research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structure elucidation of a geminal and vicinal bis­­(tri­fluoro­methane­sulfonate) ester

crossmark logo

aSchool of Natural Sciences & Catalysis Research Center (CRC), Technische Universität München, Ernst-Otto-Fischer Strasse 1, 85748 Garching, Germany
*Correspondence e-mail: alexander.poethig@tum.de

Edited by T. Ohhara, J-PARC Center, Japan Atomic Energy Agency, Japan (Received 8 April 2024; accepted 3 June 2024; online 14 June 2024)

Geminal and vicinal bis­(tri­fluoro­methane­sulfonate) esters are highly reactive alkyl­ene synthons used as potent electrophiles in the macrocyclization of imid­azoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methyl­ene (C3H2F6O6S2) and ethyl­ene bis­(tri­fluoro­methane­sulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis­(tri­fluoro­methane­sulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis­(tri­fluoro­methane­sulfonate)s are air- and moisture-sensitive oils and were crys­tallized at 277 K to afford two-com­ponent non-merohedrally twinned crystals. The dominant inter­actions present in both com­pounds are non-classical C—H⋯O hydrogen bonds and inter­molecular C—F⋯F—C inter­actions between tri­fluoro­methyl groups. Mol­ecular electrostatic potential (MEP) cal­culations by DFT-D3 helped to qu­antify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis­(tri­fluoro­methane­sulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure.

1. Introduction

Tri­fluoro­methane­sulfonate (triflate) is an important functional group in organic chemistry owing to its strong electron-withdrawing nature (Howells & McCown, 1977[Howells, R. D. & McCown, J. D. (1977). Chem. Rev. 77, 69-92.]; Hendrickson et al., 1977[Hendrickson, J. B., Sternbach, D. D. & Bair, K. W. (1977). Acc. Chem. Res. 10, 306-312.]). It is an excellent leaving group used in many organic transformations, such as nucleophilic substitutions, due to the ex­treme stability of the liberated triflate anion (OTf). Thus, the derived triflyl esters (R–OTf) are potent electrophiles, re­presenting a halogen-free alternative to alkyl halides in nucleophilic substitution reactions.

Pushing the reactivity of these com­pounds to an extreme, two triflate groups can be attached to the same carbon to form geminal bis­(triflate) esters with the general formula TfO–CR2–OTf (Martínez et al., 1979[Martínez, A. G., Ríos, I. E. & Vilar, E. T. (1979). Synthesis, pp. 382-383.], 1987[Martínez, A. G., Alvarez, R. M., Fraile, A. G., Subramanian, L. R. & Hanack, M. (1987). Synthesis, pp. 49-51.]). Among other landmark examples, the parent com­pound methyl­ene bis­(triflate) (1, R = H) had already been reported in 1980 (Katsuhara & DesMarteau, 1980[Katsuhara, Y. & DesMarteau, D. D. (1980). J. Fluorine Chem. 16, 257-263.]) but has not been used in chemical synthesis until several decades later. As a highly reactive C1 synthon, the electrophilicity of 1 was eventually harnessed to construct large cyclo­phanes via nucleophilic substitution reactions (Anneser et al., 2015[Anneser, M. R., Haslinger, S., Pöthig, A., Cokoja, M., Basset, J.-M. & Kühn, F. E. (2015). Inorg. Chem. 54, 3797-3804.]), particularly in cases where bis­(imid­azoles) were macrocyclized to methyl­ene-bridged tetra­(imidazolium) salts (Altmann et al., 2015[Altmann, P. J., Jandl, C. & Pöthig, A. (2015). Dalton Trans. 44, 11278-11281.], 2016[Altmann, P. J., Weiss, D. T., Jandl, C. & Kühn, F. E. (2016). Chem. Asian J. 11, 1597-1605.]; Bernd et al., 2020[Bernd, M. A., Dyckhoff, F., Hofmann, B. J., Böth, A. D., Schlagintweit, J. F., Oberkofler, J., Reich, R. M. & Kühn, F. E. (2020). J. Catal. 391, 548-561.]).

Similarly, the ethyl­ene-bridged bis­(triflate) ester TfO–(CH2)2–OTf (2) has been commonly used as a bis­-alkyl­ating reagent (C2 synthon), among others, for the transformation of bi­pyridines to diquat derivatives (Coe et al., 2006[Coe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). Synthesis, pp. 146-150.]) and for the synthesis of ethyl­ene-bridged metal com­plexes (Lindner et al., 1990[Lindner, E., Pabel, M. & Eichele, K. (1990). J. Organomet. Chem. 386, 187-194.]) or η2-olefin metal com­plexes (Lindner et al., 1985[Lindner, E., Schauss, E., Hiller, W. & Fawzi, R. (1985). Chem. Ber. 118, 3915-3931.]).

Investigating the structure–property relationship of geminal and vicinal bis­(sulfonate) esters, such as com­pounds 1 and 2, respectively, is imperative to gain a better understanding of their reactivity. In this regard, a structural com­parison of similar alkyl­ene bis­(mesylates) used as DNA cross­linking agents has been reported, which includes the parent com­pound MsO–(CH2)2–OMs (3, Ms = mesyl or methane­sulfon­yl) (McKenna et al., 1989[McKenna, R., Neidle, S., Kuroda, R. & Fox, B. W. (1989). Acta Cryst. C45, 311-314.]). So far, this study has been complemented by the structural characterizations of only a few other vicinal bis­(mesylate) and bis­(tosyl­ate) derivatives, such as TsO–(CH2)2–OTs (4, Ts = tosyl or toluene­sulfon­yl) (Groth et al., 1985[Groth, P., Fjellvåg, H., Lehmann, M. S., Tammenmaa, M. & Volden, H. V. (1985). Acta Chem. Scand. A, 39, 587-591.]), and a handful of geminal bis­(tosyl­ates) (Kamal et al., 2020[Kamal, R., Kumar, V., Kumar, R., Saini, S. & Kumar, R. (2020). Synlett, 31, 959-964.]).

[Scheme 1]

To date, however, there are no reports on the mol­ecular structures of geminal or vicinal bis­(triflate) esters, such as the title com­pounds 1 and 2 (see Scheme 1[link]). Aiming to study the structure–reactivity relationship of these alkyl­ene sources, we synthesized both com­pounds and characterized them in the solid state by single-crystal X-ray diffraction (SC-XRD).

2. Experimental

2.1. Synthesis and crystallization

Sulfonate esters 1 and 2 were prepared according to es­tab­lished procedures. Methyl­ene bis­(triflate) (1) was synthesized by heating an equimolar suspension of triflic anhydride and paraformaldehyde to 353 K, causing the liberation of formaldehyde, which was further reacted with the anhydride at the same temperature for 16 h. Following the evaporation of excess triflic anhydride in vacuo, the crude product was passed over a short plug of silica with di­chloro­methane as the eluent. After removal of all volatiles at 293 K under reduced pressure, analytically pure 1 was obtained as a colourless-to-brown oil. The yields of this reaction typically range between 15 and 20%, which is consistent with previous reports (An­neser et al., 2015[Anneser, M. R., Haslinger, S., Pöthig, A., Cokoja, M., Basset, J.-M. & Kühn, F. E. (2015). Inorg. Chem. 54, 3797-3804.]).

There are several approaches for the preparation of ethyl­ene bis­(triflate) (2), e.g. the straightforward transmetalation of ethyl­ene dibromide with AgOTf (Shackelford et al., 1985[Shackelford, S. A., Chapman, R. D., Andreshak, J. L., Herrlinger, S. P., Hildreth, R. A. & Smith, J. C. (1985). J. Fluorine Chem. 29, 123.]). However, for the purpose of this study, the reaction of ethyl­ene glycol with triflic anhydride under basic conditions was chosen as the preferred method because the diol is readily available and inexpensive, and the desired product is usually obtained in close to qu­anti­tative yields (Kuroboshi et al., 2015[Kuroboshi, M., Tanaka, H. & Kondo, T. (2015). Heterocycles, 90, 723-729.]). To equimolar amounts of triflic anhydride and pyridine in di­chloro­methane was added half an equivalent of ethyl­ene glycol at 273 K. The reaction mixture was stirred at the same temperature for 45 min, filtered and washed several times with water. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product was filtered over a short plug of silica with di­chloro­methane as the eluent. All volatiles were subsequently re­moved at 293 K under reduced pressure to afford analytically pure 2 as a colourless oil (81% yield).

Bis(triflates) 1 and 2 are air- and water-sensitive liquids at ambient temperature, with melting points between 278 and 288 K (Lindner et al., 1981[Lindner, E., von Au, G. & Eberle, H.-J. (1981). Chem. Ber. 114, 810-813.]; Anneser et al., 2015[Anneser, M. R., Haslinger, S., Pöthig, A., Cokoja, M., Basset, J.-M. & Kühn, F. E. (2015). Inorg. Chem. 54, 3797-3804.]). Single crystals were grown by allowing the com­pounds to solidify slowly over the course of several hours at a temperature of 277 K. To prevent the obtained crystals from melting immediately during picking, the tools used in the process were cooled by repeatedly submerging them in a Dewar flask filled with liquid nitro­gen. Additionally, a piece of dry ice was placed on the microscope slide to delay the melting of the specimen on the glass. The selected crystals were then mounted on top of a Kapton micro sample holder (MicroMount) coated with perfluorinated ether and rapidly transferred to the diffractometer.

2.2. Refinement

Data collection and structure refinement details are sum­marized in Table 1[link]. As implemented in APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), the non-merohedral twinning of 1 and 2 was addressed by integration of the diffraction data using two orientation matrices in SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), followed by scaling and absorption correction with TWINABS (Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). The structures were solved by SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined against the respective HKLF5 files using SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) in conjunction with ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). All non-H atoms were refined with anisotropic displacement parameters. H atoms could be located in difference Fourier maps, but for the refinement were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 VENTURE diffractometer. Absorption was corrected for by multi-scan methods (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H-atom parameters were constrained.

  (1) (2)
Crystal data
Chemical formula C3H2F6O6S2 C4H4F6O6S2
Mr 312.17 326.19
Crystal system, space group Monoclinic, P21 Triclinic, P[\overline{1}]
a, b, c (Å) 8.9822 (12), 4.9413 (6), 10.9400 (14) 10.036 (4), 10.664 (3), 11.276 (4)
α, β, γ (°) 90, 102.406 (5), 90 83.540 (9), 64.178 (9), 89.593 (9)
V3) 474.22 (11) 1078.2 (6)
Z 2 4
μ (mm−1) 0.68 0.60
Crystal size (mm) 0.35 × 0.32 × 0.06 0.16 × 0.09 × 0.01
 
Data collection
Tmin, Tmax 0.540, 0.746 0.564, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 2295, 2295, 2254 4339, 4339, 3403
Rint 0.044 0.079
(sin θ/λ)max−1) 0.667 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.05 0.066, 0.166, 1.07
No. of reflections 2295 4339
No. of parameters 155 326
No. of restraints 1 0
Δρmax, Δρmin (e Å−3) 0.41, −0.47 0.60, −0.55
Absolute structure Flack x determined using 959 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.12 (4)
Computer programs: APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and FinalCif (Kratzert, 2023[Kratzert, D. (2023). FinalCif, https://dkratzert.de/finalcif.html.]).

2.3. DFT calculations

All density functional theory (DFT) calculations were per­formed with the ORCA quantum chemistry package (Ver­sion 5.0.4; Neese, 2012[Neese, F. (2012). Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73-78.], 2022[Neese, F. (2022). Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606.]) using the PBE0 exchange-correlation functional (Adamo & Barone, 1999[Adamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158-6170.]) and the def2-TZVP triple-ξ valence basis set (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]), as implemented in ORCA. Tighter than normal convergence criteria for SCF calculations (TightSCF) and geometry optimizations (TightOPT) were employed. Grimme's atom-pairwise dispersion correction with the Becke–Johnson damping scheme (D3BJ) was applied to account for dispersion inter­actions (Grimme et al., 2010[Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.], 2011[Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456-1465.]). Geometries were optimized in the gas phase without symmetry constraints. The starting geometries were derived from the SC-XRD structures of 1 and 2. Frequency analysis at the same level of theory as the geometry optimizations confirmed that the calculations had converged to an energetic minimum. To calculate the mol­ecular electrostatic potentials (MEPs), the total SCF density file obtained after a PBE0/def2-TZVP single-point calculation was first converted to a Gaussian cube file using the orca_plot module implemented in the ORCA package. The MEP was then calculated using the orca-vpot module and exported in Gaussian cube format. With both cube files in hand, the total SCF density was plotted and the MEP was mapped as a colour onto the isosurface in Molekel (Version 4.3; Varetto, 2002[Varetto, U. (2002). MOLEKEL. Version 4.3. Swiss National Super­com­puting Centre, Lugano, Switzerland.]).

3. Results and discussion

Sulfonate esters 1 and 2 both crystallized as two-com­ponent non-merohedral twins, and their asymmetric units contain one and two crystallographically independent mol­ecules, respectively (Figs. 1[link] and 2[link]). Methyl­ene bis­(triflate) (1) was found to crystallize in the monoclinic space group P21 (No. 4, Z = 2), and the fractional contribution of the minor twin com­ponent was refined to 29% in the final model. Ethyl­ene bis­(triflate) (2) crystallized in the triclinic space group P[\overline{1}] (No. 2, Z = 4) with a 37% contribution of the minor twin com­ponent. While both triflic esters are achiral in solution, as indicated by a single 1H NMR resonance for the CH2 protons (Salomon & Salomon, 1979[Salomon, M. F. & Salomon, R. G. (1979). J. Am. Chem. Soc. 101, 4290-4299.]; Katsuhara & DesMarteau, 1980[Katsuhara, Y. & DesMarteau, D. D. (1980). J. Fluorine Chem. 16, 257-263.]), bis­(triflate) 1 appears to be conformationally locked in the solid state and consequently crystallizes in the Sohncke space group P21. Since sulfur is the heaviest atom of the mol­ecule and molybdenum radiation was used in the diffraction experiment, the absolute structure could only be determined with low accuracy. This is reflected by a Flack parameter of 0.12 with a com­parably large standard uncertainty (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). In contrast to bis­(triflate) 1, ethyl­ene derivative 2 crystallizes in a centrosymmetric space group (P[\overline{1}]) and the asymmetric unit contains two symmetry-independent conformers of the mol­ecule, which differ mainly in the relative orientation of a triflate group, as expressed by different C—C—O—S torsion angles (Fig. 3[link]). A com­parison of the bond distances of both esters reveals almost identical values for chemically equivalent C—F, C—S and terminal S—O bonds, while the average C—O distance is slightly shorter in 1 (1.434 Å) com­pared to 2 (1.481 Å). In contrast, the mean bond length of the adjacent S—O bond is elongated in 1 (1.573 Å) versus 2 (1.547 Å).

[Figure 1]
Figure 1
View of methyl­ene bis­(tri­fluoro­methane­sulfonate) (1) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2]
Figure 2
View of both symmetry-independent conformers of ethyl­ene bis­(tri­fluoro­methane­sulfonate) (2) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 3]
Figure 3
Overlay of the two symmetry-independent conformers of 2, highlighting the different relative orientations of a tri­fluoro­methane­sulfonate group as qu­anti­fied by different C—C—O—S torsion angles. For clarity, the conformers are drawn in ball-and-stick representation in red and grey, respectively.

The packing of bis­(triflates) 1 and 2 is primarily influenced by non-classical C—H⋯O hydrogen bonds between methyl­ene and sulfonate groups, along with inter­molecular C—F⋯F—C inter­actions between tri­fluoro­methyl residues closer than the sum of the van der Waals radii (Haynes, 2015[Haynes, W. M. (2015). In Chemistry and Physics, 96th ed. Boca Raton: CRC Press.]) (Tables 2[link]–5[link][link][link]). This inter­action pattern results in the formation of two-dimensional fluorous and non-fluorous domains in the crystal packing of 1 and 2 (Figs. 4[link] and 5[link]). Considering this emergence of polar and non-polar domains, we aimed to qu­antify the influence of differently polarized regions within both structures on the overall solid-state arrangement of the bis­(trif­lates). Therefore, we calculated the mol­ecular electrostatic potentials (MEPs) of 1 and 2 based on the optimized geometries of the respective monomers using DFT-D3 in the gas phase (Fig. 6[link]). As expected, in both cases, the triflate O atoms are the most negatively charged, followed by the F atoms of the CF3 groups. In stark contrast, the CH2 fragments of methyl­ene and ethyl­ene bis­(triflate) exhibit a high positive charge, which is consistent with their experimentally observed reactivity as strong electrophiles. Along this line, hydrogen-bonding inter­actions occur only between highly charged parts of both bis­(triflates), namely, positively polarized alkyl­ene H and negatively polarized sulfonate O atoms. The tri­fluoro­methyl groups, with a lower C—F bond polarization, do not participate in hydrogen bonding. Instead, they establish fluorous domains whose arrangement in the crystal is governed by the orientation of the CF3 groups within the monomers. In methyl­ene bis­(triflate) (1), these groups align in a shared direction, whereas in ethyl­ene bis­(triflate) (2), they assume opposite orientations in the mol­ecule. The emerging regions of different polarity within the mol­ecules are thus caused by the observed self-sorting of 1 and 2 into highly polar and nonpolar domains within the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.99 2.32 2.803 (6) 109
C1—H2⋯O6 0.99 2.29 2.802 (6) 111
C1—H1⋯O3iii 0.99 2.51 3.416 (5) 152
C1—H2⋯O5iv 0.99 2.56 3.430 (5) 147
Symmetry codes: (iii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Table 3
Selected interatomic distances (Å) for 1[link]

F3⋯F6i 2.894 (5) F4⋯F5i 2.957 (3)
F1⋯F5ii 2.933 (4)    
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [x, y-1, z].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O8i 0.99 2.62 3.60 (1) 172
C3—H3A⋯O1iii 0.99 2.60 2.984 (9) 103
C3—H3B⋯O1iii 0.99 2.59 2.984 (9) 104
C3—H3A⋯O8iv 0.99 2.59 3.579 (8) 175
C6—H6A⋯O6v 0.99 2.34 3.092 (8) 132
C6—H6A⋯O11vi 0.99 2.47 3.034 (8) 116
C6—H6B⋯O2vii 0.99 2.45 3.210 (8) 133
C7—H7A⋯O5vii 0.99 2.49 3.365 (8) 147
C7—H7B⋯O7viii 0.99 2.70 3.525 (7) 142
C7—H7B⋯O2iv 0.99 2.54 3.349 (9) 139
Symmetry codes: (i) [x, y, z-1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+2, -y+1, -z+1]; (vi) [-x+2, -y, -z+2]; (vii) [x, y+1, z-1]; (viii) [-x+1, -y, -z+2].

Table 5
Selected interatomic distances (Å) for 2[link]

F5⋯F7 2.823 (7) F3⋯F9ii 2.954 (5)
F7⋯F12i 2.951 (7)    
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+2, -y+1, -z].
[Figure 4]
Figure 4
Packing of methyl­ene bis­(tri­fluoro­methane­sulfonate) (1), showing alternating two-dimensional layers of fluorous and non-fluorous domains along the c axis. The share of these domains of different polarity is indicated by the distances dn and dp, respectively.
[Figure 5]
Figure 5
Packing of ethyl­ene bis­(tri­fluoro­methane­sulfonate) (2), showing alternating two-dimensional layers of fluorous and non-fluorous domains along the c axis. The share of these domains of different polarity is indicated by the distances dn and dp, respectively.
[Figure 6]
Figure 6
Mol­ecular electrostatic potential (MEP) projected onto the total electron-density surface of (a) methyl­ene (1) and (b) ethyl­ene bis­(tri­fluoro­methane­sulfonate) (2). Geometries are optimized by DFT-D3 at the PBE0/def2-TZVP level of theory and MEPs are shown at 0.0062 a.u. electron density.

To qu­antify the share of these alternating domains within the crystal lattice of 1 and 2, alternating planes parallel to the ab plane were defined by (i) all tri­fluoro­methyl C atoms or (ii) all S atoms of each crystallographically independent molecule contained in the unit cell of both structures. Consequently, the separation of polar and non-polar regions was estimated by calculating the distance between two adjacent planes defined by the S atoms (dp) or C atoms (dn) for each crystallo­gra­phi­cally independent molecule (cf. Figs. 4[link] and 5[link]). For com­pound 2, the final dp and dn values were defined as the average of the individual values of each conformer in the asymmetric unit. For a more detailed definition of the interplanar dis­tances dp and dn, see Fig. S1 in the supporting information. In both structures, the polar region was estimated to be larger than the non-polar (com­pound 1: dp ≃ 3.8 Å, dn ≃ 3.5 Å; com­pound 2: dp ≃ 3.7 Å, dn ≃ 2.8 Å). Inter­estingly, the determined share of the polar domain in 2 is slightly smaller than in 1, even though, com­pared to methyl­ene bis­(triflate) (1), ethyl­ene congener 2 contains an additional CH2 group acting as a hy­drogen-bond donor. Further, the somewhat smaller (polar and non-polar) domain sizes of 2 versus 1 suggest tighter packing of ethyl­ene bis­(triflate) in general. As an overarching trend, this rough estimation of domain size also indicates that roughly the same share can be attributed to the non-fluorous and fluorous regions in both bis­(triflate) structures.

4. Conclusion

The first com­prehensive structural analysis of a geminal and vicinal bis­(triflate) ester, specifically methyl­ene (1) and ethyl­ene bis­(triflate) (2), is presented. Both com­pounds are air- and moisture-sensitive oils under ambient conditions and at low temperature crystallized as non-merohedral two-com­ponent twins. The crystal structures reveal the presence of non-classical C—H⋯O hydrogen bonds and inter­molecular C—F⋯F—C inter­actions, which govern the packing of the com­pounds in the solid state. Mol­ecular electrostatic potential (MEP) calculations of monomers 1 and 2 based on DFT-D3 showed that these inter­actions are driven by the high polarity of the O⋯H contacts and the low polarity of the halogen–halogen contacts, respectively. As a result, bis­(triflates) 1 and 2 self-sort in polar (non-fluorous) and non-polar (fluorous) domains of roughly the same relative size within the crystal lattice.

Supporting information


Computing details top

Methanediyl bis(trifluoromethanesulfonate) (1) top
Crystal data top
C3H2F6O6S2Dx = 2.186 Mg m3
Mr = 312.17Melting point: 289 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.9822 (12) ÅCell parameters from 5142 reflections
b = 4.9413 (6) Åθ = 2.3–28.2°
c = 10.9400 (14) ŵ = 0.68 mm1
β = 102.406 (5)°T = 100 K
V = 474.22 (11) Å3Plate, colourless
Z = 20.35 × 0.32 × 0.06 mm
F(000) = 308
Data collection top
Bruker D8 VENTURE
diffractometer
2295 independent reflections
Radiation source: TXS rotating anode2254 reflections with I > 2σ(I)
Helios optic monochromatorRint = 0.044
Detector resolution: 16 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω and φ scansh = 1111
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 66
Tmin = 0.540, Tmax = 0.746l = 1414
2295 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.3843P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2295 reflectionsΔρmax = 0.41 e Å3
155 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack x determined using 959 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (4)
Special details top

Experimental. Diffractometer operator T. Pickl scanspeed 1-3 s per frame dx 46 mm 2474 frames measured in 8 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96595 (10)0.4898 (2)0.31972 (8)0.0175 (2)
S20.44053 (10)0.4789 (2)0.32170 (8)0.01610 (19)
F10.7896 (3)0.1739 (6)0.1613 (3)0.0322 (7)
F21.0069 (3)0.2574 (7)0.1183 (3)0.0364 (7)
F30.8318 (4)0.5634 (7)0.0880 (3)0.0341 (7)
F40.4514 (4)0.4480 (7)0.0868 (2)0.0373 (7)
F50.5287 (3)0.8260 (6)0.1738 (2)0.0308 (7)
F60.2896 (3)0.7339 (7)0.1293 (3)0.0319 (6)
O10.8169 (3)0.6258 (6)0.3446 (3)0.0182 (6)
O21.0087 (4)0.2659 (7)0.3995 (3)0.0262 (7)
O31.0679 (3)0.7015 (7)0.3090 (3)0.0268 (7)
O40.6057 (3)0.3562 (6)0.3435 (3)0.0187 (6)
O50.3381 (3)0.2596 (7)0.3047 (3)0.0260 (7)
O60.4345 (4)0.6917 (7)0.4070 (3)0.0229 (6)
C10.7303 (5)0.4932 (13)0.4231 (3)0.0230 (6)
H10.7952510.3618550.4787910.028*
H20.6916000.6277640.4756880.028*
C20.8932 (5)0.3618 (10)0.1609 (4)0.0229 (9)
C30.4270 (5)0.6309 (9)0.1666 (4)0.0229 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0112 (4)0.0210 (4)0.0202 (4)0.0007 (4)0.0033 (4)0.0024 (5)
S20.0115 (4)0.0185 (4)0.0186 (4)0.0011 (5)0.0038 (3)0.0015 (5)
F10.0281 (15)0.0359 (16)0.0334 (13)0.0131 (12)0.0085 (12)0.0131 (12)
F20.0279 (15)0.051 (2)0.0345 (14)0.0012 (14)0.0156 (12)0.0151 (14)
F30.0436 (17)0.0338 (14)0.0218 (12)0.0017 (13)0.0001 (12)0.0042 (10)
F40.0454 (17)0.0465 (19)0.0206 (11)0.0085 (17)0.0083 (11)0.0042 (13)
F50.0286 (15)0.0320 (15)0.0336 (14)0.0048 (11)0.0103 (12)0.0122 (11)
F60.0221 (13)0.0425 (16)0.0289 (13)0.0093 (13)0.0008 (11)0.0105 (13)
O10.0117 (13)0.0214 (14)0.0229 (14)0.0023 (11)0.0066 (11)0.0006 (11)
O20.0246 (16)0.0269 (17)0.0266 (15)0.0108 (14)0.0043 (13)0.0047 (13)
O30.0188 (15)0.0306 (17)0.0331 (16)0.0083 (13)0.0104 (14)0.0107 (14)
O40.0122 (13)0.0220 (13)0.0225 (14)0.0008 (12)0.0047 (12)0.0020 (12)
O50.0140 (14)0.0270 (17)0.0363 (16)0.0021 (12)0.0036 (13)0.0039 (14)
O60.0212 (15)0.0249 (15)0.0228 (14)0.0065 (13)0.0049 (12)0.0000 (13)
C10.0121 (13)0.0387 (19)0.0182 (13)0.0047 (17)0.0036 (16)0.000 (2)
C20.021 (2)0.026 (2)0.0221 (19)0.0022 (17)0.0057 (16)0.0054 (17)
C30.023 (2)0.028 (2)0.0173 (17)0.0027 (19)0.0018 (17)0.0039 (17)
Geometric parameters (Å, º) top
S1—O21.410 (4)F2—C21.316 (5)
S1—O31.412 (4)F3—C21.321 (6)
S1—O11.573 (3)F4—C31.308 (5)
S1—C21.833 (4)F5—C31.319 (5)
S2—O51.408 (3)F6—C31.316 (5)
S2—O61.415 (3)O1—C11.435 (5)
S2—O41.573 (3)O4—C11.432 (5)
S2—C31.835 (4)C1—H10.9900
F1—C21.316 (5)C1—H20.9900
F3···F6i2.894 (5)F4···F5i2.957 (3)
F1···F5ii2.933 (4)
O2—S1—O3122.5 (2)O1—C1—H1110.1
O2—S1—O1110.91 (17)O4—C1—H2110.1
O3—S1—O1106.8 (2)O1—C1—H2110.1
O2—S1—C2108.1 (2)H1—C1—H2108.5
O3—S1—C2106.4 (2)F1—C2—F2109.2 (4)
O1—S1—C299.69 (19)F1—C2—F3109.3 (4)
O5—S2—O6122.87 (19)F2—C2—F3109.7 (4)
O5—S2—O4106.97 (19)F1—C2—S1110.4 (3)
O6—S2—O4110.79 (18)F2—C2—S1109.0 (3)
O5—S2—C3106.3 (2)F3—C2—S1109.3 (3)
O6—S2—C3107.5 (2)F4—C3—F6109.9 (4)
O4—S2—C399.85 (19)F4—C3—F5109.3 (4)
C1—O1—S1120.0 (3)F6—C3—F5109.1 (4)
C1—O4—S2119.9 (3)F4—C3—S2110.3 (3)
O4—C1—O1107.8 (2)F6—C3—S2108.4 (3)
O4—C1—H1110.1F5—C3—S2109.7 (3)
O2—S1—O1—C110.4 (4)O1—S1—C2—F2174.9 (3)
O3—S1—O1—C1146.1 (3)O2—S1—C2—F3170.9 (3)
C2—S1—O1—C1103.3 (3)O3—S1—C2—F355.9 (4)
O5—S2—O4—C1147.9 (3)O1—S1—C2—F355.0 (3)
O6—S2—O4—C111.6 (4)O5—S2—C3—F454.8 (4)
C3—S2—O4—C1101.6 (3)O6—S2—C3—F4171.9 (3)
S2—O4—C1—O1103.7 (4)O4—S2—C3—F456.3 (4)
S1—O1—C1—O498.6 (4)O5—S2—C3—F665.7 (3)
O2—S1—C2—F150.7 (4)O6—S2—C3—F667.6 (4)
O3—S1—C2—F1176.1 (3)O4—S2—C3—F6176.7 (3)
O1—S1—C2—F165.2 (4)O5—S2—C3—F5175.3 (3)
O2—S1—C2—F269.3 (4)O6—S2—C3—F551.4 (4)
O3—S1—C2—F264.0 (4)O4—S2—C3—F564.2 (3)
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.992.322.803 (6)109
C1—H2···O60.992.292.802 (6)111
C1—H1···O3iii0.992.513.416 (5)152
C1—H2···O5iv0.992.563.430 (5)147
Symmetry codes: (iii) x+2, y1/2, z+1; (iv) x+1, y1/2, z+1.
Ethane-1,2-diyl bis(trifluoromethanesulfonate) (2) top
Crystal data top
C4H4F6O6S2Z = 4
Mr = 326.19F(000) = 648
Triclinic, P1Dx = 2.009 Mg m3
a = 10.036 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.664 (3) ÅCell parameters from 3670 reflections
c = 11.276 (4) Åθ = 2.3–26.3°
α = 83.540 (9)°µ = 0.60 mm1
β = 64.178 (9)°T = 100 K
γ = 89.593 (9)°Plate, colourless
V = 1078.2 (6) Å30.16 × 0.09 × 0.01 mm
Data collection top
Bruker D8 VENTURE
diffractometer
4339 independent reflections
Radiation source: TXS rotating anode3403 reflections with I > 2σ(I)
Helios optic monochromatorRint = 0.079
Detector resolution: 16 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω and φ scansh = 1112
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1313
Tmin = 0.564, Tmax = 0.745l = 014
4339 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0356P)2 + 5.6794P]
where P = (Fo2 + 2Fc2)/3
4339 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Experimental. Diffractometer operator T. Pickl scanspeed 5-10 s per frame dx 62 mm 1944 frames measured in 7 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7390 (7)0.7806 (7)0.3145 (7)0.0305 (15)
C20.7981 (8)0.5426 (6)0.0952 (8)0.0330 (16)
H2A0.9028060.5201730.1412130.040*
H2B0.7398250.4972320.1301810.040*
C30.7408 (7)0.5038 (6)0.0505 (7)0.0269 (14)
H3A0.6427520.5392560.0983990.032*
H3B0.7288780.4105430.0694590.032*
C40.7031 (9)0.5807 (7)0.3481 (7)0.0361 (17)
C50.8589 (8)0.2726 (6)0.6257 (7)0.0302 (14)
C60.7927 (7)0.0998 (5)0.9138 (6)0.0221 (13)
H6A0.8994470.1134470.8894500.027*
H6B0.7821520.0347460.8620350.027*
C70.7111 (7)0.0564 (6)1.0578 (6)0.0241 (13)
H7A0.7533620.0219221.0800050.029*
H7B0.6057280.0373461.0807660.029*
C80.7390 (8)0.0661 (7)1.3534 (7)0.0357 (17)
O10.5416 (5)0.6374 (4)0.1115 (5)0.0314 (11)
O20.6156 (5)0.8470 (4)0.0780 (5)0.0280 (10)
O30.7869 (5)0.6800 (4)0.1208 (5)0.0273 (10)
O40.8474 (5)0.5512 (4)0.0961 (5)0.0271 (10)
O50.7148 (5)0.7467 (4)0.1546 (5)0.0293 (10)
O60.9481 (5)0.7020 (5)0.1759 (5)0.0378 (12)
O70.6265 (5)0.1192 (4)0.7537 (5)0.0321 (11)
O80.6023 (5)0.3478 (4)0.7861 (5)0.0294 (10)
O90.7323 (4)0.2186 (4)0.8829 (4)0.0220 (9)
O100.7222 (5)0.1561 (4)1.1360 (4)0.0269 (10)
O110.9608 (5)0.0795 (4)1.1190 (5)0.0321 (11)
O120.8618 (5)0.2776 (4)1.2118 (5)0.0358 (12)
F10.7956 (5)0.6816 (4)0.3792 (4)0.0465 (11)
F20.6383 (5)0.8273 (4)0.3533 (5)0.0492 (12)
F30.8467 (5)0.8687 (4)0.3484 (4)0.0440 (11)
F40.5908 (5)0.5129 (4)0.3503 (4)0.0496 (12)
F50.7841 (6)0.5051 (4)0.3855 (5)0.0506 (12)
F60.6486 (6)0.6642 (5)0.4320 (5)0.0556 (13)
F70.8389 (5)0.2819 (4)0.5157 (4)0.0397 (10)
F80.9190 (4)0.3805 (4)0.6300 (4)0.0357 (9)
F90.9521 (4)0.1820 (4)0.6202 (4)0.0363 (10)
F100.6861 (6)0.0449 (4)1.3420 (5)0.0580 (14)
F110.6265 (5)0.1269 (5)1.4300 (4)0.0518 (12)
F120.8276 (6)0.0428 (4)1.4110 (4)0.0480 (12)
S10.65129 (17)0.73351 (14)0.13709 (15)0.0212 (3)
S20.81148 (18)0.66163 (14)0.18055 (17)0.0247 (4)
S30.68116 (17)0.23493 (14)0.77089 (16)0.0227 (3)
S40.84046 (18)0.15361 (14)1.18972 (16)0.0237 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (4)0.032 (4)0.033 (4)0.000 (3)0.014 (3)0.004 (3)
C20.038 (4)0.018 (3)0.055 (5)0.011 (3)0.029 (4)0.012 (3)
C30.028 (3)0.017 (3)0.046 (4)0.000 (2)0.026 (3)0.005 (3)
C40.047 (4)0.032 (4)0.036 (4)0.000 (3)0.025 (4)0.002 (3)
C50.036 (4)0.024 (3)0.032 (4)0.006 (3)0.017 (3)0.005 (3)
C60.019 (3)0.016 (3)0.034 (4)0.003 (2)0.015 (3)0.001 (2)
C70.021 (3)0.024 (3)0.032 (3)0.000 (3)0.016 (3)0.001 (3)
C80.039 (4)0.037 (4)0.035 (4)0.002 (3)0.020 (4)0.005 (3)
O10.023 (2)0.021 (2)0.051 (3)0.0051 (18)0.016 (2)0.005 (2)
O20.027 (2)0.019 (2)0.035 (3)0.0015 (18)0.010 (2)0.0048 (19)
O30.026 (2)0.023 (2)0.038 (3)0.0038 (18)0.019 (2)0.0024 (19)
O40.025 (2)0.022 (2)0.042 (3)0.0004 (17)0.022 (2)0.0003 (19)
O50.031 (3)0.019 (2)0.043 (3)0.0054 (18)0.021 (2)0.0015 (19)
O60.032 (3)0.034 (3)0.056 (3)0.011 (2)0.029 (3)0.002 (2)
O70.034 (3)0.022 (2)0.049 (3)0.0020 (19)0.026 (2)0.005 (2)
O80.028 (2)0.021 (2)0.042 (3)0.0086 (18)0.019 (2)0.0056 (19)
O90.022 (2)0.016 (2)0.028 (2)0.0027 (16)0.0114 (19)0.0034 (17)
O100.029 (2)0.025 (2)0.036 (3)0.0092 (18)0.022 (2)0.0071 (19)
O110.024 (2)0.034 (3)0.044 (3)0.0098 (19)0.019 (2)0.011 (2)
O120.040 (3)0.026 (2)0.046 (3)0.005 (2)0.023 (3)0.004 (2)
F10.055 (3)0.048 (3)0.036 (2)0.008 (2)0.018 (2)0.015 (2)
F20.057 (3)0.059 (3)0.045 (3)0.013 (2)0.035 (2)0.002 (2)
F30.043 (3)0.037 (2)0.038 (2)0.0109 (19)0.008 (2)0.0069 (19)
F40.047 (3)0.055 (3)0.037 (2)0.023 (2)0.012 (2)0.009 (2)
F50.067 (3)0.036 (2)0.053 (3)0.002 (2)0.034 (3)0.012 (2)
F60.072 (3)0.049 (3)0.042 (3)0.005 (2)0.020 (3)0.007 (2)
F70.055 (3)0.040 (2)0.026 (2)0.001 (2)0.020 (2)0.0021 (17)
F80.034 (2)0.033 (2)0.036 (2)0.0097 (17)0.0120 (19)0.0011 (17)
F90.030 (2)0.036 (2)0.032 (2)0.0125 (17)0.0056 (18)0.0003 (17)
F100.091 (4)0.040 (3)0.040 (3)0.030 (3)0.029 (3)0.010 (2)
F110.040 (3)0.072 (3)0.035 (2)0.001 (2)0.008 (2)0.009 (2)
F120.072 (3)0.038 (3)0.045 (3)0.001 (2)0.038 (3)0.006 (2)
S10.0196 (7)0.0175 (7)0.0266 (8)0.0005 (6)0.0106 (6)0.0014 (6)
S20.0257 (8)0.0193 (7)0.0330 (9)0.0026 (6)0.0173 (7)0.0012 (6)
S30.0206 (7)0.0188 (7)0.0317 (8)0.0019 (6)0.0145 (7)0.0024 (6)
S40.0251 (8)0.0184 (7)0.0301 (8)0.0030 (6)0.0147 (7)0.0013 (6)
Geometric parameters (Å, º) top
C1—F31.331 (8)C7—O101.489 (7)
C1—F11.332 (8)C8—F111.308 (9)
C1—F21.337 (8)C8—F121.318 (8)
C1—S11.810 (7)C8—F101.342 (8)
C2—O31.474 (7)C8—S41.817 (8)
C2—C31.493 (10)O1—S11.420 (4)
C3—O41.487 (7)O2—S11.416 (4)
C4—F51.305 (8)O3—S11.548 (4)
C4—F61.311 (9)O4—S21.540 (5)
C4—F41.332 (8)O5—S21.423 (4)
C4—S21.831 (8)O6—S21.417 (5)
C5—F81.318 (8)O7—S31.420 (4)
C5—F91.327 (8)O8—S31.421 (4)
C5—F71.334 (8)O9—S31.551 (4)
C5—S31.828 (7)O10—S41.549 (4)
C6—O91.473 (7)O11—S41.417 (5)
C6—C71.483 (9)O12—S41.407 (5)
F5···F72.823 (7)F3···F9ii2.954 (5)
F7···F12i2.951 (7)
F3—C1—F1108.8 (6)C2—O3—S1120.5 (4)
F3—C1—F2108.5 (6)C3—O4—S2121.4 (4)
F1—C1—F2107.9 (6)C6—O9—S3121.4 (4)
F3—C1—S1111.3 (5)C7—O10—S4121.4 (4)
F1—C1—S1110.6 (5)O2—S1—O1121.9 (3)
F2—C1—S1109.6 (5)O2—S1—O3108.4 (3)
O3—C2—C3109.8 (5)O1—S1—O3112.0 (3)
O4—C3—C2108.9 (5)O2—S1—C1105.9 (3)
F5—C4—F6109.2 (6)O1—S1—C1107.1 (3)
F5—C4—F4108.6 (6)O3—S1—C198.9 (3)
F6—C4—F4108.5 (7)O6—S2—O5122.7 (3)
F5—C4—S2111.3 (5)O6—S2—O4105.6 (3)
F6—C4—S2109.7 (5)O5—S2—O4112.3 (3)
F4—C4—S2109.5 (5)O6—S2—C4106.2 (3)
F8—C5—F9108.6 (6)O5—S2—C4106.0 (3)
F8—C5—F7108.5 (5)O4—S2—C4101.8 (3)
F9—C5—F7108.8 (6)O7—S3—O8123.2 (3)
F8—C5—S3111.2 (5)O7—S3—O9112.2 (3)
F9—C5—S3110.0 (4)O8—S3—O9106.4 (3)
F7—C5—S3109.6 (5)O7—S3—C5106.0 (3)
O9—C6—C7109.1 (5)O8—S3—C5105.9 (3)
C6—C7—O10110.0 (5)O9—S3—C5100.5 (3)
F11—C8—F12108.9 (6)O12—S4—O11122.1 (3)
F11—C8—F10107.7 (6)O12—S4—O10107.5 (3)
F12—C8—F10108.1 (6)O11—S4—O10111.9 (3)
F11—C8—S4112.1 (5)O12—S4—C8105.7 (3)
F12—C8—S4110.2 (5)O11—S4—C8106.3 (3)
F10—C8—S4109.6 (5)O10—S4—C8101.1 (3)
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O8i0.992.623.60 (1)172
C3—H3A···O1iii0.992.602.984 (9)103
C3—H3B···O1iii0.992.592.984 (9)104
C3—H3A···O8iv0.992.593.579 (8)175
C6—H6A···O6v0.992.343.092 (8)132
C6—H6A···O11vi0.992.473.034 (8)116
C6—H6B···O2vii0.992.453.210 (8)133
C7—H7A···O5vii0.992.493.365 (8)147
C7—H7B···O7viii0.992.703.525 (7)142
C7—H7B···O2iv0.992.543.349 (9)139
Symmetry codes: (i) x, y, z1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+2, y, z+2; (vii) x, y+1, z1; (viii) x+1, y, z+2.
 

Acknowledgements

This work was financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). TP thanks the Studienstiftung des deutschen Volkes for a PhD fellowship and associated funding. All authors gratefully acknowledge support from the Fonds der Chemischen Industrie (FCI Sachkostenzuschuss) and the Technical University of Munich (Catalysis Research Center & Graduate School) for financial support. Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by: Studienstiftung des deutschen Volkes (scholarship to Thomas Pickl); Deutsche Forschungsgemeinschaft (grant No. SPP 1928); Fonds der Chemischen Industrie.

References

First citationAdamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158–6170.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltmann, P. J., Jandl, C. & Pöthig, A. (2015). Dalton Trans. 44, 11278–11281.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAltmann, P. J., Weiss, D. T., Jandl, C. & Kühn, F. E. (2016). Chem. Asian J. 11, 1597–1605.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAnneser, M. R., Haslinger, S., Pöthig, A., Cokoja, M., Basset, J.-M. & Kühn, F. E. (2015). Inorg. Chem. 54, 3797–3804.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernd, M. A., Dyckhoff, F., Hofmann, B. J., Böth, A. D., Schlagintweit, J. F., Oberkofler, J., Reich, R. M. & Kühn, F. E. (2020). J. Catal. 391, 548–561.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). Synthesis, pp. 146–150.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.  Web of Science CrossRef PubMed Google Scholar
First citationGrimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroth, P., Fjellvåg, H., Lehmann, M. S., Tammenmaa, M. & Volden, H. V. (1985). Acta Chem. Scand. A, 39, 587–591.  CSD CrossRef Web of Science Google Scholar
First citationHaynes, W. M. (2015). In Chemistry and Physics, 96th ed. Boca Raton: CRC Press.  Google Scholar
First citationHendrickson, J. B., Sternbach, D. D. & Bair, K. W. (1977). Acc. Chem. Res. 10, 306–312.  CrossRef CAS Web of Science Google Scholar
First citationHowells, R. D. & McCown, J. D. (1977). Chem. Rev. 77, 69–92.  CrossRef CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKamal, R., Kumar, V., Kumar, R., Saini, S. & Kumar, R. (2020). Synlett, 31, 959–964.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsuhara, Y. & DesMarteau, D. D. (1980). J. Fluorine Chem. 16, 257–263.  CrossRef CAS Web of Science Google Scholar
First citationKratzert, D. (2023). FinalCif, https://dkratzert.de/finalcif.htmlGoogle Scholar
First citationKuroboshi, M., Tanaka, H. & Kondo, T. (2015). Heterocycles, 90, 723–729.  Web of Science CrossRef CAS Google Scholar
First citationLindner, E., Pabel, M. & Eichele, K. (1990). J. Organomet. Chem. 386, 187–194.  CrossRef CAS Web of Science Google Scholar
First citationLindner, E., Schauss, E., Hiller, W. & Fawzi, R. (1985). Chem. Ber. 118, 3915–3931.  CSD CrossRef CAS Web of Science Google Scholar
First citationLindner, E., von Au, G. & Eberle, H.-J. (1981). Chem. Ber. 114, 810–813.  CrossRef CAS Web of Science Google Scholar
First citationMartínez, A. G., Alvarez, R. M., Fraile, A. G., Subramanian, L. R. & Hanack, M. (1987). Synthesis, pp. 49–51.  Google Scholar
First citationMartínez, A. G., Ríos, I. E. & Vilar, E. T. (1979). Synthesis, pp. 382–383.  Google Scholar
First citationMcKenna, R., Neidle, S., Kuroda, R. & Fox, B. W. (1989). Acta Cryst. C45, 311–314.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNeese, F. (2012). Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78.  Web of Science CrossRef CAS Google Scholar
First citationNeese, F. (2022). Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalomon, M. F. & Salomon, R. G. (1979). J. Am. Chem. Soc. 101, 4290–4299.  CrossRef CAS Web of Science Google Scholar
First citationShackelford, S. A., Chapman, R. D., Andreshak, J. L., Herrlinger, S. P., Hildreth, R. A. & Smith, J. C. (1985). J. Fluorine Chem. 29, 123.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaretto, U. (2002). MOLEKEL. Version 4.3. Swiss National Super­com­puting Centre, Lugano, Switzerland.  Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds