gimeno, M. (2024). ChemMedChem, 19, e202300645. PubMed Google Scholar
Husson, J. & Guyard, L. (2018). Molbank, 2018, M1032. CrossRef Google Scholar
Husson, J. & Knorr, M. (2012). Beilstein J. Org. Chem. 8, 379–389. Web of Science CrossRef CAS PubMed Google Scholar
Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434–443. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jantunen, K. C., Scott, B. L., Hay, P. J., Gordon, J. C. & Kiplinger, J. L. (2006). J. Am. Chem. Soc. 128, 6322–6323. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. (1997). Adv. Mater. 9, 904–906. CrossRef CAS Web of Science Google Scholar
Laschuk, N. O., Ahmad, R., Ebralidze, I. I., Poisson, J., Easton, E. B. & Zenkina, O. V. (2020). Appl. Mater. Interfaces, 12, 41749–41757. Web of Science CrossRef CAS Google Scholar
Liu, P., Shi, G. & Chen, X. (2020). Front. Chem. 8, 592055. Web of Science CrossRef PubMed Google Scholar
Liu, S.-L., Chen, Q.-W., Zhang, Z.-W., Chen, Q., Wei, L.-Q. & Lin, N. (2022). J. Solid State Chem. 310, 123045. Web of Science CSD CrossRef Google Scholar
Luo, H.-Y., Jiang, J.-H., Zhang, X.-B., Li, C.-Y., Shen, G.-L. & Yu, R.-Q. (2007). Talanta, 72, 575–581. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Momeni, B. Z., Davarzani, N., Janczak, J., Ma, N. & Abd-El-Aziz, A. S. (2024). Coord. Chem. Rev. 506, 215619. Web of Science CrossRef Google Scholar
Momeni, B. Z. & Heydari, S. (2015). Polyhedron, 97, 94–102. Web of Science CSD CrossRef CAS Google Scholar
Morgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20–30. CrossRef Google Scholar
Mughal, E. U., Mirzaei, M., Sadiq, A., Fatima, S., Naseem, A., Naeem, N., Fatima, N., Kausar, S., Altaf, A. A., Zafar, M. N. & Khan, B. A. (2020). R. Soc. Open Sci. 7, 201208. Web of Science CrossRef PubMed Google Scholar
Mughal, E. U., Obaid, R. J., Sadiq, A., Alsharif, M. A., Naeem, N., Kausar, S., Altaf, A. A., Jassas, R. S., Ahmed, S., Alsantali, R. I. & Ahmed, S. A. (2022). Dyes Pigments, 201, 110248. Web of Science CrossRef Google Scholar
Mukherjee, S., Pal, P., Bar, M. & Baitalik, S. (2018). J. Chem. Sci. 130, 84. Web of Science CrossRef Google Scholar
Musiol, R., Malecki, P., Pacholczyk, M. & Mularski, J. (2022). Exp. Opin. Drug. Discov. 17, 259–271. Web of Science CrossRef CAS Google Scholar
Nakamoto, K., (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, p. 36. Hoboken, NJ: John Wiley & Sons Inc. Google Scholar
Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.-H. & Grätzel, M. (1999). Inorg. Chem. 38, 6298–6305. Web of Science CrossRef PubMed CAS Google Scholar
Ozawa, H., Yamamoto, Y., Kawaguchi, H., Shimizu, R. & Arakawa, H. (2015). Appl. Mater. Interfaces, 7, 3152–3161. Web of Science CrossRef CAS Google Scholar
Panicker, R. R. & Sivaramakrishna, A. (2022). Coord. Chem. Rev. 459, 214426. Web of Science CrossRef Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Romain, S., Duboc, C., Neese, F., Rivière, E., Hanton, L. R., Blackman, A. G., Philouze, C., Leprêtre, J.-C., Deronzier, A. & Collomb, M.-N. (2009). Chem. A Eur. J. 15, 980–988. Web of Science CSD CrossRef CAS Google Scholar
Saccone, D., Magistris, C., Barbero, N., Quagliotto, P., Barolo, C. & Viscardi, G. (2016). Materials, 9, 137. Web of Science CrossRef PubMed Google Scholar
Sasaki, I. (2016). Synthesis, 48, 1974–1992. Web of Science CrossRef CAS Google Scholar
Schubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). Chemistry and Properties of Terpyridine Metal Complexes, in Modern Terpyridine Chemistry, ch. 3, pp. 37–68. Chichester: John Wiley and Sons. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, G., Kapoor, I. P. S., Kumar, D., Singh, U. P. & Goel, N. (2009). Inorg. Chim. Acta, 362, 4091–4098. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, J., Li, R., Li, D., Zhang, Q., Li, S., Zhou, H., Yang, J., Wu, J. & Tian, Y. (2015). Dalton Trans. 44, 1473–1482. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tu, S., Jia, R., Jiang, B., Zhang, J., Zhang, Y., Yao, C. & Ji, S. (2007). Tetrahedron, 63, 381–388. Web of Science CSD CrossRef CAS Google Scholar
Tu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005). Synthesis, 2005, 3045–3050. Web of Science CrossRef Google Scholar
Wang, J. & Hanan, G. S. (2005). Synlett, 2005, 1251–1254. Google Scholar
Winter, A. & Schubert, U. S. (2020). ChemCatChem, 12, 2890–2941. Web of Science CrossRef CAS Google Scholar
Young, D. C., Yang, H., Telfer, S. G. & Kruger, P. E. (2017). Inorg. Chem. 56, 12224–12231. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y., Zhou, P., Liang, B., Huang, L., Zhou, Y. & Ma, Z. (2017). J. Mol. Struct. 1146, 504–511. Web of Science CSD CrossRef CAS Google Scholar
Zheng, Z., Opilik, L., Schiffmann, F., Liu, W., Bergamini, G., Ceroni, P., Lee, L.-T., Schütz, A., Sakamoto, J., Zenobi, R., VandeVondele, J. & Schlüter, A. D. (2014). J. Am. Chem. Soc. 136, 6103–6110. Web of Science CrossRef CAS PubMed Google Scholar
Zou, H.-H., Wei, J.-G., Qin, X.-H., Mo, S.-G., Qin, Q.-P., Liu, Y.-C., Liang, F.-P., Zhang, Y.-L. & Chen, Z.-F. (2016). MedChemComm, 7, 1132–1137. Web of Science CSD CrossRef CAS Google Scholar
Zych, D., Slodek, A., Matussek, M., Filapek, M., Szafraniec-Gorol, G., Maślanka, S., Krompiec, S., Kotowicz, S., Schab-Balcerzak, E., Smolarek, K., Maćkowski, S., Olejnik, M. & Danikiewicz, W. (2017). Dyes Pigments, 146, 331–343. Web of Science CrossRef CAS Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.