crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structure and cryomagnetic study of a mononuclear erbium(III) ox­am­ate inclusion com­plex

crossmark logo

aDepartamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil, bDepartamento de Física, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil, cInstituto de Física, Universidade Federal Fluminense, Niterói, RJ, 24210-346, Brazil, dInstituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil, and eDepartament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain
*Correspondence e-mail: cynthialopes@ufmg.br

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil (Received 30 May 2024; accepted 19 June 2024; online 10 July 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

The synthesis, crystal structure and magnetic properties of an ox­am­ate-con­taining erbium(III) com­plex, namely, tetra­butyl­ammonium aqua­[N-(2,4,6-tri­methyl­phen­yl)oxamato]erbium(III)–di­methyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted ox­am­ate ligands and one water mol­ecule in a nine-coordinated environment, together with one tetra­butyl­ammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) mol­ecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic mea­sure­ments were carried out for this mononuclear com­plex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.

1. Introduction

The search for derivatives with paramagnetic centres envisaging technologies based on quantum effects has attracted the attention of several research teams worldwide (Marin et al., 2021[Marin, R., Brunet, G. & Murugesu, M. (2021). Angew. Chem. Int. Ed. 60, 1728-1746.]). These com­pounds, known as Single-Mol­ecule Magnets (SMMs) or Single-Ion Magnets (SIMs), which are polynuclear or mononuclear com­pounds that exhibit relaxation of the magnetization phenomena (a requirement to build spin qubit entities), are produced using various potential organic spacers, like cyanide, carboxyl­ate, oxalate and functionalized ox­am­ate ligands (Ferrando-Soria et al., 2017[Ferrando-Soria, J., Vallejo, J., Castellano, M., Martínez-Lillo, J., Pardo, E., Cano, J., Castro, I., Lloret, F., Ruiz-García, R. & Julve, M. (2017). Coord. Chem. Rev. 339, 17-103.]). The assembling of these ligands, together with the type of metal ions, d- or f-block metals of the periodic table, plays a crucial role in producing inter­esting SMMs or SIMs because these polyatomic ligands are able to mediate important magnetic inter­actions between the paramagnetic ions linked by them.

Spin qubits are the basic units of quantum information that use the spin of subatomic particles, such as electrons or nuclei, to represent and process quantum data. Therefore, SMMs and SIMs, as magnetic entities, can be employed to build spin qubits to be integrated into potential technologies, such as quantum com­puting (Escalera-Moreno et al., 2018[Escalera-Moreno, L., Baldoví, J. J., Gaita-Ariño, A. & Coronado, E. (2018). Chem. Sci. 9, 3265-3275.]).

Increasing efforts have been devoted to investigating SMMs and SIMs containing rare-earth elements, because these ions typically have practical functional applications with high values of spin-orbit coupling com­pared to first-row transition elements (Chen et al., 2023[Chen, J.-T., Zhou, T.-D. & Sun, W.-B. (2023). Dalton Trans. 52, 4643-4657.]; Dey et al., 2018[Dey, A., Kalita, P. & Chandrasekhar, V. (2018). ACS Omega, 3, 9462-9475.]). Therefore, lanthanide ions may produce performant magnetic ions and magnetic mol­ecules, with higher blocking temperatures, com­patible with technological applications (Guo et al., 2018[Guo, F.-S., Day, B. M., Chen, Y.-C., Tong, M.-L., Mansikkamäki, A. & Layfield, R. A. (2018). Science, 362, 1400-1403.]). Since the discovery that ox­am­ate com­plexes are good candidates for building spin qubits (Wang et al., 2023[Wang, J., Jing, Y., Cui, M., Lu, Y., Ouyang, Z., Shao, C., Wang, Z. & Song, Y. (2023). Chem. A Eur. J. 29, e202301771.]), our knowledge of the coordination chemistry of functionalized ox­am­ates (da Cunha et al., 2019[Cunha, T. T. da, Barbosa, V. M. M., Oliveira, W. X. C., Pinheiro, C. B., Pedroso, E. F., Nunes, W. C. & Pereira, C. L. M. (2019). Polyhedron, 169, 102-113.], 2020[Cunha, T. T. da, Barbosa, V. M. M., Oliveira, W. X. C., Pedroso, E. F., García, D. M. A., Nunes, W. C. & Pereira, C. L. M. (2020). Inorg. Chem. 59, 12983-12987.]; Vaz et al., 2020[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106-16124.], 2022[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628-6641.]; Dul et al., 2010[Dul, M.-C., Pardo, E., Lescouëzec, R., Journaux, Y., Ferrando-Soria, J., Ruiz-García, R., Cano, J., Julve, M., Lloret, F., Cangussu, D., Pereira, C. L. M., Stumpf, H. O., Pasán, J. & Ruiz-Pérez, C. (2010). Coord. Chem. Rev. 254, 2281-2296.]; Fortea-Pérez et al., 2013[Fortea-Pérez, F. R., Vallejo, J., Julve, M., Lloret, F., De Munno, G., Armentano, D. & Pardo, E. (2013). Inorg. Chem. 52, 4777-4779.]) moved us to focus on the preparation and magneto-structural characterization of ox­am­ate-containing lanthanide com­plexes, considering their potential use in spintronics.

[Scheme 1]

In this article, we present the synthesis, crystal structure and magnetic properties of a field-induced SIM of formula n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), where H2tmpa is N-(2,4,6-trimethyl­phen­yl)oxamic acid, n-Bu4N+ is tetra-n-butyl­ammonium and DMSO is dimethyl sulfoxide. This or­ganic ligand was described previously in the synthesis of ox­am­ate-bridged heterobimetallic cobalt(II)–copper(II) chains (Pardo et al., 2004[Pardo, E., Ruiz-García, R., Lloret, F., Faus, J., Julve, M., Journaux, Y., Delgado, F. & Ruiz-Pérez, C. (2004). Adv. Mater. 16, 1597-1600.]). It is important to outline that the Htmpa ligand presents three methyl groups acting as donors of electronic density at the aromatic ring, in contrast to a pre­vious report on the mononuclear dysprosium(III) ox­am­ate com­plex Me4N[Dy(HL)4]·2CH3CN, [H2L is N-(2,6-di­methyl­phen­yl)oxamic acid and Me4N+ is tetra­methyl­ammonium], where the ox­am­ate ligand has two methyl groups on the arene ring, the dysprosium ion being eight-coordinate. Also, a series of mononuclear lanthanide(III) ox­am­ate com­plexes (Ln3+ = Eu3+, Gd3+, Dy3+, Tb3+, Nd3+ and Ho3+), incorporating withdrawing halogen and hydroxo substituents, were reported by our group (Vaz et al., 2020[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106-16124.], 2022[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628-6641.]; da Cunha et al., 2019[Cunha, T. T. da, Barbosa, V. M. M., Oliveira, W. X. C., Pinheiro, C. B., Pedroso, E. F., Nunes, W. C. & Pereira, C. L. M. (2019). Polyhedron, 169, 102-113.]) and displayed nine-coordinated lanthanide ions. The mol­ecular structure of the proligand EtHtmpa, namely, ethyl N-(2,4,6-trimethyl­phen­yl)ox­am­ate, used in this study is shown in Scheme 1.

2. Experimental

2.1. Materials and methods

All chemicals and solvents were of analytical grade and were used without further purification. The ethyl ester EtHtmpa proligand used in this work was synthesized as described previously (Pardo et al., 2004[Pardo, E., Ruiz-García, R., Lloret, F., Faus, J., Julve, M., Journaux, Y., Delgado, F. & Ruiz-Pérez, C. (2004). Adv. Mater. 16, 1597-1600.]). Elemental analyses were carried out with a PerkinElmer 2400 analyzer. IR spectra were recorded on KBr pellets in the 4000–400 cm−1 range on a PerkinElmer 882 spectrophotometer. The thermal study (TG/DTA, thermogravimetric/differential thermal analysis) was done with a DTG-60H Shimadzu instrument using 3.196 mg (0.0021 mmol) of the com­plex placed in an alumina crucible. The solid sample was heated at 10 K min−1 from room temperature to 873 K under a di­nitro­gen atmosphere (flow rate = 50 ml min−1). Samples of 1 suitable for single-crystal X-ray diffraction (SCXRD) data collection were investigated in a Rigaku Synergy diffractometer using Cu Kα radiation (λ = 1.54184 Å) at 220 K. The powder X-ray diffraction pattern (PXRD) of 1 was taken on an Empyrean (Panalytical) using Cu Kα1 radiation (λ = 1.54056 Å). The simulated PXRD patterns was generated with Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) using the crystal data obtained from the SCXRD CIF file. Variable-temperature static (dc) magnetic susceptibility and variable-field magnetization measurements were carried out using a Quantum Design SQUID magnetometer model MPMS-XL-5. Variable-temperature dynamic (ac) magnetic susceptibility measurements were performed using a Model Quantum Design PPMS-9 operating with a small amplitude ac field (5 Oe) and scanning within the frequency range 0.1–10 kHz at different applied dc magnetic fields. The dc and ac magnetic measurements were performed on powdered polycrystalline samples, previously placed in gelatine capsules with mineral oil to prevent crystal movement. Corrections for the diamagnetism of the sample and for the sample holder were also applied.

2.2. Synthesis of 1

To an aqueous mixture (30 ml) containing the EtHtmpa pro­ligand (480 mg, 2.04 mmol) was added dropwise tetra­butyl­ammonium hydroxide (40 wt%, 1.33 ml, 2.05 mmol) under continuous stirring and the resulting mixture was heated at 60 °C for 30 min. The system was cooled to room tem­per­ature and DMSO (42 ml) was added dropwise. An aqueous solution (6 ml) of ErCl3·6H2O (193 mg, 0.50 mmol) was added slowly to the mixture under continuous stirring. The resulting solution was stirred, heated at 60 °C for 15 min and placed in an open Petri dish. Light-pink rectangular crystals of 1 suitable for X-ray structure analysis were ob­tained after 24 h in an open air atmosphere at room tem­per­a­ture after slow evaporation (yield: 486 mg, 65%). Elemental analysis for C66H106ErN5O17.5S3 expected/calculated (%): C 50.67/52.67, 7.07/7.10, N 4.52/4.65. Selected IR peaks (KBr/cm−1): 3418 [ν(O—H)], 3222 [ν(N—H)], 3968, 2918, 2875 [ν(C—H)], 1669, 1641 [ν(C=O)], 1535, 1487 [ν(C=C)], 1026 [ν(S=O)] 852, 767 [γ(C—H)].

2.3. Single-crystal X-ray data collection and refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Data integration and scaling of the reflections for the SCXRD experiments were done through the CrysAlis PRO suite (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). The final unit-cell parameters were based on the fitting of all reflection positions. Analytical absorption correction and space group identification were performed using the CrysAlis PRO suite. The structure of 1 was solved by direct methods using the SUPERFLIP program (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]). The positions of all atoms could be unambiguously assigned on consecutive difference Fourier maps. All but the H atoms and crystallization solvent mol­ecules trapped in voids were refined with anisotropic atomic displacement parameters. The DMSO solvent mol­ecule inside the void presented two possible positions and was thus treated as disordered with double positions for all atoms with refined occupancies combined into one DMSO mol­ecule. Also, the water mol­ecule can be found in the void with partial occupancy. Its occupancy was refined and converged to 0.54, then fixed at 0.5 for chemical purposes, meaning two DMSO and one water molecule form each void content (formed by two erbium complexes). The H atoms of this water molecule could not be located in difference maps and due to proximity to DMSO molecules inside the voids they were not added. The SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was applied to remove the contents of the void finding, per unit cell, i.e. 757 Å3 of accessible volume containing 187 electrons or ca 47 electrons distributed in approximately 190 Å3 per com­plex. This is com­patible with one DMSO mol­ecule (42 electrons and 117.98 Å3) and a half water mol­ecule (5 electrons and 14.95 Å3). The H atoms were located in difference maps and included as fixed contributions according to the riding model (Johnson, 1970[Johnson, C. K. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 207-219. Copenhagen: Munksgaard.]), with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the aromatic C atoms, C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene C atoms, and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N) for the amide groups.

Table 1
Experimental details

Crystal data
Chemical formula (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O
Mr 1512.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 15.3967 (1), 30.6741 (2), 16.0612 (1)
β (°) 90.172 (1)
V3) 7585.35 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.36
Crystal size (mm) 0.44 × 0.24 × 0.04
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.135, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 103272, 13894, 12290
Rint 0.061
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.04
No. of reflections 13894
No. of parameters 843
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.32, −1.04
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and Vesta (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

3. Results and discussion

The synthetic procedure used to produce 1 was slightly dif­ferent from previous reports. Herein, we used the Et(Htmpa) proligand and n-Bu4NOH in a diluted DMSO solution to obtain com­pound 1 in a one-pot synthesis, in contrast to other reports, in which the corresponding tetra­butyl­ammonium salt of the ligand was isolated, characterized and then added to the solution of the corresponding lanthanide(III) ion. Complex 1 was obtained both as a single crystal and polycrystalline bulk. Elemental analysis and IR spectrometry (Fig. S1 in the supporting information), as well as the thermogravimetric analysis (TG curve; Fig. S2), support the com­position of 1, whose stoichiometry was determined by single-crystal X-ray diffraction. The TG profile of 1 in Fig. S2 shows a gradual stepwise mass loss of ca 17% from room temperature to around 147 °C, corresponding to the com­plete release of the solvent mol­ecules of crystallization [i.e. 1.5 H2O (1.8%) and 3 DMSO (15.5%)], to render the unsolvated derivative of formula n-Bu4N[Er(Htmpa)4(H2O)] (2). Compound 2 ex­hibits an unusually high thermal stability up to around 257 °C, just before decom­position occurs. Otherwise, the TDA profile of 1 in Fig. S2 evidences three distinct endothermic peaks centred around 40, 60 and 150 °C, which could be attributed to the loss of 1.5 H2O, 2 DMSO and 1 DMSO solvent mol­ecule of crystallization, respectively, evidencing the larger affinity of the included DMSO guest mol­ecule. Moreover, the PXRD pattern of the polycrystalline sample (Fig. S3) is almost identical to that calculated from the crystal structure, supporting the purity of 1. The differences in intensity can be related to the preferential orientation of the powder sample and the optical elements used in the PXRD experiment.

The crystal structure of 1 consists of a discrete mononuclear erbium(III) com­plex anion, [Er(Htmpa)4(H2O)], an n-Bu4N+ cation and crystallization solvent mol­ecules, three DMSO and one and a half water mol­ecules per metal com­plex. The complex crystallizes in the monoclinic space group P21/n with four erbium(III) com­plexes per unit cell. Fig. 1[link](a) shows the lanthanide atom surrounded by four bidentate monode­pro­ton­ated ox­am­ate ligands from N-(2,4,6-tri­methyl­phen­yl)ox­amic acid, and two water mol­ecules. One tetra­butyl­ammonium cation acts as a counter-ion, and two water mol­ecules and three DMSO mol­ecules of crystallization occur also in the asymmetric unit of each com­plex. In this case, the ErIII ion is nine-coordinated and the four aromatic rings are arranged in a cis orientation pointing in the same direction, opposite to the coordinated water mol­ecule. The resulting structure is reminiscent of a calixarene-like motif for the anionic unit, as described for [LnIII(HL)4(DMSO)] units, in which HL is N-(4-X-phen­yl)oxamic acid (X = Cl or F) (Vaz et al., 2020[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106-16124.], 2022[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628-6641.]). However, in the case of 1, there are two remarkable differences: (i) one of the three DMSO crystallization mol­ecules is practically inside the calixarene-type structure, almost in the middle of the packing of the four aromatic rings, and (ii) one water mol­ecule is coordinated to the lanthanide(III) ion of 1, in contrast to the earlier reported example (Vaz et al., 2020[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106-16124.], 2022[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628-6641.]). These structural features are probably a consequence of the differences in the synthetic procedure followed.

[Figure 1]
Figure 1
(a) The crystal structure of n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1). C atoms (in gray) are not labelled for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Each monodeprotonated ox­am­ate fragment of the four Htmpa ligands coordinates to the metal atom through its amide and carboxyl­ate O atoms in a bidentate manner, sub­tending five-membered chelate rings [Fig. 2[link](a)]. The ninth coordination site is filled by a water mol­ecule. All metal–ox­am­ate bonds are very similar and cover the narrow range from 2.3541 (17) (Er1—O1) to 2.4592 (17) Å (Er1—O9). The coordination polyhedron of the ErIII ion is very close to a capped anti­prismatic square [Fig. 2[link](b) and Table S1]. The water mol­ecule, although being the capping ligand, exhibits a bond length shorter than those of the ox­am­ate [Er1—O13 = 2.449 (2) Å]. One of the squares is built by all the amide O atoms (O3, O6, O9 and O12), while the other is defined by the carboxyl­ate O atoms (O1, O4, O7 and O10); the water mol­ecule is found as the capping ligand of this last square. The four Htmpa substituents are on the same side, inter­acting via CH3π in a square-like pattern [Fig. 2[link](a)], the distances from the methyl C atom to the centre of the aromatic ring cover the range 3.58–4.31 Å (see Table S2). The calixarene-like conformation of this com­plex is like a goblet, forming a small hydro­phobic void.

[Figure 2]
Figure 2
(a) The crystal structure of the [Er(Htmpa)4(H2O)] anion of 1, with the relevant atoms labelled. Light-gray dotted lines indicate the CH3π inter­actions. Displacement ellipsoids are drawn at the 50% probability level. (b) The coordination sphere around the Er atom, showing its capped anti­prismatic coordination geometry. H atoms have been omitted for clarity. C, O and N atoms are coloured in gray, red and blue, respectively.

The symmetry around the metal ion was com­pared to the ideal spherical capped square anti­prism (CSAPR-9) through the continuous shape measures methodology (Llunell et al., 2013[Llunell, M., Alemany, P. & Alvarez, S. (2013). SHAPE. Version 2.1. University of Barcelona, Spain.]). The value found is 0.263 (Table S3), demonstrating that supra­molecular chemistry plays a significant role in the crystal structure and the symmetry around the metal centre. Other nine-coordinated lanthanide(III)–ox­am­ate com­plexes present a monocapped square anti­prismatic, tricapped trigonal prismatic J51 (JTCTPR-9) and spherical tricapped trigonal prismatic symmetry (TCTPR-9) (Vaz et al., 2020[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106-16124.], 2022[Vaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628-6641.]).

In the crystal packing of 1, one can see two anionic com­plexes inter­acting with each other via van der Waals inter­actions of the 2,4,6-tri­methyl­phenyl moiety. The combined void has an accessible volume of 378.5 Å3, hosting two DMSO mol­ecules and one water molecule of crystallization, the last being divided over two positions to inter­act with both DMSO mol­ecules simultaneously. One DMSO mol­ecule has a CH3 group inserted into the void (see Table S4) and the rest points out where it can inter­act with a water mol­ecule via hydrogen bonds, which is also bound to the other DMSO mol­ecule inserted into the second hydro­phobic void [see Fig. 3[link](a)]. Along this inter­action, the Er atoms are separated by 16.3474 (9) Å [Er1⋯Er1vi; symmetry code: (vi) −x + 1, −y + 2, −z]. All other crystallization mol­ecules, i.e. two DMSO and one water mol­ecule, inter­act with the coordinated water mol­ecule via hydrogen bonds, as can be seen in Fig. 3[link](b) and Table S2. These molecules bind to the coordinated water molecule, transitioning between the polar part of the complex to the apolar n-Bu4N+, where the methyl groups of the DMSO molecules can interact with the aliphatic chains in the cation.

[Figure 3]
Figure 3
(a) Water and DMSO mol­ecules fitting the voids formed by the packing of two [Er(Htmpa)4(H2O)] com­plexes. [Symmetry code: (vi) −x + 1, −y + 2, −z.] Displacement ellipsoids are drawn at the 50% probability level and molecules inside the voids as a ball-and-stick model. Orange dotted lines represent hydrogen bonds. H atoms have been omitted for clarity. (b) Inter­action of the [Er(tmpa)4(H2O)] com­plex with the mol­ecules of crystallization. Er, C, O, N and S atoms are coloured in green, gray, red, blue and yellow, respectively. Displacement ellipsoids are drawn at the 50% probability level. (c) Perspective drawing of two anionic entities of inclusion com­plex 1 (omitting the H atoms), in which the space-filling model represents the DMSO and H2O solvent mol­ecules.

The crystal packing of 1 is strongly based on hydrogen bonds via mol­ecular recognition (see Table S4). Each ox­am­ate has a protonated N atom which recognizes the neighbouring non-coordinated carboxyl­ate O atom. This inter­action occurs in a dimeric way, meaning the recognized mol­ecule also has a protonated N atom, which inter­acts with the original ox­am­ate non-coordinated O atom. Since the erbium com­plex has four ox­am­ate ligands almost equally separated, the autorecognition of the com­plexes leads to a two-dimensional (2D) supra­­molecular system along the crystallographic ac plane [Fig. 4[link](a)]. Within this plane, the closest metal–metal separation along the (101) direction is 11.1287 (5) Å, while it is 11.1620 (5) Å in the ([\overline{1}]0[\overline{1}]) direction. The crystal packing along the crystallographic b axis is governed by van der Waals inter­actions. The 2,4,6-tri­methyl­phenyl substituents along this direction form the voids with the captured DMSO and water mol­ecules, the aliphatic arms of n-Bu4N+ mediate the contacts with the aromatic part and the DMSO methyl groups cap the coordinated water mol­ecule [see Fig. 4[link](b)].

[Figure 4]
Figure 4
(a) Mol­ecular recognition of monodeprotonated ox­am­ate fragments via hydrogen bonds (orange dotted lines) leading to a 2D supra­molecular network running parallel to the crystallographic ac plane. C, O and N atoms are coloured in gray, red and blue, respectively. (b) Crystal packing along the crystallographic b axis, showing the n-Bu4N+ ions mediating the van der Waals inter­actions between the metal com­plexes and solvent mol­ecules. Colour code: [Er(H2O)(Htmpa)4] com­plex anions in gray, n-Bu4N+ cations in pink, voids containing the trapped DMSO and water mol­ecules in orange, and the remaining crystallization mol­ecules in green.

The variable-temperature magnetic properties of 1 were investigated on a collection of crushed single crystals in direct-current (dc) and alternating-current (ac) modes. Dc data are shown as the χMT versus T plot in Fig. 5[link] [χM being the magnetic susceptibility per mol of the erbium(III) ion]. At room temperature, χMT is equal to 11.36 cm3 Oe mol−1, a value which is close to that expected for a magnetically isolated ErIII ion [ground term 4I15/2 with an equally populated J = 15/2 state, gJ = 6/5, L = 6 and S = 3/2] (Sorace & Gatteschi, 2015[Sorace, L. & Gatteschi, D. (2015). In Lanthanides and Actinides in Molecular Magnetism, edited by R. H. Layfield & M. Murugesu. Chichester: Wiley.]). Upon cooling, a monotonic decrease of χMT is observed until approximately 100 K, where the downturn becomes more pronounced, reaching 6.48 cm3 K mol−1 at 2.0 K. The thermal depopulation of the excited Stark sublevels split by the crystal field and the spin-orbit coupling effects would account for the reduction of the χMT value when the temperature is decreased.

[Figure 5]
Figure 5
Temperature dependence of the cMT product for 1 (H = 200 Oe). Inset: M versus HT−1 curves for 1 at 2.0, 4.0 and 8.0 K.

The reduced magnetization curves for 1 do not collapse (M against H/T plots; see inset of Fig. 5[link]), indicating the occurrence of a considerable magnetic anisotropy. M attains 4.9 Nβ at 2.0 K under 70 kOe, a value which is well below the theoretical value for saturation (ca 9.0 Nβ), a typical feature for Ln3+ com­pounds (Bazhenova et al., 2020[Bazhenova, T. A., Mironov, V. S., Yakushev, I. A., Svetogorov, R. D., Maximova, O. V., Manakin, Y. V., Kornev, A. B., Vasiliev, A. N. & Yagubskii, E. B. (2020). Inorg. Chem. 59, 563-578.]). Hysteresis measurements at 2.0 K show no coercive field or remnant magnetization.

The dynamic magnetic behaviour of 1 was investigated through ac susceptibility measurements in the frequency range 0.1–10 kHz under applied dc fields ranging from 0 to 1000 Oe. Non-zero values of the out-of-phase signal (χ′′) were observed under Hdc = 0 Oe, but well-defined maximum peaks of this signal occurred by the application of dc magnetic fields of 600 and 1000 Oe below 5.0 K, suggesting field-induced SIM behaviour for 1. Fig. 6[link](a) shows both the in-phase (χ′) and out-of-phase (χ′′) frequency dependence under Hdc = 1000 Oe (optimum field) in the temperature range 2.0–5.0 K. The corresponding Cole–Cole plots of these data are depicted in Fig. 6[link](b). The Cole–Cole plots show a nearly semi­circular and symmetrical shape, indicating a single re­laxation process. The frequency dependence of both in-phase (χ′) and out-of-phase (χ′′) com­ponents of the ac susceptibility was fitted through the generalized Debye model using CCFIT2 software (Reta & Chilton, 2019[Reta, D. & Chilton, N. F. (2019). Phys. Chem. Chem. Phys. 21, 23567-23575.]; Blackmore et al., 2023[Blackmore, W. J. A., Gransbury, G. K., Evans, P., Kragskow, J. G. C., Mills, D. P. & Chilton, N. F. (2023). Phys. Chem. Chem. Phys. 25, 16735-16744.]). The parameters provided by these fittings are listed in Table S5. The temperature dependence of relaxation time (t) is shown in Fig. 7[link]. These data were fitted by considering a combination of the Orbach process and quantum tunnelling of magnetization (QTM) by means of the following expression [Equation (1)[link]]:

[\tau ^{-1} (T) = \tau_0^{-1}{\rm exp}(-U_{\rm eff}/T) + \tau_{\rm QTM}^{-1}]

where τ0 is a pre-exponential factor, Ueff accounts for the energy barrier to the relaxation of the magnetization, and τQTM−1 stands for the characteristic QTM rate. The best-fit results are: Ueff = 32 (2) K, τ0 = 1.25 (2) × 10−9 s and τQTM = 1.4 (8) × 10−3 s. The effective energy barrier found for 1 is slightly greater than that reported for an erbium(III) β-diketonate com­plex (ca 26.8 K) and much greater than the values of the [Er(hd)3(bipy)] com­plex (8 K) (hd is hexane-2,4-dione and bipy is 2,2′-bi­pyridine) (Martín-Ramos et al., 2015[Martín-Ramos, P., Coutinho, J. T., Ramos Silva, M., Pereira, L. C. J., Lahoz, F., da Silva, P. S. P., Lavín, V. & Martín-Gil, J. (2015). New J. Chem. 39, 1703-1713.]; Silva et al., 2014[Silva, M. R., Martín-Ramos, P., Coutinho, J. T., Pereira, L. C. J. & Martín-Gil, J. (2014). Dalton Trans. 43, 6752.]). This analysis of the data obtained under a dc field of 600 Oe for 1 shows values very close to those obtained with a field of 1000 Oe (see Fig. S5). A greater energy barrier was determined for one of the two processes observed in the ErIII com­plex [Er(dbm)3(bipy)] (dbm is di­benzoyl­methanate) with important inter­molecular inter­action effects, the values of Ueff being of 9.0 and 40 K (Silva et al., 2015[Silva, M. R., Martín-Ramos, P., Coutinho, J. T., Pereira, L. C. J., Lavín, V., Martín, I. R., Silva, P. S. P. & Martín-Gil, J. (2015). Dalton Trans. 44, 1264-1272.]).

[Figure 6]
Figure 6
(a) In-phase (χ′) and out-of-phase (χ′′) com­ponents of the magnetic susceptibility of 1 in the temperature range 2.0–5.0 K under Hdc = 1.0 kOe. (b) Cole–Cole plots of 1. The solid lines in parts (a) and (b) represent the best-fit curves using generalized Debye model parameters.
[Figure 7]
Figure 7
Arrhenius plot of ln t versus T−1 of 1 under Hdc = 1.0 kOe. The solid line represents the best-fit curve to the experimental data, as described in the text, taking into consideration the uncertainties.

4. Conclusion

In this article, we describe the synthesis, characterization, crystal structure and magnetic properties of a mononuclear erbium(III) ox­am­ate com­plex with the monodeprotonated form of N-(2,4,6-tri­methyl­phen­yl)oxamic acid as a ligand. The ErIII ion is nine-coordinated by four bidentate monode­pro­ton­ated ox­am­ate groups and one water mol­ecule, building a spherical capped square anti­prism (CSAPR-9) polyhedron. Cryo­magnetic measurements show that 1 exhibits field-induced magnetization relaxation, thus being a new example of a field-induced SIM of erbium(III) and a potential spin qubit candidate for future quantum technologies. We show that electronic donor groups at the aromatic rings of functionalized ox­am­ate com­plexes can also favour the presence of the relaxation of the magnetization phenomena in lanthanide(III)–ox­am­ate com­pounds.

Supporting information


Computing details top

Tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethylsulfoxide–water (1/3/1.5) top
Crystal data top
(C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2OF(000) = 3172
Mr = 1512.99Dx = 1.325 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 15.3967 (1) ÅCell parameters from 55180 reflections
b = 30.6741 (2) Åθ = 2.9–78.8°
c = 16.0612 (1) ŵ = 3.36 mm1
β = 90.172 (1)°T = 220 K
V = 7585.35 (8) Å3Plate, colorless
Z = 40.44 × 0.24 × 0.04 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
13894 independent reflections
Radiation source: micro-focus sealed X-ray tube12290 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.061
ω scansθmax = 68.3°, θmin = 2.9°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
h = 1818
Tmin = 0.135, Tmax = 1.000k = 3636
103272 measured reflectionsl = 1519
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0501P)2 + 7.8003P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
13894 reflectionsΔρmax = 1.32 e Å3
843 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.73925 (16)0.72931 (8)0.05786 (15)0.0241 (5)
C20.69087 (16)0.77092 (9)0.08635 (15)0.0254 (5)
C30.68188 (17)0.82805 (9)0.18970 (17)0.0310 (6)
C40.6992 (2)0.86814 (10)0.15435 (19)0.0394 (7)
C50.6593 (2)0.90479 (11)0.1891 (2)0.0449 (7)
H50.6685860.9319460.1648600.054*
C60.6063 (2)0.90173 (11)0.2585 (2)0.0469 (8)
C70.5928 (2)0.86102 (11)0.2934 (2)0.0436 (7)
H70.5586640.8587460.3410860.052*
C80.62851 (18)0.82366 (10)0.25945 (18)0.0368 (6)
C90.7619 (3)0.87200 (13)0.0825 (2)0.0563 (9)
H9A0.7662140.9019630.0657650.084*
H9B0.7413760.8548180.0366320.084*
H9C0.8180070.8616600.0993380.084*
C100.5638 (3)0.94183 (14)0.2961 (3)0.0717 (12)
H10A0.5296580.9334420.3435340.108*
H10B0.5270160.9553280.2553750.108*
H10C0.6078610.9620820.3130590.108*
C110.6098 (2)0.77930 (12)0.2959 (2)0.0514 (8)
H11A0.6400140.7574360.2643910.077*
H11B0.5484870.7737540.2939350.077*
H11C0.6290260.7784960.3527300.077*
C120.69649 (17)0.73844 (8)0.23247 (16)0.0273 (5)
C130.73154 (16)0.77694 (9)0.18058 (15)0.0254 (5)
C140.83646 (18)0.83606 (9)0.17568 (17)0.0333 (6)
C150.88708 (19)0.83223 (10)0.10452 (18)0.0360 (6)
C160.9206 (2)0.87032 (12)0.0699 (2)0.0445 (7)
H160.9538530.8682760.0217420.053*
C170.9066 (2)0.91077 (12)0.1040 (2)0.0548 (9)
C180.8605 (3)0.91281 (12)0.1783 (3)0.0652 (11)
H180.8540670.9395980.2046420.078*
C190.8239 (3)0.87596 (12)0.2141 (2)0.0526 (8)
C200.7714 (4)0.87882 (16)0.2937 (3)0.0861 (16)
H20A0.7690260.9085860.3119510.129*
H20B0.7135240.8684040.2833880.129*
H20C0.7982890.8612650.3359600.129*
C210.9422 (4)0.95174 (15)0.0631 (4)0.0871 (15)
H21A0.9260820.9767810.0953840.131*
H21B1.0043260.9498870.0600740.131*
H21C0.9185780.9544010.0079070.131*
C220.9056 (3)0.78925 (13)0.0647 (3)0.0610 (10)
H22A0.9414380.7935820.0165950.091*
H22B0.9351960.7707320.1036790.091*
H22C0.8519230.7757970.0481140.091*
C230.41139 (18)0.73768 (9)0.18704 (17)0.0297 (6)
C240.46169 (16)0.77922 (9)0.21336 (15)0.0252 (5)
C250.46375 (17)0.84078 (9)0.30876 (16)0.0287 (5)
C260.44717 (19)0.87965 (10)0.26667 (18)0.0366 (6)
C270.4806 (2)0.91789 (10)0.3010 (2)0.0433 (7)
H270.4700710.9441940.2740280.052*
C280.5292 (2)0.91811 (10)0.3740 (2)0.0450 (7)
C290.5442 (2)0.87859 (11)0.41362 (19)0.0408 (7)
H290.5764380.8782800.4626540.049*
C300.51238 (18)0.83942 (9)0.38219 (17)0.0327 (6)
C310.3957 (2)0.88020 (13)0.1865 (2)0.0519 (8)
H31A0.3909270.9096210.1667000.078*
H31B0.4248120.8627200.1456140.078*
H31C0.3387790.8685920.1963490.078*
C320.5661 (3)0.95986 (13)0.4094 (3)0.0754 (13)
H32A0.5495610.9839030.3745140.113*
H32B0.5438150.9643460.4645060.113*
H32C0.6282460.9578450.4116270.113*
C330.5301 (2)0.79673 (11)0.4251 (2)0.0501 (8)
H33A0.5030850.7735090.3944170.075*
H33B0.5916250.7918650.4277480.075*
H33C0.5068520.7975780.4804570.075*
C340.44552 (17)0.72748 (9)0.08388 (16)0.0293 (5)
C350.42104 (16)0.77140 (9)0.04378 (16)0.0261 (5)
C360.32022 (18)0.83213 (9)0.04394 (16)0.0305 (6)
C370.3658 (2)0.87037 (10)0.05813 (18)0.0380 (6)
C380.3314 (2)0.90893 (11)0.0271 (2)0.0485 (8)
H380.3612580.9348730.0359940.058*
C390.2541 (2)0.90989 (12)0.0166 (2)0.0524 (9)
C400.2107 (2)0.87115 (13)0.0295 (2)0.0498 (8)
H400.1584740.8715320.0584950.060*
C410.2424 (2)0.83166 (11)0.00060 (18)0.0380 (6)
C420.4496 (2)0.87045 (13)0.1057 (3)0.0575 (9)
H42A0.4714360.8996940.1091740.086*
H42B0.4912170.8523660.0775330.086*
H42C0.4396090.8593250.1607650.086*
C430.2173 (4)0.95256 (17)0.0488 (4)0.0937 (17)
H43A0.2557170.9760140.0343080.141*
H43B0.1613240.9575730.0241040.141*
H43C0.2116460.9510990.1081950.141*
C440.1952 (3)0.78959 (14)0.0178 (3)0.0604 (10)
H44A0.2264340.7657940.0068500.091*
H44B0.1911950.7851900.0767950.091*
H44C0.1378520.7909820.0057570.091*
C510.3698 (3)0.52552 (13)0.2897 (2)0.0603 (10)
H51A0.3462850.5433150.3332820.090*
H51B0.4009940.5014750.3136620.090*
H51C0.4086220.5426380.2562970.090*
C520.2963 (2)0.50830 (12)0.2354 (2)0.0493 (8)
H52A0.2566640.4915880.2697430.059*
H52B0.2642910.5327480.2123830.059*
C530.3281 (2)0.47984 (11)0.1649 (2)0.0481 (8)
H53A0.3639120.4565920.1872650.058*
H53B0.3634740.4970940.1275100.058*
C550.2523 (2)0.46033 (11)0.1170 (2)0.0445 (7)
H55A0.2221420.4836070.0880300.053*
H55B0.2119980.4476320.1564280.053*
C570.4335 (4)0.5056 (2)0.1239 (4)0.0985 (17)
H57A0.4610650.5118390.1760980.148*
H57B0.4344480.5311940.0895170.148*
H57C0.4640030.4824210.0963250.148*
C580.3437 (4)0.49247 (16)0.1388 (3)0.0787 (13)
H58A0.3434250.4670600.1747550.094*
H58B0.3138950.5157930.1679530.094*
C590.2949 (3)0.48201 (12)0.0613 (3)0.0615 (10)
H59A0.2355740.4745160.0757340.074*
H59B0.2933250.5076510.0259520.074*
C600.3354 (2)0.44448 (10)0.0130 (2)0.0436 (7)
H60A0.3503610.4214750.0519060.052*
H60B0.3889160.4545690.0125670.052*
C610.1327 (2)0.32995 (13)0.1611 (3)0.0583 (9)
H61A0.0798630.3143830.1724580.087*
H61B0.1445200.3496590.2061310.087*
H61C0.1797600.3096290.1556210.087*
C620.1231 (2)0.35527 (13)0.0817 (2)0.0542 (9)
H62A0.1101570.3353500.0365150.065*
H62B0.0748830.3754180.0870720.065*
C630.2053 (2)0.38059 (10)0.06094 (19)0.0383 (6)
H63A0.2530540.3603650.0528960.046*
H63B0.2198520.3995640.1071560.046*
C640.19368 (19)0.40760 (11)0.0169 (2)0.0416 (7)
H64A0.1651940.3898140.0586160.050*
H64B0.1554010.4318190.0040890.050*
C650.4290 (3)0.35589 (18)0.2539 (3)0.0764 (13)
H65A0.4637930.3328900.2770130.115*
H65B0.4621320.3714290.2129210.115*
H65C0.4119360.3755470.2973320.115*
C670.3489 (3)0.33666 (13)0.2134 (2)0.0544 (9)
H67A0.3168020.3203900.2548970.065*
H67B0.3669450.3162770.1705750.065*
C680.2887 (2)0.37044 (11)0.1743 (2)0.0435 (7)
H68A0.2331110.3570710.1614770.052*
H68B0.2786960.3939440.2135210.052*
C690.32827 (18)0.38856 (9)0.09550 (19)0.0352 (6)
H69A0.3341090.3649580.0557130.042*
H69B0.3862360.3989890.1084120.042*
C480.3326 (3)0.62236 (13)0.1497 (2)0.0575 (9)
H48A0.3049090.6399480.1913410.086*
H48B0.3477150.5945770.1731630.086*
H48C0.3842370.6367530.1306860.086*
C470.2639 (3)0.66895 (14)0.0278 (3)0.0679 (11)
H47A0.2345570.6876530.0665410.102*
H47B0.3232990.6780150.0226230.102*
H47C0.2357860.6706780.0255130.102*
C490.5306 (3)0.66064 (18)0.3359 (3)0.0845 (15)
H49A0.5466630.6638530.3933440.127*
H49B0.5586200.6828300.3034780.127*
H49C0.4687400.6634490.3302990.127*
C500.6760 (3)0.61887 (14)0.2984 (3)0.0693 (11)
H50A0.6971610.6211800.3545360.104*
H50B0.7052180.5954080.2706260.104*
H50C0.6868000.6456690.2694130.104*
N10.72079 (15)0.78967 (8)0.15436 (14)0.0322 (5)
H10.7653220.7784930.1784990.039*
N20.79917 (15)0.79818 (8)0.21306 (14)0.0336 (5)
H20.8214290.7886280.2587170.040*
N30.42783 (15)0.80114 (8)0.27696 (14)0.0318 (5)
H30.3818760.7909160.3001790.038*
N40.35222 (15)0.79167 (8)0.07575 (14)0.0332 (5)
H40.3258300.7799360.1173610.040*
N50.27760 (15)0.42563 (8)0.05397 (16)0.0357 (5)
O10.70372 (11)0.71103 (6)0.00333 (11)0.0274 (4)
O20.80539 (12)0.71799 (7)0.09525 (12)0.0363 (4)
O30.62786 (11)0.78413 (6)0.04631 (10)0.0276 (4)
O50.72379 (14)0.73294 (7)0.30370 (12)0.0418 (5)
O40.64103 (12)0.71593 (6)0.19397 (11)0.0290 (4)
O60.69717 (11)0.78582 (6)0.11330 (10)0.0271 (4)
O80.34141 (15)0.72992 (8)0.22112 (15)0.0529 (7)
O70.44839 (11)0.71624 (6)0.13133 (11)0.0296 (4)
O90.52813 (11)0.78977 (6)0.17621 (10)0.0268 (4)
O110.40124 (16)0.71293 (8)0.14068 (15)0.0556 (7)
O100.51009 (12)0.70936 (6)0.05009 (11)0.0303 (4)
O120.46377 (11)0.78538 (6)0.01576 (10)0.0273 (4)
O130.57495 (12)0.65920 (6)0.07631 (11)0.0317 (4)
O160.30665 (19)0.58712 (9)0.00186 (19)0.0681 (8)
O170.5368 (2)0.60546 (10)0.21066 (18)0.0752 (9)
S20.26023 (6)0.61457 (3)0.06434 (6)0.0525 (2)
S30.56337 (8)0.60848 (4)0.29982 (6)0.0703 (3)
Er10.57866 (2)0.73890 (2)0.06838 (2)0.02088 (6)
O180.53061 (17)0.38295 (9)0.04584 (17)0.0571 (6)
O150.5639 (7)1.0056 (3)0.1200 (6)0.130 (5)*0.524 (14)
S10.6524 (3)0.94435 (13)0.0684 (3)0.1375 (16)*0.632 (7)
C450.6143 (10)0.8857 (5)0.0815 (9)0.117 (5)*0.632 (7)
H45A0.6520360.8708510.1197780.175*0.632 (7)
H45B0.5560870.8855200.1027100.175*0.632 (7)
H45C0.6155740.8711920.0285430.175*0.632 (7)
C460.6498 (7)0.9674 (3)0.1570 (6)0.104 (3)*0.632 (7)
H46A0.6948710.9556060.1917080.156*0.632 (7)
H46B0.6585010.9981560.1502790.156*0.632 (7)
H46C0.5943560.9622470.1823850.156*0.632 (7)
O140.5858 (10)0.9596 (5)0.0085 (9)0.198 (5)*0.632 (7)
S1B0.5841 (6)0.9397 (3)0.0680 (4)0.140 (3)*0.368 (7)
C46B0.6555 (11)0.9626 (5)0.0028 (10)0.090 (4)*0.368 (7)
H46D0.6922590.9402000.0251780.136*0.368 (7)
H46E0.6232820.9760320.0470950.136*0.368 (7)
H46F0.6905290.9841060.0247470.136*0.368 (7)
O14A0.533 (3)0.9755 (12)0.097 (2)0.311 (17)*0.368 (7)
C45A0.6223 (12)0.8931 (6)0.1035 (12)0.076 (5)*0.368 (7)
H45D0.6549220.8788280.0605160.115*0.368 (7)
H45E0.6594430.8984730.1505320.115*0.368 (7)
H45F0.5749270.8747350.1201630.115*0.368 (7)
H13B0.565 (3)0.6473 (13)0.1266 (10)0.115*
H13A0.5338 (19)0.6466 (13)0.0445 (17)0.115*
H18E0.536 (2)0.3554 (5)0.064 (3)0.115*
H18F0.5849 (10)0.3893 (13)0.029 (3)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (12)0.0324 (13)0.0211 (12)0.0023 (10)0.0009 (9)0.0011 (10)
C20.0214 (12)0.0339 (13)0.0208 (12)0.0013 (10)0.0003 (9)0.0027 (10)
C30.0256 (13)0.0383 (15)0.0292 (13)0.0065 (11)0.0075 (10)0.0126 (11)
C40.0354 (15)0.0455 (17)0.0372 (15)0.0012 (13)0.0049 (12)0.0124 (13)
C50.0426 (17)0.0386 (16)0.0536 (19)0.0010 (13)0.0084 (15)0.0124 (14)
C60.0340 (16)0.0486 (19)0.058 (2)0.0054 (14)0.0034 (14)0.0250 (16)
C70.0312 (15)0.0562 (19)0.0433 (17)0.0019 (13)0.0029 (13)0.0196 (15)
C80.0279 (14)0.0491 (17)0.0333 (14)0.0040 (12)0.0052 (11)0.0103 (13)
C90.063 (2)0.054 (2)0.052 (2)0.0020 (17)0.0119 (17)0.0044 (17)
C100.057 (2)0.059 (2)0.099 (3)0.0096 (19)0.011 (2)0.036 (2)
C110.052 (2)0.055 (2)0.0469 (19)0.0011 (16)0.0084 (15)0.0029 (16)
C120.0243 (13)0.0337 (14)0.0237 (13)0.0014 (10)0.0027 (10)0.0056 (10)
C130.0223 (12)0.0335 (13)0.0204 (12)0.0027 (10)0.0023 (9)0.0007 (10)
C140.0306 (14)0.0378 (15)0.0313 (14)0.0103 (11)0.0077 (11)0.0026 (11)
C150.0300 (14)0.0430 (16)0.0350 (15)0.0066 (12)0.0046 (11)0.0010 (12)
C160.0346 (16)0.061 (2)0.0384 (16)0.0140 (14)0.0006 (13)0.0095 (15)
C170.052 (2)0.050 (2)0.061 (2)0.0172 (16)0.0036 (17)0.0147 (17)
C180.082 (3)0.0400 (19)0.074 (3)0.0139 (19)0.007 (2)0.0068 (18)
C190.063 (2)0.0468 (19)0.0474 (19)0.0094 (16)0.0083 (16)0.0037 (15)
C200.126 (5)0.066 (3)0.067 (3)0.014 (3)0.035 (3)0.017 (2)
C210.094 (4)0.061 (3)0.106 (4)0.030 (3)0.009 (3)0.028 (3)
C220.054 (2)0.060 (2)0.069 (2)0.0072 (18)0.0196 (19)0.0079 (19)
C230.0246 (13)0.0365 (15)0.0279 (13)0.0075 (10)0.0050 (11)0.0058 (11)
C240.0208 (12)0.0342 (13)0.0205 (11)0.0020 (10)0.0010 (9)0.0033 (10)
C250.0236 (12)0.0336 (14)0.0289 (13)0.0033 (10)0.0082 (10)0.0090 (11)
C260.0344 (15)0.0437 (16)0.0317 (14)0.0004 (12)0.0064 (12)0.0013 (12)
C270.0503 (18)0.0319 (15)0.0480 (18)0.0007 (13)0.0061 (14)0.0011 (13)
C280.0437 (17)0.0385 (16)0.0527 (19)0.0078 (13)0.0052 (14)0.0139 (14)
C290.0372 (16)0.0475 (18)0.0375 (16)0.0050 (13)0.0049 (12)0.0091 (13)
C300.0271 (13)0.0372 (15)0.0338 (14)0.0005 (11)0.0036 (11)0.0041 (12)
C310.053 (2)0.064 (2)0.0383 (17)0.0029 (17)0.0058 (15)0.0039 (16)
C320.089 (3)0.048 (2)0.089 (3)0.021 (2)0.006 (3)0.020 (2)
C330.051 (2)0.0485 (19)0.0504 (19)0.0020 (15)0.0101 (16)0.0028 (15)
C340.0267 (13)0.0374 (14)0.0236 (12)0.0049 (11)0.0058 (10)0.0042 (11)
C350.0211 (12)0.0353 (13)0.0219 (12)0.0041 (10)0.0010 (9)0.0003 (10)
C360.0297 (13)0.0389 (15)0.0229 (12)0.0100 (11)0.0080 (10)0.0033 (11)
C370.0361 (16)0.0441 (16)0.0338 (15)0.0058 (13)0.0063 (12)0.0017 (12)
C380.056 (2)0.0380 (16)0.0519 (19)0.0038 (15)0.0136 (16)0.0047 (15)
C390.055 (2)0.050 (2)0.052 (2)0.0221 (16)0.0103 (16)0.0140 (16)
C400.0441 (18)0.067 (2)0.0387 (17)0.0210 (16)0.0055 (14)0.0073 (16)
C410.0359 (15)0.0486 (17)0.0295 (14)0.0101 (13)0.0013 (11)0.0002 (12)
C420.045 (2)0.061 (2)0.067 (2)0.0043 (17)0.0085 (17)0.0004 (19)
C430.107 (4)0.071 (3)0.103 (4)0.041 (3)0.006 (3)0.036 (3)
C440.052 (2)0.066 (2)0.063 (2)0.0019 (18)0.0141 (18)0.0059 (19)
C510.070 (3)0.058 (2)0.053 (2)0.0087 (19)0.0062 (18)0.0083 (17)
C520.053 (2)0.0480 (18)0.0472 (18)0.0035 (15)0.0026 (15)0.0073 (15)
C530.0418 (18)0.0428 (17)0.060 (2)0.0013 (14)0.0027 (15)0.0144 (15)
C550.0379 (16)0.0402 (16)0.0555 (19)0.0101 (13)0.0009 (14)0.0143 (15)
C570.084 (4)0.093 (4)0.119 (5)0.014 (3)0.023 (3)0.006 (3)
C580.098 (4)0.059 (2)0.079 (3)0.005 (2)0.004 (3)0.017 (2)
C590.074 (3)0.0363 (18)0.074 (3)0.0017 (17)0.001 (2)0.0071 (17)
C600.0447 (18)0.0355 (15)0.0505 (18)0.0027 (13)0.0057 (14)0.0024 (14)
C610.046 (2)0.062 (2)0.066 (2)0.0010 (17)0.0048 (17)0.0183 (19)
C620.0361 (17)0.063 (2)0.063 (2)0.0015 (16)0.0072 (15)0.0135 (18)
C630.0375 (16)0.0363 (15)0.0412 (16)0.0032 (12)0.0041 (12)0.0036 (13)
C640.0286 (15)0.0448 (17)0.0515 (18)0.0069 (12)0.0048 (13)0.0063 (14)
C650.064 (3)0.117 (4)0.048 (2)0.005 (3)0.0185 (19)0.003 (2)
C670.057 (2)0.061 (2)0.0452 (19)0.0065 (17)0.0082 (16)0.0035 (16)
C680.0363 (16)0.0471 (18)0.0470 (18)0.0009 (13)0.0032 (13)0.0001 (14)
C690.0274 (14)0.0352 (15)0.0429 (16)0.0051 (11)0.0002 (12)0.0049 (12)
C480.066 (2)0.052 (2)0.055 (2)0.0077 (18)0.0034 (18)0.0010 (17)
C470.075 (3)0.061 (2)0.067 (3)0.017 (2)0.002 (2)0.005 (2)
C490.080 (3)0.107 (4)0.066 (3)0.015 (3)0.027 (2)0.013 (3)
C500.085 (3)0.062 (2)0.061 (2)0.007 (2)0.020 (2)0.001 (2)
N10.0268 (11)0.0410 (13)0.0287 (11)0.0099 (10)0.0076 (9)0.0128 (10)
N20.0323 (12)0.0416 (13)0.0269 (11)0.0108 (10)0.0097 (9)0.0072 (10)
N30.0273 (11)0.0385 (13)0.0297 (11)0.0088 (9)0.0093 (9)0.0108 (10)
N40.0301 (12)0.0407 (13)0.0288 (11)0.0108 (10)0.0108 (9)0.0082 (10)
N50.0307 (12)0.0338 (12)0.0425 (13)0.0047 (10)0.0000 (10)0.0055 (10)
O10.0228 (9)0.0344 (9)0.0251 (9)0.0060 (7)0.0052 (7)0.0072 (7)
O20.0296 (10)0.0467 (11)0.0328 (10)0.0118 (9)0.0100 (8)0.0094 (9)
O30.0256 (9)0.0358 (10)0.0215 (8)0.0080 (7)0.0040 (7)0.0043 (7)
O50.0391 (12)0.0584 (13)0.0279 (10)0.0159 (10)0.0146 (9)0.0131 (9)
O40.0296 (9)0.0343 (10)0.0230 (8)0.0072 (8)0.0069 (7)0.0064 (7)
O60.0221 (8)0.0371 (10)0.0222 (8)0.0057 (7)0.0031 (7)0.0046 (7)
O80.0421 (13)0.0640 (15)0.0527 (14)0.0257 (11)0.0282 (11)0.0291 (11)
O70.0245 (9)0.0344 (10)0.0299 (9)0.0053 (7)0.0079 (7)0.0090 (8)
O90.0219 (9)0.0346 (9)0.0238 (8)0.0044 (7)0.0037 (7)0.0053 (7)
O110.0540 (14)0.0587 (14)0.0538 (14)0.0234 (12)0.0325 (12)0.0277 (12)
O100.0310 (10)0.0364 (10)0.0235 (9)0.0088 (8)0.0080 (7)0.0072 (7)
O120.0226 (9)0.0356 (10)0.0237 (9)0.0062 (7)0.0052 (7)0.0056 (7)
O130.0291 (10)0.0357 (10)0.0305 (9)0.0002 (7)0.0002 (8)0.0022 (8)
O160.0684 (18)0.0595 (16)0.0765 (18)0.0102 (14)0.0146 (14)0.0257 (14)
O170.092 (2)0.0729 (18)0.0606 (17)0.0337 (16)0.0356 (16)0.0209 (14)
S20.0440 (4)0.0553 (5)0.0582 (5)0.0103 (4)0.0106 (4)0.0109 (4)
S30.0845 (7)0.0744 (7)0.0520 (5)0.0373 (6)0.0177 (5)0.0264 (5)
Er10.01724 (9)0.02918 (9)0.01621 (9)0.00079 (5)0.00011 (5)0.00017 (5)
O180.0501 (14)0.0545 (14)0.0665 (16)0.0022 (11)0.0044 (12)0.0091 (12)
Geometric parameters (Å, º) top
C1—O21.234 (3)C35—N41.330 (3)
C1—O11.258 (3)C36—C371.386 (4)
C1—C21.547 (3)C36—C411.398 (4)
C2—O31.234 (3)C36—N41.430 (4)
C2—N11.319 (3)C37—C381.389 (5)
C3—C41.380 (4)C37—C421.501 (5)
C3—C81.394 (4)C38—C391.384 (5)
C3—N11.437 (3)C39—C401.380 (6)
C4—C51.396 (4)C39—C431.517 (5)
C4—C91.507 (5)C40—C411.387 (5)
C5—C61.383 (5)C41—C441.507 (5)
C6—C71.384 (5)C51—C521.522 (5)
C6—C101.518 (5)C52—C531.512 (5)
C7—C81.383 (4)C53—C551.518 (5)
C8—C111.509 (5)C55—N51.520 (4)
C12—O51.229 (3)C57—C581.458 (8)
C12—O41.259 (3)C58—C591.491 (6)
C12—C131.544 (4)C59—C601.520 (5)
C13—O61.232 (3)C60—N51.514 (4)
C13—N21.333 (3)C61—C621.501 (5)
C14—C191.385 (5)C62—C631.521 (4)
C14—C151.390 (4)C63—C641.511 (4)
C14—N21.429 (4)C64—N51.525 (4)
C15—C161.394 (4)C65—C671.512 (6)
C15—C221.493 (5)C67—C681.525 (5)
C16—C171.374 (5)C68—C691.512 (4)
C17—C181.391 (6)C69—N51.531 (4)
C17—C211.521 (5)C48—S21.781 (4)
C18—C191.389 (5)C47—S21.769 (4)
C19—C201.517 (5)C49—S31.775 (6)
C23—O81.233 (3)C50—S31.763 (5)
C23—O71.249 (3)O1—Er12.3541 (17)
C23—C241.549 (4)O3—Er12.4289 (17)
C24—O91.229 (3)O4—Er12.3400 (17)
C24—N31.331 (3)O6—Er12.4316 (17)
C25—C261.394 (4)O7—Er12.3540 (17)
C25—C301.396 (4)O9—Er12.4592 (17)
C25—N31.429 (3)O10—Er12.3547 (17)
C26—C271.394 (4)O12—Er12.4222 (17)
C26—C311.509 (4)O13—Er12.449 (2)
C27—C281.389 (5)O16—S21.494 (3)
C28—C291.388 (5)O17—S31.491 (3)
C28—C321.511 (5)O15—O14Ai1.64 (4)
C29—C301.392 (4)S1—O141.481 (15)
C30—C331.504 (4)S1—C461.589 (10)
C34—O111.222 (3)S1—C451.904 (15)
C34—O101.260 (3)S1B—O14A1.43 (4)
C34—C351.541 (4)S1B—C45A1.648 (19)
C35—O121.236 (3)S1B—C46B1.73 (2)
O2—C1—O1128.1 (2)C36—C41—C44121.1 (3)
O2—C1—C2119.1 (2)C53—C52—C51112.8 (3)
O1—C1—C2112.9 (2)C52—C53—C55111.0 (3)
O3—C2—N1124.4 (2)C53—C55—N5114.6 (3)
O3—C2—C1119.7 (2)C57—C58—C59113.7 (5)
N1—C2—C1115.8 (2)C58—C59—C60112.4 (4)
C4—C3—C8122.0 (3)N5—C60—C59114.2 (3)
C4—C3—N1119.2 (3)C61—C62—C63111.5 (3)
C8—C3—N1118.8 (3)C64—C63—C62111.1 (3)
C3—C4—C5117.9 (3)C63—C64—N5114.8 (2)
C3—C4—C9120.5 (3)C65—C67—C68114.0 (4)
C5—C4—C9121.5 (3)C69—C68—C67110.3 (3)
C6—C5—C4121.7 (3)C68—C69—N5115.6 (2)
C5—C6—C7118.4 (3)C2—N1—C3122.6 (2)
C5—C6—C10121.2 (4)C13—N2—C14123.2 (2)
C7—C6—C10120.4 (3)C24—N3—C25123.5 (2)
C8—C7—C6121.9 (3)C35—N4—C36122.9 (2)
C7—C8—C3118.0 (3)C60—N5—C55111.0 (2)
C7—C8—C11121.3 (3)C60—N5—C64111.1 (2)
C3—C8—C11120.7 (3)C55—N5—C64107.2 (2)
O5—C12—O4127.7 (2)C60—N5—C69107.1 (2)
O5—C12—C13119.2 (2)C55—N5—C69111.2 (2)
O4—C12—C13113.1 (2)C64—N5—C69109.3 (2)
O6—C13—N2124.6 (2)C1—O1—Er1122.88 (15)
O6—C13—C12119.5 (2)C2—O3—Er1117.08 (16)
N2—C13—C12115.9 (2)C12—O4—Er1122.30 (16)
C19—C14—C15121.4 (3)C13—O6—Er1116.69 (16)
C19—C14—N2118.3 (3)C23—O7—Er1122.90 (16)
C15—C14—N2120.2 (3)C24—O9—Er1116.13 (16)
C14—C15—C16117.8 (3)C34—O10—Er1121.96 (16)
C14—C15—C22122.4 (3)C35—O12—Er1116.89 (16)
C16—C15—C22119.8 (3)O16—S2—C47107.0 (2)
C17—C16—C15122.6 (3)O16—S2—C48107.06 (19)
C16—C17—C18117.7 (3)C47—S2—C4896.2 (2)
C16—C17—C21121.1 (4)O17—S3—C50105.5 (2)
C18—C17—C21121.3 (4)O17—S3—C49107.0 (2)
C19—C18—C17121.9 (4)C50—S3—C4997.0 (2)
C14—C19—C18118.5 (3)O4—Er1—O186.51 (6)
C14—C19—C20120.1 (3)O4—Er1—O783.62 (6)
C18—C19—C20121.4 (4)O1—Er1—O7141.49 (7)
O8—C23—O7128.1 (2)O4—Er1—O10139.69 (7)
O8—C23—C24118.3 (2)O1—Er1—O1082.35 (6)
O7—C23—C24113.6 (2)O7—Er1—O1081.54 (6)
O9—C24—N3124.6 (2)O4—Er1—O12140.84 (6)
O9—C24—C23120.0 (2)O1—Er1—O12131.03 (6)
N3—C24—C23115.4 (2)O7—Er1—O1272.62 (6)
C26—C25—C30122.2 (3)O10—Er1—O1267.63 (6)
C26—C25—N3119.0 (3)O4—Er1—O3134.24 (6)
C30—C25—N3118.9 (3)O1—Er1—O367.27 (6)
C25—C26—C27117.5 (3)O7—Er1—O3139.68 (6)
C25—C26—C31121.2 (3)O10—Er1—O375.35 (7)
C27—C26—C31121.4 (3)O12—Er1—O368.18 (6)
C28—C27—C26122.4 (3)O4—Er1—O667.47 (6)
C29—C28—C27118.1 (3)O1—Er1—O674.49 (6)
C29—C28—C32120.4 (3)O7—Er1—O6133.39 (6)
C27—C28—C32121.5 (3)O10—Er1—O6143.30 (6)
C28—C29—C30122.0 (3)O12—Er1—O6107.56 (6)
C29—C30—C25117.9 (3)O3—Er1—O669.61 (6)
C29—C30—C33121.5 (3)O4—Er1—O1370.37 (6)
C25—C30—C33120.6 (3)O1—Er1—O1371.32 (6)
O11—C34—O10126.7 (3)O7—Er1—O1370.29 (6)
O11—C34—C35119.7 (2)O10—Er1—O1369.35 (6)
O10—C34—C35113.5 (2)O12—Er1—O13126.06 (6)
O12—C35—N4123.9 (2)O3—Er1—O13128.10 (6)
O12—C35—C34119.8 (2)O6—Er1—O13126.37 (6)
N4—C35—C34116.3 (2)O4—Er1—O973.37 (6)
C37—C36—C41121.9 (3)O1—Er1—O9143.51 (6)
C37—C36—N4120.0 (3)O7—Er1—O967.23 (6)
C41—C36—N4118.1 (3)O10—Er1—O9132.17 (6)
C36—C37—C38117.9 (3)O12—Er1—O968.90 (6)
C36—C37—C42121.4 (3)O3—Er1—O9105.77 (6)
C38—C37—C42120.7 (3)O6—Er1—O969.77 (6)
C39—C38—C37121.9 (3)O13—Er1—O9126.10 (6)
C40—C39—C38118.4 (3)O14—S1—C46115.0 (7)
C40—C39—C43120.7 (4)O14—S1—C4599.1 (8)
C38—C39—C43120.9 (4)C46—S1—C45108.2 (6)
C39—C40—C41122.1 (3)O14A—S1B—C45A138.4 (17)
C40—C41—C36117.8 (3)O14A—S1B—C46B105.0 (17)
C40—C41—C44121.1 (3)C45A—S1B—C46B110.5 (10)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8ii0.862.012.799 (3)152
N2—H2···O11iii0.862.032.843 (3)158
N3—H3···O2iv0.862.072.852 (3)150
N4—H4···O5v0.862.052.865 (3)157
O13—H13B···O170.90 (1)1.91 (1)2.780 (3)161 (4)
O13—H13A···O18vi0.90 (1)1.98 (1)2.854 (3)165 (3)
O18—H18E···O10vi0.90 (1)2.12 (2)2.901 (3)144 (4)
O18—H18F···O16vi0.90 (1)1.89 (1)2.778 (4)170 (4)
Symmetry codes: (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z+1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1, y+1, z.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Bioanalytical Facility NEPS-DQ/UFMG (https://ne.qui.ufmg.br), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Fundo de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Spanish MINECO and Unidad de Excelencia Maria de Maeztu for financial support.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Bioanalytical Facility NEPS-DQ; Fundação de Amparo à Pesquisa do Estado de São Paulo; Fundo de Amparo à Pesquisa do Estado do Rio de Janeiro (award Nos. E-26/010.000978/2019 and E-26/010.1553/2019); Ministerio de Economía y Competitividad (award No. PID201935-GB-I00); Unidad de Excelencia Maria de Maeztu (award No. CEX2019-000919).

References

First citationBazhenova, T. A., Mironov, V. S., Yakushev, I. A., Svetogorov, R. D., Maximova, O. V., Manakin, Y. V., Kornev, A. B., Vasiliev, A. N. & Yagubskii, E. B. (2020). Inorg. Chem. 59, 563–578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBlackmore, W. J. A., Gransbury, G. K., Evans, P., Kragskow, J. G. C., Mills, D. P. & Chilton, N. F. (2023). Phys. Chem. Chem. Phys. 25, 16735–16744.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, J.-T., Zhou, T.-D. & Sun, W.-B. (2023). Dalton Trans. 52, 4643–4657.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCunha, T. T. da, Barbosa, V. M. M., Oliveira, W. X. C., Pedroso, E. F., García, D. M. A., Nunes, W. C. & Pereira, C. L. M. (2020). Inorg. Chem. 59, 12983–12987.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCunha, T. T. da, Barbosa, V. M. M., Oliveira, W. X. C., Pinheiro, C. B., Pedroso, E. F., Nunes, W. C. & Pereira, C. L. M. (2019). Polyhedron, 169, 102–113.  Google Scholar
First citationDey, A., Kalita, P. & Chandrasekhar, V. (2018). ACS Omega, 3, 9462–9475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDul, M.-C., Pardo, E., Lescouëzec, R., Journaux, Y., Ferrando-Soria, J., Ruiz-García, R., Cano, J., Julve, M., Lloret, F., Cangussu, D., Pereira, C. L. M., Stumpf, H. O., Pasán, J. & Ruiz-Pérez, C. (2010). Coord. Chem. Rev. 254, 2281–2296.  Web of Science CrossRef CAS Google Scholar
First citationEscalera-Moreno, L., Baldoví, J. J., Gaita-Ariño, A. & Coronado, E. (2018). Chem. Sci. 9, 3265–3275.  Web of Science CAS PubMed Google Scholar
First citationFerrando-Soria, J., Vallejo, J., Castellano, M., Martínez-Lillo, J., Pardo, E., Cano, J., Castro, I., Lloret, F., Ruiz-García, R. & Julve, M. (2017). Coord. Chem. Rev. 339, 17–103.  CAS Google Scholar
First citationFortea-Pérez, F. R., Vallejo, J., Julve, M., Lloret, F., De Munno, G., Armentano, D. & Pardo, E. (2013). Inorg. Chem. 52, 4777–4779.  Web of Science PubMed Google Scholar
First citationGuo, F.-S., Day, B. M., Chen, Y.-C., Tong, M.-L., Mansikkamäki, A. & Layfield, R. A. (2018). Science, 362, 1400–1403.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJohnson, C. K. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 207–219. Copenhagen: Munksgaard.  Google Scholar
First citationLlunell, M., Alemany, P. & Alvarez, S. (2013). SHAPE. Version 2.1. University of Barcelona, Spain.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarin, R., Brunet, G. & Murugesu, M. (2021). Angew. Chem. Int. Ed. 60, 1728–1746.  Web of Science CrossRef CAS Google Scholar
First citationMartín-Ramos, P., Coutinho, J. T., Ramos Silva, M., Pereira, L. C. J., Lahoz, F., da Silva, P. S. P., Lavín, V. & Martín-Gil, J. (2015). New J. Chem. 39, 1703–1713.  Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPardo, E., Ruiz–García, R., Lloret, F., Faus, J., Julve, M., Journaux, Y., Delgado, F. & Ruiz–Pérez, C. (2004). Adv. Mater. 16, 1597–1600.  Web of Science CSD CrossRef CAS Google Scholar
First citationReta, D. & Chilton, N. F. (2019). Phys. Chem. Chem. Phys. 21, 23567–23575.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, M. R., Martín-Ramos, P., Coutinho, J. T., Pereira, L. C. J., Lavín, V., Martín, I. R., Silva, P. S. P. & Martín-Gil, J. (2015). Dalton Trans. 44, 1264–1272.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSilva, M. R., Martín-Ramos, P., Coutinho, J. T., Pereira, L. C. J. & Martín-Gil, J. (2014). Dalton Trans. 43, 6752.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSorace, L. & Gatteschi, D. (2015). In Lanthanides and Actinides in Molecular Magnetism, edited by R. H. Layfield & M. Murugesu. Chichester: Wiley.  Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., da Silva Júnior, E. N., de, C. A., Valente, D., Cardozo, T. M., Horta, B. A. C., Mariano, D. L., Nunes, W. C., Pedroso, E. F. & Pereira, C. L. M. (2022). CrystEngComm, 24, 6628–6641.  Web of Science CrossRef CAS Google Scholar
First citationVaz, R. C. A., Esteves, I. O., Oliveira, W. X. C., Honorato, J., Martins, F. T., Marques, L. F., dos Santos, G. L., Freire, R. O., Jesus, L. T., Pedroso, E. F., Nunes, W. C., Julve, M. & Pereira, C. L. M. (2020). Dalton Trans. 49, 16106–16124.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, J., Jing, Y., Cui, M., Lu, Y., Ouyang, Z., Shao, C., Wang, Z. & Song, Y. (2023). Chem. A Eur. J. 29, e202301771.  Web of Science CSD CrossRef Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds