research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thio­ethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2]

crossmark logo

aChemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong (Received 28 February 2024; accepted 21 June 2024; online 5 July 2024)

Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thio­ethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for com­pound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diiso­propyl­amide (LDA) or lithium tetra­methyl­piperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth com­plex to be reported containing a perthiol­ated cyclo­penta­dienyl ring. The mol­ecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br inter­actions. It turned out that although some inter­actions of this type occurred, they were of minor importance for the arrangement of the mol­ecules in the crystal.

1. Introduction

Aromatic thio­ethers, a long-known substance class, have attracted substanti­ally increased inter­est over the last 30 years. A quick search in Scifinder (accessed on February 15, 2024) showed that while the annual number of publications stayed around 25 until 1996, this number then started to increase exponentially and reached a maximum of 205 in 2019 and was still at 174 in 2023. The main reason for this development can be attributed to the vast number of applications aromatic thio­ethers have found in agricultural chemistry (Li et al., 2021[Li, P., Yang, Y., Wang, X. & Wu, X. (2021). J. Heterocycl. Chem. 58, 1225-1251.]) and medicinal chemistry (Feng et al., 2016[Feng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200-1216.]), and their importance in natural product biosynthesis (Dunbar et al., 2017[Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. (2017). Chem. Rev. 117, 5521-5577.]). A special subgroup, bis­(ar­yl) thio­ethers, has also found increased inter­est due to their photochemical properties (Riebe et al., 2017[Riebe, S., Vallet, C., van der Vight, F., Gonzalez-Abradelo, D., Wölper, C., Strassert, C. A., Jansen, G., Knauer, S. & Voskuhl, J. (2017). Chem. A Eur. J. 23, 13660-13668.]). While there are thousands of `purely organic' aryl thio­ethers, the number of organometallic derivatives, particularly of the metallocene type, where a transition metal is π-coordinated to the aromatic part of the aryl thio­ether, is rather small. When it comes to persulfurated cyclo­penta­dienyl com­plexes, there are only four com­pounds known. Three contain the penta­kis­(methyl­sulfan­yl)cyclo­penta­dienyl ligand, [{C5(SMe)5}MLn] [MLn = Mn(CO)3 (Sünkel & Motz, 1988[Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970-971.]), RuCp* (Seneviratne & Winter, 1997[Seneviratne, K. N. & Winter, C. H. (1997). Organometallics, 16, 2498-2499.]) and FeCp (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.])] and one contains the penta­kis­(phenyl­sulfan­yl)cyclo­penta­dienyl ligand, [{C5(SPh)5}FeCp] (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.]). Similarly, while there are ca 250 entries in Scifinder for the search mask `Cr(η6-C6R5S-C)', there are only four entries for the benzene tris­(thio­ether) and none for any higher thiol­ated benzene derivatives. When looking for crystal structure determinations of π-coordinated cyclo­penta­dienyl thio­ethers in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; accessed on February 15, 2024), one finds 301 entries for the search mask with one thio­ether function. Of these, 233 are ferrocene-, 14 ruthenocene and 13 cymantrene derivatives. We therefore decided to look at the viability of a synthesis of a penta­sulfurated cymantrene derivative where tri­phenyl­phosphane has substituted one carbonyl ligand and determine the crystal structures of these com­pounds.

The title com­pounds determined are dicarbon­yl[η5-1-(methyl­sulfan­yl)cyclo­penta­dien­yl](tri­phenyl­phosphane-κP)manganese, [Mn(C5H4SMe)(PPh3)(CO)2] (1b), dicarbon­yl[η5-1-bromo-2-(methyl­sulfan­yl)cyclo­penta­dien­yl](tri­phenyl­phosphane-κP)manganese cyclo­hexane 0.75-solvate [Mn{C5H3Br(SMe)}(PPh3)(CO)2],C6H12 (2), dicarbon­yl[η5-2-bromo-1,3-bis­(methyl­sulfan­yl)cyclo­penta­dien­yl](tri­phenyl­phosphane-κP)manganese, [Mn{C5H2Br(SMe)2}(PPh3)(CO)2] (3), di­car­bon­yl[η5-2-bromo-1,3-bis­(methyl­sulfan­yl)cyclo­penta­dien­yl](tri­phenyl­phosphane-κP)manganese, [Mn{C5H2Br(SMe)2}(PPh3)(CO)2] (4), and dicarbon­yl[η5-1,2,3,4,5-penta­kis­(methyl­sulfan­yl)cyclo­penta­dien­yl](tri­phenyl­phosphane-κP)manganese, [Mn{C5(SMe)5}(PPh3)(CO)2] (11) (see Figs. 1[link] and 2[link])

[Figure 1]
Figure 1
Li­thia­tion of [Mn(C5H4Br)(PPh3)(CO)2] (1a) followed by electrophilic quenching with Me2S2. Compounds 2 and 4 possess planar chirality and only one enanti­omer is shown.
[Figure 2]
Figure 2
One-pot li­thia­tion of [Mn(C5Br5)(PPh3)(CO)2] (6) followed by electrophilic quenching with Me2S2. Compounds 8 and 10 possess planar chirality and only one enanti­omer is shown.

2. Experimental

2.1. Synthesis and crystallization

The synthesis of com­pounds [Mn(C5H4Br)(PPh3)(CO)2] (1a) and [Mn(C5Br5)(PPh3)(CO)2] (6) was performed as described by us earlier (Klein-Hessling et al., 2021[Klein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.]). All reagents and solvents were commercially available and were used as received. Li­thia­tion reactions were performed under an N2 atmosphere, while the chromatographic purifications were performed in air.

2.1.1. Synthesis of [Mn(C5H4SMe)(PPh3)(CO)2], 1b

A solution of 1a (0.050 g, 0.097 mmol) in tetra­hydro­furan (THF, 8 ml) was treated at 195 K with 2.5 M n-BuLi solution (0.040 ml, 0.10 mmol) with stirring for 30 min. MeSSMe (0.010 g, 0.10 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The reaction mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of petroleum ether (PE) and placed on top of a silica-gel column. PE/CH2Cl2 (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 1b as a yellow powder (yield: 0.040 g, 0.0820 mmol, 85%). For spectra, see Figs. S1–S3 and S27 in the supporting information.

1H NMR (CDCl3, 400 MHz): δ 7.52–7.31 (15H), 4.47 (2H), 4.04 (2H), 2.35 (3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 232.2 (d, J = 25.9 Hz), 137.9 (d, J = 40.7 Hz), 133.0 (d, J = 9.9 Hz), 129.6, 128.2 (d, J = 8.9 Hz), 99.5, 83.6, 82.9 (d, J = 9.4 Hz), 19.0. 31P{1H} NMR (CDCl3, 162 MHz): δ 92.5. IR (ATR; cm−1): ν(CO) = 1927, 1862. MS (EI, 70 eV): m/z = 484.9 (M+), 428.1 (M+ – 2CO), 413.1 (M+ – 2CO – Me), 262.1 (PPh3), 183.0 (PPh2), 108.0 (PPh). Elemental analysis (EA) calculated (%) for C26H22MnO2PS: C 64.46, H 4.58, S 6.62; found: C 63.68, H 4.70, S 6.62.

2.1.2. Synthesis of [Mn{C5H3Br(SMe)}(PPh3)(CO)2], 2

A solution of 1a (0.50 g, 0.97 mmol) in THF (15 ml) was treated at 195 K with 1.0 M lithium diiso­propyl­amide (LDA) solution (1.16 ml, 1.16 mmol) with stirring for 1 h. MeSSMe (0.10 ml, 1.25 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 2 as a yellow powder (yield: 0.43 g, 0.76 mmol, 79%). Recrystallization from PE yielded yellow crystals which were of insufficient quality for publication, due to severe disorder problems. For spectra, see Figs. S4–S6 in the supporting information.

1H NMR (CDCl3, 400 MHz): δ 7.53–7.29 (m, 15H), 4.46 (s, 1H), 4.36 (s, 1H), 3.69 (s, 1H), 2.36 (s, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 231.4 (d, J = 23.6 Hz), 137.4 (d, J = 41.3 Hz), 133.1 (d, J = 10.5 Hz), 129.9, 128.4 (d, J = 9.5 Hz), 95.9, 89.6, 85.7, 84.9, 82.2, 19.9. 31P{1H} NMR (CDCl3, 162 MHz): δ 90.9. IR (ATR; cm−1): ν(CO) = 1935, 1874.

2.1.3. Synthesis of [Mn{C5H2Br(SMe)2}(PPh3)(CO)2], 3

A solution of 2 (0.43 g, 0.76 mmol) in THF (15 ml) was treated at 195 K with 1.0 M LDA solution (0.92 ml, 0.92 mmol) with stirring for 1 h. MeSSMe (0.080 ml, 1.00 mmol) was then added and the mixture was warmed gradually to room tem­per­ature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 3 as a yellow powder (yield: 0.29 g, 0.48 mmol, 63%). Recrystallization from PE yielded yellow crystals, which were suitable for X-ray dif­frac­tion and full structure refinement. For spectra, see Figs. S7–S9 in the supporting information.

1H NMR (CDCl3, 400 MHz): δ 7.52–7.45 (m, 6H), 7.39–7.35 (m, 9H), 3.93 (s, 2H), 2.23 (s, 6H). 13C{1H} NMR (CDCl3, 101 MHz): δ 230.8 (d, J = 23.4 Hz), 137.2 (d, J = 41.2 Hz), 133.2 (d, J = 10.7 Hz), 129.9, 128.3 (d, J = 9.5 Hz), 99.6, 89.5, 83.8, 18.9. 31P{1H} NMR (CDCl3, 162 MHz): δ 89.4. IR (ATR; cm−1): ν(CO) = 1941, 1880. MS (EI, 70 eV): m/z = 554.4 (M+ – 2CO), 539.4 (M+ – 2CO – CH3).

2.1.4. Synthesis of [Mn{C5HBr(SMe)3}(PPh3)(CO)2], 4

A solution of 3 (0.29 g, 0.48 mmol) in THF (10 ml) was treated at 195 K with a freshly prepared lithium tetra­methyl­piperidide (LiTMP) solution (1.19 mmol in 2 ml THF) with stirring for 1 h. MeSSMe (0.110 ml, 1.19 mmol) was then added and the mix­ture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. NMR and mass spectra (see Figs. S10, S11 and S28) showed this product to be a mixture of at least four com­pounds. The MS showed only 3, 4 and 5, but of course without any indication of stereochemistry; the 31P NMR spectrum showed five signals of relevant intensity, assignable to compounds 2, 3, 4 and X, and one further unknown, possibly 5. In the 1H NMR spectrum, there are several signals in the Cp region (5.0–3.7 ppm), that have apparently no counterpart in the SMe region of the spectrum. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted two yellow bands. The first (F1) gave apparently unreacted starting material 3 (yield: 0.060 g, 21%; Fig. S12). The second still yielded a mixture and was therefore re-chromatographed, using PE/Et2O (1:1 v/v) as eluent. The first fraction (F2.1) left, after full evaporation of the solvent, 4 as a yellow powder (yield: 0.10 g, 0.15 mmol, 31%; Figs. S13 and S14). The second fraction (F2.2) left, after evaporation of the solvent, a yellow product, which, according to its NMR spectra (Figs. S15 and S16), was still a mixture of two main products, 4 and `X', together with small amounts of unidentified by-products. Although com­pound X could not be isolated in a pure form, the appearance of its 1H NMR spectrum suggests that it is a stereoisomer of 4, like [{C5H(Br-1)[(SMe)3-2,3,4]}Mn(PPh3)(CO)2].

For 4, 1H NMR (CDCl3, 400 MHz): δ 7.59–7.46 (m, 6H), 7.43–7.32 (m, 9H), 3.82 (s, 1H), 2.39 (s, 3H), 2.05 (s, 3H), 1.97 (s, 3H). 31P{1H} NMR (CDCl3, 162 MHz): δ 87.0. IR (ATR; cm−1): ν(CO) = 1941, 1885.

For X, 1H NMR (CDCl3, 400 MHz): δ 4.33 (s, 1H), 2.32/2.24/2.14 (3s, 3 × 3H). 31P{1H} NMR (CDCl3, 162 MHz): δ 88.6.

2.1.5. One-pot reaction of [Mn(C5Br5)(PPh3)(CO)2] (6) with excessive n-butyl­lithium and MeSSMe: synthesis of [Mn{C5Br3(SMe)2}(PPh3)(CO)2], 7, and [Mn{C5(SMe)5}(PPh3)(CO)2] (11)

Method (a). A solution of 6 (0.20 g, 0.24 mmol) in THF (10 ml) was treated at 195 K with 2.5 M n-BuLi solution (0.20 ml, 0.50 mmol) with stirring for 60 min. MeSSMe (0.040 ml, 0.50 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo, yielding 0.12 g of product. NMR (Figs. S17 and S18) and MS (Fig. S29) spectra showed this product to be a mixture of at least four com­pounds, 710, with com­pound 7 as the dominant product. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (90:10 v/v) eluted a yellow band. After evaporation of the solvent in vacuo, 7 (still impure) was left as a yellow powder (yield: 0.16 g, <0.21 mmol, <87%). Part of this product (0.060 g, <0.08 mmol) was dissolved in THF (10 ml) and treated at 183 K with BuLi solution (0.030 ml, 0.075 mmol) with stirring for 30 min. MeSSMe (0.010 ml, 0.12 mmol) was then added and the mixture was warmed to room temperature within 16 h. The mixture was filtered through a plug of silica gel. Evaporation of the solvent left a yellow powder (0.020 g). This crude product was redissolved in THF (8 ml) and treated at 183 K with BuLi solution (0.010 ml, 0.025 mmol) with stirring for 60 min. Then, still at 183 K, MeSSMe (0.003 ml, 0.04 mmol) was added and the temperature was raised to ambient temperature within 16 h. After com­plete evaporation of the solvent, the residue was taken up in the minimum amount of PE and placed on top of a silica-gel chromatography column. Elution with PE/Et2O (9:1 v/v) produced two fractions. Evaporation of the second fraction (F2) left a yellow powder (0.010 g). NMR spectroscopy (see Figs. S22 and S23) showed this product to be nearly pure 11 contaminated with an unknown product `Y'. Although the latter could not be isolated in a pure form, its 1H NMR data suggest its formulation as [Mn{C5H(SMe)4}(PPh3)(CO)2].

Method (b). The conditions of method (a) were slightly changed, using 0.19 ml n-BuLi solution and stirring for only 30 min. The NMR spectra of the crude product showed the presence of only two com­pounds, 7 and 8 (Figs. S19–S21). The residue was redissolved in THF (10 ml) and treated at 183 K with 2.5 M n-BuLi solution (0.19 ml, 0.48 mmol) with stirring for 30 min. MeSSMe (0.050 ml, 0.60 mmol) was then added at this temperature. The mixture was warmed gradually to room temperature within 16 h with continuous stirring and was then filtered through a plug of silica gel and evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (90:10 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 11 as a yellow powder (yield: 0.050 g, 0.075 mmol, 31%). Recrystallization from PE gave yellow crystals suitable for X-ray diffraction. For spectra, see Figs. S24–S26 and S30.

For 7, 1H NMR (CDCl3, 400 MHz): δ 7.54–7.33 (m, 15H), 2.26 (s, 6H). 13C{1H} NMR (CDCl3, 101 MHz): δ 229.7 (d, J = 24.4 Hz), 134.5 (d, J = 42.4 Hz), 133.9 (d, J = 10.6 Hz), 130.1, 128.3 (d, J = 9.7 Hz), 99.4, 94.2, 90.7, 19.5. 31P{1H} NMR (CDCl3, 162 MHz): δ 82.2. IR (ATR; cm−1): ν(CO) = 1942, 1889. MS (EI, 70 eV): m/z = 767.9 (M+), 711.8 (M+ – 2CO), 696.8 (M+ – 2CO – Me), 677.9 (M+ – 2CO – 2Me), 262.0 (PPh3), 183.0 (PPh2), 108.0 (PPh). HRMS (EI): calculated for C27H21O2PS2Mn79Br3: m/z = 763.7651; found: 763.7654.

For 8, 1H NMR (CDCl3, 270 MHz): δ 7.55–7.16, 4.10 (s, 1H), 2.35 (s, 3H). 31P{1H} NMR (CDCl3, 109 MHz): δ 85.8. MS (EI, 70 eV): m/z = 663.8/665.7 (M+ – 2CO), 648.7/650.8 (M+ – 2CO – Me).

For 9, 1H NMR (CDCl3, 270 MHz): δ 7.55–7.16, 2.36, 2.30. 31P{1H} NMR (CDCl3, 109 MHz): δ 81.9. MS (EI, 70 eV): m/z = 677.8 (M+ – 2CO), 662.8 (M+ – 2CO – Me), 647.8 (M+ – 2CO – 2Me), 416.0 (M+ – 2CO – PPh3), 401.0 (M+ – 2CO – PPh3 – Me).

For 10, MS (EI, 70 eV): m/z = 631.8 (M+ – 2CO), 616.8 (M+ – 2CO – Me), 601.8 (M+ – 2CO – 2Me), 370.0 (M+ – 2CO – PPh3).

For 11, 1H NMR (CDCl3, 400 MHz): δ 7.55–7.48 (m, 6H), 7.40–7.34 (m, 9H), 2.38 (s, 15H). 13C{1H} NMR (CDCl3, 101 MHz): δ 135.9 (d, J = 41.4 Hz), 133.9 (d, J = 10.4 Hz), 129.9, 128.1 (d, J = 9.6 Hz), 102.7, 20.2. 31P{1H} NMR (CDCl3, 162 MHz): δ 82.3. IR (ATR; cm−1): ν(CO) = 1939, 1885. MS (EI, 70 eV): m/z = 668.1 (M+), 612.1 (M+ – 2CO), 597.0 (M+ – 2CO – Me), 582.0 (M+ – 2CO – 2Me), 262.0 (PPh3), 183.0 (PPh2), 108.0 (PPh).

For Y, 1H NMR (CDCl3, 400 MHz): δ 7.55–7.48 (m, 6H), 7.40–7.34 (m, 9H), 5.49 (s, 1H), 2.44 (s, 6H), ≃ 2.38 (hidden under signal of 11). 31P{1H} NMR (CDCl3, 162 MHz): δ 87.3.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All structures were solved with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). In the refinement of all structures, several low-angle reflections had to be omitted due to beam-stop inter­ferences (five in 1b, five in 3, six in 4 and five in 11). For com­pound 4, the SHELXT solution suggested one Mn, one Br and four S atoms. One of the S atoms turned out to actually be a P atom. Another S atom had significantly higher electron density than the remaining two. It was concluded that this was due to positional disorder with a Br atom. A first difference Fourier synthesis, which showed a residual electron-density peak at a distance of 1.800 Å from the `bromine' atom, con­firmed this assumption. No significant electron density was found near the Cp-ring `CH carbon'. Therefore, a model was re­fined where the two `inner' ring substituent atoms were both in part S and in part Br atoms. Refinement gave a 76:24 disorder in favour of the `original' structure solution. In order to stabilize the refinement, some SADI restraints had to be em­ployed (SADI restrains particular distances to be identical within certain standard deviations).

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker D8 VENTURE diffractometer. Absorption was corrected for by multi-scan methods (SADABS2016; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). H-atom parameters were constrained.

  1b 3 4
Crystal data
Chemical formula [Mn(C6H7S)(C18H15P)(CO)2] [Mn(C7H8BrS2)(C18H15P)(CO)2] [Mn(C8H10BrS)(C18H15P)(CO)2]
Mr 484.40 609.39 655.48
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca Monoclinic, P21/n
Temperature (K) 297 108 108
a, b, c (Å) 7.7281 (3), 16.8523 (6), 18.0339 (7) 16.5563 (7), 16.2392 (7), 19.3372 (9) 8.7717 (4), 13.2135 (6), 23.9428 (12)
α, β, γ (°) 90, 96.696 (1), 90 90, 90, 90 90, 92.884 (2), 90
V3) 2332.65 (15) 5199.0 (4) 2771.6 (2)
Z 4 8 4
μ (mm−1) 0.74 2.29 2.23
Crystal size (mm) 0.10 × 0.03 × 0.03 0.06 × 0.03 × 0.03 0.07 × 0.03 × 0.02
 
Data collection
Tmin, Tmax 0.702, 0.745 0.691, 0.745 0.676, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 46361, 4773, 4190 71764, 5317, 4408 51088, 6886, 5787
Rint 0.036 0.070 0.047
(sin θ/λ)max−1) 0.626 0.625 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.05 0.035, 0.088, 1.07 0.033, 0.071, 1.10
No. of reflections 4773 5317 6886
No. of parameters 281 309 359
No. of restraints 0 0 13
Δρmax, Δρmin (e Å−3) 0.28, −0.26 1.75, −0.83 0.44, −0.44
  11 2
Crystal data
Chemical formula [Mn(C10H15S)(C18H15P)(CO)2] [Mn(C6H6SBr)(C18H15P)(CO)2]·0.75C6H12
Mr 668.75 1189.73
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 107 108
a, b, c (Å) 12.5274 (5), 13.6748 (5), 17.9841 (7) 10.3309 (5), 10.7727 (5), 13.0821 (6)
α, β, γ (°) 90, 107.934 (1), 90 87.692 (2), 82.138 (2), 62.507 (2)
V3) 2931.2 (2) 1278.93 (11)
Z 4 1
μ (mm−1) 0.89 2.25
Crystal size (mm) 0.03 × 0.03 × 0.02 0.05 × 0.03 × 0.02
 
Data collection
Tmin, Tmax 0.714, 0.746 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 46511, 6471, 5457 21220, 6351, 5421
Rint 0.056 0.030
(sin θ/λ)max−1) 0.641 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.04 0.066, 0.170, 1.03
No. of reflections 6471 6351
No. of parameters 357 328
No. of restraints 0 2
Δρmax, Δρmin (e Å−3) 0.41, −0.50 5.86, −1.71
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The data for com­pound 2 are included for com­parison. While there was no problem obtaining the solution, refinement proceeded only with difficulty. First, three medium-intensity peaks close to an inversion centre turned up in a difference Fourier synthesis, which when connected had the appearance of a cyclo­hexane ring. Although cyclohexane was not explicitly used during the synthesis, it may have been part of the petroleum ether that was used for recrystallization. Ap­parently, `petroleum ether' is not a particular compound, but a mixture of hydrocarbons within a specific range of boiling points. Therefore, the three atoms were refined iso­tropi­cally with a common displacement parameter, and the site occupancy factor (s.o.f.) was refined as well. Refinement gave a value for the s.o.f. of ca 0.75, with a reasonable displacement parameter. Then the s.o.f. was fixed at 0.75 and the displacement parameters were allowed to re­fine freely, first isotropically and then anisotropically. Finally, methyl­ene H atoms were added according to the standard riding model of SHELXL. While the s.o.f. and displacement parameters ap­pear reasonable, some of the bond lengths appear unreasonably short. One possible explanation might be conformational disorder within the cyclohexane ring, which is quite usual for this molecule. The quality of the data set, however, did not allow for a proper resolution of this disorder. At the same time as the appearance of the solvent mol­ecule, a medium-intensity peak was also localized close to atom H3 of the cyclo­penta­dienyl ligand, with a distance of approximately 1.85 Å to atom C3. As com­pound 2 possesses planar chirality, we assumed this electron density derived from an alternative bromine position, corresponding to a rotational isomer of the enanti­omer of the major orientation (of course, in a centrosymmetric space group, both enanti­omers are present anyway). Again, both bromine positions were given a common displacement parameter, and their s.o.f. values were refined. This resulted in an s.o.f. value of only 0.045 for the minor orientation. Then the s.o.f. values were fixed at 0.955 and 0.045, respectively, and the displacement parameters were refined, first isotropically and then anisotropically. The corresponding H atoms were positioned according to the riding model. After this `problem' was solved, another one appeared. A rather large residual electron-density peak turned up only 0.82 Å from the S atom, 1.73 Å from atom C2 and 0.71 Å on the distal side of the Cp ring. We could not find any explanation for this observation. The distance from sulfur is too small to be a methyl group or O atom, and the distance from the Cp plane is too large for a ring substituent. We also tried a refinement without the cyclohexane, using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) model available in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). However, this refinement neither provided better statistics nor change anything about the residual high electron density next to the S atom. With this unexplained residual electron density in mind, we refrained from any further structure discussion. However, displacement ellipsoid plots of the current `best' solution are displayed in the supporting information.

3. Results and discussion

3.1. Synthesis

There are numerous synthetic pathways towards aryl thio­ethers. Some recent approaches have been the catalyzed or uncatalyzed methyl­thiol­ation of aryl iodides or bromides (Wang et al., 2020[Wang, Y.-Y., Wu, X.-M. & Yang, M.-H. (2020). Synlett, 31, 1226-1230.]), chlorides (Schmiedtchen et al., 2023[Schmiedtchen, M., Maisuls, I., Wölper, C., Strassert, C. A. & Voskuhl, J. (2023). ChemPhotoChem, e202300209.]) or fluorides (Mörsel et al., 2023[Mörsel, S., Kellner, R. & Hirsch, A. (2023). Eur. J. Org. Chem. 26, e202300299.]), or the visible-light-mediated alkyl­ation of thio­phenols (Cai et al., 2021[Cai, Y.-P., Nie, F.-Y. & Song, Q.-H. (2021). J. Org. Chem. 86, 12419-12426.]). However, the reaction conditions used in these procedures are unfortunately not applicable neither for the `free' substituted cyclo­penta­dienide nor in the system [MnCp(PPh3)(CO)2], due to rapid decom­position. Therefore, we chose two approaches that had been successful in the ferrocene (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.]) and the [MnCp(CO)3] systems (Sünkel & Motz, 1988[Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970-971.]). For the first approach, we used [Mn(C5H4Br)(PPh3)(CO)2] as the starting material (Fig. 1[link]), while for the second, [Mn(C5Br5)(PPh3)(CO)2] was employed (Fig. 2[link]). It should be mentioned that the photolysis of [Mn{C5(SMe)5}(CO)3] in the presence of PPh3 (like in the first synthesis of 1b; Kursanov et al., 1970[Kursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad Nauk SSSR, 19, 2776.]) might work as well, but we didn't try this.

Treatment of 1a with n-BuLi in THF followed by addition of Me2S2 led to the product of Br–Li exchange, i.e. com­pound 1b, in 85% yield. This com­pound has been known for over 50 years and had originally been prepared by photolysis of [Mn(C5H4SMe)(CO)3] in the presence of PPh3 (Kursanov et al., 1970[Kursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad Nauk SSSR, 19, 2776.]). When LDA was used as the base instead of n-BuLi, 1a was deprotonated in the α-position and, after electrophilic quenching with Me2S2, the disubstituted com­plex 2 was obtained in 79% yield, as an enanti­omeric pair due to the planar chirality. Renewed treatment with LDA and Me2S2 gave the tris­ubstituted com­pound 3 in 63% yield, apparently exclusively as the 1-bromo-2,5-bis­(methyl­sulfan­yl)- isomer. When 3 was treated with LDA/Me2S2, apparently only unreacted 3 could be recovered. Therefore, we decided to use the stronger base LiTMP, in 2.5 equivalents before adding Me2S2. NMR and mass spectrometric examination of the crude reaction product showed the presence of com­pound 4, together with unreacted starting material 3, presumably 5 and other unknown com­pounds. Chromatography allowed the isolation of rather pure com­pound 4, albeit in rather low yield (31%). The parallel formation of 5 hints at the occurrence of `halogen dance' reactions (Blockhaus et al., 2020[Blockhaus, T., Bernhartzeder, S., Kempinger, W., Klein-Hessling, C., Weigand, S. & Sünkel, K. (2020). Eur. J. Org. Chem. 2020, 6576-6587.]).

We then turned to an alternative approach, similar to that described by us for the synthesis of [Mn{C5(SMe)5}(CO)3]. We assumed that treatment of [Mn(C5Br5)(PPh3)(CO)2] (6) with two equivalents of n-BuLi/MeSSMe would yield exclusively the 1,3-disubstituted com­plex 7 (Fig. 2[link]). However, it turned out that the reaction was extremely sensitive to the relative stoichiometry of the reactants, the reaction time and the presence of moisture. While with apparently exact stoichiometry, a mixture of com­pounds 7 and 8 was obtained, only a slight excess of n-BuLi gave a mixture of at least five com­pounds, of which 710 could be identified by mass spectrometry. It was not possible to isolate any of these com­pounds in sufficient purity for elemental analysis. However, characterization by 1H NMR and 31P NMR spectroscopy, as well as mass spectrometry, was possible. The unexpected formation of com­pounds 810 is most likely due to a combination of hydrolysis and `halogen dance' or even `sulfur dance' reactions (Gahlot et al., 2024[Gahlot, S., Schmitt, J.-L., Chevalier, A., Villa, M., Roy, M., Ceroni, P., Lehn, J.-M. & Gingras, M. (2024). Chem. Eur. J. 30, e202400231.]). Therefore, we decided to use these mixtures for further treatment with an excess of n-BuLi/MeSSMe, which yielded rather pure com­pound 11 (Fig. 2[link]). Further purification steps via chromatography and recrystallization gave this com­pound as a monocrystalline material that could be studied by X-ray diffraction.

3.2. Mol­ecular structures

3.2.1. [Mn(C5H4SMe)(PPh3)(CO)2], 1b

Compound 1b crystallizes in the monoclinic space group P21/c, with one mol­ecule in the asymmetric unit (Fig. 3[link]). The bond parameters of 1b, together with those of the other structures described here, can be found in Table 2[link]. There are no unusual features. In com­parison with the ring-unsubstituted parent com­pound (Sünkel & Klein-Hessling, 2021[Sünkel, K. & Klein-Hessling, C. (2021). Acta Cryst. C77, 633-640.]), the Mn—CO and Mn—CtCp (CtCp is the centroid of the cyclo­penta­dienyl ring) distances are nearly identical, and the Mn—P bond is slightly elongated. In both com­pounds, one Mn—CO bond bis­ects one cyclo­penta­dienyl C—C bond, while the other Mn—CO and the Mn—P bond nearly eclipse a C—H bond of the ring. The SMe group in 1b is in a relative trans position with respect to the PPh3 ligand. The methyl group at sulfur is in an axial position. For com­parison, the only two mononuclear structures containing a C5H4SMe ligand in the CSD, i.e. [Os(C5H4SMe)(CO)(PPh3)2]+ (CSD refcode ILORUX) and [Os(C5H4SMe)(CO)(PPh3)I] (ILOSAE), contain an equatorial and an axial methyl group, respectively (Johns et al., 2010[Johns, P. M., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2010). Organometallics, 29, 5358-5365.]).

Table 2
Important bond lengths (Å) and angles (°) in 1b, 3, 4 and 11

  1b 3 4 11
Mn—P 2.2408 (5) 2.2413 (8) 2.2565 (7) 2.2660 (6)
Mn—CO 1.770 (2) 1.770 (3) 1.788 (3) 1.786 (1)
  1.767 (2) 1.766 (3) 1.774 (2) 1.776 (2)
Mn—CtCp 1.772 (1) 1.770 (1) 1.792 (1) 1.785 (1)
CCp—Br 1.874 (3) 1.871 (3)*
Ccp—S, average 1.766 (2) 1.755 (2) 1.748 (3) 1.763 (2)
S—CMe, average 1.794 (3) 1.786 (4) 1.802 (3) 1.811 (2)
Mn⋯S 3.4778 (6) 3.564 (1) 3.590 (1)/3.551 (1) 3.5157 (7)–
    3.465 (1) 3.47 (1) 3.5880 (6)
CCp—S—CMe 99.0 (1) 102.4 (2) 100.5 (1) 98.9 (1)–
    99.4 (2) 101.6 (1) 104.0 (1)
C—CCp—S—CMe 92.0 (2) 19.9 (3) 12.8 (3)/26.4 (3) 50.6 (2)–
    88.0 (3) 83.1 (3) 68.4 (2)
S—CtCp—Mn—P 158.9 91.8 127.6/19.3 Meaningless
    127.0 −161.8  
Note: (*) major com­ponent.
[Figure 3]
Figure 3
Top and side views of the mol­ecular structure of 1b, with displacement ellipsoids drawn at the 50% probability level.
3.2.2. [Mn{C5H2Br(SMe)2}(PPh3)(CO)2], 3

Compound 3 crystallizes in the ortho­rhom­bic space group Pbca, with one mol­ecule in the asymmetric unit (Fig. 4[link]). The bond parameters can be found in Table 2[link]. Again, there are no unusual features. This time, the C—Br bond is in a relative trans position with respect to the Mn—P bond. One methyl group is in an axial position at atom S5, while the other at S2 is in an equatorial position. The Mn—P, Mn—CO and Mn—CtCp bonds are virtually identical with the corresponding bond lengths in 1b. The same is true for the CCp—S and S—CH3 bonds. The bond angle at the S atom with the equatorial methyl group is significantly larger than the corresponding angle with the axial methyl group, which in turn is identical to the corresponding angle in com­pound 1b.

[Figure 4]
Figure 4
Top and side views of the mol­ecular structure of com­pound 3, with displacement ellipsoids drawn at the 50% probability level.
3.2.3. Mn{C5HBr(SMe)3}(PPh3)(CO)2], 4

Compound 4 crystallizes in the monoclinic space group P21/n, with one mol­ecule in the asymmetric unit (Fig. 5[link]). There is a 76:24 disorder (i.e. approximately 3:1) between the Br atom and the vicinal `inner' methyl­sulfanyl group. Since com­pound 4 is planar chiral, this disorder resembles an unsymmetrical dis­order between the two enanti­omers.

[Figure 5]
Figure 5
Top and side views of the mol­ecular structure (major com­ponent) of com­pound 4, with displacement ellipsoids drawn at the 50% probability level. Only one enanti­omer of this planar chiral com­pound is shown.

In com­parison with the structures of 1b and 3, the Mn—P, Mn—CO and Mn—CtCp bonds are slightly (but significantly, Δ > 5σ) elongated (Table 2[link]). The two `outer' methyl­sulfanyl groups are equatorial, with both methyl groups directed towards the unsubstituted C—H bond, while the `inner' methyl group is in an axial position, directed away from the Mn atom. A little bit surprising is the observation that the Mn—P bond nearly eclipses one CCp—S bond, instead of the neighbouring C—H bond, as one might expect. Thus, a rather short S⋯P distance of 3.601 (1) Å results, which is identical to the sum of the van der Waals radii. In addition, all S atoms are significantly closer to the Mn atom than the sum of their van der Waals radii (3.80 Å). This feature is more distinct for the S atoms with axial methyl groups (R ≃ 3.47 Å) than for those with equatorial methyl groups (R ≃ 3.57 Å), and is also observed in the structures of 1b and 3.

3.2.4. [Mn{C5(SMe)5}(PPh3)(CO)2], 11

Compound 11 crystallizes in the monoclinic space group P21/c, with one mol­ecule in the asymmetric unit (Fig. 6[link]). The Mn—P bond length in 11 is longer than in the other three com­pounds, while the Mn—CO and Mn—CtCp distances are very similar to the values found in 4. All methyl­sulfanyl groups are significantly tilted away from an `ideal' axial position (C—CCp—S—CMe in the range between 50 and 68° versus 92° in 1b). Four methyl groups are directed away towards the distal side of the cyclo­penta­dienyl ring, while one is on the proximal side. This can be com­pared to the structures of [Mn{C5(SMe)5}(CO)3], where there are three distal and two proximal SMe groups (Sünkel & Motz, 1988[Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970-971.]), and of [Fe{C5(SMe)5}(C5H5)], where all the SMe groups are in distal positions (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.]). This orientation with four methyl groups on one side of the ring and one methyl group on the other resembles, however, the situation found in the structure of the uncom­plexed `free' anion (Wudl et al., 1981[Wudl, F., Nalewajek, D., Rotella, F. J. & Gebert, E. (1981). J. Am. Chem. Soc. 103, 5885-5890.]). Theoretical studies of the conformational preferences of poly(methyl­sulfan­yl)ben­zenes, including hexa­kis­(methyl­sulfan­yl)benzene, have been reported (Lumbroso et al., 1986[Lumbroso, H., Liégeois, C., Testaferri, L. & Tiecco, M. (1986). J. Mol. Struct. 144, 121-133.]; Fleurat-Lessard & Volatron, 2009[Fleurat-Lessard, P. & Volatron, F. (2009). Chem. Phys. Lett. 477, 32-36.]), but to our knowledge no such studies of poly­thiol­ated cyclo­penta­ienyl rings exist. All the Mn⋯S distances are in the range 3.52–3.59 Å and are thus significantly shorter than the sum of their van der Waals radii (3.80 Å). For com­parison, in [Mn{C5(SMe)5}(CO)3], the Mn⋯S distances range from 3.39 to 3.59 Å. Still, it seems unlikely that there is explicit bonding between Mn and S, as such distances are also the simple geometrical result of π-bonding of the substituted Cp ring to the metal.

[Figure 6]
Figure 6
Top and side views of the mol­ecular structure of com­pound 11, with displacement ellipsoids drawn at the 50% probability level.

3.3. Inter­molecular contacts and Hirshfeld analysis

The importance of inter­molecular contacts, also termed `noncovalent inter­actions', for the build-up of crystal structures is undisputed. While the near omnipresence of hydrogen bonds has been known for a long time (mainly due to their structure-directing effects in biomolecules), in recent decades it was recognized that inter­actions involving halogens, chalcogens and even pnictogens and tetrel elements also have a great influence on the mutual arrangements of mol­ecules in crystals and the terms `halogen bond', `chalcogen bond', `pnictogen bond' and `tetrel bond' were created (Brammer et al., 2023[Brammer, L., Peuronen, A. & Roseveare, T. M. (2023). Acta Cryst. C79, 204-216.]; Vogel et al., 2019[Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880-1891.]; Scheiner, 2023[Scheiner, S. (2023). J. Phys. Chem. A, 127, 4695-4703.]; Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]; Mahmudov et al., 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). For the present study, we looked first only at the inter­actions involving S and/or Br atoms, using the corresponding feature in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). In com­pound 1b, no such inter­actions are observed. However, in com­pound 3, double S⋯Br contacts of 3.414 Å, well below the sum of the van der Waals radii, lead to the formation of `dimers' (Fig. 7[link]).

[Figure 7]
Figure 7
Dimer formation in the crystal of 3,

The C—Br—S angle at Br1 is 153.6 (1)°, while the C—S—Br angles at S2 are 128.0 (1) and 128.8 (1)°. Atom S5 is not involved in such inter­actions; however, it accepts a hydrogen bond from a phenyl C—H group.

Compound 4 was not included for this study, due to the presence of the S/Br disorder, which did not allow a proper resolution of the relative contributions of these elements.

Compound 11 displays a mol­ecular chain in the crystallographic c direction, which is held together via weak S⋯S contacts (distance of 3.588 Å between atoms S1 and S3, just below the sum of the van der Waals radii). The CCp—S—S angles at S1 and S3 are 139.8 (1) and 168.4 (1)°, respectively. Atoms S2 and S5 serve as hydrogen-bond acceptors towards two arene C—H bonds (Fig. 8[link]). For com­parison, in closely related [Mn{C5(SMe)5}(CO)3] (Sünkel & Motz, 1988[Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970-971.]), only dimer formation via an S⋯S inter­action between inversion-related S atoms (3.510 Å) is observed. On the other hand, penta­kis­(methyl­sulfan­yl)ferrocene employs four S atoms for the formation of parallel undulating (wavy) chains along b using double S⋯S bridges on both sides (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.]).

[Figure 8]
Figure 8
Packing plot of 11, viewed along the a axis, showing the inter­molecular S⋯S contacts.

In order to get a better overview of the inter­molecular inter­actions at work, we undertook a Hirshfeld analysis, using the program CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). First, we determined the Hirshfeld surfaces (Fig. 9[link]) and fingerprint plots (Fig. 10[link]).

[Figure 9]
Figure 9
The Hirshfeld surfaces of 1b, 3, 4 and 11 (from left to right).
[Figure 10]
Figure 10
Fingerprint plots of 1b, 3, 4 and 11 (from left to right).

Evaluation of the fingerprint plots allowed the calculation of the relative contributions of inter­actions of elements inside and outside the Hirshfeld surface (Table 3[link]).

Table 3
Relative contributions (%) of elements to the inter­actions of atoms inside and outside the Hirshfeld surface (mainly contributions > 2%)

  1b 3 4 11
H⋯H 49.5 42.5 45.2 55.4
H⋯C 22.9 22.4 20.8 15.4
H⋯O 19.4 15.8 15.1 12.0
H⋯S 6.4 8.0 10.5 14.8
H⋯Br 8.4 7.2
Br⋯S 2.1 0.2
S⋯S 0.0 0.0 0.3 0.6
C⋯C 1.4 0.3 0.0 0.4

As can be seen, inter­actions between hydrogen and other elements make up for more than 95% of all inter­actions and ca a 50% contribution comes from H⋯H inter­actions. This dominance is in part due to the large number of C—H bonds present (22 in 1b, 23 in 3, 25 in 4 and 30 in 11) in relation to the number of Br and S atoms. For com­parison, in [Fe{C5(SMe)5}(C5H5)] (Blockhaus et al., 2019[Blockhaus, T., Klein-Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684-12688.]), the inter­actions with H-atom contributions make up 97%, with 63.4% coming from H⋯H inter­actions alone (20 C—H bonds). However, S⋯S inter­actions contribute ca 3%. In [Mn{C5(SMe)5}(CO)3] (Sünkel & Motz, 1988[Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970-971.]), inter­actions with H-atom contributions make up ca 88%, with 34.8% coming from H⋯H and 24.6% from H⋯S; S⋯S inter­actions contribute 2.3%.

We also performed an orbital calculation of the highest occupied mol­ecular orbital (HOMO) and lowest unoccupied mol­ecular orbital (LUMO) of com­pounds 1b, 3, 4 (major com­ponent) and 11, using the program TONTO (HF/STO-3G), as provided with CrystalExplorer. The results are shown in Fig. 11[link].

[Figure 11]
Figure 11
HOMO (top row) and LUMO (bottom row) of com­pounds 1b, 3, 4 and 11 (from left to right).

As can be seen, for 1b, the HOMO resides on the S atom, the CO ligands and one arene ring, while the LUMO is concentrated on the cyclo­penta­dienyl ring. In 3, the HOMO is distributed over the CO ligands and the P atom and part of the arene rings, while the LUMO is mainly situated on the Br atom and the SMe groups. In com­pound 4 (major com­ponent), the HOMO resides mainly on two SMe groups, as well as on one arene ring. The LUMO is spread over the metal, the remaining SMe group and the Br atom, as well as on one other arene ring. For com­pound 11, the HOMO resides on the Cp ring, including two SMe groups and the P atom, while the LUMO is distributed over the Mn atom and the PPh3 ligand.

4. Conclusions

The best approach for the synthesis of [Mn{C5(SMe)5}(PPh3)(CO)2)] appears to be the one-pot reaction of [Mn(C5Br5)(PPh3)(CO)2] first with 2 equivalents of n-BuLi/MeSSMe and then with four equivalents of these reagents. Stepwise reactions, as well as the bottom-up approach starting with [Mn(C5H4Br)(PPh3)(CO)2], lead only to com­plicated product mixtures, which need multiple purification steps with large losses in yield. The structures of 1b, 3, 4 and 11 with one, two, three or five SMe groups, respectively, show an unpredictable distribution of axial and equatorial methyl groups. S⋯Br contacts in 3 leads to the formation of `dimers', while S⋯S contacts in 11 lead to polymeric one-dimensional strands. Besides these, no structure-directing effects of halogen or chalcogen (S) bonding can be observed.

Supporting information


Computing details top

Dicarbonyl[η5-1-(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese (compd_1b) top
Crystal data top
[Mn(C6H7S)(C18H15P)(CO)2]F(000) = 1000
Mr = 484.40Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7281 (3) ÅCell parameters from 9883 reflections
b = 16.8523 (6) Åθ = 3.0–26.4°
c = 18.0339 (7) ŵ = 0.74 mm1
β = 96.696 (1)°T = 297 K
V = 2332.65 (15) Å3Rod, yellow
Z = 40.10 × 0.03 × 0.03 mm
Data collection top
Bruker D8 VENTURE
diffractometer
4773 independent reflections
Radiation source: rotating anode generator, Bruker TXS4190 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.036
mix of ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS2016; Krause et al., 2015)
h = 99
Tmin = 0.702, Tmax = 0.745k = 2121
46361 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.9836P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4773 reflectionsΔρmax = 0.28 e Å3
281 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5537 (2)0.42764 (10)0.64027 (10)0.0388 (4)
C20.4595 (3)0.43295 (11)0.56776 (11)0.0432 (4)
H20.3814080.4727870.5508260.052*
C30.5057 (3)0.36712 (13)0.52628 (11)0.0482 (5)
H30.4624840.3557750.4771260.058*
C40.6284 (3)0.32125 (12)0.57171 (12)0.0479 (5)
H40.6808130.2747190.5578200.057*
C50.6575 (2)0.35865 (12)0.64198 (12)0.0438 (4)
H50.7324790.3408310.6826510.053*
C60.2130 (2)0.36971 (11)0.66111 (11)0.0419 (4)
C70.4256 (2)0.25425 (12)0.69360 (11)0.0432 (4)
C80.7341 (3)0.55679 (16)0.69405 (17)0.0727 (7)
H81A0.8347360.5235630.6932130.109*
H81B0.7570100.5962460.7323310.109*
H81C0.7081220.5823770.6464870.109*
C1010.3447 (2)0.18065 (10)0.49017 (10)0.0338 (4)
C1020.3118 (3)0.17738 (11)0.41275 (10)0.0427 (4)
H1020.2216470.2073050.3881330.051*
C1030.4126 (3)0.12982 (13)0.37206 (11)0.0513 (5)
H1030.3891980.1279790.3203230.062*
C1040.5466 (3)0.08539 (13)0.40734 (12)0.0524 (5)
H1040.6127670.0531310.3796880.063*
C1050.5827 (3)0.08881 (12)0.48392 (12)0.0481 (5)
H1050.6742300.0592970.5080150.058*
C1060.4828 (2)0.13608 (11)0.52495 (11)0.0409 (4)
H1060.5082920.1381730.5766060.049*
C1110.0476 (2)0.28520 (10)0.48332 (9)0.0342 (4)
C1120.0407 (2)0.36650 (12)0.47192 (11)0.0441 (4)
H1120.1229390.3992120.4983990.053*
C1130.0889 (3)0.39947 (14)0.42096 (12)0.0545 (5)
H1130.0921800.4540770.4134510.065*
C1140.2110 (3)0.35232 (15)0.38198 (12)0.0552 (6)
H1140.2968350.3747380.3479140.066*
C1150.2070 (3)0.27165 (15)0.39313 (12)0.0551 (5)
H1150.2904360.2395100.3666550.066*
C1160.0793 (2)0.23812 (12)0.44365 (11)0.0444 (4)
H1160.0781770.1835260.4512140.053*
C1210.0969 (2)0.16794 (10)0.59596 (9)0.0342 (4)
C1220.0102 (3)0.19413 (12)0.64774 (11)0.0456 (4)
H1220.0120890.2477550.6598040.055*
C1230.1141 (3)0.14162 (15)0.68161 (13)0.0572 (5)
H1230.1869170.1604120.7152680.069*
C1240.1105 (3)0.06194 (15)0.66585 (14)0.0611 (6)
H1240.1792010.0266290.6891760.073*
C1250.0043 (3)0.03497 (13)0.61527 (15)0.0635 (6)
H1250.0015240.0188930.6042410.076*
C1260.0985 (3)0.08723 (12)0.58058 (12)0.0498 (5)
H1260.1697830.0680230.5464840.060*
O10.1026 (2)0.40092 (11)0.68817 (11)0.0715 (5)
O20.4577 (2)0.20876 (11)0.74104 (10)0.0735 (5)
P10.22139 (5)0.24217 (2)0.54943 (2)0.02962 (10)
S10.55170 (7)0.49737 (3)0.71293 (3)0.05091 (14)
Mn10.39016 (3)0.32610 (2)0.62211 (2)0.03037 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (9)0.0354 (9)0.0440 (10)0.0050 (7)0.0072 (8)0.0005 (7)
C20.0447 (10)0.0409 (10)0.0447 (10)0.0054 (8)0.0089 (8)0.0104 (8)
C30.0511 (11)0.0585 (12)0.0374 (10)0.0134 (9)0.0157 (9)0.0013 (9)
C40.0363 (9)0.0495 (11)0.0607 (13)0.0023 (8)0.0176 (9)0.0111 (9)
C50.0306 (9)0.0443 (10)0.0559 (12)0.0023 (8)0.0020 (8)0.0014 (9)
C60.0400 (10)0.0407 (10)0.0455 (10)0.0018 (8)0.0072 (8)0.0053 (8)
C70.0402 (10)0.0464 (10)0.0409 (10)0.0029 (8)0.0040 (8)0.0024 (8)
C80.0618 (15)0.0606 (15)0.096 (2)0.0197 (12)0.0093 (14)0.0221 (14)
C1010.0339 (8)0.0326 (8)0.0351 (9)0.0012 (7)0.0050 (7)0.0019 (7)
C1020.0438 (10)0.0486 (11)0.0354 (9)0.0062 (8)0.0038 (8)0.0009 (8)
C1030.0614 (13)0.0578 (12)0.0361 (10)0.0031 (10)0.0112 (9)0.0067 (9)
C1040.0555 (12)0.0486 (11)0.0560 (13)0.0089 (9)0.0183 (10)0.0130 (10)
C1050.0450 (11)0.0427 (10)0.0562 (12)0.0121 (8)0.0038 (9)0.0045 (9)
C1060.0418 (9)0.0393 (9)0.0402 (10)0.0076 (8)0.0008 (8)0.0038 (8)
C1110.0300 (8)0.0412 (9)0.0315 (8)0.0071 (7)0.0039 (6)0.0045 (7)
C1120.0414 (10)0.0432 (10)0.0466 (11)0.0069 (8)0.0009 (8)0.0052 (8)
C1130.0533 (12)0.0553 (12)0.0546 (12)0.0199 (10)0.0054 (10)0.0177 (10)
C1140.0413 (11)0.0820 (16)0.0415 (11)0.0194 (11)0.0010 (9)0.0146 (11)
C1150.0404 (10)0.0778 (15)0.0442 (11)0.0018 (10)0.0065 (9)0.0032 (11)
C1160.0380 (10)0.0499 (11)0.0438 (10)0.0004 (8)0.0021 (8)0.0034 (8)
C1210.0327 (8)0.0369 (9)0.0320 (8)0.0014 (7)0.0009 (7)0.0048 (7)
C1220.0443 (10)0.0454 (10)0.0488 (11)0.0037 (8)0.0122 (9)0.0051 (9)
C1230.0472 (11)0.0714 (15)0.0555 (13)0.0017 (11)0.0168 (10)0.0115 (11)
C1240.0545 (13)0.0669 (15)0.0616 (14)0.0146 (11)0.0052 (11)0.0248 (12)
C1250.0733 (15)0.0409 (11)0.0759 (16)0.0115 (11)0.0073 (13)0.0079 (11)
C1260.0569 (12)0.0382 (10)0.0557 (12)0.0032 (9)0.0119 (10)0.0002 (9)
O10.0545 (9)0.0731 (11)0.0919 (13)0.0082 (8)0.0300 (9)0.0257 (10)
O20.0848 (12)0.0690 (11)0.0609 (10)0.0069 (9)0.0155 (9)0.0310 (9)
P10.0290 (2)0.0307 (2)0.0288 (2)0.00389 (16)0.00205 (16)0.00170 (16)
S10.0588 (3)0.0429 (3)0.0525 (3)0.0060 (2)0.0127 (2)0.0082 (2)
Mn10.02944 (14)0.03077 (14)0.03094 (14)0.00126 (9)0.00370 (10)0.00046 (10)
Geometric parameters (Å, º) top
C1—C51.411 (3)C104—C1051.378 (3)
C1—C21.423 (3)C104—H1040.9300
C1—S11.7614 (19)C105—C1061.382 (3)
C1—Mn12.1296 (17)C105—H1050.9300
C2—C31.407 (3)C106—H1060.9300
C2—Mn12.1477 (18)C111—C1121.386 (3)
C2—H20.9300C111—C1161.393 (3)
C3—C41.410 (3)C111—P11.8377 (17)
C3—Mn12.1497 (18)C112—C1131.394 (3)
C3—H30.9300C112—H1120.9300
C4—C51.410 (3)C113—C1141.364 (3)
C4—Mn12.1481 (19)C113—H1130.9300
C4—H40.9300C114—C1151.374 (3)
C5—Mn12.1270 (18)C114—H1140.9300
C5—H50.9300C115—C1161.384 (3)
C6—O11.158 (2)C115—H1150.9300
C6—Mn11.7704 (19)C116—H1160.9300
C7—O21.154 (2)C121—C1261.389 (3)
C7—Mn11.7667 (19)C121—C1221.390 (3)
C8—S11.794 (2)C121—P11.8393 (17)
C8—H81A0.9600C122—C1231.384 (3)
C8—H81B0.9600C122—H1220.9300
C8—H81C0.9600C123—C1241.373 (3)
C101—C1021.391 (2)C123—H1230.9300
C101—C1061.393 (2)C124—C1251.374 (4)
C101—P11.8338 (17)C124—H1240.9300
C102—C1031.386 (3)C125—C1261.384 (3)
C102—H1020.9300C125—H1250.9300
C103—C1041.373 (3)C126—H1260.9300
C103—H1030.9300P1—Mn12.2407 (5)
C5—C1—C2107.49 (17)C112—C113—H113119.7
C5—C1—S1126.00 (15)C113—C114—C115119.90 (19)
C2—C1—S1126.41 (14)C113—C114—H114120.0
C5—C1—Mn170.54 (10)C115—C114—H114120.0
C2—C1—Mn171.25 (10)C114—C115—C116120.2 (2)
S1—C1—Mn1126.45 (10)C114—C115—H115119.9
C3—C2—C1107.72 (17)C116—C115—H115119.9
C3—C2—Mn170.96 (11)C115—C116—C111120.75 (19)
C1—C2—Mn169.88 (10)C115—C116—H116119.6
C3—C2—H2126.1C111—C116—H116119.6
C1—C2—H2126.1C126—C121—C122117.73 (17)
Mn1—C2—H2124.6C126—C121—P1123.89 (14)
C2—C3—C4108.59 (18)C122—C121—P1118.34 (14)
C2—C3—Mn170.81 (10)C123—C122—C121121.0 (2)
C4—C3—Mn170.79 (11)C123—C122—H122119.5
C2—C3—H3125.7C121—C122—H122119.5
C4—C3—H3125.7C124—C123—C122120.5 (2)
Mn1—C3—H3124.3C124—C123—H123119.8
C5—C4—C3107.63 (17)C122—C123—H123119.8
C5—C4—Mn169.94 (11)C123—C124—C125119.3 (2)
C3—C4—Mn170.91 (11)C123—C124—H124120.4
C5—C4—H4126.2C125—C124—H124120.4
C3—C4—H4126.2C124—C125—C126120.6 (2)
Mn1—C4—H4124.6C124—C125—H125119.7
C4—C5—C1108.56 (18)C126—C125—H125119.7
C4—C5—Mn171.56 (11)C125—C126—C121120.9 (2)
C1—C5—Mn170.74 (10)C125—C126—H126119.5
C4—C5—H5125.7C121—C126—H126119.5
C1—C5—H5125.7C101—P1—C111103.59 (8)
Mn1—C5—H5123.6C101—P1—C121102.50 (8)
O1—C6—Mn1176.73 (18)C111—P1—C121100.53 (8)
O2—C7—Mn1176.40 (18)C101—P1—Mn1113.03 (6)
S1—C8—H81A109.5C111—P1—Mn1117.51 (6)
S1—C8—H81B109.5C121—P1—Mn1117.53 (6)
H81A—C8—H81B109.5C1—S1—C898.99 (11)
S1—C8—H81C109.5C7—Mn1—C693.22 (9)
H81A—C8—H81C109.5C7—Mn1—C589.35 (8)
H81B—C8—H81C109.5C6—Mn1—C5127.37 (8)
C102—C101—C106118.12 (16)C7—Mn1—C1113.56 (8)
C102—C101—P1124.12 (13)C6—Mn1—C194.47 (8)
C106—C101—P1117.73 (13)C5—Mn1—C138.71 (7)
C103—C102—C101120.41 (18)C7—Mn1—C2151.88 (8)
C103—C102—H102119.8C6—Mn1—C294.52 (8)
C101—C102—H102119.8C5—Mn1—C264.64 (8)
C104—C103—C102120.68 (19)C1—Mn1—C238.87 (7)
C104—C103—H103119.7C7—Mn1—C4102.41 (9)
C102—C103—H103119.7C6—Mn1—C4157.64 (8)
C103—C104—C105119.68 (18)C5—Mn1—C438.50 (8)
C103—C104—H104120.2C1—Mn1—C464.73 (7)
C105—C104—H104120.2C2—Mn1—C464.35 (8)
C104—C105—C106120.02 (19)C7—Mn1—C3139.76 (9)
C104—C105—H105120.0C6—Mn1—C3126.78 (9)
C106—C105—H105120.0C5—Mn1—C364.29 (8)
C105—C106—C101121.06 (18)C1—Mn1—C364.58 (7)
C105—C106—H106119.5C2—Mn1—C338.23 (8)
C101—C106—H106119.5C4—Mn1—C338.30 (8)
C112—C111—C116118.32 (16)C7—Mn1—P191.40 (6)
C112—C111—P1119.93 (14)C6—Mn1—P194.01 (6)
C116—C111—P1121.74 (14)C5—Mn1—P1138.50 (6)
C111—C112—C113120.29 (19)C1—Mn1—P1153.08 (5)
C111—C112—H112119.9C2—Mn1—P1114.93 (6)
C113—C112—H112119.9C4—Mn1—P1101.40 (6)
C114—C113—C112120.6 (2)C3—Mn1—P190.04 (6)
C114—C113—H113119.7
C5—C1—C2—C30.4 (2)C114—C115—C116—C1110.6 (3)
S1—C1—C2—C3176.85 (14)C112—C111—C116—C1151.2 (3)
Mn1—C1—C2—C361.20 (13)P1—C111—C116—C115178.80 (16)
C5—C1—C2—Mn161.59 (13)C126—C121—C122—C1231.3 (3)
S1—C1—C2—Mn1121.95 (15)P1—C121—C122—C123176.52 (16)
C1—C2—C3—C40.5 (2)C121—C122—C123—C1241.5 (3)
Mn1—C2—C3—C461.01 (13)C122—C123—C124—C1250.9 (4)
C1—C2—C3—Mn160.50 (12)C123—C124—C125—C1260.2 (4)
C2—C3—C4—C50.4 (2)C124—C125—C126—C1210.0 (4)
Mn1—C3—C4—C560.60 (13)C122—C121—C126—C1250.6 (3)
C2—C3—C4—Mn161.02 (13)P1—C121—C126—C125177.09 (17)
C3—C4—C5—C10.2 (2)C102—C101—P1—C1114.93 (18)
Mn1—C4—C5—C161.40 (13)C106—C101—P1—C111176.84 (14)
C3—C4—C5—Mn161.23 (13)C102—C101—P1—C121109.18 (16)
C2—C1—C5—C40.1 (2)C106—C101—P1—C12172.59 (15)
S1—C1—C5—C4176.61 (14)C102—C101—P1—Mn1123.32 (15)
Mn1—C1—C5—C461.91 (13)C106—C101—P1—Mn154.91 (15)
C2—C1—C5—Mn162.05 (12)C112—C111—P1—C101115.98 (15)
S1—C1—C5—Mn1121.48 (15)C116—C111—P1—C10164.01 (16)
C106—C101—C102—C1031.1 (3)C112—C111—P1—C121138.27 (15)
P1—C101—C102—C103179.34 (15)C116—C111—P1—C12141.74 (16)
C101—C102—C103—C1040.2 (3)C112—C111—P1—Mn19.44 (16)
C102—C103—C104—C1050.8 (3)C116—C111—P1—Mn1170.56 (13)
C103—C104—C105—C1060.8 (3)C126—C121—P1—C1014.02 (18)
C104—C105—C106—C1010.2 (3)C122—C121—P1—C101178.35 (15)
C102—C101—C106—C1051.1 (3)C126—C121—P1—C111102.60 (17)
P1—C101—C106—C105179.46 (15)C122—C121—P1—C11175.03 (16)
C116—C111—C112—C1131.1 (3)C126—C121—P1—Mn1128.59 (15)
P1—C111—C112—C113178.93 (15)C122—C121—P1—Mn153.78 (16)
C111—C112—C113—C1140.4 (3)C5—C1—S1—C883.89 (19)
C112—C113—C114—C1150.3 (3)C2—C1—S1—C891.92 (19)
C113—C114—C115—C1160.1 (3)Mn1—C1—S1—C8175.31 (14)
Dicarbonyl[η5-2-bromo-1,3-bis(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese (compd_3) top
Crystal data top
[Mn(C7H8BrS2)(C18H15P)(CO)2]Dx = 1.557 Mg m3
Mr = 609.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9309 reflections
a = 16.5563 (7) Åθ = 2.5–26.4°
b = 16.2392 (7) ŵ = 2.29 mm1
c = 19.3372 (9) ÅT = 108 K
V = 5199.0 (4) Å3Block, yellow
Z = 80.06 × 0.03 × 0.03 mm
F(000) = 2464
Data collection top
Bruker D8 VENTURE
diffractometer
5317 independent reflections
Radiation source: rotating anode generator, Bruker TXS4408 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.070
mix of ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS2016; Krause et al., 2015)
h = 2020
Tmin = 0.691, Tmax = 0.745k = 2020
71764 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0267P)2 + 11.5166P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5317 reflectionsΔρmax = 1.75 e Å3
309 parametersΔρmin = 0.83 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18681 (18)0.52167 (17)0.51466 (15)0.0205 (6)
C20.18365 (18)0.45230 (17)0.55881 (15)0.0214 (6)
C30.26448 (18)0.42375 (17)0.56747 (16)0.0220 (6)
H30.2810540.3788750.5956140.026*
C40.31593 (18)0.47427 (18)0.52658 (16)0.0233 (6)
H40.3727860.4682000.5223090.028*
C50.26854 (18)0.53508 (18)0.49330 (15)0.0221 (6)
C60.24074 (19)0.65699 (19)0.59603 (17)0.0283 (7)
C70.19870 (18)0.54607 (19)0.67840 (17)0.0263 (7)
C210.1262 (2)0.3449 (2)0.65856 (18)0.0349 (8)
H21A0.1638800.3036030.6404270.052*
H21B0.0796240.3171120.6793670.052*
H21C0.1535290.3782980.6936780.052*
C510.2917 (3)0.5539 (3)0.35646 (19)0.0491 (10)
H51A0.3288740.5069830.3574070.074*
H51B0.3049770.5896330.3172450.074*
H51C0.2361260.5338550.3515940.074*
C1010.45914 (17)0.61256 (17)0.62689 (15)0.0191 (6)
C1020.53428 (19)0.6115 (2)0.65933 (17)0.0278 (7)
H1020.5408880.5817840.7012730.033*
C1030.59923 (19)0.6530 (2)0.63131 (18)0.0302 (7)
H1030.6501980.6510750.6538080.036*
C1040.59068 (19)0.6975 (2)0.57066 (18)0.0301 (7)
H1040.6355980.7256450.5512880.036*
C1050.5164 (2)0.7005 (2)0.53868 (18)0.0327 (8)
H1050.5097510.7319830.4976720.039*
C1060.45109 (19)0.65771 (19)0.56604 (17)0.0279 (7)
H1060.4004340.6592870.5430040.033*
C2010.41323 (17)0.45329 (17)0.67923 (15)0.0202 (6)
C2020.3722 (2)0.4024 (2)0.72517 (18)0.0306 (7)
H2020.3268450.4233650.7496170.037*
C2030.3963 (2)0.3217 (2)0.7359 (2)0.0364 (8)
H2030.3680810.2881750.7680850.044*
C2040.4610 (2)0.29003 (19)0.69994 (19)0.0340 (8)
H2040.4778560.2348270.7074830.041*
C2050.5012 (2)0.3388 (2)0.65304 (18)0.0322 (8)
H2050.5451360.3167850.6274510.039*
C2060.47782 (19)0.42054 (19)0.64277 (17)0.0261 (7)
H2060.5063330.4538850.6106190.031*
C3010.36830 (18)0.60023 (17)0.75101 (16)0.0214 (6)
C3020.4175 (2)0.5719 (2)0.80497 (17)0.0297 (7)
H3020.4543220.5281960.7965580.036*
C3030.4133 (2)0.6066 (2)0.87054 (17)0.0344 (8)
H3030.4472480.5867140.9064860.041*
C3040.3596 (2)0.6702 (2)0.88341 (17)0.0343 (8)
H3040.3557350.6932430.9284510.041*
C3050.3115 (2)0.7001 (2)0.83062 (17)0.0294 (7)
H3050.2754610.7444250.8392500.035*
C3060.31580 (18)0.66550 (18)0.76477 (16)0.0237 (6)
H3060.2826010.6865710.7288240.028*
Br10.09568 (2)0.57867 (2)0.48202 (2)0.03033 (10)
O10.22383 (18)0.72561 (14)0.58849 (15)0.0493 (7)
O20.15558 (15)0.54373 (17)0.72554 (13)0.0432 (6)
P10.37290 (4)0.55680 (4)0.66341 (4)0.01715 (15)
S20.09263 (5)0.41001 (5)0.58932 (5)0.0323 (2)
S50.30077 (6)0.61057 (6)0.43473 (5)0.0351 (2)
Mn10.25793 (2)0.54970 (2)0.60251 (2)0.01677 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (15)0.0142 (13)0.0242 (15)0.0013 (11)0.0058 (12)0.0001 (11)
C20.0224 (14)0.0165 (14)0.0254 (15)0.0038 (12)0.0050 (12)0.0026 (12)
C30.0273 (16)0.0110 (13)0.0275 (15)0.0011 (11)0.0043 (13)0.0027 (12)
C40.0223 (15)0.0195 (14)0.0281 (16)0.0015 (12)0.0031 (13)0.0047 (12)
C50.0242 (15)0.0196 (14)0.0225 (15)0.0010 (12)0.0023 (12)0.0008 (12)
C60.0288 (17)0.0203 (16)0.0359 (18)0.0005 (13)0.0114 (14)0.0017 (14)
C70.0184 (15)0.0234 (15)0.0372 (18)0.0026 (12)0.0023 (13)0.0080 (14)
C210.0350 (18)0.0314 (18)0.0383 (19)0.0051 (15)0.0057 (16)0.0078 (15)
C510.061 (3)0.062 (3)0.0245 (18)0.001 (2)0.0047 (17)0.0011 (18)
C1010.0173 (14)0.0140 (13)0.0259 (15)0.0016 (11)0.0002 (12)0.0006 (11)
C1020.0230 (15)0.0274 (16)0.0329 (17)0.0036 (13)0.0051 (13)0.0047 (14)
C1030.0187 (15)0.0287 (17)0.0432 (19)0.0076 (13)0.0050 (14)0.0014 (15)
C1040.0244 (16)0.0247 (16)0.0414 (19)0.0085 (13)0.0076 (14)0.0013 (14)
C1050.0352 (18)0.0302 (17)0.0327 (18)0.0095 (14)0.0001 (15)0.0093 (14)
C1060.0247 (16)0.0256 (16)0.0333 (18)0.0044 (13)0.0044 (13)0.0070 (14)
C2010.0188 (14)0.0175 (14)0.0242 (15)0.0004 (11)0.0048 (11)0.0019 (12)
C2020.0277 (16)0.0247 (16)0.0395 (18)0.0031 (13)0.0051 (15)0.0068 (14)
C2030.040 (2)0.0230 (16)0.046 (2)0.0015 (15)0.0049 (17)0.0142 (15)
C2040.0362 (19)0.0178 (15)0.048 (2)0.0067 (14)0.0051 (16)0.0057 (15)
C2050.0308 (17)0.0265 (17)0.0392 (19)0.0101 (14)0.0020 (15)0.0008 (15)
C2060.0241 (15)0.0234 (15)0.0309 (17)0.0033 (12)0.0005 (13)0.0039 (13)
C3010.0208 (14)0.0189 (14)0.0246 (14)0.0061 (12)0.0023 (12)0.0013 (12)
C3020.0319 (18)0.0264 (16)0.0309 (17)0.0019 (14)0.0047 (14)0.0041 (14)
C3030.047 (2)0.0330 (18)0.0235 (16)0.0100 (16)0.0082 (15)0.0046 (14)
C3040.042 (2)0.0366 (19)0.0242 (16)0.0190 (16)0.0037 (15)0.0051 (14)
C3050.0259 (16)0.0269 (16)0.0353 (18)0.0111 (13)0.0053 (14)0.0110 (14)
C3060.0195 (14)0.0204 (14)0.0313 (17)0.0056 (12)0.0013 (13)0.0036 (13)
Br10.02633 (17)0.02767 (17)0.03698 (19)0.00277 (13)0.01067 (14)0.00469 (14)
O10.0623 (18)0.0153 (12)0.0702 (19)0.0069 (11)0.0254 (15)0.0009 (12)
O20.0327 (13)0.0607 (18)0.0361 (14)0.0077 (12)0.0128 (11)0.0122 (13)
P10.0152 (3)0.0141 (3)0.0221 (4)0.0002 (3)0.0019 (3)0.0016 (3)
S20.0250 (4)0.0310 (4)0.0408 (5)0.0123 (3)0.0080 (3)0.0094 (4)
S50.0379 (5)0.0353 (5)0.0322 (4)0.0092 (4)0.0010 (4)0.0103 (4)
Mn10.0155 (2)0.0113 (2)0.0235 (2)0.00044 (16)0.00246 (17)0.00037 (17)
Geometric parameters (Å, º) top
C1—C21.414 (4)C103—C1041.385 (5)
C1—C51.431 (4)C103—H1030.9500
C1—Br11.879 (3)C104—C1051.378 (5)
C1—Mn12.117 (3)C104—H1040.9500
C2—C31.426 (4)C105—C1061.390 (4)
C2—S21.758 (3)C105—H1050.9500
C2—Mn12.174 (3)C106—H1060.9500
C3—C41.423 (4)C201—C2061.387 (4)
C3—Mn12.157 (3)C201—C2021.390 (4)
C3—H30.9500C201—P11.834 (3)
C4—C51.416 (4)C202—C2031.386 (4)
C4—Mn12.140 (3)C202—H2020.9500
C4—H40.9500C203—C2041.377 (5)
C5—S51.752 (3)C203—H2030.9500
C5—Mn12.132 (3)C204—C2051.376 (5)
C6—O11.158 (4)C204—H2040.9500
C6—Mn11.770 (3)C205—C2061.396 (4)
C7—O21.159 (4)C205—H2050.9500
C7—Mn11.766 (3)C206—H2060.9500
C21—S21.795 (3)C301—C3061.396 (4)
C21—H21A0.9800C301—C3021.401 (4)
C21—H21B0.9800C301—P11.836 (3)
C21—H21C0.9800C302—C3031.389 (5)
C51—S51.778 (4)C302—H3020.9500
C51—H51A0.9800C303—C3041.387 (5)
C51—H51B0.9800C303—H3030.9500
C51—H51C0.9800C304—C3051.382 (5)
C101—C1061.393 (4)C304—H3040.9500
C101—C1021.393 (4)C305—C3061.393 (4)
C101—P11.832 (3)C305—H3050.9500
C102—C1031.380 (4)C306—H3060.9500
C102—H1020.9500P1—Mn12.2413 (8)
C2—C1—C5109.3 (3)C201—C202—H202119.4
C2—C1—Br1124.4 (2)C204—C203—C202120.1 (3)
C5—C1—Br1126.0 (2)C204—C203—H203119.9
C2—C1—Mn172.98 (16)C202—C203—H203119.9
C5—C1—Mn170.91 (17)C205—C204—C203119.6 (3)
Br1—C1—Mn1127.61 (15)C205—C204—H204120.2
C1—C2—C3107.2 (3)C203—C204—H204120.2
C1—C2—S2123.1 (2)C204—C205—C206120.5 (3)
C3—C2—S2129.6 (2)C204—C205—H205119.8
C1—C2—Mn168.56 (16)C206—C205—H205119.8
C3—C2—Mn170.13 (16)C201—C206—C205120.4 (3)
S2—C2—Mn1129.68 (16)C201—C206—H206119.8
C4—C3—C2108.0 (3)C205—C206—H206119.8
C4—C3—Mn170.00 (16)C306—C301—C302118.0 (3)
C2—C3—Mn171.43 (16)C306—C301—P1119.5 (2)
C4—C3—H3126.0C302—C301—P1122.5 (2)
C2—C3—H3126.0C303—C302—C301121.2 (3)
Mn1—C3—H3124.2C303—C302—H302119.4
C5—C4—C3108.8 (3)C301—C302—H302119.4
C5—C4—Mn170.36 (17)C304—C303—C302119.8 (3)
C3—C4—Mn171.33 (17)C304—C303—H303120.1
C5—C4—H4125.6C302—C303—H303120.1
C3—C4—H4125.6C305—C304—C303119.9 (3)
Mn1—C4—H4124.3C305—C304—H304120.0
C4—C5—C1106.7 (3)C303—C304—H304120.0
C4—C5—S5127.8 (2)C304—C305—C306120.3 (3)
C1—C5—S5125.5 (2)C304—C305—H305119.9
C4—C5—Mn170.92 (17)C306—C305—H305119.9
C1—C5—Mn169.72 (17)C305—C306—C301120.8 (3)
S5—C5—Mn1125.97 (16)C305—C306—H306119.6
O1—C6—Mn1174.2 (3)C301—C306—H306119.6
O2—C7—Mn1175.7 (3)C101—P1—C201103.50 (13)
S2—C21—H21A109.5C101—P1—C301101.43 (13)
S2—C21—H21B109.5C201—P1—C301102.31 (13)
H21A—C21—H21B109.5C101—P1—Mn1119.00 (10)
S2—C21—H21C109.5C201—P1—Mn1110.46 (9)
H21A—C21—H21C109.5C301—P1—Mn1117.98 (10)
H21B—C21—H21C109.5C2—S2—C21102.41 (15)
S5—C51—H51A109.5C5—S5—C5199.34 (18)
S5—C51—H51B109.5C7—Mn1—C690.14 (15)
H51A—C51—H51B109.5C7—Mn1—C1110.54 (13)
S5—C51—H51C109.5C6—Mn1—C193.75 (13)
H51A—C51—H51C109.5C7—Mn1—C5149.88 (13)
H51B—C51—H51C109.5C6—Mn1—C593.02 (14)
C106—C101—C102118.2 (3)C1—Mn1—C539.37 (11)
C106—C101—P1120.7 (2)C7—Mn1—C4143.16 (13)
C102—C101—P1121.1 (2)C6—Mn1—C4125.95 (14)
C103—C102—C101120.8 (3)C1—Mn1—C464.90 (11)
C103—C102—H102119.6C5—Mn1—C438.71 (11)
C101—C102—H102119.6C7—Mn1—C3104.91 (13)
C102—C103—C104120.5 (3)C6—Mn1—C3156.80 (13)
C102—C103—H103119.7C1—Mn1—C364.66 (11)
C104—C103—H103119.7C5—Mn1—C365.12 (11)
C105—C104—C103119.3 (3)C4—Mn1—C338.67 (11)
C105—C104—H104120.3C7—Mn1—C289.12 (13)
C103—C104—H104120.3C6—Mn1—C2126.70 (13)
C104—C105—C106120.4 (3)C1—Mn1—C238.46 (11)
C104—C105—H105119.8C5—Mn1—C265.21 (11)
C106—C105—H105119.8C4—Mn1—C264.58 (11)
C105—C106—C101120.7 (3)C3—Mn1—C238.44 (11)
C105—C106—H106119.7C7—Mn1—P192.11 (10)
C101—C106—H106119.7C6—Mn1—P197.07 (10)
C206—C201—C202118.3 (3)C1—Mn1—P1154.86 (9)
C206—C201—P1123.2 (2)C5—Mn1—P1117.14 (8)
C202—C201—P1118.2 (2)C4—Mn1—P190.51 (8)
C203—C202—C201121.1 (3)C3—Mn1—P199.85 (8)
C203—C202—H202119.4C2—Mn1—P1136.22 (8)
C5—C1—C2—C32.2 (3)C201—C202—C203—C2041.1 (6)
Br1—C1—C2—C3175.9 (2)C202—C203—C204—C2050.5 (6)
Mn1—C1—C2—C359.8 (2)C203—C204—C205—C2061.3 (5)
C5—C1—C2—S2173.7 (2)C202—C201—C206—C2050.9 (5)
Br1—C1—C2—S20.1 (4)P1—C201—C206—C205174.4 (2)
Mn1—C1—C2—S2124.3 (2)C204—C205—C206—C2010.7 (5)
C5—C1—C2—Mn162.0 (2)C306—C301—C302—C3031.1 (5)
Br1—C1—C2—Mn1124.3 (2)P1—C301—C302—C303179.3 (2)
C1—C2—C3—C42.0 (3)C301—C302—C303—C3040.2 (5)
S2—C2—C3—C4173.6 (2)C302—C303—C304—C3051.4 (5)
Mn1—C2—C3—C460.8 (2)C303—C304—C305—C3061.2 (5)
C1—C2—C3—Mn158.8 (2)C304—C305—C306—C3010.1 (5)
S2—C2—C3—Mn1125.6 (3)C302—C301—C306—C3051.3 (4)
C2—C3—C4—C51.0 (3)P1—C301—C306—C305179.5 (2)
Mn1—C3—C4—C560.7 (2)C106—C101—P1—C201130.1 (3)
C2—C3—C4—Mn161.7 (2)C102—C101—P1—C20150.3 (3)
C3—C4—C5—C10.4 (3)C106—C101—P1—C301124.1 (3)
Mn1—C4—C5—C160.9 (2)C102—C101—P1—C30155.5 (3)
C3—C4—C5—S5177.5 (2)C106—C101—P1—Mn17.2 (3)
Mn1—C4—C5—S5121.2 (3)C102—C101—P1—Mn1173.3 (2)
C3—C4—C5—Mn161.3 (2)C206—C201—P1—C10125.4 (3)
C2—C1—C5—C41.6 (3)C202—C201—P1—C101161.0 (3)
Br1—C1—C5—C4175.2 (2)C206—C201—P1—C301130.5 (3)
Mn1—C1—C5—C461.7 (2)C202—C201—P1—C30155.9 (3)
C2—C1—C5—S5176.3 (2)C206—C201—P1—Mn1103.0 (3)
Br1—C1—C5—S52.8 (4)C202—C201—P1—Mn170.5 (3)
Mn1—C1—C5—S5120.4 (2)C306—C301—P1—C10195.8 (2)
C2—C1—C5—Mn163.3 (2)C302—C301—P1—C10182.4 (3)
Br1—C1—C5—Mn1123.1 (2)C306—C301—P1—C201157.5 (2)
C106—C101—C102—C1031.0 (5)C302—C301—P1—C20124.4 (3)
P1—C101—C102—C103179.5 (3)C306—C301—P1—Mn136.1 (3)
C101—C102—C103—C1040.8 (5)C302—C301—P1—Mn1145.8 (2)
C102—C103—C104—C1050.5 (5)C1—C2—S2—C21165.1 (3)
C103—C104—C105—C1061.5 (5)C3—C2—S2—C2119.9 (3)
C104—C105—C106—C1011.3 (5)Mn1—C2—S2—C2176.6 (2)
C102—C101—C106—C1050.1 (5)C4—C5—S5—C5188.0 (3)
P1—C101—C106—C105179.5 (3)C1—C5—S5—C5189.5 (3)
C206—C201—C202—C2031.8 (5)Mn1—C5—S5—C51179.0 (2)
P1—C201—C202—C203175.6 (3)
Dicarbonyl[η5-2-bromo-1,3,4-tris(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese (compd_4) top
Crystal data top
[Mn(C8H10BrS)(C18H15P)(CO)2]F(000) = 1328
Mr = 655.48Dx = 1.571 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7717 (4) ÅCell parameters from 9839 reflections
b = 13.2135 (6) Åθ = 2.8–28.3°
c = 23.9428 (12) ŵ = 2.23 mm1
β = 92.884 (2)°T = 108 K
V = 2771.6 (2) Å3Block, yellow
Z = 40.07 × 0.03 × 0.02 mm
Data collection top
Bruker D8 VENTURE
diffractometer
6886 independent reflections
Radiation source: rotating anode generator, Bruker TXS5787 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.047
mix of ω and phi scansθmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS2016; Krause et al., 2015)
h = 1011
Tmin = 0.676, Tmax = 0.746k = 1717
51088 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0155P)2 + 3.2607P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
6886 reflectionsΔρmax = 0.44 e Å3
359 parametersΔρmin = 0.44 e Å3
13 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2586 (2)0.12152 (16)0.41353 (10)0.0226 (4)
C20.2713 (3)0.14498 (17)0.47206 (9)0.0242 (5)
C30.4047 (3)0.20537 (17)0.48106 (9)0.0235 (5)
C40.4668 (2)0.22478 (16)0.42827 (9)0.0212 (4)
H40.5515310.2672370.4218460.025*
C50.3794 (2)0.16929 (16)0.38668 (9)0.0214 (4)
C60.0321 (3)0.27900 (17)0.42725 (9)0.0237 (5)
C70.2495 (2)0.38743 (17)0.47259 (9)0.0220 (4)
C310.6246 (3)0.3260 (2)0.52988 (12)0.0426 (7)
H31A0.7021480.2907050.5091540.064*
H31B0.6721210.3549090.5642010.064*
H31C0.5793180.3803500.5066570.064*
C510.6220 (3)0.1674 (2)0.31777 (12)0.0419 (7)
H51A0.6494960.2357490.3305510.063*
H51B0.6583740.1566840.2801870.063*
H51C0.6693270.1175340.3435130.063*
C1010.4207 (2)0.41426 (15)0.32760 (9)0.0175 (4)
C1020.5242 (2)0.45669 (17)0.36723 (10)0.0234 (5)
H1020.4929760.4694380.4039990.028*
C1030.6716 (3)0.48044 (19)0.35372 (11)0.0295 (5)
H1030.7403730.5097540.3810400.035*
C1040.7186 (3)0.46152 (19)0.30049 (11)0.0304 (5)
H1040.8204020.4764760.2914290.036*
C1050.6177 (3)0.42092 (18)0.26058 (10)0.0288 (5)
H1050.6497590.4087540.2238650.035*
C1060.4688 (2)0.39763 (17)0.27382 (10)0.0236 (5)
H1060.3996690.3702270.2459780.028*
C2010.1579 (2)0.51522 (15)0.35974 (8)0.0170 (4)
C2020.0442 (2)0.53725 (16)0.39684 (9)0.0207 (4)
H2020.0047870.4848050.4191030.025*
C2030.0114 (3)0.63514 (18)0.40142 (10)0.0278 (5)
H2030.0888490.6490880.4266880.033*
C2040.0450 (3)0.71244 (19)0.36946 (11)0.0339 (6)
H2040.0062260.7792350.3725600.041*
C2050.1585 (3)0.69178 (18)0.33288 (10)0.0301 (5)
H2050.1984470.7447300.3111080.036*
C2060.2137 (2)0.59446 (17)0.32796 (9)0.0224 (4)
H2060.2909890.5811640.3025340.027*
C3010.1187 (2)0.34262 (16)0.28881 (8)0.0178 (4)
C3020.0966 (2)0.40326 (17)0.24147 (9)0.0223 (4)
H3020.1424080.4683540.2406650.027*
C3030.0077 (3)0.36925 (19)0.19521 (10)0.0282 (5)
H3030.0072450.4113790.1632510.034*
C3040.0585 (3)0.27432 (19)0.19585 (10)0.0284 (5)
H3040.1185610.2509910.1643250.034*
C3050.0368 (3)0.21353 (19)0.24252 (10)0.0270 (5)
H3050.0818210.1481470.2429390.032*
C3060.0503 (2)0.24749 (17)0.28889 (9)0.0218 (4)
H3060.0634330.2053780.3209300.026*
O10.09873 (19)0.27324 (14)0.42857 (8)0.0372 (4)
O20.2612 (2)0.45272 (13)0.50492 (7)0.0326 (4)
P10.23045 (6)0.38530 (4)0.35158 (2)0.01510 (11)
S30.47823 (8)0.23802 (5)0.54754 (3)0.03575 (15)
S50.41720 (7)0.15300 (5)0.31603 (3)0.02877 (13)
Mn10.23579 (4)0.28206 (2)0.42672 (2)0.01697 (8)
Br1A0.1258 (2)0.02378 (11)0.37839 (6)0.0286 (2)0.7611 (16)
S2A0.1567 (3)0.0935 (3)0.5239 (2)0.0271 (4)0.7611 (16)
C21A0.2531 (4)0.0267 (3)0.53431 (16)0.0405 (9)0.7611 (16)
H21A0.2523790.0635350.4987810.061*0.7611 (16)
H21B0.2002610.0667340.5618580.061*0.7611 (16)
H21C0.3587800.0148310.5479590.061*0.7611 (16)
Br1B0.1591 (6)0.1001 (5)0.5327 (3)0.0493 (18)0.2389 (16)
S2B0.131 (2)0.0365 (10)0.3913 (5)0.036 (2)0.2389 (16)
C21B0.2237 (14)0.0773 (8)0.4156 (6)0.045 (3)0.2389 (16)
H21D0.1597210.1357440.4051780.068*0.2389 (16)
H21E0.3224870.0836210.3985200.068*0.2389 (16)
H21F0.2397140.0745870.4563700.068*0.2389 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (11)0.0161 (10)0.0274 (12)0.0042 (8)0.0001 (9)0.0027 (9)
C20.0286 (11)0.0213 (11)0.0230 (11)0.0023 (9)0.0040 (9)0.0080 (9)
C30.0269 (11)0.0229 (11)0.0204 (11)0.0006 (9)0.0018 (9)0.0070 (9)
C40.0210 (10)0.0183 (10)0.0240 (11)0.0015 (8)0.0003 (8)0.0049 (9)
C50.0247 (11)0.0165 (10)0.0233 (11)0.0008 (8)0.0033 (9)0.0029 (8)
C60.0281 (11)0.0206 (11)0.0228 (11)0.0049 (9)0.0055 (9)0.0022 (9)
C70.0264 (11)0.0242 (11)0.0157 (10)0.0028 (9)0.0024 (8)0.0057 (9)
C310.0365 (15)0.0550 (18)0.0350 (15)0.0138 (13)0.0097 (12)0.0061 (13)
C510.0330 (14)0.0497 (17)0.0442 (16)0.0086 (12)0.0143 (12)0.0046 (13)
C1010.0158 (9)0.0169 (9)0.0200 (10)0.0004 (7)0.0019 (8)0.0039 (8)
C1020.0198 (10)0.0285 (12)0.0220 (11)0.0030 (9)0.0007 (8)0.0037 (9)
C1030.0171 (10)0.0354 (13)0.0355 (14)0.0056 (9)0.0048 (9)0.0073 (11)
C1040.0156 (10)0.0340 (13)0.0421 (15)0.0013 (9)0.0071 (10)0.0105 (11)
C1050.0264 (11)0.0315 (12)0.0297 (13)0.0043 (10)0.0136 (10)0.0034 (10)
C1060.0224 (10)0.0243 (11)0.0244 (11)0.0004 (9)0.0043 (9)0.0016 (9)
C2010.0151 (9)0.0191 (10)0.0166 (10)0.0025 (8)0.0026 (7)0.0005 (8)
C2020.0155 (9)0.0245 (11)0.0222 (11)0.0043 (8)0.0014 (8)0.0000 (9)
C2030.0211 (11)0.0289 (12)0.0339 (13)0.0023 (9)0.0062 (9)0.0020 (10)
C2040.0361 (13)0.0229 (12)0.0434 (15)0.0082 (10)0.0079 (11)0.0039 (11)
C2050.0362 (13)0.0231 (11)0.0314 (13)0.0006 (10)0.0060 (10)0.0092 (10)
C2060.0220 (10)0.0257 (11)0.0196 (11)0.0009 (9)0.0030 (8)0.0038 (9)
C3010.0164 (9)0.0209 (10)0.0160 (10)0.0001 (8)0.0009 (8)0.0019 (8)
C3020.0241 (11)0.0245 (11)0.0180 (10)0.0017 (9)0.0009 (8)0.0016 (9)
C3030.0301 (12)0.0377 (13)0.0165 (11)0.0054 (10)0.0024 (9)0.0023 (10)
C3040.0222 (11)0.0431 (14)0.0196 (11)0.0002 (10)0.0007 (9)0.0124 (10)
C3050.0241 (11)0.0305 (12)0.0269 (12)0.0084 (9)0.0042 (9)0.0097 (10)
C3060.0204 (10)0.0252 (11)0.0200 (11)0.0033 (8)0.0025 (8)0.0016 (9)
O10.0234 (9)0.0379 (10)0.0510 (12)0.0059 (7)0.0099 (8)0.0056 (9)
O20.0493 (11)0.0271 (9)0.0212 (8)0.0062 (8)0.0013 (8)0.0034 (7)
P10.0148 (2)0.0172 (2)0.0133 (2)0.00280 (19)0.00064 (18)0.00045 (19)
S30.0447 (4)0.0419 (4)0.0197 (3)0.0054 (3)0.0077 (3)0.0082 (3)
S50.0346 (3)0.0255 (3)0.0270 (3)0.0041 (2)0.0088 (2)0.0073 (2)
Mn10.01927 (15)0.01714 (15)0.01465 (15)0.00385 (12)0.00220 (12)0.00208 (12)
Br1A0.0344 (3)0.0202 (4)0.0311 (5)0.0119 (3)0.0011 (3)0.0032 (3)
S2A0.0272 (9)0.0231 (8)0.0317 (11)0.0041 (6)0.0075 (6)0.0096 (7)
C21A0.049 (2)0.0285 (17)0.045 (2)0.0000 (15)0.0081 (17)0.0193 (16)
Br1B0.069 (2)0.0315 (15)0.050 (3)0.0072 (11)0.0247 (15)0.0108 (14)
S2B0.045 (3)0.022 (3)0.041 (5)0.015 (2)0.002 (4)0.009 (3)
C21B0.039 (6)0.026 (6)0.071 (9)0.003 (5)0.008 (6)0.001 (6)
Geometric parameters (Å, º) top
C1—C51.416 (3)C104—H1040.9500
C1—C21.434 (3)C105—C1061.394 (3)
C1—S2B1.656 (14)C105—H1050.9500
C1—Br1A1.906 (3)C106—H1060.9500
C1—Mn12.155 (2)C201—C2061.397 (3)
C2—C31.424 (3)C201—C2021.399 (3)
C2—S2A1.771 (5)C201—P11.845 (2)
C2—Br1B1.890 (7)C202—C2031.389 (3)
C2—Mn12.127 (2)C202—H2020.9500
C3—C41.425 (3)C203—C2041.383 (3)
C3—S31.742 (2)C203—H2030.9500
C3—Mn12.173 (2)C204—C2051.386 (3)
C4—C51.428 (3)C204—H2040.9500
C4—Mn12.162 (2)C205—C2061.381 (3)
C4—H40.9500C205—H2050.9500
C5—S51.753 (2)C206—H2060.9500
C5—Mn12.202 (2)C301—C3061.393 (3)
C6—O11.152 (3)C301—C3021.394 (3)
C6—Mn11.788 (2)C301—P11.841 (2)
C7—O21.160 (3)C302—C3031.396 (3)
C7—Mn11.774 (2)C302—H3020.9500
C31—S31.798 (3)C303—C3041.383 (3)
C31—H31A0.9800C303—H3030.9500
C31—H31B0.9800C304—C3051.382 (3)
C31—H31C0.9800C304—H3040.9500
C51—S51.805 (3)C305—C3061.390 (3)
C51—H51A0.9800C305—H3050.9500
C51—H51B0.9800C306—H3060.9500
C51—H51C0.9800P1—Mn12.2563 (6)
C101—C1061.392 (3)S2A—C21A1.811 (5)
C101—C1021.397 (3)C21A—H21A0.9800
C101—P11.833 (2)C21A—H21B0.9800
C102—C1031.384 (3)C21A—H21C0.9800
C102—H1020.9500S2B—C21B1.793 (13)
C103—C1041.382 (4)C21B—H21D0.9800
C103—H1030.9500C21B—H21E0.9800
C104—C1051.378 (4)C21B—H21F0.9800
C5—C1—C2108.93 (19)C203—C204—C205119.5 (2)
C5—C1—S2B131.8 (5)C203—C204—H204120.2
C2—C1—S2B118.6 (5)C205—C204—H204120.2
C5—C1—Br1A123.81 (18)C206—C205—C204120.2 (2)
C2—C1—Br1A126.40 (17)C206—C205—H205119.9
C5—C1—Mn172.83 (12)C204—C205—H205119.9
C2—C1—Mn169.35 (12)C205—C206—C201121.1 (2)
S2B—C1—Mn1130.4 (5)C205—C206—H206119.4
Br1A—C1—Mn1132.24 (12)C201—C206—H206119.4
C3—C2—C1106.96 (19)C306—C301—C302118.5 (2)
C3—C2—S2A126.9 (2)C306—C301—P1119.14 (16)
C1—C2—S2A125.6 (2)C302—C301—P1122.30 (16)
C3—C2—Br1B121.0 (3)C301—C302—C303120.6 (2)
C1—C2—Br1B131.7 (3)C301—C302—H302119.7
C3—C2—Mn172.42 (12)C303—C302—H302119.7
C1—C2—Mn171.53 (12)C304—C303—C302120.1 (2)
S2A—C2—Mn1127.65 (17)C304—C303—H303120.0
Br1B—C2—Mn1126.2 (2)C302—C303—H303120.0
C2—C3—C4108.3 (2)C305—C304—C303119.7 (2)
C2—C3—S3122.75 (17)C305—C304—H304120.1
C4—C3—S3128.74 (17)C303—C304—H304120.1
C2—C3—Mn168.91 (12)C304—C305—C306120.4 (2)
C4—C3—Mn170.39 (12)C304—C305—H305119.8
S3—C3—Mn1129.93 (13)C306—C305—H305119.8
C3—C4—C5108.09 (19)C305—C306—C301120.6 (2)
C3—C4—Mn171.24 (12)C305—C306—H306119.7
C5—C4—Mn172.43 (12)C301—C306—H306119.7
C3—C4—H4126.0C101—P1—C301105.32 (9)
C5—C4—H4126.0C101—P1—C20199.41 (9)
Mn1—C4—H4122.1C301—P1—C201101.48 (9)
C1—C5—C4107.46 (19)C101—P1—Mn1113.16 (7)
C1—C5—S5124.44 (17)C301—P1—Mn1117.03 (7)
C4—C5—S5127.95 (16)C201—P1—Mn1118.15 (7)
C1—C5—Mn169.27 (12)C3—S3—C31100.44 (12)
C4—C5—Mn169.37 (12)C5—S5—C51101.60 (12)
S5—C5—Mn1130.03 (12)C7—Mn1—C692.86 (10)
O1—C6—Mn1177.3 (2)C7—Mn1—C2110.42 (9)
O2—C7—Mn1176.22 (19)C6—Mn1—C295.61 (9)
S3—C31—H31A109.5C7—Mn1—C1149.24 (9)
S3—C31—H31B109.5C6—Mn1—C194.53 (9)
H31A—C31—H31B109.5C2—Mn1—C139.13 (9)
S3—C31—H31C109.5C7—Mn1—C4103.30 (9)
H31A—C31—H31C109.5C6—Mn1—C4158.16 (9)
H31B—C31—H31C109.5C2—Mn1—C465.17 (8)
S5—C51—H51A109.5C1—Mn1—C464.16 (8)
S5—C51—H51B109.5C7—Mn1—C388.42 (9)
H51A—C51—H51B109.5C6—Mn1—C3129.55 (9)
S5—C51—H51C109.5C2—Mn1—C338.66 (8)
H51A—C51—H51C109.5C1—Mn1—C364.10 (9)
H51B—C51—H51C109.5C4—Mn1—C338.37 (8)
C106—C101—C102118.35 (19)C7—Mn1—C5141.11 (9)
C106—C101—P1125.43 (16)C6—Mn1—C5125.58 (9)
C102—C101—P1116.22 (16)C2—Mn1—C564.76 (8)
C103—C102—C101121.0 (2)C1—Mn1—C537.90 (8)
C103—C102—H102119.5C4—Mn1—C538.19 (8)
C101—C102—H102119.5C3—Mn1—C563.72 (8)
C104—C103—C102120.0 (2)C7—Mn1—P190.98 (7)
C104—C103—H103120.0C6—Mn1—P192.22 (7)
C102—C103—H103120.0C2—Mn1—P1156.73 (7)
C105—C104—C103119.9 (2)C1—Mn1—P1118.47 (6)
C105—C104—H104120.1C4—Mn1—P1101.96 (6)
C103—C104—H104120.1C3—Mn1—P1138.21 (6)
C104—C105—C106120.3 (2)C5—Mn1—P192.95 (6)
C104—C105—H105119.8C2—S2A—C21A99.0 (2)
C106—C105—H105119.8S2A—C21A—H21A109.5
C101—C106—C105120.4 (2)S2A—C21A—H21B109.5
C101—C106—H106119.8H21A—C21A—H21B109.5
C105—C106—H106119.8S2A—C21A—H21C109.5
C206—C201—C202118.06 (19)H21A—C21A—H21C109.5
C206—C201—P1120.49 (16)H21B—C21A—H21C109.5
C202—C201—P1121.44 (16)C1—S2B—C21B100.1 (9)
C203—C202—C201120.6 (2)S2B—C21B—H21D109.5
C203—C202—H202119.7S2B—C21B—H21E109.5
C201—C202—H202119.7H21D—C21B—H21E109.5
C204—C203—C202120.5 (2)S2B—C21B—H21F109.5
C204—C203—H203119.8H21D—C21B—H21F109.5
C202—C203—H203119.8H21E—C21B—H21F109.5
C5—C1—C2—C31.8 (2)C102—C101—C106—C1051.4 (3)
S2B—C1—C2—C3170.1 (6)P1—C101—C106—C105178.77 (17)
Br1A—C1—C2—C3167.84 (17)C104—C105—C106—C1010.6 (4)
Mn1—C1—C2—C364.23 (15)C206—C201—C202—C2030.4 (3)
C5—C1—C2—S2A174.0 (2)P1—C201—C202—C203178.47 (17)
Br1A—C1—C2—S2A4.4 (3)C201—C202—C203—C2040.2 (4)
Mn1—C1—C2—S2A123.6 (2)C202—C203—C204—C2050.3 (4)
C5—C1—C2—Br1B175.1 (3)C203—C204—C205—C2060.7 (4)
S2B—C1—C2—Br1B3.2 (7)C204—C205—C206—C2010.5 (4)
Mn1—C1—C2—Br1B122.5 (3)C202—C201—C206—C2050.1 (3)
C5—C1—C2—Mn162.43 (15)P1—C201—C206—C205178.81 (18)
S2B—C1—C2—Mn1125.7 (6)C306—C301—C302—C3030.1 (3)
Br1A—C1—C2—Mn1127.93 (18)P1—C301—C302—C303178.32 (17)
C1—C2—C3—C44.1 (2)C301—C302—C303—C3040.5 (3)
S2A—C2—C3—C4176.2 (2)C302—C303—C304—C3050.3 (3)
Br1B—C2—C3—C4178.3 (3)C303—C304—C305—C3060.3 (3)
Mn1—C2—C3—C459.54 (15)C304—C305—C306—C3010.8 (3)
C1—C2—C3—S3171.62 (17)C302—C301—C306—C3050.6 (3)
S2A—C2—C3—S30.5 (3)P1—C301—C306—C305178.98 (16)
Br1B—C2—C3—S32.5 (4)C106—C101—P1—C3015.0 (2)
Mn1—C2—C3—S3124.75 (17)C102—C101—P1—C301174.82 (16)
C1—C2—C3—Mn163.63 (15)C106—C101—P1—C201109.79 (19)
S2A—C2—C3—Mn1124.3 (2)C102—C101—P1—C20170.06 (18)
Br1B—C2—C3—Mn1122.2 (3)C106—C101—P1—Mn1123.98 (18)
C2—C3—C4—C54.9 (2)C102—C101—P1—Mn156.16 (18)
S3—C3—C4—C5170.51 (17)C306—C301—P1—C101123.01 (17)
Mn1—C3—C4—C563.49 (15)C302—C301—P1—C10158.62 (19)
C2—C3—C4—Mn158.63 (16)C306—C301—P1—C201133.77 (17)
S3—C3—C4—Mn1126.0 (2)C302—C301—P1—C20144.60 (19)
C2—C1—C5—C41.2 (2)C306—C301—P1—Mn13.68 (19)
S2B—C1—C5—C4171.6 (7)C302—C301—P1—Mn1174.69 (15)
Br1A—C1—C5—C4171.13 (16)C206—C201—P1—C10126.67 (19)
Mn1—C1—C5—C459.08 (15)C202—C201—P1—C101154.49 (17)
C2—C1—C5—S5174.69 (16)C206—C201—P1—C30181.20 (18)
S2B—C1—C5—S54.3 (7)C202—C201—P1—C30197.63 (18)
Br1A—C1—C5—S54.7 (3)C206—C201—P1—Mn1149.41 (15)
Mn1—C1—C5—S5125.05 (17)C202—C201—P1—Mn131.76 (19)
C2—C1—C5—Mn160.25 (15)C2—C3—S3—C31172.4 (2)
S2B—C1—C5—Mn1129.3 (7)C4—C3—S3—C3112.8 (2)
Br1A—C1—C5—Mn1129.79 (18)Mn1—C3—S3—C3183.51 (18)
C3—C4—C5—C13.7 (2)C1—C5—S5—C51148.7 (2)
Mn1—C4—C5—C159.02 (15)C4—C5—S5—C5126.3 (2)
C3—C4—C5—S5171.97 (17)Mn1—C5—S5—C51120.45 (16)
Mn1—C4—C5—S5125.31 (18)C3—C2—S2A—C21A90.2 (3)
C3—C4—C5—Mn162.72 (15)C1—C2—S2A—C21A80.5 (3)
C106—C101—C102—C1030.9 (3)Mn1—C2—S2A—C21A174.0 (2)
P1—C101—C102—C103179.28 (18)C5—C1—S2B—C21B95.2 (8)
C101—C102—C103—C1040.5 (4)C2—C1—S2B—C21B74.5 (9)
C102—C103—C104—C1051.3 (4)Mn1—C1—S2B—C21B160.9 (5)
C103—C104—C105—C1060.8 (4)
Dicarbonyl[η5-1,2,3,4,5-pentakis(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese (compd_11) top
Crystal data top
[Mn(C10H15S)(C18H15P)(CO)2]F(000) = 1384
Mr = 668.75Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5274 (5) ÅCell parameters from 9916 reflections
b = 13.6748 (5) Åθ = 2.8–27.1°
c = 17.9841 (7) ŵ = 0.89 mm1
β = 107.934 (1)°T = 107 K
V = 2931.2 (2) Å3Block, yellow
Z = 40.03 × 0.03 × 0.02 mm
Data collection top
Bruker D8 VENTURE
diffractometer
6471 independent reflections
Radiation source: rotating anode generator, Bruker TXS5457 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.056
mix of ω and phi scansθmax = 27.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS2016; Krause et al., 2015)
h = 1616
Tmin = 0.714, Tmax = 0.746k = 1717
46511 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.0744P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6471 reflectionsΔρmax = 0.41 e Å3
357 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83539 (16)0.29472 (14)0.76384 (11)0.0125 (4)
C20.78895 (16)0.26517 (14)0.68393 (12)0.0135 (4)
C30.87147 (16)0.28357 (14)0.64538 (11)0.0137 (4)
C40.96808 (16)0.32536 (14)0.70010 (11)0.0131 (4)
C50.94590 (16)0.33082 (14)0.77426 (11)0.0122 (4)
C60.78109 (18)0.46298 (16)0.58931 (13)0.0182 (4)
C70.91475 (17)0.52416 (15)0.71980 (12)0.0159 (4)
C110.7707 (2)0.14652 (16)0.84312 (14)0.0256 (5)
H11A0.7071740.1218710.8004060.038*
H11B0.7625670.1258910.8932900.038*
H11C0.8407740.1202320.8378600.038*
C120.7201 (2)0.07918 (17)0.64081 (16)0.0309 (6)
H12A0.7568070.0769230.5999260.046*
H12B0.6593830.0309400.6293010.046*
H12C0.7751420.0641650.6914760.046*
C130.9611 (2)0.15832 (17)0.56224 (13)0.0239 (5)
H13A1.0343580.1867430.5899650.036*
H13B0.9622950.1329370.5115500.036*
H13C0.9446940.1048790.5933740.036*
C141.0675 (2)0.42142 (17)0.60000 (13)0.0236 (5)
H14A1.0240440.3804110.5564970.035*
H14B1.1371650.4420870.5907010.035*
H14C1.0232850.4792000.6040370.035*
C151.07197 (18)0.25387 (16)0.91484 (12)0.0206 (5)
H15A1.0038130.2295470.9244460.031*
H15B1.1308520.2632730.9648240.031*
H15C1.0973290.2063100.8831430.031*
C210.68358 (17)0.52150 (14)0.80934 (11)0.0127 (4)
C220.78584 (17)0.51244 (14)0.86795 (12)0.0149 (4)
H220.8500270.4903400.8552950.018*
C230.79473 (18)0.53553 (15)0.94503 (12)0.0181 (4)
H230.8649980.5294790.9846090.022*
C240.70221 (19)0.56707 (15)0.96413 (12)0.0192 (4)
H240.7080870.5813271.0169450.023*
C250.59997 (18)0.57802 (16)0.90576 (13)0.0204 (5)
H250.5361540.6004120.9187560.024*
C260.59083 (18)0.55641 (16)0.82878 (12)0.0182 (4)
H260.5211930.5653780.7890640.022*
C310.54838 (16)0.41557 (14)0.67273 (11)0.0123 (4)
C320.50516 (17)0.40075 (14)0.59230 (12)0.0148 (4)
H320.5441900.4260620.5588290.018*
C330.40608 (17)0.34962 (15)0.56055 (12)0.0176 (4)
H330.3764880.3412910.5055650.021*
C340.35043 (18)0.31075 (16)0.60931 (13)0.0204 (5)
H340.2813740.2771890.5878080.025*
C350.39548 (19)0.32083 (17)0.68930 (13)0.0223 (5)
H350.3586770.2916370.7226750.027*
C360.49376 (17)0.37304 (15)0.72148 (12)0.0166 (4)
H360.5238170.3798170.7765840.020*
C510.62613 (16)0.60824 (14)0.66044 (11)0.0119 (4)
C520.70379 (17)0.68375 (15)0.66788 (12)0.0149 (4)
H520.7808170.6721740.6947650.018*
C530.66970 (18)0.77576 (15)0.63639 (12)0.0165 (4)
H530.7235250.8263500.6417720.020*
C540.55753 (18)0.79394 (15)0.59720 (12)0.0176 (4)
H540.5345310.8567120.5755460.021*
C550.47930 (18)0.72024 (16)0.58977 (12)0.0186 (4)
H550.4024070.7323600.5628480.022*
C560.51305 (17)0.62829 (15)0.62171 (12)0.0163 (4)
H560.4585400.5784770.6171340.020*
Mn10.82771 (2)0.42018 (2)0.68787 (2)0.01044 (8)
O10.75636 (16)0.48643 (13)0.52464 (9)0.0334 (4)
O20.97898 (13)0.58724 (11)0.74077 (10)0.0245 (4)
P10.67503 (4)0.48976 (4)0.70839 (3)0.01046 (10)
S10.77351 (4)0.27881 (4)0.83908 (3)0.01521 (11)
S20.66271 (4)0.20100 (4)0.64403 (3)0.02024 (12)
S30.85401 (4)0.25121 (4)0.54721 (3)0.01705 (11)
S41.10035 (4)0.35255 (4)0.68976 (3)0.01745 (11)
S51.04219 (4)0.36957 (4)0.86318 (3)0.01510 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (9)0.0118 (9)0.0121 (9)0.0015 (7)0.0049 (8)0.0010 (7)
C20.0127 (9)0.0124 (9)0.0147 (10)0.0004 (7)0.0032 (8)0.0001 (8)
C30.0149 (10)0.0141 (9)0.0119 (9)0.0008 (8)0.0041 (8)0.0006 (8)
C40.0132 (9)0.0124 (9)0.0139 (10)0.0034 (7)0.0044 (8)0.0004 (8)
C50.0108 (9)0.0130 (9)0.0115 (9)0.0018 (7)0.0017 (7)0.0006 (7)
C60.0188 (10)0.0194 (10)0.0186 (11)0.0074 (8)0.0088 (9)0.0013 (9)
C70.0138 (10)0.0167 (10)0.0181 (10)0.0039 (8)0.0061 (8)0.0033 (8)
C110.0357 (13)0.0184 (11)0.0272 (12)0.0004 (10)0.0162 (11)0.0036 (9)
C120.0292 (13)0.0203 (12)0.0430 (15)0.0031 (10)0.0108 (11)0.0089 (11)
C130.0310 (13)0.0217 (11)0.0210 (11)0.0055 (10)0.0108 (10)0.0035 (9)
C140.0261 (12)0.0268 (12)0.0203 (11)0.0065 (9)0.0105 (9)0.0010 (9)
C150.0220 (11)0.0231 (11)0.0141 (10)0.0050 (9)0.0018 (9)0.0046 (9)
C210.0178 (10)0.0110 (9)0.0098 (9)0.0010 (8)0.0050 (8)0.0013 (7)
C220.0159 (10)0.0145 (9)0.0144 (10)0.0007 (8)0.0047 (8)0.0002 (8)
C230.0202 (11)0.0187 (10)0.0124 (10)0.0007 (8)0.0005 (8)0.0005 (8)
C240.0309 (12)0.0175 (10)0.0099 (10)0.0007 (9)0.0075 (9)0.0017 (8)
C250.0213 (11)0.0239 (11)0.0190 (11)0.0043 (9)0.0107 (9)0.0025 (9)
C260.0172 (10)0.0216 (11)0.0153 (10)0.0030 (8)0.0042 (8)0.0005 (8)
C310.0105 (9)0.0130 (9)0.0125 (9)0.0026 (7)0.0022 (7)0.0004 (7)
C320.0160 (10)0.0158 (10)0.0141 (10)0.0014 (8)0.0067 (8)0.0002 (8)
C330.0179 (10)0.0181 (10)0.0131 (10)0.0036 (8)0.0007 (8)0.0043 (8)
C340.0138 (10)0.0209 (11)0.0251 (12)0.0034 (8)0.0037 (9)0.0070 (9)
C350.0211 (11)0.0241 (11)0.0240 (12)0.0060 (9)0.0103 (9)0.0003 (9)
C360.0166 (10)0.0201 (10)0.0129 (10)0.0027 (8)0.0046 (8)0.0005 (8)
C510.0144 (9)0.0137 (9)0.0086 (9)0.0020 (7)0.0050 (7)0.0004 (7)
C520.0156 (10)0.0169 (10)0.0124 (9)0.0009 (8)0.0045 (8)0.0010 (8)
C530.0202 (10)0.0165 (10)0.0136 (10)0.0030 (8)0.0061 (8)0.0002 (8)
C540.0238 (11)0.0152 (10)0.0150 (10)0.0049 (8)0.0079 (9)0.0038 (8)
C550.0148 (10)0.0216 (11)0.0191 (10)0.0042 (8)0.0049 (8)0.0022 (9)
C560.0133 (10)0.0194 (10)0.0167 (10)0.0001 (8)0.0052 (8)0.0009 (8)
Mn10.01027 (14)0.01196 (14)0.00930 (14)0.00097 (11)0.00335 (11)0.00041 (11)
O10.0463 (11)0.0411 (10)0.0159 (8)0.0217 (9)0.0141 (8)0.0122 (8)
O20.0202 (8)0.0175 (8)0.0339 (9)0.0040 (6)0.0057 (7)0.0003 (7)
P10.0101 (2)0.0124 (2)0.0089 (2)0.00042 (18)0.00284 (18)0.00015 (19)
S10.0178 (2)0.0160 (2)0.0142 (2)0.00022 (19)0.0084 (2)0.00203 (19)
S20.0159 (3)0.0197 (3)0.0236 (3)0.0019 (2)0.0038 (2)0.0038 (2)
S30.0190 (3)0.0211 (3)0.0107 (2)0.0018 (2)0.0041 (2)0.0033 (2)
S40.0118 (2)0.0233 (3)0.0186 (3)0.0008 (2)0.0067 (2)0.0014 (2)
S50.0138 (2)0.0182 (2)0.0109 (2)0.00023 (19)0.00027 (18)0.00120 (19)
Geometric parameters (Å, º) top
C1—C51.427 (3)C15—H15C0.9800
C1—C21.433 (3)C21—C221.391 (3)
C1—S11.768 (2)C21—C261.397 (3)
C1—Mn12.1769 (19)C21—P11.837 (2)
C2—C31.433 (3)C22—C231.392 (3)
C2—S21.757 (2)C22—H220.9500
C2—Mn12.171 (2)C23—C241.376 (3)
C3—C41.423 (3)C23—H230.9500
C3—S31.767 (2)C24—C251.392 (3)
C3—Mn12.152 (2)C24—H240.9500
C4—C51.446 (3)C25—C261.385 (3)
C4—S41.763 (2)C25—H250.9500
C4—Mn12.1410 (19)C26—H260.9500
C5—S51.762 (2)C31—C321.394 (3)
C5—Mn12.1640 (19)C31—C361.394 (3)
C6—O11.153 (3)C31—P11.825 (2)
C6—Mn11.785 (2)C32—C331.385 (3)
C7—O21.160 (3)C32—H320.9500
C7—Mn11.776 (2)C33—C341.383 (3)
C11—S11.811 (2)C33—H330.9500
C11—H11A0.9800C34—C351.381 (3)
C11—H11B0.9800C34—H340.9500
C11—H11C0.9800C35—C361.386 (3)
C12—S21.823 (2)C35—H350.9500
C12—H12A0.9800C36—H360.9500
C12—H12B0.9800C51—C521.397 (3)
C12—H12C0.9800C51—C561.400 (3)
C13—S31.806 (2)C51—P11.849 (2)
C13—H13A0.9800C52—C531.392 (3)
C13—H13B0.9800C52—H520.9500
C13—H13C0.9800C53—C541.387 (3)
C14—S41.804 (2)C53—H530.9500
C14—H14A0.9800C54—C551.383 (3)
C14—H14B0.9800C54—H540.9500
C14—H14C0.9800C55—C561.393 (3)
C15—S51.814 (2)C55—H550.9500
C15—H15A0.9800C56—H560.9500
C15—H15B0.9800Mn1—P12.2659 (6)
C5—C1—C2107.89 (17)C25—C26—H26119.9
C5—C1—S1125.34 (15)C21—C26—H26119.9
C2—C1—S1126.51 (15)C32—C31—C36118.86 (18)
C5—C1—Mn170.32 (11)C32—C31—P1117.59 (15)
C2—C1—Mn170.54 (11)C36—C31—P1123.55 (15)
S1—C1—Mn1129.22 (10)C33—C32—C31120.89 (19)
C1—C2—C3107.77 (17)C33—C32—H32119.6
C1—C2—S2125.95 (15)C31—C32—H32119.6
C3—C2—S2125.64 (15)C34—C33—C32119.67 (19)
C1—C2—Mn170.99 (11)C34—C33—H33120.2
C3—C2—Mn169.94 (11)C32—C33—H33120.2
S2—C2—Mn1131.69 (11)C35—C34—C33119.9 (2)
C4—C3—C2108.81 (17)C35—C34—H34120.1
C4—C3—S3127.49 (15)C33—C34—H34120.1
C2—C3—S3123.60 (15)C34—C35—C36120.8 (2)
C4—C3—Mn170.21 (11)C34—C35—H35119.6
C2—C3—Mn171.34 (11)C36—C35—H35119.6
S3—C3—Mn1127.26 (11)C35—C36—C31119.80 (19)
C3—C4—C5107.13 (17)C35—C36—H36120.1
C3—C4—S4129.66 (15)C31—C36—H36120.1
C5—C4—S4122.71 (15)C52—C51—C56118.11 (18)
C3—C4—Mn171.06 (11)C52—C51—P1118.83 (15)
C5—C4—Mn171.24 (11)C56—C51—P1122.89 (15)
S4—C4—Mn1129.07 (11)C53—C52—C51120.79 (19)
C1—C5—C4108.38 (17)C53—C52—H52119.6
C1—C5—S5126.06 (15)C51—C52—H52119.6
C4—C5—S5125.48 (15)C54—C53—C52120.32 (19)
C1—C5—Mn171.30 (11)C54—C53—H53119.8
C4—C5—Mn169.52 (11)C52—C53—H53119.8
S5—C5—Mn1127.42 (10)C55—C54—C53119.69 (19)
O1—C6—Mn1175.31 (19)C55—C54—H54120.2
O2—C7—Mn1174.41 (18)C53—C54—H54120.2
S1—C11—H11A109.5C54—C55—C56120.12 (19)
S1—C11—H11B109.5C54—C55—H55119.9
H11A—C11—H11B109.5C56—C55—H55119.9
S1—C11—H11C109.5C55—C56—C51120.95 (19)
H11A—C11—H11C109.5C55—C56—H56119.5
H11B—C11—H11C109.5C51—C56—H56119.5
S2—C12—H12A109.5C7—Mn1—C692.24 (10)
S2—C12—H12B109.5C7—Mn1—C492.78 (8)
H12A—C12—H12B109.5C6—Mn1—C4107.93 (8)
S2—C12—H12C109.5C7—Mn1—C3127.69 (8)
H12A—C12—H12C109.5C6—Mn1—C388.47 (9)
H12B—C12—H12C109.5C4—Mn1—C338.73 (7)
S3—C13—H13A109.5C7—Mn1—C590.21 (8)
S3—C13—H13B109.5C6—Mn1—C5147.16 (8)
H13A—C13—H13B109.5C4—Mn1—C539.24 (7)
S3—C13—H13C109.5C3—Mn1—C564.66 (7)
H13A—C13—H13C109.5C7—Mn1—C2154.30 (8)
H13B—C13—H13C109.5C6—Mn1—C2106.63 (9)
S4—C14—H14A109.5C4—Mn1—C265.19 (7)
S4—C14—H14B109.5C3—Mn1—C238.72 (7)
H14A—C14—H14B109.5C5—Mn1—C264.45 (7)
S4—C14—H14C109.5C7—Mn1—C1121.60 (8)
H14A—C14—H14C109.5C6—Mn1—C1145.00 (9)
H14B—C14—H14C109.5C4—Mn1—C165.29 (7)
S5—C15—H15A109.5C3—Mn1—C164.65 (7)
S5—C15—H15B109.5C5—Mn1—C138.38 (7)
H15A—C15—H15B109.5C2—Mn1—C138.47 (7)
S5—C15—H15C109.5C7—Mn1—P194.37 (7)
H15A—C15—H15C109.5C6—Mn1—P189.40 (7)
H15B—C15—H15C109.5C4—Mn1—P1160.97 (6)
C22—C21—C26118.92 (18)C3—Mn1—P1137.93 (6)
C22—C21—P1119.18 (15)C5—Mn1—P1123.05 (5)
C26—C21—P1121.89 (15)C2—Mn1—P1102.93 (5)
C21—C22—C23120.45 (19)C1—Mn1—P196.03 (5)
C21—C22—H22119.8C31—P1—C21104.97 (9)
C23—C22—H22119.8C31—P1—C51101.30 (9)
C24—C23—C22120.29 (19)C21—P1—C5199.44 (9)
C24—C23—H23119.9C31—P1—Mn1113.29 (6)
C22—C23—H23119.9C21—P1—Mn1117.70 (7)
C23—C24—C25119.73 (19)C51—P1—Mn1117.84 (6)
C23—C24—H24120.1C1—S1—C1199.92 (10)
C25—C24—H24120.1C2—S2—C1298.91 (10)
C26—C25—C24120.30 (19)C3—S3—C1399.72 (10)
C26—C25—H25119.9C4—S4—C14103.97 (10)
C24—C25—H25119.9C5—S5—C15100.24 (10)
C25—C26—C21120.27 (19)
C5—C1—C2—C30.1 (2)P1—C31—C32—C33176.58 (15)
S1—C1—C2—C3174.49 (14)C31—C32—C33—C341.5 (3)
Mn1—C1—C2—C360.56 (14)C32—C33—C34—C351.8 (3)
C5—C1—C2—S2171.05 (15)C33—C34—C35—C362.7 (3)
S1—C1—C2—S23.3 (3)C34—C35—C36—C310.3 (3)
Mn1—C1—C2—S2128.25 (16)C32—C31—C36—C352.9 (3)
C5—C1—C2—Mn160.70 (13)P1—C31—C36—C35177.53 (16)
S1—C1—C2—Mn1124.95 (16)C56—C51—C52—C531.1 (3)
C1—C2—C3—C40.7 (2)P1—C51—C52—C53176.48 (15)
S2—C2—C3—C4171.96 (15)C51—C52—C53—C540.2 (3)
Mn1—C2—C3—C460.50 (14)C52—C53—C54—C550.3 (3)
C1—C2—C3—S3175.89 (14)C53—C54—C55—C560.2 (3)
S2—C2—C3—S34.7 (3)C54—C55—C56—C511.1 (3)
Mn1—C2—C3—S3122.88 (15)C52—C51—C56—C551.6 (3)
C1—C2—C3—Mn161.23 (13)P1—C51—C56—C55176.74 (16)
S2—C2—C3—Mn1127.55 (16)C32—C31—P1—C21164.63 (15)
C2—C3—C4—C51.3 (2)C36—C31—P1—C2115.75 (19)
S3—C3—C4—C5175.15 (15)C32—C31—P1—C5161.53 (16)
Mn1—C3—C4—C562.51 (13)C36—C31—P1—C51118.84 (17)
C2—C3—C4—S4173.26 (15)C32—C31—P1—Mn165.66 (16)
S3—C3—C4—S43.2 (3)C36—C31—P1—Mn1113.96 (16)
Mn1—C3—C4—S4125.53 (17)C22—C21—P1—C31134.26 (16)
C2—C3—C4—Mn161.21 (14)C26—C21—P1—C3147.07 (19)
S3—C3—C4—Mn1122.34 (17)C22—C21—P1—C51121.26 (16)
C2—C1—C5—C40.9 (2)C26—C21—P1—C5157.41 (18)
S1—C1—C5—C4175.38 (14)C22—C21—P1—Mn17.20 (18)
Mn1—C1—C5—C459.89 (13)C26—C21—P1—Mn1174.13 (15)
C2—C1—C5—S5176.00 (14)C52—C51—P1—C31174.23 (15)
S1—C1—C5—S51.6 (3)C56—C51—P1—C3110.64 (19)
Mn1—C1—C5—S5123.17 (16)C52—C51—P1—C2178.29 (17)
C2—C1—C5—Mn160.84 (13)C56—C51—P1—C2196.83 (18)
S1—C1—C5—Mn1124.73 (15)C52—C51—P1—Mn150.07 (17)
C3—C4—C5—C11.4 (2)C56—C51—P1—Mn1134.80 (15)
S4—C4—C5—C1174.03 (14)C5—C1—S1—C11109.70 (18)
Mn1—C4—C5—C161.01 (13)C2—C1—S1—C1163.7 (2)
C3—C4—C5—S5175.57 (15)Mn1—C1—S1—C11157.66 (14)
S4—C4—C5—S52.9 (3)C1—C2—S2—C12101.27 (19)
Mn1—C4—C5—S5122.03 (15)C3—C2—S2—C1268.4 (2)
C3—C4—C5—Mn162.40 (13)Mn1—C2—S2—C12162.59 (15)
S4—C4—C5—Mn1124.96 (15)C4—C3—S3—C1362.7 (2)
C26—C21—C22—C231.6 (3)C2—C3—S3—C13113.22 (18)
P1—C21—C22—C23179.71 (16)Mn1—C3—S3—C13155.46 (13)
C21—C22—C23—C240.4 (3)C3—C4—S4—C1450.6 (2)
C22—C23—C24—C251.5 (3)C5—C4—S4—C14138.59 (17)
C23—C24—C25—C260.6 (3)Mn1—C4—S4—C1446.93 (16)
C24—C25—C26—C211.3 (3)C1—C5—S5—C1567.77 (19)
C22—C21—C26—C252.4 (3)C4—C5—S5—C15108.66 (18)
P1—C21—C26—C25178.90 (16)Mn1—C5—S5—C15161.08 (13)
C36—C31—C32—C333.8 (3)
Dicarbonyl[η5-1-bromo-2-(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese cyclohexane 0.75-solvate (comp_2) top
Crystal data top
[Mn(C6H6SBr)(C18H15P)(CO)2]·0.75C6H12Z = 1
Mr = 1189.73F(000) = 604
Triclinic, P1Dx = 1.545 Mg m3
a = 10.3309 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7727 (5) ÅCell parameters from 9912 reflections
c = 13.0821 (6) Åθ = 2.6–28.3°
α = 87.692 (2)°µ = 2.25 mm1
β = 82.138 (2)°T = 108 K
γ = 62.507 (2)°Block, yellow
V = 1278.93 (11) Å30.05 × 0.03 × 0.02 mm
Data collection top
Bruker D8 VENTURE
diffractometer
6351 independent reflections
Radiation source: rotating anode generator, Bruker TXS5421 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.030
mix of ω and phi scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS2016; Krause et al., 2015)
h = 1313
Tmin = 0.691, Tmax = 0.746k = 1414
21220 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0645P)2 + 9.2055P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6351 reflectionsΔρmax = 5.86 e Å3
328 parametersΔρmin = 1.71 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.54715 (7)0.16470 (6)0.71308 (5)0.01502 (15)
P10.35816 (11)0.28583 (11)0.83519 (8)0.0142 (2)
S10.82456 (14)0.06450 (15)0.51171 (11)0.0360 (3)
C10.5101 (5)0.1883 (5)0.5539 (3)0.0227 (9)
H10.4911850.2698960.5150110.027*0.045
Br10.47595 (6)0.33947 (6)0.46706 (4)0.03273 (16)0.955
C20.6519 (5)0.0759 (5)0.5634 (3)0.0259 (9)
C30.6293 (6)0.0246 (5)0.6256 (4)0.0272 (10)
H30.7045600.1115430.6442360.033*0.955
Br1A0.8104 (13)0.1748 (11)0.6135 (8)0.032 (2)0.045
C40.4770 (6)0.0253 (5)0.6557 (4)0.0259 (10)
H40.4320800.0217570.6979190.031*
C50.4023 (5)0.1587 (5)0.6114 (3)0.0245 (9)
H50.2988870.2171060.6192660.029*
C60.6095 (5)0.2937 (5)0.7088 (3)0.0210 (8)
C70.6602 (5)0.0691 (5)0.8083 (3)0.0206 (8)
C80.8528 (7)0.0069 (7)0.3874 (4)0.0406 (14)
H8A0.8430330.0933090.3923900.061*
H8B0.9516840.0277610.3538460.061*
H8C0.7793040.0605160.3464710.061*
C110.4023 (5)0.2896 (4)0.9659 (3)0.0178 (8)
C120.5177 (5)0.3198 (5)0.9780 (4)0.0232 (9)
H120.5743110.3323100.9187050.028*
C130.5502 (6)0.3318 (5)1.0754 (4)0.0296 (10)
H130.6283620.3527161.0825590.035*
C140.4681 (7)0.3131 (6)1.1624 (4)0.0351 (12)
H140.4900550.3211661.2292620.042*
C150.3556 (7)0.2829 (6)1.1515 (4)0.0392 (13)
H150.2998580.2700871.2112850.047*
C160.3214 (6)0.2705 (6)1.0537 (3)0.0291 (10)
H160.2432990.2492211.0473350.035*
C210.2484 (4)0.4735 (4)0.8155 (3)0.0173 (8)
C220.2642 (5)0.5289 (5)0.7200 (4)0.0235 (9)
H220.3340990.4698590.6657330.028*
C230.1781 (6)0.6705 (5)0.7029 (4)0.0299 (10)
H230.1895500.7075710.6371290.036*
C240.0764 (5)0.7571 (5)0.7814 (4)0.0294 (10)
H240.0171670.8533960.7692580.035*
C250.0606 (5)0.7040 (5)0.8774 (4)0.0253 (9)
H250.0089460.7638280.9314520.030*
C260.1462 (5)0.5630 (5)0.8950 (3)0.0215 (8)
H260.1353490.5269540.9612990.026*
C310.2178 (5)0.2245 (4)0.8538 (3)0.0169 (8)
C320.0758 (5)0.3063 (5)0.8310 (3)0.0216 (8)
H320.0470840.3995770.8094080.026*
C330.0257 (5)0.2530 (6)0.8394 (4)0.0270 (10)
H330.1222600.3094350.8226660.032*
C340.0153 (5)0.1173 (5)0.8722 (4)0.0266 (10)
H340.0535020.0810390.8785050.032*
C350.1565 (6)0.0348 (5)0.8958 (3)0.0249 (9)
H350.1839970.0577320.9188300.030*
C360.2584 (5)0.0870 (5)0.8858 (3)0.0200 (8)
H360.3557700.0291920.9007360.024*
O10.6538 (4)0.3752 (4)0.7021 (3)0.0331 (8)
O20.7383 (4)0.0040 (4)0.8672 (3)0.0281 (7)
C1S1.0331 (18)0.4060 (19)0.466 (2)0.115 (7)0.75
H1S11.0056590.3181860.4281260.138*0.75
H1S21.1295380.4336670.4900330.138*0.75
C2S0.9323 (15)0.3857 (16)0.5470 (15)0.091 (5)0.75
H2S10.9319560.3181710.5963110.109*0.75
H2S20.8337800.3452500.5239740.109*0.75
C3S0.958 (2)0.499 (3)0.5917 (11)0.118 (8)0.75
H3S11.0509810.5332660.6214480.142*0.75
H3S20.8779620.4810000.6495130.142*0.75
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0159 (3)0.0169 (3)0.0122 (3)0.0083 (2)0.0018 (2)0.0032 (2)
P10.0150 (5)0.0168 (5)0.0121 (4)0.0091 (4)0.0009 (3)0.0027 (3)
S10.0235 (6)0.0392 (7)0.0344 (7)0.0100 (5)0.0134 (5)0.0014 (5)
C10.030 (2)0.028 (2)0.0128 (18)0.0164 (19)0.0009 (16)0.0005 (16)
Br10.0388 (3)0.0344 (3)0.0205 (2)0.0140 (2)0.0012 (2)0.00277 (19)
C20.030 (2)0.026 (2)0.016 (2)0.0107 (19)0.0068 (17)0.0084 (17)
C30.036 (3)0.020 (2)0.022 (2)0.0100 (19)0.0038 (19)0.0100 (17)
Br1A0.039 (6)0.024 (5)0.022 (5)0.005 (4)0.001 (4)0.010 (4)
C40.037 (3)0.028 (2)0.020 (2)0.022 (2)0.0001 (18)0.0078 (17)
C50.028 (2)0.035 (2)0.016 (2)0.020 (2)0.0012 (17)0.0065 (17)
C60.019 (2)0.027 (2)0.0156 (19)0.0107 (17)0.0017 (15)0.0025 (16)
C70.0175 (19)0.020 (2)0.023 (2)0.0088 (16)0.0033 (16)0.0042 (16)
C80.044 (3)0.052 (3)0.027 (3)0.027 (3)0.015 (2)0.020 (2)
C110.024 (2)0.0171 (19)0.0147 (18)0.0106 (16)0.0032 (15)0.0030 (14)
C120.025 (2)0.026 (2)0.021 (2)0.0138 (18)0.0026 (17)0.0035 (17)
C130.037 (3)0.030 (2)0.029 (2)0.018 (2)0.016 (2)0.0044 (19)
C140.060 (4)0.031 (3)0.018 (2)0.022 (3)0.015 (2)0.0013 (19)
C150.064 (4)0.044 (3)0.017 (2)0.032 (3)0.000 (2)0.000 (2)
C160.042 (3)0.039 (3)0.015 (2)0.028 (2)0.0022 (19)0.0041 (18)
C210.0163 (18)0.0175 (19)0.0192 (19)0.0090 (15)0.0000 (15)0.0024 (15)
C220.025 (2)0.019 (2)0.022 (2)0.0081 (17)0.0053 (17)0.0024 (16)
C230.030 (2)0.023 (2)0.029 (2)0.0077 (19)0.0028 (19)0.0054 (18)
C240.025 (2)0.018 (2)0.040 (3)0.0063 (18)0.002 (2)0.0043 (19)
C250.021 (2)0.023 (2)0.029 (2)0.0095 (18)0.0041 (18)0.0100 (18)
C260.019 (2)0.024 (2)0.021 (2)0.0101 (17)0.0026 (16)0.0059 (16)
C310.0198 (19)0.022 (2)0.0124 (17)0.0138 (16)0.0028 (14)0.0035 (14)
C320.023 (2)0.026 (2)0.019 (2)0.0142 (18)0.0030 (16)0.0004 (16)
C330.022 (2)0.041 (3)0.025 (2)0.020 (2)0.0026 (17)0.0010 (19)
C340.030 (2)0.038 (3)0.023 (2)0.026 (2)0.0045 (18)0.0063 (19)
C350.035 (2)0.026 (2)0.020 (2)0.021 (2)0.0039 (18)0.0037 (17)
C360.021 (2)0.022 (2)0.0185 (19)0.0119 (17)0.0015 (16)0.0038 (15)
O10.036 (2)0.036 (2)0.037 (2)0.0267 (17)0.0000 (16)0.0009 (16)
O20.0236 (16)0.0275 (17)0.0297 (18)0.0075 (14)0.0090 (14)0.0038 (14)
C1S0.069 (10)0.084 (10)0.21 (2)0.039 (9)0.065 (13)0.076 (13)
C2S0.053 (7)0.078 (9)0.114 (12)0.001 (6)0.024 (8)0.052 (9)
C3S0.106 (13)0.24 (3)0.058 (8)0.115 (16)0.040 (8)0.055 (12)
Geometric parameters (Å, º) top
Mn1—C61.778 (5)C14—H140.9500
Mn1—C71.778 (5)C15—C161.400 (7)
Mn1—C32.124 (4)C15—H150.9500
Mn1—C22.130 (4)C16—H160.9500
Mn1—C42.142 (4)C21—C221.384 (6)
Mn1—C12.153 (4)C21—C261.402 (6)
Mn1—C52.157 (4)C22—C231.394 (6)
Mn1—P12.2426 (11)C22—H220.9500
P1—C211.834 (4)C23—C241.380 (7)
P1—C111.835 (4)C23—H230.9500
P1—C311.837 (4)C24—C251.380 (7)
S1—C81.757 (5)C24—H240.9500
S1—C21.769 (5)C25—C261.389 (7)
C1—C51.409 (6)C25—H250.9500
C1—C21.424 (7)C26—H260.9500
C1—Br11.870 (5)C31—C321.386 (6)
C1—H10.9500C31—C361.404 (6)
C2—C31.414 (7)C32—C331.400 (6)
C3—C41.409 (7)C32—H320.9500
C3—Br1A1.814 (12)C33—C341.389 (7)
C3—H30.9500C33—H330.9500
C4—C51.424 (7)C34—C351.384 (7)
C4—H40.9500C34—H340.9500
C5—H50.9500C35—C361.395 (6)
C6—O11.158 (6)C35—H350.9500
C7—O21.157 (6)C36—H360.9500
C8—H8A0.9800C1S—C3Si1.26 (3)
C8—H8B0.9800C1S—C2S1.32 (2)
C8—H8C0.9800C1S—H1S10.9900
C11—C161.392 (6)C1S—H1S20.9900
C11—C121.402 (6)C2S—C3S1.26 (2)
C12—C131.386 (6)C2S—H2S10.9900
C12—H120.9500C2S—H2S20.9900
C13—C141.390 (8)C3S—H3S10.9900
C13—H130.9500C3S—H3S20.9900
C14—C151.370 (9)
C6—Mn1—C792.4 (2)S1—C8—H8C109.5
C6—Mn1—C3130.5 (2)H8A—C8—H8C109.5
C7—Mn1—C388.9 (2)H8B—C8—H8C109.5
C6—Mn1—C296.08 (19)C16—C11—C12118.6 (4)
C7—Mn1—C2110.3 (2)C16—C11—P1122.7 (3)
C3—Mn1—C238.83 (18)C12—C11—P1118.6 (3)
C6—Mn1—C4157.66 (19)C13—C12—C11120.9 (4)
C7—Mn1—C4105.0 (2)C13—C12—H12119.5
C3—Mn1—C438.58 (19)C11—C12—H12119.5
C2—Mn1—C465.07 (19)C12—C13—C14119.8 (5)
C6—Mn1—C193.66 (19)C12—C13—H13120.1
C7—Mn1—C1149.07 (19)C14—C13—H13120.1
C3—Mn1—C164.38 (19)C15—C14—C13119.8 (4)
C2—Mn1—C138.84 (18)C15—C14—H14120.1
C4—Mn1—C164.22 (18)C13—C14—H14120.1
C6—Mn1—C5123.9 (2)C14—C15—C16121.0 (5)
C7—Mn1—C5143.4 (2)C14—C15—H15119.5
C3—Mn1—C564.7 (2)C16—C15—H15119.5
C2—Mn1—C565.09 (19)C11—C16—C15119.8 (5)
C4—Mn1—C538.68 (19)C11—C16—H16120.1
C1—Mn1—C538.17 (17)C15—C16—H16120.1
C6—Mn1—P192.24 (14)C22—C21—C26118.8 (4)
C7—Mn1—P191.15 (14)C22—C21—P1119.8 (3)
C3—Mn1—P1137.23 (14)C26—C21—P1121.4 (3)
C2—Mn1—P1156.51 (15)C21—C22—C23120.5 (4)
C4—Mn1—P1101.06 (13)C21—C22—H22119.8
C1—Mn1—P1118.84 (13)C23—C22—H22119.8
C5—Mn1—P192.09 (13)C24—C23—C22120.2 (5)
C21—P1—C11100.49 (19)C24—C23—H23119.9
C21—P1—C31102.39 (19)C22—C23—H23119.9
C11—P1—C31103.84 (19)C23—C24—C25120.0 (4)
C21—P1—Mn1117.10 (14)C23—C24—H24120.0
C11—P1—Mn1116.99 (14)C25—C24—H24120.0
C31—P1—Mn1113.90 (13)C24—C25—C26120.1 (4)
C8—S1—C2102.4 (3)C24—C25—H25120.0
C5—C1—C2109.0 (4)C26—C25—H25120.0
C5—C1—Br1126.4 (4)C25—C26—C21120.4 (4)
C2—C1—Br1124.3 (3)C25—C26—H26119.8
C5—C1—Mn171.1 (2)C21—C26—H26119.8
C2—C1—Mn169.7 (3)C32—C31—C36118.9 (4)
Br1—C1—Mn1130.1 (2)C32—C31—P1122.2 (3)
C5—C1—H1125.5C36—C31—P1118.8 (3)
C2—C1—H1125.5C31—C32—C33120.7 (4)
Mn1—C1—H1125.3C31—C32—H32119.6
C3—C2—C1106.8 (4)C33—C32—H32119.6
C3—C2—S1125.9 (4)C34—C33—C32119.8 (4)
C1—C2—S1127.3 (4)C34—C33—H33120.1
C3—C2—Mn170.3 (2)C32—C33—H33120.1
C1—C2—Mn171.4 (2)C35—C34—C33120.0 (4)
S1—C2—Mn1121.7 (3)C35—C34—H34120.0
C4—C3—C2108.9 (4)C33—C34—H34120.0
C4—C3—Br1A146.5 (6)C34—C35—C36120.3 (4)
C2—C3—Br1A103.4 (5)C34—C35—H35119.9
C4—C3—Mn171.4 (3)C36—C35—H35119.9
C2—C3—Mn170.8 (3)C35—C36—C31120.2 (4)
Br1A—C3—Mn1129.5 (5)C35—C36—H36119.9
C4—C3—H3125.5C31—C36—H36119.9
C2—C3—H3125.5C3Si—C1S—C2S109.4 (15)
Mn1—C3—H3123.8C3Si—C1S—H1S1109.8
C3—C4—C5107.9 (4)C2S—C1S—H1S1109.8
C3—C4—Mn170.0 (3)C3Si—C1S—H1S2109.8
C5—C4—Mn171.2 (3)C2S—C1S—H1S2109.8
C3—C4—H4126.0H1S1—C1S—H1S2108.2
C5—C4—H4126.0C3S—C2S—C1S111.0 (14)
Mn1—C4—H4124.4C3S—C2S—H2S1109.4
C1—C5—C4107.4 (4)C1S—C2S—H2S1109.4
C1—C5—Mn170.8 (3)C3S—C2S—H2S2109.4
C4—C5—Mn170.1 (3)C1S—C2S—H2S2109.4
C1—C5—H5126.3H2S1—C2S—H2S2108.0
C4—C5—H5126.3C1Si—C3S—C2S113.9 (14)
Mn1—C5—H5124.4C1Si—C3S—H3S1108.8
O1—C6—Mn1177.1 (4)C2S—C3S—H3S1108.8
O2—C7—Mn1177.3 (4)C1Si—C3S—H3S2108.8
S1—C8—H8A109.5C2S—C3S—H3S2108.8
S1—C8—H8B109.5H3S1—C3S—H3S2107.7
H8A—C8—H8B109.5
C5—C1—C2—C31.4 (5)C16—C11—C12—C130.6 (7)
Br1—C1—C2—C3172.7 (3)P1—C11—C12—C13176.4 (4)
Mn1—C1—C2—C361.8 (3)C11—C12—C13—C140.3 (7)
C5—C1—C2—S1176.7 (3)C12—C13—C14—C150.0 (8)
Br1—C1—C2—S19.3 (6)C13—C14—C15—C160.0 (9)
Mn1—C1—C2—S1116.2 (4)C12—C11—C16—C150.5 (7)
C5—C1—C2—Mn160.5 (3)P1—C11—C16—C15176.2 (4)
Br1—C1—C2—Mn1125.4 (3)C14—C15—C16—C110.2 (9)
C8—S1—C2—C395.3 (5)C11—P1—C21—C22140.8 (4)
C8—S1—C2—C187.1 (5)C31—P1—C21—C22112.4 (4)
C8—S1—C2—Mn1177.1 (3)Mn1—P1—C21—C2213.0 (4)
C1—C2—C3—C41.0 (5)C11—P1—C21—C2640.3 (4)
S1—C2—C3—C4177.1 (3)C31—P1—C21—C2666.6 (4)
Mn1—C2—C3—C461.6 (3)Mn1—P1—C21—C26168.1 (3)
C1—C2—C3—Br1A169.8 (5)C26—C21—C22—C231.0 (7)
S1—C2—C3—Br1A12.1 (6)P1—C21—C22—C23177.9 (4)
Mn1—C2—C3—Br1A127.6 (4)C21—C22—C23—C240.1 (8)
C1—C2—C3—Mn162.6 (3)C22—C23—C24—C250.7 (8)
S1—C2—C3—Mn1115.5 (4)C23—C24—C25—C260.5 (8)
C2—C3—C4—C50.2 (5)C24—C25—C26—C210.4 (7)
Br1A—C3—C4—C5163.5 (8)C22—C21—C26—C251.2 (6)
Mn1—C3—C4—C561.5 (3)P1—C21—C26—C25177.8 (3)
C2—C3—C4—Mn161.2 (3)C21—P1—C31—C3213.2 (4)
Br1A—C3—C4—Mn1135.1 (9)C11—P1—C31—C32117.4 (4)
C2—C1—C5—C41.2 (5)Mn1—P1—C31—C32114.2 (3)
Br1—C1—C5—C4172.7 (3)C21—P1—C31—C36171.1 (3)
Mn1—C1—C5—C460.9 (3)C11—P1—C31—C3666.8 (4)
C2—C1—C5—Mn159.6 (3)Mn1—P1—C31—C3661.5 (3)
Br1—C1—C5—Mn1126.4 (4)C36—C31—C32—C330.1 (6)
C3—C4—C5—C10.6 (5)P1—C31—C32—C33175.6 (3)
Mn1—C4—C5—C161.3 (3)C31—C32—C33—C340.8 (7)
C3—C4—C5—Mn160.7 (3)C32—C33—C34—C350.5 (7)
C21—P1—C11—C1696.5 (4)C33—C34—C35—C360.6 (7)
C31—P1—C11—C169.2 (4)C34—C35—C36—C311.3 (6)
Mn1—P1—C11—C16135.6 (4)C32—C31—C36—C350.9 (6)
C21—P1—C11—C1280.3 (4)P1—C31—C36—C35176.8 (3)
C31—P1—C11—C12174.0 (3)C3Si—C1S—C2S—C3S53 (2)
Mn1—P1—C11—C1247.6 (4)C1S—C2S—C3S—C1Si56 (2)
Symmetry code: (i) x+2, y1, z+1.
Important bond lengths (Å) and angles (°) in 1b, 3, 4 and 11 top
1b3411
Mn—-P2.2408 (5)2.2413 (8)2.2565 (7)2.2660 (6)
Mn—CO1.770 (2)1.770 (3)1.788 (3)1.786 (1)
1.767 (2)1.766 (3)1.774 (2)1.776 (2)
Mn—CtCp1.772 (1)1.770 (1)1.792 (1)1.785 (1)
CCp—Br1.874 (3)1.871 (3)*
Ccp—S, average1.766 (2)1.755 (2)1.748 (3)1.763 (2)
S—CMe, average1.794 (3)1.786 (4)1.802 (3)1.811 (2)
Mn···S3.4778 (6)3.564 (1)3.590 (1)/3.551 (1)3.5157 (7)–
3.465 (1)3.47 (1)3.5880 (6)
CCp—S—CMe99.0 (1)102.4 (2)100.5 (1)98.9 (1)–
99.4 (2)101.6 (1)104.0 (1)
C—CCp—S—CMe92.0 (2)19.9 (3)12.8 (3)/26.4 (3)50.6 (2)–
88.0 (3)83.1 (3)68.4 (2)
S–CtCp—Mn—P158.991.8127.6/19.3Meaningless
127.0-161.8
Note: (*) major component.
Relative contributions (%) of elements to interactions of atoms inside and outside the Hirshfeld surface (mainly contributions > 2%) top
1b3411
H···H49.542.545.255.4
H···C22.922.420.815.4
H···O19.415.815.112.0
H···S6.48.010.514.8
H···Br8.47.2
Br···S2.10.2
S···S0.00.00.30.6
C···C1.40.30.00.4
 

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

References

First citationBlockhaus, T., Bernhartzeder, S., Kempinger, W., Klein–Hessling, C., Weigand, S. & Sünkel, K. (2020). Eur. J. Org. Chem. 2020, 6576–6587.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlockhaus, T., Klein–Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684–12688.  Web of Science CrossRef CAS Google Scholar
First citationBrammer, L., Peuronen, A. & Roseveare, T. M. (2023). Acta Cryst. C79, 204–216.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y.-P., Nie, F.-Y. & Song, Q.-H. (2021). J. Org. Chem. 86, 12419–12426.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. (2017). Chem. Rev. 117, 5521–5577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFeng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200–1216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFleurat-Lessard, P. & Volatron, F. (2009). Chem. Phys. Lett. 477, 32–36.  CAS Google Scholar
First citationGahlot, S., Schmitt, J.-L., Chevalier, A., Villa, M., Roy, M., Ceroni, P., Lehn, J.-M. & Gingras, M. (2024). Chem. Eur. J. 30, e202400231.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohns, P. M., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2010). Organometallics, 29, 5358–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad Nauk SSSR, 19, 2776.  Google Scholar
First citationLi, P., Yang, Y., Wang, X. & Wu, X. (2021). J. Heterocycl. Chem. 58, 1225–1251.  Web of Science CrossRef CAS Google Scholar
First citationLumbroso, H., Liégeois, C., Testaferri, L. & Tiecco, M. (1986). J. Mol. Struct. 144, 121–133.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMörsel, S., Kellner, R. & Hirsch, A. (2023). Eur. J. Org. Chem. 26, e202300299.  Google Scholar
First citationRiebe, S., Vallet, C., van der Vight, F., Gonzalez–Abradelo, D., Wölper, C., Strassert, C. A., Jansen, G., Knauer, S. & Voskuhl, J. (2017). Chem. A Eur. J. 23, 13660–13668.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheiner, S. (2023). J. Phys. Chem. A, 127, 4695–4703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmiedtchen, M., Maisuls, I., Wölper, C., Strassert, C. A. & Voskuhl, J. (2023). ChemPhotoChem, e202300209.  Google Scholar
First citationScilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeneviratne, K. N. & Winter, C. H. (1997). Organometallics, 16, 2498–2499.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSünkel, K. & Klein-Hessling, C. (2021). Acta Cryst. C77, 633–640.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970–971.  Google Scholar
First citationVogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y.-Y., Wu, X.-M. & Yang, M.-H. (2020). Synlett, 31, 1226–1230.  CAS Google Scholar
First citationWudl, F., Nalewajek, D., Rotella, F. J. & Gebert, E. (1981). J. Am. Chem. Soc. 103, 5885–5890.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds