crystallography in latin america
Using cocrystals as a tool to study non-crystallizing molecules: E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic acid
Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Cd. Mx., Mexico, bCCIQS UAEM-UNAM, Universidad Nacional Autónoma de México, Carretera, Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano, Toluca, 50200, Estado de México, Mexico, and cTecnológico de Estudios Superiores de Ixtapaluca, Km 7 Carretera Ixtapaluca, Coatepec, CP 56580, Ixtapaluca, Estado de México, Mexico
*Correspondence e-mail: jvaldes@iquimica.unam.mx
This article is part of the collection Crystallography in Latin America: a vibrant community.
Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring.
Keywords: crystal structure; cocrystal; hydrogen bonding; π–π interactions; CrystalExplorer; AIM; NCI; methaninine; acetic acid.
CCDC reference: 2359735
1. Introduction
Understanding intermolecular interactions is fundamental to designing and synthesizing functional solid-state materials. Although there are significant advances in our understanding, there is still much to comprehend (Brammer, 2017; Galek et al., 2014; Gunawardana & Aakeröy, 2018). Our research investigates small molecules derived from having an aromatic ring (FAr) and a pyridyl group (py). These molecules can form three different types of intermolecular interactions: hydrogen bonds (H-bonds), interactions between the aromatic rings (π–π and C—H⋯π) and halogen bonds (X-bonds) when F, Br or I atoms are present. We have introduced F atoms to the Ar ring (FAr) to increase the likelihood of π-interactions between the aromatic rings. We are looking to understand how the number and position of F atoms in FAr affect the interactions and organization of the molecules in the crystal. Previous studies have indicated that the perfluorinated FAr ring interacts with the py ring through π–π interactions in both Schiff base (Jaime-Adán et al., 2024) and alkene analogue molecules [Cambridge Structural Database (CSD; Groom et al., 2016) refcodes ADUJOA (Orbach et al., 2012), EQOTOU (Mondal et al., 2011), EQOTOU (Lucassen et al., 2005) and RIDMOH (Aakeröy et al., 2007)], while non-fluorinated or mono-fluorinated rings of the Schiff base and the analogue alkene only present C—H⋯π interactions. We aim to investigate how many F atoms are necessary to promote π–π interactions.
Despite our best efforts, we were unable to crystallize disubstituted compounds successfully. However, we did manage to obtain a cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine (DFPPI) with acetic acid (AcOH), which is an acid that does not contain aromatic rings that may interfere with the possible aromatic interactions. In this article, we present the of the 1:1 DFPPI–AcOH cocrystal, (1) (Scheme 1), and reveal the interactions that govern its stability through Hirshfeld surface analysis and computational methodologies.
2. Experimental
All solvents, starting materials and carboxylic acids were purchased from commercial sources and used without further purification. IR data were collected using a Nicolet 380 FT–IR instrument. The melting point (uncorrected) was determined using a Fischer–Johns Mel-Temp melting-point apparatus.
2.1. Synthesis and crystallization
DFPPI was obtained from an equimolar reaction of pyridine-4-carbaldehyde and 3,4-difluoroaniline as reported previously (Sánchez-Pacheco et al., 2021). Crystals of (1) were obtained from a 9:1 (v/v) ethanol–acetic acid solution as a cream–yellow powder (m.p. 340–342 K). FT–IR (ATR) νmax: 3058, 3030, 1627, 1597, 1107 cm−1. 1H NMR (CDCl3, 300 MHz): δ 8.78 (dd, J = 6.0, 2.6 Hz, 2H), 8.43 (s, 1H), 7.74 (dd, J = 6.0, 2.7 Hz, 2H), 7.26–7.17 (m, 1H), 7.16–7.08 (m, 1H), 7.05–6.97 (m, 1H). DART+, m/z: 220, 219.
2.2. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions and included in the in the riding-model approximation, with Uiso(H) values set to 1.2Ueq(C). In the final analysis, we explored the isotropic displacement parameter of the O and N atoms, but the results were not significant, so thermal anisotropy was applied. The oxygen-bound H atom was located from a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 12.3. Computational studies
The analysis of electron density and interaction energies aims to discern the nature and strength of interactions within the cocrystal. The study began with calculating the Hirshfeld surface (Spackman et al., 2021), where the dnorm and shape index (S) were then mapped to identify intermolecular interactions and detect π–π interactions, respectively. Afterward, pairwise interaction energies were computed to quantify interaction strength, and an energy framework was derived to characterize the stabilizing interactions within the network. Both the calculation of the Hirshfeld surface and the energy analysis were conducted in CrystalExplorer, employing the CE-B3LYP/6-31G(d,p) level with TONTO (Jayatilaka & Grimwood, 2003; Turner et al., 2015; Mackenzie et al., 2017). Further insights into the interactions were achieved through theoretical electron-density analysis using the GPUAM code (Cruz et al., 2019; Hernández-Esparza et al., 2014, 2018), which combines two methodologies, namely, the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interactions (NCI) Index. The theoretical electron density was generated using GAUSSIAN16 [B3LYP/6-31G(d,p)] (Frisch et al. 2016).
3. Results and discussion
Cocrystal (1) consists of one DFPPI molecule and one acetic acid molecule in its (Fig. 1). The is triclinic and belongs to the P1. The imine group has an E conformation. The DFPPI molecule is not planar, as evidenced by the relevant torsion angles (Table 2) and the dihedral angle of 29.89 (5)° between the planes of the pyridine (py) and aromatic (FAr) rings. The AcOH molecule shows C—O distances according to single and double C—O bonds, in agreement with the presence of an acid group and not a carboxylate, as expected for a cocrystal. The C—O bonds in the AcOH molecule are nearly in the same plane as the py ring. This is confirmed by the angle formed between the py ring and the heavy atoms of AcOH, which measures 10.80 (6)°.
|
The AcOH molecule forms an O1—H1⋯N1i hydrogen bond with the N1 atom of the py from the imine (Table 3). Moreover, it shows py⋯py and FAr⋯FAr π–π interactions, with centroid–centroid distances of Cg(py)⋯Cg(py) = 3.8047 (6) Å and Cg(FAr)⋯Cg(FAr) = 3.8047 (7) Å; these interactions organize the molecules in columns [Fig. 2(a)] and the columns close pack to build the crystal [Fig. 2(b)].
|
We used the CrystalExplorer program to generate Hirshfield surfaces and mapped them with dnorm and shape index, and two-dimensional (2D) fingerprints to determine the intermolecular interactions (McKinnon et al., 2007). Fig. 3 shows the 2D fingerprints of DFPPI and AcOH. The plots show the typical wing structures with a non-symmetric long pick, which corresponds to the N1⋯H1 interaction on the DFPPI molecule and H1⋯N1 in the AcOH molecule, corresponding to the O1—H1⋯N1i hydrogen bond between both molecules. There is another hydrogen bond, namely, C2—H2⋯O2ii, i.e. C2—H2⋯O2 in DFPPI and O2⋯H2—C2 in AcOH. Additionally, the fingerprint of DFPPI indicates bonds of the type C—H⋯F and interactions between the C atoms, suggesting π–π interactions.
Fig. 4(a) displays the Hirshfeld surface, mapped with dnorm, which shows the existence of O—H⋯N(py) and C—H⋯O hydrogen bonds. Fig. 4(b) shows the Hirshfeld surface mapped with shape index; the complementary blue and red triangles observed in the aromatic rings indicate the presence of π–π interactions between the FAr and py rings (McKinnon et al., 2004).
Table 4 presents selected results from the calculation of pairwise interaction energies relative to the DFPPI molecule, along with a colour-coded molecular cluster illustrating these interactions. As expected, the most robust interaction, highlighted in red, was observed between the DFPPI molecule and the AcOH molecule. This interaction involves a hydrogen bond between O—H(acid) and N(py), with a total interaction energy (Etot) of −49.4 kJ mol−1. The interactions between DFPPI molecules stacked on top of each other, coloured in green in Table 4, follow in energy. According to the Hirshfeld surface, this interaction represents π–π interactions between the aromatic rings; the aryl and pyridine rings interact with an energy of −31.1 kJ mol−1. The cocrystal network seems significantly influenced by other interactions, including those between DFPPI molecules that do not have π–π characteristics. Non-classical hydrogen-bond contacts like C(imine)—H⋯O(acid) and C(aryl)—H⋯O(carbonyl) also play a role in the interactions between the DFPPI and AcOH molecules. Finally, the rod-shaped energy frameworks (Fig. 5) highlight that the stability of the cocrystal is governed by multiple electrostatic forces, with dispersive interactions having an important contribution, which is more significant between stacked molecules.
|
Theoretical electron-density analysis generates a spatial visualization and classifies pairwise interactions as attractive or repulsive (Fig. 6). Focusing on the four pairs with the most negative Etot values, we observe bond trajectories for O—H⋯N and C—H⋯O hydrogen-bond contacts. Based on the NCI index, these interactions are attractive. Electrostatic interactions play a significant role in the total interaction energy of molecular pairs. Regarding stacking interactions, bonding trajectories connecting C atoms of interacting DFPPI molecules are identifiable, accompanied by a prominent isosurface indicative of weakly attractive stacking. Such characteristics align with the heightened dispersive character suggested by the Etot components for these pairs.
Our assumption that a cocrystal would help study the intermolecular interactions of molecules that do not crystallize was successful. We found that having two F atoms in the aromatic ring is sufficient to promote π–π interactions between the aromatic rings, and further halogenation of the FAr ring is unnecessary.
Supporting information
CCDC reference: 2359735
https://doi.org/10.1107/S2053229624005187/dg3053sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229624005187/dg3053Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229624005187/dg3053Isup3.cml
C12H8F2N2·C2H4O2 | Z = 2 |
Mr = 278.26 | F(000) = 288 |
Triclinic, P1 | Dx = 1.459 Mg m−3 |
a = 3.8047 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.0101 (4) Å | Cell parameters from 8212 reflections |
c = 15.4968 (6) Å | θ = 2.5–27.5° |
α = 79.535 (1)° | µ = 0.12 mm−1 |
β = 89.223 (1)° | T = 100 K |
γ = 82.880 (1)° | Prism, colourless |
V = 633.42 (4) Å3 | 0.35 × 0.28 × 0.21 mm |
Bruker APEXII CCD diffractometer | Rint = 0.083 |
Radiation source: Incoatec ImuS | θmax = 27.5°, θmin = 1.3° |
ω scans | h = −4→4 |
11642 measured reflections | k = −14→14 |
2896 independent reflections | l = −20→20 |
2531 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0912P] where P = (Fo2 + 2Fc2)/3 |
2896 reflections | (Δ/σ)max = 0.001 |
185 parameters | Δρmax = 0.39 e Å−3 |
1 restraint | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 1.2872 (2) | 0.35402 (6) | 0.05185 (4) | 0.0267 (2) | |
F2 | 1.3162 (2) | 0.14057 (7) | −0.00933 (4) | 0.0270 (2) | |
O1 | 1.0367 (2) | 0.26535 (7) | 0.77019 (5) | 0.0227 (2) | |
H1 | 1.149 (4) | 0.2625 (16) | 0.7221 (8) | 0.034* | |
O2 | 0.9139 (2) | 0.46992 (8) | 0.71996 (5) | 0.0248 (2) | |
N1 | 0.3443 (2) | 0.25072 (9) | 0.61506 (6) | 0.0173 (2) | |
N2 | 0.8633 (2) | 0.15059 (9) | 0.33060 (6) | 0.0160 (2) | |
C2 | 0.2908 (3) | 0.35258 (10) | 0.55249 (7) | 0.0184 (2) | |
H2 | 0.170570 | 0.426595 | 0.567636 | 0.022* | |
C3 | 0.4024 (3) | 0.35531 (10) | 0.46656 (7) | 0.0179 (2) | |
H3 | 0.356878 | 0.429362 | 0.423999 | 0.022* | |
C4 | 0.5820 (3) | 0.24782 (10) | 0.44380 (7) | 0.0146 (2) | |
C5 | 0.6392 (3) | 0.14168 (10) | 0.50878 (7) | 0.0165 (2) | |
H5 | 0.760800 | 0.066575 | 0.495690 | 0.020* | |
C6 | 0.5164 (3) | 0.14717 (11) | 0.59270 (7) | 0.0186 (2) | |
H6 | 0.555773 | 0.074234 | 0.636467 | 0.022* | |
C7 | 0.7017 (3) | 0.24845 (10) | 0.35283 (7) | 0.0162 (2) | |
H7 | 0.657799 | 0.322648 | 0.310346 | 0.019* | |
C8 | 0.9763 (3) | 0.15414 (10) | 0.24265 (7) | 0.0150 (2) | |
C9 | 1.0735 (3) | 0.26135 (10) | 0.18881 (7) | 0.0165 (2) | |
H9 | 1.062252 | 0.337691 | 0.209691 | 0.020* | |
C10 | 1.1855 (3) | 0.25322 (11) | 0.10491 (7) | 0.0180 (2) | |
C11 | 1.2023 (3) | 0.14296 (11) | 0.07350 (7) | 0.0188 (2) | |
C12 | 1.1089 (3) | 0.03675 (11) | 0.12571 (7) | 0.0195 (2) | |
H12 | 1.118976 | −0.038866 | 0.103919 | 0.023* | |
C13 | 0.9997 (3) | 0.04275 (10) | 0.21085 (7) | 0.0175 (2) | |
H13 | 0.939981 | −0.030190 | 0.248056 | 0.021* | |
C14 | 0.8935 (3) | 0.37915 (10) | 0.77688 (7) | 0.0173 (2) | |
C15 | 0.7135 (3) | 0.38455 (11) | 0.86306 (8) | 0.0218 (3) | |
H15A | 0.891114 | 0.385338 | 0.908111 | 0.026* | |
H15B | 0.587614 | 0.311498 | 0.879896 | 0.026* | |
H15C | 0.544320 | 0.460336 | 0.857478 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0436 (5) | 0.0192 (4) | 0.0175 (3) | −0.0091 (3) | 0.0047 (3) | −0.0008 (3) |
F2 | 0.0417 (4) | 0.0266 (4) | 0.0145 (3) | −0.0054 (3) | 0.0064 (3) | −0.0080 (3) |
O1 | 0.0362 (5) | 0.0146 (4) | 0.0165 (4) | 0.0001 (3) | 0.0040 (3) | −0.0031 (3) |
O2 | 0.0386 (5) | 0.0161 (4) | 0.0178 (4) | 0.0005 (3) | 0.0014 (4) | −0.0008 (3) |
N1 | 0.0198 (5) | 0.0170 (5) | 0.0155 (4) | −0.0003 (4) | −0.0011 (4) | −0.0050 (4) |
N2 | 0.0194 (5) | 0.0146 (5) | 0.0143 (4) | −0.0015 (3) | −0.0002 (4) | −0.0041 (3) |
C2 | 0.0212 (6) | 0.0139 (5) | 0.0200 (5) | 0.0026 (4) | −0.0003 (4) | −0.0063 (4) |
C3 | 0.0219 (5) | 0.0130 (5) | 0.0176 (5) | 0.0016 (4) | −0.0014 (4) | −0.0018 (4) |
C4 | 0.0146 (5) | 0.0146 (5) | 0.0150 (5) | −0.0010 (4) | −0.0022 (4) | −0.0043 (4) |
C5 | 0.0184 (5) | 0.0117 (5) | 0.0191 (5) | 0.0019 (4) | −0.0007 (4) | −0.0045 (4) |
C6 | 0.0221 (6) | 0.0152 (5) | 0.0171 (5) | 0.0010 (4) | −0.0018 (4) | −0.0012 (4) |
C7 | 0.0182 (5) | 0.0147 (5) | 0.0152 (5) | −0.0004 (4) | −0.0021 (4) | −0.0024 (4) |
C8 | 0.0156 (5) | 0.0150 (5) | 0.0141 (5) | 0.0012 (4) | −0.0020 (4) | −0.0039 (4) |
C9 | 0.0201 (5) | 0.0139 (5) | 0.0157 (5) | 0.0001 (4) | −0.0019 (4) | −0.0049 (4) |
C10 | 0.0218 (5) | 0.0159 (5) | 0.0157 (5) | −0.0033 (4) | −0.0014 (4) | −0.0003 (4) |
C11 | 0.0225 (6) | 0.0223 (6) | 0.0120 (5) | −0.0008 (4) | 0.0002 (4) | −0.0058 (4) |
C12 | 0.0243 (6) | 0.0158 (5) | 0.0197 (5) | −0.0011 (4) | −0.0007 (4) | −0.0079 (4) |
C13 | 0.0208 (5) | 0.0138 (5) | 0.0180 (5) | −0.0020 (4) | −0.0003 (4) | −0.0034 (4) |
C14 | 0.0204 (5) | 0.0163 (5) | 0.0161 (5) | −0.0019 (4) | −0.0032 (4) | −0.0050 (4) |
C15 | 0.0262 (6) | 0.0220 (6) | 0.0179 (5) | −0.0028 (5) | 0.0026 (5) | −0.0059 (4) |
F1—C10 | 1.3504 (13) | C5—H5 | 0.9500 |
F2—C11 | 1.3531 (12) | C6—H6 | 0.9500 |
O1—C14 | 1.3243 (14) | C7—H7 | 0.9500 |
O1—H1 | 0.858 (9) | C8—C13 | 1.3951 (16) |
O2—C14 | 1.2166 (14) | C8—C9 | 1.4029 (15) |
N1—C2 | 1.3391 (14) | C9—C10 | 1.3777 (15) |
N1—C6 | 1.3419 (15) | C9—H9 | 0.9500 |
N2—C7 | 1.2739 (15) | C10—C11 | 1.3818 (17) |
N2—C8 | 1.4188 (13) | C11—C12 | 1.3783 (16) |
C2—C3 | 1.3884 (15) | C12—C13 | 1.3884 (15) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.3917 (15) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.5000 (15) |
C4—C5 | 1.3938 (15) | C15—H15A | 0.9800 |
C4—C7 | 1.4746 (14) | C15—H15B | 0.9800 |
C5—C6 | 1.3850 (15) | C15—H15C | 0.9800 |
C14—O1—H1 | 113.1 (11) | C10—C9—C8 | 118.37 (10) |
C2—N1—C6 | 117.64 (9) | C10—C9—H9 | 120.8 |
C7—N2—C8 | 119.44 (9) | C8—C9—H9 | 120.8 |
N1—C2—C3 | 123.21 (10) | F1—C10—C9 | 119.95 (10) |
N1—C2—H2 | 118.4 | F1—C10—C11 | 118.55 (10) |
C3—C2—H2 | 118.4 | C9—C10—C11 | 121.49 (10) |
C2—C3—C4 | 118.93 (10) | F2—C11—C12 | 120.40 (10) |
C2—C3—H3 | 120.5 | F2—C11—C10 | 118.78 (10) |
C4—C3—H3 | 120.5 | C12—C11—C10 | 120.81 (10) |
C3—C4—C5 | 118.06 (10) | C11—C12—C13 | 118.52 (10) |
C3—C4—C7 | 119.85 (10) | C11—C12—H12 | 120.7 |
C5—C4—C7 | 122.09 (10) | C13—C12—H12 | 120.7 |
C6—C5—C4 | 119.10 (10) | C12—C13—C8 | 121.07 (10) |
C6—C5—H5 | 120.4 | C12—C13—H13 | 119.5 |
C4—C5—H5 | 120.4 | C8—C13—H13 | 119.5 |
N1—C6—C5 | 123.06 (10) | O2—C14—O1 | 123.43 (10) |
N1—C6—H6 | 118.5 | O2—C14—C15 | 123.74 (10) |
C5—C6—H6 | 118.5 | O1—C14—C15 | 112.80 (9) |
N2—C7—C4 | 120.72 (10) | C14—C15—H15A | 109.5 |
N2—C7—H7 | 119.6 | C14—C15—H15B | 109.5 |
C4—C7—H7 | 119.6 | H15A—C15—H15B | 109.5 |
C13—C8—C9 | 119.71 (10) | C14—C15—H15C | 109.5 |
C13—C8—N2 | 116.81 (10) | H15A—C15—H15C | 109.5 |
C9—C8—N2 | 123.45 (10) | H15B—C15—H15C | 109.5 |
C6—N1—C2—C3 | 0.39 (17) | C13—C8—C9—C10 | 0.87 (16) |
N1—C2—C3—C4 | −0.65 (17) | N2—C8—C9—C10 | 178.78 (10) |
C2—C3—C4—C5 | 0.43 (16) | C8—C9—C10—F1 | −178.78 (10) |
C2—C3—C4—C7 | 179.76 (10) | C8—C9—C10—C11 | 0.20 (17) |
C3—C4—C5—C6 | 0.00 (16) | F1—C10—C11—F2 | −0.67 (17) |
C7—C4—C5—C6 | −179.31 (10) | C9—C10—C11—F2 | −179.67 (10) |
C2—N1—C6—C5 | 0.08 (17) | F1—C10—C11—C12 | 178.57 (10) |
C4—C5—C6—N1 | −0.27 (17) | C9—C10—C11—C12 | −0.43 (18) |
C8—N2—C7—C4 | −179.80 (9) | F2—C11—C12—C13 | 178.80 (10) |
C3—C4—C7—N2 | −179.29 (10) | C10—C11—C12—C13 | −0.42 (18) |
C5—C4—C7—N2 | 0.01 (17) | C11—C12—C13—C8 | 1.50 (17) |
C7—N2—C8—C13 | −151.63 (11) | C9—C8—C13—C12 | −1.74 (17) |
C7—N2—C8—C9 | 30.40 (16) | N2—C8—C13—C12 | −179.79 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.86 (1) | 1.83 (1) | 2.6819 (12) | 174 (2) |
C2—H2···O2ii | 0.95 | 2.64 | 3.3344 (14) | 130 |
C3—H3···O2iii | 0.95 | 2.48 | 3.3174 (14) | 147 |
C9—H9···O2iv | 0.95 | 2.56 | 3.5088 (14) | 173 |
C13—H13···O1v | 0.95 | 2.65 | 3.3713 (14) | 134 |
C15—H15B···F2vi | 0.98 | 2.61 | 3.5224 (14) | 155 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y, −z+1; (vi) x−1, y, z+1. |
The energies (E) are in kJ mol-1 and the radial distance (R) in Å. The colour-coded molecular cluster is related to the specific interaction energy. [What is indicated by bold values?] |
No. | Symop | R | Eele | Epol | Edis | Erep | Etot | E | EBSSE | |
1 | 1 | - | 8.79 | -81.5 | -18.8 | -11.5 | 98.2 | -49.4 | -53.9 | -41.8 |
2 | 2 | x, y, z | 3.80 | 0.3 | -1.1 | -59.0 | 32.0 | -32.1 | -51.5 | -33.6 |
3 | 1 | -x, -y, -z | 7.90 | -9.9 | -1.1 | -24.5 | 18.1 | -21.4 | -34.6 | -24.3 |
4 | 1 | - | 4.76 | -12.3 | -3.3 | -12.2 | 11.2 | -19.2 | 30.7 | -20.7 |
5 | 1 | -x, -y, -z | 7.22 | -9.1 | -1.3 | -24.1 | 22.4 | -17.7 | -31.2 | -23.6 |
6 | 1 | - | 5.08 | -9.1 | -1.3 | -24.1 | 22.4 | -17.7 | -31.2 | -23.6 |
7 | 1 | -x, -y, -z | 10.07 | -4.4 | -0.9 | -14.2 | 13.0 | -9.7 | -15.6 | -11.4 |
8 | 1 | -x, -y, -z | 10.81 | -4.0 | -0.5 | -8.8 | 5.2 | -9.0 | -19.1 | 10.6 |
9 | 1 | -x, -y, -z | 11.57 | -3.4 | -0.4 | -7.3 | 3.0 | -8.4 | -17.11 | -9.54 |
10 | 1 | - | 8.14 | -2.0 | -0.6 | -5.1 | 0.9 | -6.4 | -9.9 | -6.7 |
Scale factors for benchmarked energy model: | ||||||||||
Energy model: | kele | kpol | kdis | krep | ||||||
CE-B3LYP–B3LYP-D2/6-31G(d,p) | 1.057 | 0.740 | 0.871 | 0.618 |
Funding information
Funding for this research was provided by: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (grant No. PAPIIT: IN206722 to ADSP); Consejo Nacional de Humanidades Ciencia y Tecnología (scholarship to ADSP).
References
Aakeröy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421–426. Google Scholar
Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brammer, L. (2017). Faraday Discuss. 203, 485–507. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cruz, J. C., Hernández-Esparza, R., Vázquez-Mayagoitia, A., Vargas, R. & Garza, J. (2019). J. Chem. Inf. Model. 59, 3120–3127. Web of Science CrossRef CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Revision C.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/. Google Scholar
Galek, P. T. A., Chisholm, J. A., Pidcock, E. & Wood, P. A. (2014). Acta Cryst. B70, 91–105. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gunawardana, C. A. & Aakeröy, C. B. (2018). Chem. Commun. 54, 14047–14060. Web of Science CrossRef CAS Google Scholar
Hernández-Esparza, R., Mejía–Chica, S., Zapata–Escobar, A. D., Guevara–García, A., Martínez–Melchor, A., Hernández–Pérez, J., Vargas, R. & Garza, J. (2014). J. Comput. Chem. 35, 2272–2278. Web of Science PubMed Google Scholar
Hernández-Esparza, R., Vázquez-Mayagoitia, A., Soriano-Agueda, L. A., Vargas, R. & Garza, J. (2018). Int. J. Quantum Chem. 119, e25671. Google Scholar
Jaime-Adán, E., Hernández-Ortega, S., Toscano, R. A., Germán-Acacio, J. M., Sánchez-Pacheco, A. D., Hernández-Vergara, M., Barquera, J. E. & Valdés-Martínez, J. (2024). Cryst. Growth Des. 24, 1888–1897. Google Scholar
Jayatilaka, D. & Grimwood, D. J. (2003). Comput. Sci. ICCS, pp. 142–151. Google Scholar
Lucassen, A. C. B., Vartanian, M., Leitus, G. & van der Boom, M. E. (2005). Cryst. Growth Des. 5, 1671–1673. Web of Science CSD CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mondal, B., Captain, B. & Ramamurthy, V. (2011). Photochem. Photobiol. Sci. 10, 891–894. Web of Science CSD CrossRef CAS PubMed Google Scholar
Orbach, M., Choudhury, J., Lahav, M., Zenkina, O. V., Diskin-Posner, Y., Leitus, G., Iron, M. A. & van der Boom, M. E. (2012). Organometallics, 31, 1271–1274. Web of Science CSD CrossRef CAS Google Scholar
Sánchez-Pacheco, A. D., Hernández-Vergara, M., Jaime-Adán, E., Hernández-Ortega, S. & Valdés-Martínez, J. (2021). J. Mol. Struct. 1234, 130136. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.