crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Mol­ecular structure and selective theophylline com­plexation by conformational change of di­ethyl N,N′-(1,3-phenyl­ene)dicarbamate

crossmark logo

aInstituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán, km 1.7 s/n, Teotitlán de Flores Magón, Oaxaca 68540, Mexico, bFacultad de Ciencias Químicas, Universidad de Colima, km 9, Carretera Colima-Coquimatlán, Coquimatlán, Colima 28400, Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
*Correspondence e-mail: juan_saulo@unca.edu.mx, hector.garcia@unam.mx

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 21 March 2024; accepted 16 April 2024; online 7 May 2024)

The receptor ability of diethyl N,N′-(1,3-phenyl­ene)dicarbamate (1) to form host–guest com­plexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO com­plex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of inter­molecular inter­actions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF mol­ecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the com­plex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO com­plex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.

1. Introduction

Host–guest com­plexes are supra­molecular species formed by two or more mol­ecules or ions stabilized by noncovalent inter­actions (principally hydrogen bonds) involving mol­ecular recognition between the functional groups of both. A host (or receptor) is a mol­ecule with a cavity suitable for guest binding. The design of mol­ecular receptors involves an understanding of the inter­molecular inter­actions using building blocks with functional groups that allow the binding of specific guests (or substrates). The study of host–guest com­plexes in solution and the solid state has allowed its application in various fields, such as drug delivery systems (Wankar et al., 2020[Wankar, J., Kotla, N. G., Gera, S., Rasala, S., Pandit, A. & Rochev, Y. A. (2020). Adv. Funct. Mater. 30, 1909049.]), mol­ecular diagnostics (Yu & Chen, 2019[Yu, G. & Chen, X. (2019). Theranostics, 9, 3041-3074.]), biomaterials (Webber et al., 2016[Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. (2016). Nat. Mater. 15, 13-26.]), artificial mol­ecular machines (Erbas-Cakmak et al., 2015[Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. (2015). Chem. Rev. 115, 10081-10206.]), sensors (Kim et al., 2012[Kim, H. J., Lee, M. H., Mutihac, L., Vicens, J. & Kim, J. S. (2012). Chem. Soc. Rev. 41, 1173-1190.]) and biosensors (Lim et al., 2021[Lim, S. Y. K., Kuang, Y. & Ardoña, H. A. M. (2021). Front. Chem. 9, 723111.]).

Mol­ecules with the amide group [R′–NH–(C=O)–R] have been used in the design of mol­ecular receptors due to their ability to act as a donor and acceptor of hydrogen bonds in the formation of supra­molecular com­plexes. These amide receptors have been exploited in a cyclic and acyclic manner using functionalities such as carboxamides (Bondy & Loeb, 2003[Bondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77-99.]), ureas (dos Santos et al., 2008[Santos, C. M. G. dos, McCabe, T., Watson, G. W., Kruger, P. E. & Gunnlaugsson, T. (2008). J. Org. Chem. 73, 9235-9244.]), oxalamates (González-Gon­zález et al., 2014[González-González, J. S., Martínez-Martínez, F. J., García-Báez, E. V., Cruz, A., Morín-Sánchez, L. M., Rojas-Lima, S. & Padilla-Martínez, I. I. (2014). Cryst. Growth Des. 14, 628-642.]), amino acids (Kubik & Mungalpara, 2017[Kubik, S. & Mungalpara, D. (2017). Com­prehensive Supramolecular Chemistry II, edited by G. W. Gokel & J. L. Atwood, pp. 293-308. Amsterdam: Elsevier.]) and carbamates (Saucedo-Balderas et al., 2015[Saucedo-Balderas, M. M., Delgado-Alfaro, R. A., Martínez-Martínez, F. J., Ortegón-Reyna, D., Bernabé-Pineda, M., Zúñiga-Lemus, O. & González-González, J. S. (2015). J. Braz. Chem. Soc. 26, 396-402.]), which have been studied in the formation of supra­molecular com­plexes with anions, polyphenols, amino acids and pharmaceutical ingredients (Siering et al., 2006[Siering, C., Beermann, B. & Waldvogel, S. R. (2006). Supramol. Chem. 18, 23-27.]).

Phenyl carbamate is an organic group used in drug design with biological applications, such as acetyl­cholinesterase inhibitors for the treatment of Alzheimer's disease (Colović et al., 2013[Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M. & Vasić, V. M. (2013). Curr. Neuropharmacol. 11, 315-335.]; Krátký et al., 2016[Krátký, M., Štěpánková, Š., Vorčáková, K., Švarcová, M. & Vinšová, J. (2016). Molecules, 21, 191.]), anti­parasitic agents (Angeles et al., 2000[Angeles, E., Martínez, P., Keller, J., Martínez, R., Rubio, M. G., Ramírez, G., Castillo, R., López-Castañares, R. & Jiménez, E. (2000). J. Mol. Struct. Theochem, 504, 141-170.]; Jiménez-Cardoso et al., 2004[Jiménez-Cardoso, E., Flores-Luna, A. & Pérez-Urizar, J. (2004). Acta Trop. 92, 237-244.]) and anti­convulsants (Matošević & Bosak, 2020[Matošević, A. & Bosak, A. (2020). Arh. Hig. Rada Toksikol. 71, 285-299.]). In organic synthesis they are used as precursors of iso­cyanates (Baba et al., 2005[Baba, T., Kobayashi, A., Kawanami, Y., Inazu, K., Ishikawa, A., Echizenn, T., Murai, K., Aso, S. & Inomata, M. (2005). Green Chem. 7, 159-165.]; Sun et al., 2013[Sun, S., Liang, N., An, H., Zhao, X., Wang, G. & Wang, Y. (2013). Ind. Eng. Chem. Res. 52, 7684-7689.]) and in the chiral separation of anti­fungal agents (Ali et al., 2021[Ali, I., Boumoua, N., Sekkoum, K., Belboukhari, N., Ghfar, A., Ouladsmane, M. & AlJumah, B. A. (2021). J. Chromatogr. B, 1175, 122738.]).

The chemical structure of phenyl carbamates includes carbonyl (C=O) and amino (N—H) groups, which can form inter- and intramol­ecular hydrogen-bond inter­actions. Also π-inter­actions can be formed by the phenyl ring (Matošević & Bosak, 2020[Matošević, A. & Bosak, A. (2020). Arh. Hig. Rada Toksikol. 71, 285-299.]). Supra­molecular studies of phenyl carbamates (Shahwar et al., 2009[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.]; AaminaNaaz et al., 2017[AaminaNaaz, Y., Sathiyaraj, S., Kalaimani, S., Nasar, A. S. & SubbiahPandi, A. (2017). Acta Cryst. E73, 849-852.]) are focused on the self-assembly of crystal structures, revealing that the N—H⋯O=C hydrogen-bond inter­action drives the supra­molecular architecture in the solid state, leading to the formation of supra­molecular chains in phenyl carbamate derivatives, and supra­molecular columns in phenyl­enebis-carbamates (García-Báez et al., 2004[García-Báez, E. V., López-Romero, B. A., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2004). Acta Cryst. E60, o1488-o1490.]; Lu et al., 2005a[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L.-N. (2005a). Acta Cryst. E61, o3412-o3413.],b[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L. (2005b). Acta Cryst. E61, o3874-o3875.]).

Theophylline (bronchodilator) and caffeine (nervous system stimulant) are pharmacologically active mol­ecules (Boushey, 2012[Boushey, H. A. (2012). Basic & Clinical Pharmacology, 12th ed., edited by B. G. Katzung, S. B. Masters, A. J. Trevor, p. 345. New York: McGraw-Hill.]) that possess functional groups (C=O and N—H in only TEO) capable of forming noncovalent inter­actions which have been applied in the development of mol­ecular receptors for the mol­ecular recognition of TEO and CAF due to its potential biomedical and industrial applications (Sahoo, 2015[Sahoo, P. (2015). Bioorg. Chem. 58, 26-47.]).

The formation of supra­molecular com­plexes has allowed the identification and qu­anti­fication of com­pounds of pharmaceutical inter­est. To evaluate the ability of diethyl N,N′-(1,3-phenyl­ene)dicarbamate (1) as a receptor to form host–guest com­plexes, we report here the mechanochemical com­plexation of 1 with theophylline (TEO) and caffeine (CAF) (Scheme 1). The obtained 1–TEO com­plex was prepared by solvent-assisted grinding and was characterized by IR spectroscopy (IR), powder X-ray diffraction (PXRD) and solid-state 13C nuclear magnetic resonance (NMR). The mol­ecular structure was obtained by single-crystal X-ray diffraction.

2. Experimental

2.1. com­pounds

1,3-Phenyl­enedi­amine, ethyl chloro­formate, tri­ethyl­amine, tetra­hydro­furan (THF) anhydrous, dimethyl sulfoxide (DMSO) anhydrous and theophylline anhydrous were purchased from Aldrich. Chloro­form, di­chloro­methane, me­tha­nol and aceto­nitrile of ACS grade were purchased from Química Mayer. Caffeine was purchased from BASF. All the reagents were used as received.

2.2. Synthesis of diethyl N,N′-(1,3-phenyl­ene)dicarbamate, 1

A mixture of 1,3-phenyl­enedi­amine (3.0 g, 27.7 mmol) and tri­ethyl­amine (61.0 mmol, 8.5 ml) in tetra­hydro­furan (THF, 250 ml) was placed in an ice bath. After 10 min of stirring, ethyl chloro­formate (5.3 ml, 61.0 mmol) was added dropwise. The mixture was stirred for 24 h at room temperature and then filtered to obtain a THF solution which was evaporated to dryness. The obtained solid was solubilized in chloro­form and filtered to separate the insoluble solid. The chloro­form solution was evaporated to obtain a solid corresponding to com­pound 1.

[Scheme 1]

Analytical data for 1: yield 53.17%; white solid; m.p. 146–148 °C; IR (ATR): ν (cm−1) 3283 (N—H), 1704, 1688 (C=O). 1H NMR (DMSO-d6, 400 MHz, δ ppm): 9.55 (s, 2H, N–H7), 7.70 (s, 1H, H2), 7.07 (dd, 2H, J = 7.0, 2.2 Hz, H4, H6), 7.13 (t, 1H, J = 6.9 Hz, H5). 13C NMR (DMSO-d6, 100 MHz, δ ppm): 153.9 (C8), 140.0 (C1, C3), 129.1 (C2), 113.1 (C4, C6), 60.4 (C10), 14.9 (C11). Analysis calculated (%) for C12H16N2O4: C 57.13, H 6.93, N 11.10; found: C 56.82, H 6.39, N 11.04.

2.3. Mechanochemical synthesis and crystallization

A mixture in a 1:1 molar ratio of 1 (0.30 g, 1.18 mmol) and TEO (0.21 g, 1.18 mmol) was placed in a porcelain mortar. Before starting the grinding with a pestle, 0.5 ml of di­chloro­methane was added and the mixture was ground for 3 min. At the end of the grinding time, the di­chloro­methane was evaporated and the ground powder was collected in the centre of the mortar. The cycle of adding 0.5 ml of di­chloro­methane and grinding for 3 min was repeated three more times until 12 min of grinding time was com­pleted. After 12 min of grinding time, the obtained ground powder was stored in a glass vial. 1–CAF ground powder was obtained by grinding 1 (0.30 g, 1.18 mmol) and CAF (0.22 g, 1.18 mmol) under the same conditions as described for the 1–TEO mixture.

Solutions of 1 and 1–TEO were prepared by dissolving the powder of 1 in DMSO and the ground powder of 1–TEO in a 1:1 methanol/aceto­nitrile mixture. Single crystals were ob­tained after evaporation of the solvent.

2.4. Instrumentation

The IR spectra of solids 1, TEO, 1–TEO ground powder, 1–TEO single crystal, CAF and 1–CAF ground powder were obtained in a Bruker Tensor-27 spectrophotometer equipped with an attenuated total reflectance (ATR) system (16 scans, spectral range 600–4000 cm−1, resolution 4 cm−1).

Powder X-ray diffraction patterns of solids 1, TEO, polycrystalline 1–TEO ground powder, CAF and 1–CAF polycrystalline ground powder were collected on a PANalytical X′pert Pro diffractometer with Cu Kα1 radiation (λ = 1.5405 Å, 45 kV, 40 mA) from 5.0 to 50.0° in 2θ.

Solution 1H and 13C NMR spectra of 1 were recorded on a Bruker 400 Avance III spectrometer (1H = 400 MHz and 13C = 100 MHz) at room temperature (25 °C) using DMSO-d6 as solvent and SiMe4 as the inter­nal reference (the NMR spectra of 1 are shown in Figs. S1 and S2 in the supporting information). Solid-state cross-polarization/magic angle spinning (CP/MAS) 13C spectra of 1, TEO and the polycrystalline ground powder of 1–TEO were recorded on a Bruker 400 Avance III (13C = 100 MHz) instrument at 25 °C, using 4 mm bullet-type Kel-F zirconia rotors with a spinning rate of 8 kHz and an acquisition time of 32 ms. The recycle time of the pulse was 3 s. An adamantane signal was used as the external reference (δ = 38.48 ppm). Processing of the NMR spectra was performed with MestReNova software (Version 14.2.0-26256; Mestrelab Research, 2021[Mestrelab Research (2021). Mnova Structure Elucidation. Mestrelab Research, Santiago de Com­postela, Spain.]).

Elemental analysis of 1 was performed using a vario MICRO Cube CHN(S) analyzer (Fig. S3 in the supporting information).

The melting point (m.p.) of 1 was measured using an Electrothermal IA9300 apparatus and is uncorrected.

2.5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of the amine group (H—N) were located in a difference map and refined isotropically with Uiso(H) = 1.2Ueq(N) for H—N hydrogens. H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene groups, and 1.5Ueq(C) for methyl groups.

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Agilent Xcalibur Atlas Gemini diffractometer. The absorption correction was analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]). H atoms were treated by a mixture of independent and constrained refinement.

  1 1–TEO
Crystal data
Chemical formula C12H16N2O4 C12H16N2O4·C7H8N4O2
Mr 252.27 432.44
Crystal system, space group Tetragonal, P41212 Triclinic, P[\overline{1}]
Temperature (K) 298 130
a, b, c (Å) 11.1312 (13), 11.1312 (13), 10.894 (3) 7.5284 (14), 11.2362 (18), 12.2606 (12)
α, β, γ (°) 90, 90, 90 85.742 (10), 76.887 (12), 79.803 (15)
V3) 1349.8 (5) 993.5 (3)
Z 4 2
μ (mm−1) 0.09 0.11
Crystal size (mm) 0.41 × 0.33 × 0.3 0.38 × 0.12 × 0.07
 
Data collection
Tmin, Tmax 0.972, 0.976 0.976, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 4765, 1620, 1153 11140, 4780, 3041
Rint 0.027 0.051
(sin θ/λ)max−1) 0.693 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.05 0.062, 0.157, 1.05
No. of reflections 1620 4780
No. of parameters 87 290
Δρmax, Δρmin (e Å−3) 0.12, −0.14 0.29, −0.38
Absolute structure Flack x determined using 343 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.9 (9)
Com­puter programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

3.1. IR spectroscopy

The IR spectra of 1, TEO and CAF (González-González et al., 2017[González-González, J. S., Zúñiga-Lemus, O. & Hernández-Galindo, M. C. (2017). IOSR J. Pharm. 7, 28-30.]) were com­pared with the IR spectra of the polycrystalline ground powders (1–TEO and 1–CAF) and the single crystal of 1–TEO (the IR frequencies are listed in Table 2[link]). The formation of the 1–TEO powder com­plex was evidenced by the shift of the N—H and C=O stretching bands in the IR spectrum of the 1–TEO ground powder with respect to the starting com­pounds, suggesting the formation of inter­molecular N—H⋯O=C hydrogen bonds (Fig. 1[link]). On the other hand, the IR spectrum of the 1–CAF ground powder did not show shifts with respect to the starting materials, suggesting that the formation of the 1–CAF com­plex was not favored under mechanochemical conditions.

Table 2
IR frequencies (cm−1)

Com­pound N—H ΔN—H C=O ΔC=O
1 3283 1704, 1688
TEO 3120 1705, 1662
1–TEOground 3312, 3293, (3169) 29, 10, (49) 1700, (1638) (−5), 12, −4*, (−24)
1–TEOcryst 3309, 3292, (3162) 26, 9, (42) 1698, (1638) (−7), 10, −6, (−24)
CAF 1694, 1645
1–CAFground 3284 1* 1705, 1692, (1658) 1*, 4*, (13)**
Notes: (*) under spectral resolution; (**) the apparent shift of the band is due the change of the curvedness of the C=O band in the IR spectra. Values in brackets belong to the IR frequencies of TEO or CAF.
[Figure 1]
Figure 1
The IR spectra of (a) 1, (b) TEO, (c) the polycrystalline powder of 1–TEO after 12 min of grinding, (d) a single crystal of 1–TEO, (e) CAF and (f) the ground powder of 1–CAF.

The IR spectrum of the 1–TEO powder com­plex and the IR spectrum of the single crystal were similar, indicating a structural homogeneity between the powder and the single crystal. The IR spectrum of 1 showed a single N—H band at 3283 cm−1. After the formation of the com­plex, the N—H band was red-shifted and split (suggesting asymmetry in the mol­ecule) into two bands with values of 3312 and 3293 cm−1 [Δν(N—H) = 10 and 29 cm−1, respectively]. The N—H band of TEO was also red-shifted as a consequence of the com­plex formation from 3120 to 3169 cm−1 [Δν(N—H) = 49 cm−1].

Concerning the carbonyl frequencies, com­pound 1 showed two bands at 1704 and 1688 cm−1, with Δν(C=O) = 12 and −4 cm−1. Theophylline showed Δν(C=O) = −5 and −24 cm−1.

The grinding process reorders the hydrogen-bonding patterns of the com­pounds involved in the formation of the com­plex shifting the C=O and N—H bands. Com­pound 1 is self-assembled by N—H⋯O=C hydrogen bonds [C(4) homosynthon] in the free form (see Single-crystal X-ray diffraction, §3.4[link]). After the formation of the 1–TEO com­plex, the N—H⋯O=C hydrogen-bond (heterosynthon) pattern is maintained; this explains the smaller values of Δν(N—H) and Δν(C=O) com­pared with the starting 1. On the other hand, in the free form of TEO, the mol­ecules are inter­linked by N—H⋯N(imidazole) hydrogen bonds and π-inter­actions (Larkin et al., 2014[Larkin, P. J., Dabros, M., Sarsfield, B., Chan, E., Carriere, J. T. & Smith, B. C. (2014). Appl. Spectrosc. 68, 758-776.]) (Fig. 2[link]). The rearrangement of these hydrogen-bond patterns to form a new hydrogen-bond pattern results in greater Δν(N—H) and Δν(C=O) values of TEO with respect to the Δν(N—H) and Δν(C=O) values of 1.

[Figure 2]
Figure 2
Hydrogen-bond patterns in free TEO.

3.2. Powder X-ray diffraction

The powder X-ray diffraction patterns of the polycrystalline powder of 1, solid TEO and CAF, and the polycrystalline powder of 1–TEO and 1–CAF were obtained. The solid form of TEO and CAF were identified as form II (Liu et al., 2013[Liu, C., Dang, L., Tong, Y. & Wei, H. (2013). Ind. Eng. Chem. Res. 52, 14979-14983.]; Mazel et al., 2011[Mazel, V., Delplace, C., Busignies, V., Faivre, V., Tchoreloff, P. & Yagoubi, N. (2011). Drug Dev. Ind. Pharm. 37, 832-840.]) of each com­pound from the experimental powder diffraction pattern. The recorded powder pattern of 1 was similar to that simulated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) (Fig. S4), indicating structural homogeneity between the polycrystalline powder and the single crystal. The formation of the polycrystalline com­plex was evidenced because the PXRD diffraction pattern of the 1–TEO polycrystalline ground powder was different com­pared with those of the starting materials (Fig. 3[link]), showing new diffraction peaks at 2θ = 7.7, 14.8, 16.7 and 23.4°, and was similar to that simulated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The absence of the signals at 2θ = 19.6 and 12.5° of starting 1 and TEO, respectively, in the powder pattern of 1–TEO indicates the com­plete transformation of 1 and TEO to form the com­plex (Fig. 3[link]). The PXRD pattern of 1–CAF showed a combined pattern of 1 and CAF as a physical mixture [Fig. 3[link](f)] thus showing that the 1–CAF com­plex was not formed.

[Figure 3]
Figure 3
The powder X-ray diffractograms of (a) 1, (b) TEO, (c) 1–TEO ground powder, (d) the simulated pattern of 1–TEO, (e) CAF and (f) 1–CAF ground powder.

3.3. Solid-state 13C NMR

The solid-state 13C NMR spectra of 1, TEO and the 1–TEO powder com­plex were recorded (Fig. 4[link]) and the 13C NMR assignments are listed in Table 3[link]. Most of the signals in the 13C NMR spectrum of the 1–TEO com­plex appeared shifted with respect to the starting com­pounds as a result of the change in the chemical environment due to the rearrangement of the hydrogen-bond patterns. The C=O signals were shifted from 155.9 to 154.5 ppm in 1 and from 150.9 to 151.9 ppm in TEO, indicating the formation of C=O⋯H—N hydrogen bonds between 1 and TEO. It worthy of mention that in the solid-state 13C NMR spectrum of 1, only half of the signals were observed, indicating the presence of a C2 symmetry axis, which is consistent with the endo–endo conformation of 1, as confirmed by single-crystal diffraction. Meanwhile, in the solid-state 13C NMR spectrum of the 1–TEO com­plex, the signals of C10 and C11 from the ethyl group, and also the aromatic C4 and C6 signals, appeared split (Table 3[link]), suggesting two crystallographically different ethyl groups originated from the adoption of the exo–endo conformation after the formation of the 1–TEO com­plex.

Table 3
Solid-state 13C chemical shifts of 1, TEO and 1–TEO (δ = ppm)

  C1,C3 C2 C4,C6 C8 C9 C10 Ca Cb Cc Cd Ce Cf,g
1 140.1 130.4 114.6 155.9 61.2 12.8
TEO 154.9 105.8 140.5 146.3 150.9 30.0
1–TEO 140.7 129.9 111.9, 110.3 154.5 64.1, 62.4 12.6, 11.6 154.5 106.8 140.7 147.6 151.9 29.9
[Figure 4]
Figure 4
13C NMR spectra of (a) 1, (b) TEO and (c) the 1–TEO com­plex.

3.4. Single-crystal X-ray diffraction

The carbamate group in phenyl carbamates can adopt the syn or anti conformation according to the H7—N7—C8—O8 torsion angle [Fig. 5[link](a)]. A search of crystal structures in the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) under the `phenyl­carbamate' criteria, showed 98 results where the carbamate group adopts the anti conformation, and only one where the carbamate group adopts the syn conformation, i.e. the crystal structure of diisopropyl N,N′-(4-methyl-m-phenyl­ene)dicarbamate (CSD refcode JAYBUH; Lu et al., 2005b[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L. (2005b). Acta Cryst. E61, o3874-o3875.]). Taking into consideration the cavity formed by the ethyl carbamate groups with respect to the benzene ring (torsion angle C6—C1—N7—C8), com­pound 1 can adopt the endo–endo, exo–endo and exo–exo conformations [Fig. 5[link](b)]. Four examples of crystal structures of 1,3-phenyl­enedicarbamates have been reported (Fig. S5): two adopt the endo–endo conformation [refcodes GAVGEQ (Lu et al., 2005a[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L.-N. (2005a). Acta Cryst. E61, o3412-o3413.]) and JAYBUH (Lu et al., 2005b[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L. (2005b). Acta Cryst. E61, o3874-o3875.])] and two adopt the exo–exo conformation [refcodes PIRQUG (Piper et al., 2023[Piper, S. L., Forsyth, C. M., Kar, M., O'Dell, L. A., Ma, J., Pringle, J. M., MacFarlane, D. R. & Matuszek, K. (2023). Mater. Adv. 4, 4482-4493.]) and OWOYIL (Alegre-Requena et al., 2020[Alegre-Requena, J. V., Herrera, R. P. & Díaz, D. D. (2020). ChemPlusChem, 85, 2372-2375.])].

[Figure 5]
Figure 5
(a) Possible conformations of the carbamate group and (b) possible conformations of 1.

Com­pound 1 crystallized in the tetra­gonal space group P41212, with the mol­ecule lying across a twofold axis having C2 symmetry; thus, only one half of the mol­ecule is present in the asymmetric unit. The crystal structure of 1 [Fig. 6[link] (a)] adopts the endo–endo conformation [with the C6—C1—N7—C8 torsion angle = −14.5 (4)°], reinforced by the formation of the C=O⋯H⋯O=C three-centred intra­molecular hydrogen bonds (C6—H6⋯O8 = 2.38 Å), depicting two adjacent S(6) motifs (the hydrogen-bond details and symmetry codes for 1 are given in Table 4[link]). The ethyl carbamate group is twisted out from the plane of the benzene ring by 2.2 (4)° (C1—N7—C8—O8 torsion angle). The carbamate group adopts the anti conformation, with the H7—N7—C8—O8 torsion angle being 175.6 (2)°. Each mol­ecule of 1 is linked with four mol­ecules by N7—H7⋯O8 (1.97 Å) hydrogen bonding. This inter­action is extended along the ab plane to form a bidimensional supra­molecular arrangement depicting C(4) hydrogen-bond motifs [Fig. 6[link] (b)], as observed in GAVGEQ (Lu et al., 2005a[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L.-N. (2005a). Acta Cryst. E61, o3412-o3413.]), JAYBUH (Lu et al., 2005b[Lu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L. (2005b). Acta Cryst. E61, o3874-o3875.]) and PIRQUG (Piper et al., 2023[Piper, S. L., Forsyth, C. M., Kar, M., O'Dell, L. A., Ma, J., Pringle, J. M., MacFarlane, D. R. & Matuszek, K. (2023). Mater. Adv. 4, 4482-4493.]).

Table 4
Hydrogen-bond geometry (Å, °) for 1 and 1–TEO

  D—H⋯A D—H H⋯A DA D—H⋯A
1 N7—H7⋯O8i 0.93 (3) 1.97 (3) 2.897 (3) 176 (3)
  C6—H6⋯O8 0.93 2.38 2.950 (3) 119
  C6—H6⋯O8ii 0.93 2.38 2.950 (3) 119
1–TEO N7—H7⋯O6iii 0.91 (3) 2.02 (3) 2.920 (3) 168 (2)
  N7—H7C⋯O10iii 0.88 1.90 2.770 (3) 172
  N27—H27⋯O2Civ 0.94 (2) 1.96 (2) 2.877 (2) 167 (2)
  C2—H2C⋯O6Ciii 0.95 2.52 3.306 (3) 140
  C1C—H1CB⋯O9iii 0.98 2.49 3.399 (3) 153
  C4—H4C⋯O2Civ 0.95 2.44 3.219 (3) 139
  C8—H8C⋯O8v 0.95 2.48 3.303 (3) 145
  C1C—H1CC⋯O10vi 0.98 2.57 3.400 (3) 142
  C2—H2⋯O10 0.95 2.23 2.849 (3) 122
  C6—H6⋯O8 0.95 2.29 2.895 (3) 121
Symmetry codes: (i) y + [{1\over 2}], −x + [{1\over 2}], z − [{1\over 4}]; (ii) y, x, −z + 1: (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z; (v) −x, −y + 2, −z + 1; (vi) x, y, z.
[Figure 6]
Figure 6
(a) The mol­ecular structure of 1, with displacement ellipsoids drawn at the 30% probability level, showing the inter­molecular inter­actions. (b) The supra­molecular arrangement of 1 formed by N—H⋯O=C hydrogen bonds. Dashed lines represent hydrogen bonds. Some parts of the mol­ecules have been omitted for clarity. Dashed lines represent hydrogen bonds.

The 1–TEO com­plex crystallized in the triclinic space group P[\overline{1}], the discrete unit consist of one mol­ecule of 1 and one mol­ecule of TEO [Fig. 7[link] (a)]. Receptor 1 adopts the exo–endo conformation, with torsion angles C2—C1—N7—C8 = 175.6 (2)° and C2—C3—N27—C28 = 2.8 (4)°, and the carbonyl group adopts the syn conformation, with torsion angles H7—N7—C8—O8 = 177.6 (2)° and H27—N27—C28—O10 = 177.9 (2)°.

[Figure 7]
Figure 7
(a) The asymmetric unit, with displacement ellipsoids at the 30% probability level, of 1–TEO, showing the atom numbering. (b) The supra­molecular sheet of 1–TEO formed by the N27—H27⋯O2Civ and C8C—H8C⋯O8v inter­actions. (c) ππ and C—H⋯π inter­actions found in 1–TEO. Some parts of the mol­ecules have been omitted for clarity. Dashed lines represent hydrogen bonds or noncovalent inter­actions.

The pseudo­amide fragment of the TEO mol­ecule (O6C—C6C—C5C—N7C—H7C) is involved in the formation of TEO cocrystals with amidic coformers (Eddleston et al., 2016[Eddleston, M. D., Arhangelskis, M., Fábián, L., Tizzard, G. J., Coles, S. J. & Jones, W. (2016). Cryst. Growth Des. 16, 51-58.]; Markad & Mandal, 2017[Markad, D. & Mandal, S. K. (2017). CrystEngComm, 19, 7112-7124.]). When the coformer is a primary or secondary amide group, the R22(9) amide-pseudo­amide synthon is formed [Fig. 8[link](a)], meanwhile the R22(10) pseudo­amide–pseudo­amide synthon consists of the self-assembly of two TEO mol­ecules [Fig. 8[link](b)], where the coformer is hydrogen bonded to TEO by the the urea carbonyl or the imidazole N atom. Receptor 1 and TEO are inter­linked by inter­molecular N—H⋯O=C hydrogen bonds [N7—H7⋯O6C = 2.02 (3) Å and N7C—H7C⋯O10 = 1.90 Å] depicting a new synthon, i.e. the R22(13) `di­amide–pseudo­amide' synthon [Fig. 8[link](c)] [this motif can be fragmented in two adjacent R21(6) and R22(11) motifs, including the C2—H2⋯O6C inter­action] [Fig. 7[link](b)]. The com­plementary C1C—H1CB⋯O9 (2.49 Å) inter­action, depicting an R22(11) motif, is also involved in the inter­connection of 1 and TEO. The angle between the planes formed by the benzene ring and the TEO mol­ecule is 9.42°, indicating that 1 and TEO are almost coplanar and the good fit of TEO into the cavity formed by the ethyl carbamate groups. The intra­molecular C2—H2⋯O10 S(6) inter­action becomes shorter (2.22 Å) com­pared with starting 1 (2.38 Å). The observed inter­molecular inter­actions between 1–TEO units, i.e. the N27—H27⋯O2C = 1.96 (2) Å hydrogen bond, and the C4—H4⋯O2C = 2.44 Å [ R21(6) motif] and C8—H8C⋯O8C = 2.48 Å inter­actions, give rise to a bidimensional supra­molecular sheet extended along the bc plane [Fig. 7[link](b)]. Supra­molecular sheets are connected by π-stacking of TEO (Cg2⋯Cg3 = 3.35 Å; Cg2 and Cg3 are the centroids of the N7C/C5C/C4C/N9C/C8C and N1C/C2C/N3C/C4C/C5C/C6C rings, respectively) and C—H⋯π inter­actions (C3—H3CBCg1 = 2.87 Å; Cg1 is the centroid of the C1/C2/C3/C4/C5/C6 ring) [Fig. 7[link](c)].

[Figure 8]
Figure 8
The observed synthons in TEO cocrystals.

3.5. Conformational change of 1 and selective binding of TEO

The mol­ecular structure of starting 1 adopts the endo–endo conformation, showing a single N—H band in the IR spectrum and half of the signals in the solid-state 13C NMR spectrum. The formation of the 1–TEO com­plex by mechanochemical grinding involves the conformational change of 1 from the endo–endo conformation to the exo–endo conformation (showing two N—H bands in the IR spectrum and the split of the ethyl signals in the solid-state 13C NMR spectrum of 1–TEO), while the grinding of 1 and CAF under the same conditions used to obtain 1–TEO did not result in the formation of the 1–CAF com­plex.

In the endo–endo conformation, a potential carbon­yl–carbonyl repulsive effect avoids the com­plex formation by adopting a `locked' state (Fig. 9[link]). The formation of the 1–TEO com­plex implies that grinding provides the energy necessary for the rotation of one of the ethyl carbamate groups to adopt the exo–endo conformation of the `unlocked' state (Fig. 9[link]) [conformational change after com­plexation from the exo to the endo conformation (González-González et al., 2014[González-González, J. S., Martínez-Martínez, F. J., García-Báez, E. V., Cruz, A., Morín-Sánchez, L. M., Rojas-Lima, S. & Padilla-Martínez, I. I. (2014). Cryst. Growth Des. 14, 628-642.]), and from the endo to the exo conformation (González-González et al., 2015[González-González, J. S., Zúñiga-Lemus, O., Martínez-Martínez, F. J., Gonzalez, J., García-Báez, E. V. & Padilla-Martínez, I. I. (2015). J. Chem. Crystallogr. 45, 244-250.]) is also observed in the formation of mol­ecular com­plexes of diethyl N,N′-1,3-phenyl­enedioxalamates with 1,3-benzene­diols], allowing the formation of inter­molecular hydrogen bonds between 1 and TEO. On the other hand, the IR spectrum and the PXRD pattern of the 1–CAF ground mixture indicated that the 1–CAF com­plex was not formed and receptor 1 remains in the `locked' state (endo–endo conformation).

[Figure 9]
Figure 9
Conformational change of 1 in the formation of the 1–TEO com­plex and the lack of conformational change of 1 in the 1–CAF ground mixture.

To obtain information about the possible mechanism of the conformational change of 1 to form the 1–TEO com­plex and the preference of receptor 1 to link TEO over CAF, firstly, the mechanochemical grinding of 1 (in the endo–endo form), under the same conditions to obtain the 1–TEO com­plex (12 min of grinding time adding di­chloro­methane), was performed. The IR spectrum of 1 after 12 min of grinding time remained unchanged (Fig. S6 in the supporting information), indicating that the mechanochemical energy of the grinding is not able to drive the conformational change of free 1. A second strategy was to perform the mechanochemical grinding of 1 and TEO without solvent to retard the formation of the com­plex, and com­pare the IR spectra of the obtained ground powder with the IR spectrum of the physical mixture and with the IR spectrum of the 1–TEO single crystal (Fig. 10[link]). The IR spectrum of the physical mixture showed the N—H bands at 3283 cm−1 for 1 and at 3119 cm−1 for TEO; meanwhile, the C=O bands were observed at 1704 and 1688 cm−1 for 1, and at 1665 for TEO. After 3 min of `dry' grinding, the obtained IR spectrum showed two N—H bands: a shoulder band at 3314 cm−1 (N—Ha) and the principal N—H band of 1 at 3287 cm−1 (N—Hb). The presence of two N—H bands of 1 (as in the IR spectrum of the 1–TEO single crystal) indicates the asymmetry of the mol­ecule by the conformational change of one of the ethyl carbamate fragments, adopting the exo–endo conformation. The carbonyl region showed three bands: (i) a band at 1704 cm−1 (C=Oa) belonging to 1; (ii) a band at 1667 cm−1 (C=Ob) for TEO; and (iii) a band at 1640 cm−1 (C=Oc) which is present in the 1–TEO com­plex. Here, the C=Ob band is slightly more intense than C=Oc, indicating that after 3 min of grinding, part of TEO remains free, and the com­plex has started to be formed. The IR spectra obtained after 6, 9, 12 and 15 min of `dry' grinding showed the following: the intensity of the N—Ha band increased as a signal of the formation of the com­plex and the N—Hb band was red shifted; the intensity of the C=Oa band remained unchanged. As the 1–TEO com­plex was formed, the intensity of the C=Ob band of TEO at 1668 cm−1 decreased; meanwhile, the intensity of the C=Oc band increased. This indicates that the presence of TEO and the mechanochemical grinding induces the rotation of the ethyl carbamate group of 1 and `unlocks' the endo–endo conformation to allow the formation of inter­molecular inter­actions between 1 and TEO to form the com­plex (Fig. 9[link]). The formation of the (TEO)N—H⋯O=C(1) hydrogen-bond inter­action acts as the `key' that unlocks the endo–endo conformation and then the ethyl carbamate group rotates (to the `unlocked' state) to allow the formation of the rest of the inter­molecular inter­actions and form the di­amide–pseudo­amide R22(13) synthon in the exo–endo conformation (Fig. 9[link]). On the other hand, CAF is unable to form the N—H⋯O=C `key' hydrogen bond because it possesses an N—CH3 group instead of the N—H group in TEO, avoiding the formation of the 1–CAF com­plex in the same way as 1–TEO (almost coplanar with respect to the plane of the benzene ring). It is important to mention that in the urea–CAF cocrystal and the host–guest com­plexes of CAF with tri­phenyl­ene ketal triurea-based receptors, CAF acts as a hydrogen-bond acceptor, forming N—H⋯O⋯H—N and N—H⋯N⋯H—N hydrogen bonds where the urea group is positioned perpendicular with respect to the plane of the CAF mol­ecule, unlike the 1–TEO com­plex where 1 and TEO are coplanar (MacFhionnghaile et al., 2020[MacFhionnghaile, P., Crowley, C. M., McArdle, P. & Erxleben, A. (2020). Cryst. Growth Des. 20, 736-745.]; Fiammengo et al., 2003[Fiammengo, R., Crego-Calama, M., Timmerman, P. & Reinhoudt, D. N. (2003). Chem. A Eur. J. 9, 784-792.]; Schopohl et al., 2005[Schopohl, M. C., Faust, A., Mirk, D., Fröhlich, R., Kataeva, O. & Waldvogel, S. R. (2005). Eur. J. Org. Chem. 2005, 2987-2999.]).

[Figure 10]
Figure 10
Partial IR spectra of (a) the physical mixture of 1 and TEO. Polycrystalline powder of 1–TEO after (b) 3 min of grinding, (c) 6 min of grinding, (d) 9 min of grinding, (e) 12 min of grinding and (f) 15 min of grinding. (g) The IR spectrum of the single crystal of 1–TEO.

4. Conclusions

The ability of receptor 1 to form host–guest com­plexes with TEO and CAF by mechanochemistry was evaluated, resulting only in the formation of the 1–TEO com­plex involving a conformational change of 1, in which one of the ethyl carbamate groups changes from the endo conformation to the exo conformation to allow the formation of noncovalent inter­actions between 1 and TEO. An IR spectroscopy study revealed that the (TEO)N—H⋯O=C(1) hydrogen bond triggers the rotation of the ethyl carbamate group from the endo conformation to the exo conformation. The formation of the 1–CAF com­plex was not possible because CAF possesses an N—CH3 group instead of the N—H group in TEO, thus avoiding the formation of the N—H⋯O=C hydrogen bond. The formation of 1–TEO was evidenced by the shift of the N—H and C=O frequencies in the 1–TEO powder com­plex, and by the shifts in the solid-state 13C NMR signals com­pared with the IR and 13C NMR spectra of the starting materials, suggesting the formation of N—H⋯O=C hydrogen bonds. The formation of the new polycrystalline phase was confirmed because the powder X-ray diffraction pattern of 1–TEO was different from those of the starting 1 and TEO. Single-crystal X-ray diffraction analysis showed that 1 adopts the endo–endo conformation in the solid state and is self-assembled by N—H⋯O=C hydrogen bonds; meanwhile, the mol­ecular structure of the 1–TEO com­plex showed a 1:1 stoichiometric ratio, where 1 and TEO are inter­linked by N—H⋯O=C hydrogen bonds and C—H⋯O inter­actions, and 1 adopts the exo–endo conformation, exhibiting the di­amide–pseudomide R22(13) synthon. The supra­molecular architecture of 1–TEO is driven by N—H⋯O=C hydrogen bonds and ππ and C—H⋯π inter­actions.

Supporting information


Computing details top

Diethyl N,N'-(1,3-phenylene)dicarbamate (1) top
Crystal data top
C12H16N2O4Dx = 1.241 Mg m3
Mr = 252.27Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 1428 reflections
Hall symbol: P 4abw 2nwθ = 4.6–26.0°
a = 11.1312 (13) ŵ = 0.09 mm1
c = 10.894 (3) ÅT = 298 K
V = 1349.8 (5) Å3Block, colourless
Z = 40.41 × 0.33 × 0.3 mm
F(000) = 536
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
1620 independent reflections
Graphite monochromator1153 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.027
ω scansθmax = 29.5°, θmin = 4.1°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
h = 1215
Tmin = 0.972, Tmax = 0.976k = 1215
4765 measured reflectionsl = 1410
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.124P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.12 e Å3
1620 reflectionsΔρmin = 0.14 e Å3
87 parametersAbsolute structure: Flack x determined using 343 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 1.9 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2786 (2)0.3668 (2)0.5897 (2)0.0473 (6)
C20.3672 (3)0.4536 (3)0.5901 (3)0.0606 (7)
H20.3685320.5120830.6511120.073*
C30.4530 (3)0.4530 (3)0.50.0701 (12)
H30.5120880.512090.50.084*
C60.2777 (2)0.2777 (2)0.50.0483 (8)
H60.2186580.218660.50.058*
C80.0873 (2)0.3164 (2)0.6951 (2)0.0495 (6)
C100.0852 (3)0.3036 (4)0.8240 (3)0.0832 (10)
H10A0.0771560.2223760.8551680.1*
H10B0.1320640.3007980.7490010.1*
C110.1455 (4)0.3789 (5)0.9147 (4)0.1186 (16)
H11A0.1064820.3702170.9927340.178*
H11B0.2279980.3546660.9217440.178*
H11C0.14180.4613740.8891430.178*
N70.1931 (2)0.3735 (2)0.68524 (18)0.0584 (6)
O80.04488 (15)0.24443 (16)0.62488 (14)0.0521 (5)
O90.03237 (18)0.3535 (2)0.79899 (17)0.0723 (7)
H7N0.210 (3)0.431 (3)0.745 (3)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0505 (13)0.0520 (14)0.0393 (12)0.0004 (12)0.0028 (11)0.0034 (10)
C20.0615 (16)0.0584 (16)0.0619 (15)0.0094 (15)0.0074 (14)0.0196 (14)
C30.0646 (16)0.0646 (16)0.081 (3)0.022 (2)0.0159 (18)0.0159 (18)
C60.0525 (13)0.0525 (13)0.0398 (16)0.0076 (17)0.0061 (11)0.0061 (11)
C80.0510 (14)0.0586 (15)0.0389 (11)0.0057 (13)0.0012 (11)0.0043 (12)
C100.068 (2)0.102 (3)0.079 (2)0.0196 (19)0.0248 (17)0.0151 (19)
C110.096 (3)0.137 (4)0.123 (3)0.002 (3)0.055 (3)0.009 (3)
N70.0571 (14)0.0705 (15)0.0475 (12)0.0122 (12)0.0098 (10)0.0220 (11)
O80.0517 (10)0.0590 (11)0.0458 (9)0.0001 (8)0.0037 (8)0.0117 (8)
O90.0630 (13)0.0997 (16)0.0542 (10)0.0190 (11)0.0184 (9)0.0291 (11)
Geometric parameters (Å, º) top
C1—C21.381 (4)C8—O91.351 (3)
C1—C61.392 (3)C10—O91.447 (4)
C1—N71.412 (3)C10—C111.459 (5)
C2—C31.370 (3)C10—H10A0.97
C2—H20.93C10—H10B0.97
C3—H30.93C11—H11A0.96
C6—H60.93C11—H11B0.96
C8—O81.204 (3)C11—H11C0.96
C8—N71.343 (3)N7—H7N0.93 (4)
C2—C1—C6120.4 (2)O9—C10—H10A109.9
C2—C1—N7116.2 (2)C11—C10—H10A109.9
C6—C1—N7123.4 (2)O9—C10—H10B109.9
C3—C2—C1119.5 (3)C11—C10—H10B109.9
C3—C2—H2120.3H10A—C10—H10B108.3
C1—C2—H2120.3C10—C11—H11A109.5
C2i—C3—C2121.4 (4)C10—C11—H11B109.5
C2i—C3—H3119.3H11A—C11—H11B109.5
C2—C3—H3119.3C10—C11—H11C109.5
C1—C6—C1i118.9 (3)H11A—C11—H11C109.5
C1—C6—H6120.5H11B—C11—H11C109.5
C1i—C6—H6120.5C8—N7—C1128.7 (2)
O8—C8—N7127.4 (2)C8—N7—H7N116 (2)
O8—C8—O9123.9 (2)C1—N7—H7N115 (2)
N7—C8—O9108.6 (2)C8—O9—C10116.7 (2)
O9—C10—C11108.9 (3)
C6—C1—C2—C31.3 (4)O9—C8—N7—C1177.3 (3)
N7—C1—C2—C3179.8 (2)C2—C1—N7—C8166.7 (3)
C1—C2—C3—C2i0.7 (2)C6—C1—N7—C814.5 (4)
C2—C1—C6—C1i0.7 (2)O8—C8—O9—C101.0 (4)
N7—C1—C6—C1i179.4 (3)N7—C8—O9—C10178.5 (3)
O8—C8—N7—C12.2 (5)C11—C10—O9—C8162.4 (3)
Symmetry code: (i) y, x, z+1.
Diethyl N,N'-(1,3-phenylene)dicarbamate–theophylline (1/1) (1_TEO) top
Crystal data top
C12H16N2O4·C7H8N4O2Z = 2
Mr = 432.44F(000) = 456
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5284 (14) ÅCell parameters from 1977 reflections
b = 11.2362 (18) Åθ = 3.6–29.6°
c = 12.2606 (12) ŵ = 0.11 mm1
α = 85.742 (10)°T = 130 K
β = 76.887 (12)°Prism, colourless
γ = 79.803 (15)°0.38 × 0.12 × 0.07 mm
V = 993.5 (3) Å3
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4780 independent reflections
Graphite monochromator3041 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.051
ω scansθmax = 29.7°, θmin = 3.6°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
h = 1010
Tmin = 0.976, Tmax = 0.993k = 1514
11140 measured reflectionsl = 1614
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.3739P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4780 reflectionsΔρmax = 0.29 e Å3
290 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5463 (3)0.2028 (2)0.78512 (18)0.0190 (5)
C1C0.4338 (3)0.2986 (2)0.35063 (19)0.0215 (5)
H1CA0.3531620.2447310.3362410.032*
H1CB0.4948170.2628920.4107790.032*
H1CC0.527450.3095020.2823660.032*
C20.4500 (3)0.3167 (2)0.81742 (18)0.0177 (5)
H20.4106330.3736180.7629440.021*
C2C0.2423 (3)0.4822 (2)0.30231 (18)0.0201 (5)
C30.4111 (3)0.3474 (2)0.92910 (18)0.0189 (5)
C3C0.0487 (4)0.6642 (2)0.24618 (19)0.0254 (6)
H3CA0.0355690.6186280.2233440.038*
H3CB0.1432490.6821630.180630.038*
H3CC0.0212280.7401180.2788170.038*
C40.4733 (3)0.2640 (2)1.00821 (19)0.0206 (5)
H40.4504110.2845841.0844680.025*
C4C0.1141 (3)0.6329 (2)0.43593 (17)0.0163 (5)
C50.5674 (3)0.1523 (2)0.97481 (19)0.0221 (6)
H50.6076190.0956731.0292920.026*
C5C0.1929 (3)0.5649 (2)0.51488 (17)0.0173 (5)
C60.6062 (3)0.1189 (2)0.86387 (19)0.0226 (6)
H60.6718850.0409270.8424050.027*
C6C0.3045 (3)0.4509 (2)0.49485 (18)0.0187 (5)
C80.6744 (3)0.0802 (2)0.61652 (18)0.0198 (5)
C8C0.0308 (3)0.7349 (2)0.58082 (19)0.0209 (5)
H8C0.0254560.7979940.6311440.025*
C100.7646 (4)0.0096 (2)0.44008 (19)0.0242 (6)
H10A0.7090820.0829630.4665380.029*
H10B0.8958550.0260620.4457240.029*
C110.7503 (4)0.0231 (2)0.3206 (2)0.0272 (6)
H11A0.8153120.0442050.2727520.041*
H11B0.8065360.0954470.2951470.041*
H11C0.6198770.0394930.3160860.041*
C280.2235 (3)0.5478 (2)0.91024 (18)0.0193 (5)
C300.0354 (4)0.7401 (2)0.92134 (19)0.0249 (6)
H30A0.0585810.7176080.8853740.03*
H30B0.1297970.7728460.8626030.03*
C310.0537 (4)0.8331 (2)1.0073 (2)0.0275 (6)
H31A0.1140520.904890.9712460.041*
H31B0.0407040.8556681.0414780.041*
H31C0.1461160.799561.0653060.041*
N1C0.3232 (3)0.41599 (18)0.38423 (15)0.0192 (4)
N3C0.1380 (3)0.59203 (18)0.32969 (14)0.0190 (5)
N70.5761 (3)0.17967 (19)0.67025 (15)0.0200 (5)
N7C0.1354 (3)0.63331 (19)0.60949 (15)0.0211 (5)
H7C0.1622210.6139890.6754490.025*
N9C0.0133 (3)0.73883 (19)0.47468 (15)0.0203 (5)
N270.3066 (3)0.45819 (18)0.96964 (16)0.0193 (5)
O2C0.2650 (2)0.44115 (16)0.20915 (12)0.0250 (4)
O6C0.3800 (2)0.38575 (15)0.56199 (12)0.0236 (4)
O80.7563 (2)0.00796 (16)0.65750 (13)0.0268 (4)
O90.6657 (2)0.09231 (15)0.50758 (12)0.0221 (4)
O100.2371 (3)0.55224 (16)0.80905 (13)0.0266 (4)
O290.1208 (2)0.63513 (15)0.97792 (12)0.0217 (4)
H70.526 (4)0.240 (3)0.627 (2)0.026*
H270.289 (4)0.466 (2)1.047 (2)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (13)0.0203 (14)0.0181 (11)0.0026 (11)0.0036 (10)0.0007 (10)
C1C0.0248 (14)0.0171 (13)0.0199 (11)0.0051 (11)0.0045 (10)0.0036 (9)
C20.0193 (13)0.0164 (13)0.0172 (10)0.0010 (10)0.0056 (9)0.0013 (9)
C2C0.0195 (13)0.0205 (14)0.0195 (11)0.0022 (11)0.0045 (10)0.0028 (10)
C30.0175 (13)0.0185 (13)0.0211 (11)0.0033 (10)0.0051 (10)0.0001 (9)
C3C0.0346 (16)0.0207 (14)0.0214 (12)0.0015 (12)0.0128 (11)0.0033 (10)
C40.0205 (13)0.0215 (14)0.0195 (11)0.0010 (11)0.0072 (10)0.0011 (10)
C4C0.0166 (12)0.0148 (13)0.0172 (10)0.0016 (10)0.0047 (9)0.0017 (9)
C50.0208 (13)0.0240 (14)0.0194 (11)0.0025 (11)0.0068 (10)0.0046 (10)
C5C0.0187 (13)0.0174 (13)0.0153 (10)0.0017 (10)0.0040 (9)0.0006 (9)
C60.0247 (14)0.0188 (14)0.0222 (11)0.0022 (11)0.0057 (10)0.0014 (10)
C6C0.0210 (13)0.0203 (13)0.0148 (10)0.0018 (11)0.0055 (10)0.0006 (9)
C80.0185 (13)0.0203 (14)0.0200 (11)0.0023 (11)0.0041 (10)0.0003 (10)
C8C0.0222 (13)0.0160 (13)0.0242 (12)0.0002 (10)0.0055 (10)0.0054 (10)
C100.0258 (14)0.0201 (14)0.0244 (12)0.0023 (11)0.0045 (11)0.0049 (10)
C110.0312 (16)0.0233 (15)0.0247 (12)0.0007 (12)0.0032 (11)0.0045 (10)
C280.0204 (13)0.0184 (14)0.0180 (11)0.0005 (11)0.0038 (10)0.0020 (9)
C300.0311 (15)0.0197 (14)0.0208 (11)0.0057 (11)0.0083 (11)0.0029 (10)
C310.0308 (16)0.0210 (15)0.0307 (13)0.0010 (12)0.0108 (12)0.0031 (11)
N1C0.0229 (11)0.0166 (11)0.0163 (9)0.0012 (9)0.0052 (8)0.0029 (8)
N3C0.0232 (11)0.0189 (11)0.0148 (9)0.0006 (9)0.0071 (8)0.0009 (8)
N70.0249 (12)0.0152 (11)0.0165 (9)0.0062 (9)0.0045 (9)0.0022 (8)
N7C0.0270 (12)0.0202 (12)0.0174 (9)0.0001 (9)0.0102 (9)0.0028 (8)
N9C0.0224 (11)0.0190 (12)0.0192 (9)0.0010 (9)0.0063 (8)0.0015 (8)
N270.0234 (11)0.0196 (12)0.0143 (9)0.0020 (9)0.0074 (8)0.0003 (8)
O2C0.0345 (11)0.0235 (10)0.0157 (8)0.0030 (8)0.0078 (7)0.0030 (7)
O6C0.0300 (10)0.0209 (10)0.0178 (8)0.0039 (8)0.0085 (7)0.0019 (7)
O80.0330 (11)0.0207 (10)0.0224 (8)0.0081 (8)0.0074 (8)0.0006 (7)
O90.0269 (10)0.0184 (10)0.0184 (8)0.0046 (8)0.0058 (7)0.0022 (7)
O100.0355 (11)0.0242 (11)0.0174 (8)0.0059 (8)0.0086 (8)0.0005 (7)
O290.0282 (10)0.0160 (10)0.0189 (8)0.0048 (8)0.0073 (7)0.0005 (7)
Geometric parameters (Å, º) top
C1—C21.391 (3)C6C—O6C1.229 (3)
C1—C61.392 (3)C6C—N1C1.409 (3)
C1—N71.411 (3)C8—O81.210 (3)
C1C—N1C1.462 (3)C8—O91.348 (3)
C1C—H1CA0.98C8—N71.352 (3)
C1C—H1CB0.98C8C—N9C1.334 (3)
C1C—H1CC0.98C8C—N7C1.340 (3)
C2—C31.390 (3)C8C—H8C0.95
C2—H20.95C10—O91.452 (3)
C2C—O2C1.228 (3)C10—C111.507 (3)
C2C—N3C1.360 (3)C10—H10A0.99
C2C—N1C1.393 (3)C10—H10B0.99
C3—C41.398 (3)C11—H11A0.98
C3—N271.408 (3)C11—H11B0.98
C3C—N3C1.468 (3)C11—H11C0.98
C3C—H3CA0.98C28—O101.219 (3)
C3C—H3CB0.98C28—O291.345 (3)
C3C—H3CC0.98C28—N271.346 (3)
C4—C51.369 (3)C30—O291.449 (3)
C4—H40.95C30—C311.499 (4)
C4C—N9C1.349 (3)C30—H30A0.99
C4C—C5C1.365 (3)C30—H30B0.99
C4C—N3C1.376 (3)C31—H31A0.98
C5—C61.390 (3)C31—H31B0.98
C5—H50.95C31—H31C0.98
C5C—N7C1.383 (3)N7—H70.91 (3)
C5C—C6C1.407 (3)N7C—H7C0.88
C6—H60.95N27—H270.94 (3)
C2—C1—C6120.5 (2)N7C—C8C—H8C123.3
C2—C1—N7115.91 (19)O9—C10—C11107.5 (2)
C6—C1—N7123.6 (2)O9—C10—H10A110.2
N1C—C1C—H1CA109.5C11—C10—H10A110.2
N1C—C1C—H1CB109.5O9—C10—H10B110.2
H1CA—C1C—H1CB109.5C11—C10—H10B110.2
N1C—C1C—H1CC109.5H10A—C10—H10B108.5
H1CA—C1C—H1CC109.5C10—C11—H11A109.5
H1CB—C1C—H1CC109.5C10—C11—H11B109.5
C3—C2—C1120.2 (2)H11A—C11—H11B109.5
C3—C2—H2119.9C10—C11—H11C109.5
C1—C2—H2119.9H11A—C11—H11C109.5
O2C—C2C—N3C122.0 (2)H11B—C11—H11C109.5
O2C—C2C—N1C120.3 (2)O10—C28—O29123.3 (2)
N3C—C2C—N1C117.7 (2)O10—C28—N27126.0 (2)
C2—C3—C4119.4 (2)O29—C28—N27110.69 (18)
C2—C3—N27123.8 (2)O29—C30—C31107.81 (18)
C4—C3—N27116.7 (2)O29—C30—H30A110.1
N3C—C3C—H3CA109.5C31—C30—H30A110.1
N3C—C3C—H3CB109.5O29—C30—H30B110.1
H3CA—C3C—H3CB109.5C31—C30—H30B110.1
N3C—C3C—H3CC109.5H30A—C30—H30B108.5
H3CA—C3C—H3CC109.5C30—C31—H31A109.5
H3CB—C3C—H3CC109.5C30—C31—H31B109.5
C5—C4—C3119.4 (2)H31A—C31—H31B109.5
C5—C4—H4120.3C30—C31—H31C109.5
C3—C4—H4120.3H31A—C31—H31C109.5
N9C—C4C—C5C112.90 (19)H31B—C31—H31C109.5
N9C—C4C—N3C125.98 (19)C2C—N1C—C6C126.1 (2)
C5C—C4C—N3C121.1 (2)C2C—N1C—C1C115.60 (18)
C4—C5—C6122.2 (2)C6C—N1C—C1C118.33 (17)
C4—C5—H5118.9C2C—N3C—C4C119.69 (18)
C6—C5—H5118.9C2C—N3C—C3C119.50 (19)
C4C—C5C—N7C104.4 (2)C4C—N3C—C3C120.8 (2)
C4C—C5C—C6C123.7 (2)C8—N7—C1127.66 (19)
N7C—C5C—C6C132.0 (2)C8—N7—H7116.0 (17)
C5—C6—C1118.2 (2)C1—N7—H7116.3 (17)
C5—C6—H6120.9C8C—N7C—C5C106.38 (18)
C1—C6—H6120.9C8C—N7C—H7C126.8
O6C—C6C—C5C126.8 (2)C5C—N7C—H7C126.8
O6C—C6C—N1C121.5 (2)C8C—N9C—C4C102.95 (19)
C5C—C6C—N1C111.71 (18)C28—N27—C3126.79 (19)
O8—C8—O9124.0 (2)C28—N27—H27118.2 (17)
O8—C8—N7126.8 (2)C3—N27—H27114.9 (17)
O9—C8—N7109.22 (19)C8—O9—C10114.89 (18)
N9C—C8C—N7C113.4 (2)C28—O29—C30115.15 (17)
N9C—C8C—H8C123.3
C6—C1—C2—C30.6 (4)N1C—C2C—N3C—C4C0.8 (3)
N7—C1—C2—C3178.9 (2)O2C—C2C—N3C—C3C0.2 (4)
C1—C2—C3—C41.5 (4)N1C—C2C—N3C—C3C179.4 (2)
C1—C2—C3—N27176.7 (2)N9C—C4C—N3C—C2C179.3 (2)
C2—C3—C4—C51.6 (4)C5C—C4C—N3C—C2C0.2 (3)
N27—C3—C4—C5176.7 (2)N9C—C4C—N3C—C3C0.8 (4)
C3—C4—C5—C60.9 (4)C5C—C4C—N3C—C3C178.3 (2)
N9C—C4C—C5C—N7C0.5 (3)O8—C8—N7—C10.3 (4)
N3C—C4C—C5C—N7C178.7 (2)O9—C8—N7—C1178.6 (2)
N9C—C4C—C5C—C6C179.9 (2)C2—C1—N7—C8175.6 (2)
N3C—C4C—C5C—C6C0.8 (4)C6—C1—N7—C84.9 (4)
C4—C5—C6—C10.1 (4)N9C—C8C—N7C—C5C0.4 (3)
C2—C1—C6—C50.1 (4)C4C—C5C—N7C—C8C0.5 (3)
N7—C1—C6—C5179.6 (2)C6C—C5C—N7C—C8C180.0 (3)
C4C—C5C—C6C—O6C179.6 (2)N7C—C8C—N9C—C4C0.1 (3)
N7C—C5C—C6C—O6C1.0 (4)C5C—C4C—N9C—C8C0.2 (3)
C4C—C5C—C6C—N1C0.4 (3)N3C—C4C—N9C—C8C178.9 (2)
N7C—C5C—C6C—N1C179.1 (2)O10—C28—N27—C36.3 (4)
O2C—C2C—N1C—C6C178.2 (2)O29—C28—N27—C3173.9 (2)
N3C—C2C—N1C—C6C1.4 (3)C2—C3—N27—C282.8 (4)
O2C—C2C—N1C—C1C0.3 (3)C4—C3—N27—C28175.5 (2)
N3C—C2C—N1C—C1C180.0 (2)O8—C8—O9—C100.4 (3)
O6C—C6C—N1C—C2C179.3 (2)N7—C8—O9—C10179.3 (2)
C5C—C6C—N1C—C2C0.8 (3)C11—C10—O9—C8176.3 (2)
O6C—C6C—N1C—C1C0.8 (3)O10—C28—O29—C303.8 (3)
C5C—C6C—N1C—C1C179.3 (2)N27—C28—O29—C30175.9 (2)
O2C—C2C—N3C—C4C178.8 (2)C31—C30—O29—C28173.4 (2)
IR frequencies (cm-1) of 1, TEO and 1–TEO top
CompoundN—HΔN—HCOΔCO
132831704, 1688
TEO31201705, 1662
1–TEOground3312, 3293, (3169)29, 10, (49)1700, (1638)(-5), 12, -4* ,(-24)
1–TEOcryst3309, 3292, (3162)26, 9, (42)1698, (1638)(-7), 10, -6, (-24)
CAF1694, 1645
1–CAFground32841*1705, 1692, (1658)1*, 4*, (13)**
Notes: (*) under spectral resolution. (**) The apparent shift of the band is due the change of the curvedness of the CO band in the IR spectra. Values in brackets belongs to the IR frequencies of TEO or CAF.
Solid-state 13C chemical shifts of 1, TEO and 1–TEO (δ = ppm) top
C1,C3C2C4,C6C8C9C10CaCbCcCdCeCf,g
1140.1130.4114.6155.961.212.8------
TEO------154.9105.8140.5146.3150.930.0
1–TEO140.7129.9111.9 110.3154.564.1 62.412.6 11.6154.5106.8140.7147.6151.929.9
Hydrogen-bond geometry (Å, °) for 1 and 1–TEO top
D—H···AD—HH···AD···AD—H···A
1N7—H7···O8i0.93 (3)1.97 (3)2.897 (3)176 (3)
C6—H6···O80.932.382.950 (3)119
C6—H6···O8ii0.932.382.950 (3)119
1–TEON7—H7···O6iii0.91 (3)2.02 (3)2.920 (3)168 (2)
N7—H7C···O10iii0.881.902.770 (3)172
N27—H27···O2Civ0.94 (2)1.96 (2)2.877 (2)167 (2)
C2—H2C···O6Ciii0.952.523.306 (3)140
C1C—H1CB···O9iii0.982.493.399 (3)153
C4—H4C···O2Civ0.952.443.219 (3)139
C8—H8C···O8v0.952.483.303 (3)145
C1C—H1CC···O10vi0.982.573.400 (3)142
C2—H2···O100.952.232.849 (3)122
C6—H6···O80.952.292.895 (3)121
Symmetry codes: (i) y+1/2, -x +1/2, z-1/4; (ii) y, x, -z+1: (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x, -y+2, -z+1; (vi) x, y, z.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. CB-2012 179674); Universidad de la Cañada (grant No. PFI-02/13); Facultad de Química, UNAM (grant No. PAIP 5000-9112).

References

First citationAaminaNaaz, Y., Sathiyaraj, S., Kalaimani, S., Nasar, A. S. & SubbiahPandi, A. (2017). Acta Cryst. E73, 849–852.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAlegre-Requena, J. V., Herrera, R. P. & Díaz, D. D. (2020). ChemPlusChem, 85, 2372–2375.  Web of Science CAS PubMed Google Scholar
First citationAli, I., Boumoua, N., Sekkoum, K., Belboukhari, N., Ghfar, A., Ouladsmane, M. & AlJumah, B. A. (2021). J. Chromatogr. B, 1175, 122738.  Web of Science CrossRef Google Scholar
First citationAngeles, E., Martínez, P., Keller, J., Martínez, R., Rubio, M. G., Ramírez, G., Castillo, R., López-Castañares, R. & Jiménez, E. (2000). J. Mol. Struct. Theochem, 504, 141–170.  Web of Science CrossRef CAS Google Scholar
First citationBaba, T., Kobayashi, A., Kawanami, Y., Inazu, K., Ishikawa, A., Echizenn, T., Murai, K., Aso, S. & Inomata, M. (2005). Green Chem. 7, 159–165.  Web of Science CrossRef CAS Google Scholar
First citationBondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77–99.  Web of Science CrossRef CAS Google Scholar
First citationBoushey, H. A. (2012). Basic & Clinical Pharmacology, 12th ed., edited by B. G. Katzung, S. B. Masters, A. J. Trevor, p. 345. New York: McGraw–Hill.  Google Scholar
First citationColović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M. & Vasić, V. M. (2013). Curr. Neuropharmacol. 11, 315–335.  Web of Science PubMed Google Scholar
First citationEddleston, M. D., Arhangelskis, M., Fábián, L., Tizzard, G. J., Coles, S. J. & Jones, W. (2016). Cryst. Growth Des. 16, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationErbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. (2015). Chem. Rev. 115, 10081–10206.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFiammengo, R., Crego–Calama, M., Timmerman, P. & Reinhoudt, D. N. (2003). Chem. A Eur. J. 9, 784–792.  Web of Science CrossRef CAS Google Scholar
First citationGarcía-Báez, E. V., López-Romero, B. A., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2004). Acta Cryst. E60, o1488–o1490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGonzález-González, J. S., Martínez-Martínez, F. J., García-Báez, E. V., Cruz, A., Morín-Sánchez, L. M., Rojas-Lima, S. & Padilla-Martínez, I. I. (2014). Cryst. Growth Des. 14, 628–642.  Google Scholar
First citationGonzález-González, J. S., Zúñiga-Lemus, O. & Hernández-Galindo, M. C. (2017). IOSR J. Pharm. 7, 28–30.  Google Scholar
First citationGonzález-González, J. S., Zúñiga-Lemus, O., Martínez-Martínez, F. J., Gonzalez, J., García-Báez, E. V. & Padilla-Martínez, I. I. (2015). J. Chem. Crystallogr. 45, 244–250.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiménez-Cardoso, E., Flores-Luna, A. & Pérez-Urizar, J. (2004). Acta Trop. 92, 237–244.  Web of Science PubMed Google Scholar
First citationKim, H. J., Lee, M. H., Mutihac, L., Vicens, J. & Kim, J. S. (2012). Chem. Soc. Rev. 41, 1173–1190.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrátký, M., Štěpánková, Š., Vorčáková, K., Švarcová, M. & Vinšová, J. (2016). Molecules, 21, 191.  Web of Science PubMed Google Scholar
First citationKubik, S. & Mungalpara, D. (2017). Com­prehensive Supramolecular Chemistry II, edited by G. W. Gokel & J. L. Atwood, pp. 293–308. Amsterdam: Elsevier.  Google Scholar
First citationLarkin, P. J., Dabros, M., Sarsfield, B., Chan, E., Carriere, J. T. & Smith, B. C. (2014). Appl. Spectrosc. 68, 758–776.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLim, S. Y. K., Kuang, Y. & Ardoña, H. A. M. (2021). Front. Chem. 9, 723111.  Web of Science CrossRef PubMed Google Scholar
First citationLiu, C., Dang, L., Tong, Y. & Wei, H. (2013). Ind. Eng. Chem. Res. 52, 14979–14983.  Web of Science CrossRef CAS Google Scholar
First citationLu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L. (2005b). Acta Cryst. E61, o3874–o3875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-Y., Yin, Q.-X., Wang, J.-K. & Zhou, L.-N. (2005a). Acta Cryst. E61, o3412–o3413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacFhionnghaile, P., Crowley, C. M., McArdle, P. & Erxleben, A. (2020). Cryst. Growth Des. 20, 736–745.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarkad, D. & Mandal, S. K. (2017). CrystEngComm, 19, 7112–7124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatošević, A. & Bosak, A. (2020). Arh. Hig. Rada Toksikol. 71, 285–299.  Web of Science PubMed Google Scholar
First citationMazel, V., Delplace, C., Busignies, V., Faivre, V., Tchoreloff, P. & Yagoubi, N. (2011). Drug Dev. Ind. Pharm. 37, 832–840.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMestrelab Research (2021). Mnova Structure Elucidation. Mestrelab Research, Santiago de Com­postela, Spain.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiper, S. L., Forsyth, C. M., Kar, M., O'Dell, L. A., Ma, J., Pringle, J. M., MacFarlane, D. R. & Matuszek, K. (2023). Mater. Adv. 4, 4482–4493.  Web of Science CSD CrossRef CAS Google Scholar
First citationSahoo, P. (2015). Bioorg. Chem. 58, 26–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantos, C. M. G. dos, McCabe, T., Watson, G. W., Kruger, P. E. & Gunnlaugsson, T. (2008). J. Org. Chem. 73, 9235–9244.  Web of Science PubMed Google Scholar
First citationSaucedo-Balderas, M. M., Delgado-Alfaro, R. A., Martínez-Martínez, F. J., Ortegón-Reyna, D., Bernabé-Pineda, M., Zúñiga-Lemus, O. & González-González, J. S. (2015). J. Braz. Chem. Soc. 26, 396–402.  CAS Google Scholar
First citationSchopohl, M. C., Faust, A., Mirk, D., Fröhlich, R., Kataeva, O. & Waldvogel, S. R. (2005). Eur. J. Org. Chem. 2005, 2987–2999.  Web of Science CSD CrossRef Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiering, C., Beermann, B. & Waldvogel, S. R. (2006). Supramol. Chem. 18, 23–27.  Web of Science CrossRef CAS Google Scholar
First citationSun, S., Liang, N., An, H., Zhao, X., Wang, G. & Wang, Y. (2013). Ind. Eng. Chem. Res. 52, 7684–7689.  Web of Science CrossRef CAS Google Scholar
First citationWankar, J., Kotla, N. G., Gera, S., Rasala, S., Pandit, A. & Rochev, Y. A. (2020). Adv. Funct. Mater. 30, 1909049.  Web of Science CrossRef Google Scholar
First citationWebber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. (2016). Nat. Mater. 15, 13–26.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYu, G. & Chen, X. (2019). Theranostics, 9, 3041–3074.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds