research papers
Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thioethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2]
aChemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de
Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thioethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for compound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth complex to be reported containing a perthiolated cyclopentadienyl ring. The molecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br interactions. It turned out that although some interactions of this type occurred, they were of minor importance for the arrangement of the molecules in the crystal.
Keywords: crystal structure; cymantrene; thioether; cyclopentadienyl; Hirshfeld surface.
1. Introduction
Aromatic thioethers, a long-known substance class, have attracted substantially increased interest over the last 30 years. A quick search in Scifinder (accessed on February 15, 2024) showed that while the annual number of publications stayed around 25 until 1996, this number then started to increase exponentially and reached a maximum of 205 in 2019 and was still at 174 in 2023. The main reason for this development can be attributed to the vast number of applications aromatic thioethers have found in agricultural chemistry (Li et al., 2021) and medicinal chemistry (Feng et al., 2016), and their importance in natural product biosynthesis (Dunbar et al., 2017). A special bis(aryl) thioethers, has also found increased interest due to their photochemical properties (Riebe et al., 2017). While there are thousands of `purely organic' aryl thioethers, the number of organometallic derivatives, particularly of the metallocene type, where a transition metal is π-coordinated to the aromatic part of the aryl thioether, is rather small. When it comes to persulfurated cyclopentadienyl complexes, there are only four compounds known. Three contain the pentakis(methylsulfanyl)cyclopentadienyl ligand, [{C5(SMe)5}MLn] [MLn = Mn(CO)3 (Sünkel & Motz, 1988), RuCp* (Seneviratne & Winter, 1997) and FeCp (Blockhaus et al., 2019)] and one contains the pentakis(phenylsulfanyl)cyclopentadienyl ligand, [{C5(SPh)5}FeCp] (Blockhaus et al., 2019). Similarly, while there are ca 250 entries in Scifinder for the search mask `Cr(η6-C6R5S-C)', there are only four entries for the benzene tris(thioether) and none for any higher thiolated benzene derivatives. When looking for determinations of π-coordinated cyclopentadienyl thioethers in the Cambridge Structural Database (CSD; Groom et al., 2016; accessed on February 15, 2024), one finds 301 entries for the search mask with one thioether function. Of these, 233 are ferrocene-, 14 ruthenocene and 13 cymantrene derivatives. We therefore decided to look at the viability of a synthesis of a pentasulfurated cymantrene derivative where triphenylphosphane has substituted one carbonyl ligand and determine the crystal structures of these compounds.
The title compounds determined are dicarbonyl[η5-1-(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese, [Mn(C5H4SMe)(PPh3)(CO)2] (1b), dicarbonyl[η5-1-bromo-2-(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese cyclohexane 0.75-solvate [Mn{C5H3Br(SMe)}(PPh3)(CO)2],C6H12 (2), dicarbonyl[η5-2-bromo-1,3-bis(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese, [Mn{C5H2Br(SMe)2}(PPh3)(CO)2] (3), dicarbonyl[η5-2-bromo-1,3-bis(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese, [Mn{C5H2Br(SMe)2}(PPh3)(CO)2] (4), and dicarbonyl[η5-1,2,3,4,5-pentakis(methylsulfanyl)cyclopentadienyl](triphenylphosphane-κP)manganese, [Mn{C5(SMe)5}(PPh3)(CO)2] (11) (see Figs. 1 and 2)
2. Experimental
2.1. Synthesis and crystallization
The synthesis of compounds [Mn(C5H4Br)(PPh3)(CO)2] (1a) and [Mn(C5Br5)(PPh3)(CO)2] (6) was performed as described by us earlier (Klein-Hessling et al., 2021). All reagents and solvents were commercially available and were used as received. Lithiation reactions were performed under an N2 atmosphere, while the chromatographic purifications were performed in air.
2.1.1. Synthesis of [Mn(C5H4SMe)(PPh3)(CO)2], 1b
A solution of 1a (0.050 g, 0.097 mmol) in tetrahydrofuran (THF, 8 ml) was treated at 195 K with 2.5 M n-BuLi solution (0.040 ml, 0.10 mmol) with stirring for 30 min. MeSSMe (0.010 g, 0.10 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The reaction mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of petroleum ether (PE) and placed on top of a silica-gel column. PE/CH2Cl2 (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 1b as a yellow powder (yield: 0.040 g, 0.0820 mmol, 85%). For spectra, see Figs. S1–S3 and S27 in the supporting information.
1H NMR (CDCl3, 400 MHz): δ 7.52–7.31 (15H), 4.47 (2H), 4.04 (2H), 2.35 (3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 232.2 (d, J = 25.9 Hz), 137.9 (d, J = 40.7 Hz), 133.0 (d, J = 9.9 Hz), 129.6, 128.2 (d, J = 8.9 Hz), 99.5, 83.6, 82.9 (d, J = 9.4 Hz), 19.0. 31P{1H} NMR (CDCl3, 162 MHz): δ 92.5. IR (ATR; cm−1): ν(CO) = 1927, 1862. MS (EI, 70 eV): m/z = 484.9 (M+), 428.1 (M+ – 2CO), 413.1 (M+ – 2CO – Me), 262.1 (PPh3), 183.0 (PPh2), 108.0 (PPh). Elemental analysis (EA) calculated (%) for C26H22MnO2PS: C 64.46, H 4.58, S 6.62; found: C 63.68, H 4.70, S 6.62.
2.1.2. Synthesis of [Mn{C5H3Br(SMe)}(PPh3)(CO)2], 2
A solution of 1a (0.50 g, 0.97 mmol) in THF (15 ml) was treated at 195 K with 1.0 M lithium diisopropylamide (LDA) solution (1.16 ml, 1.16 mmol) with stirring for 1 h. MeSSMe (0.10 ml, 1.25 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 2 as a yellow powder (yield: 0.43 g, 0.76 mmol, 79%). Recrystallization from PE yielded yellow crystals which were of insufficient quality for publication, due to severe disorder problems. For spectra, see Figs. S4–S6 in the supporting information.
1H NMR (CDCl3, 400 MHz): δ 7.53–7.29 (m, 15H), 4.46 (s, 1H), 4.36 (s, 1H), 3.69 (s, 1H), 2.36 (s, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 231.4 (d, J = 23.6 Hz), 137.4 (d, J = 41.3 Hz), 133.1 (d, J = 10.5 Hz), 129.9, 128.4 (d, J = 9.5 Hz), 95.9, 89.6, 85.7, 84.9, 82.2, 19.9. 31P{1H} NMR (CDCl3, 162 MHz): δ 90.9. IR (ATR; cm−1): ν(CO) = 1935, 1874.
2.1.3. Synthesis of [Mn{C5H2Br(SMe)2}(PPh3)(CO)2], 3
A solution of 2 (0.43 g, 0.76 mmol) in THF (15 ml) was treated at 195 K with 1.0 M LDA solution (0.92 ml, 0.92 mmol) with stirring for 1 h. MeSSMe (0.080 ml, 1.00 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 3 as a yellow powder (yield: 0.29 g, 0.48 mmol, 63%). Recrystallization from PE yielded yellow crystals, which were suitable for X-ray diffraction and full structure For spectra, see Figs. S7–S9 in the supporting information.
1H NMR (CDCl3, 400 MHz): δ 7.52–7.45 (m, 6H), 7.39–7.35 (m, 9H), 3.93 (s, 2H), 2.23 (s, 6H). 13C{1H} NMR (CDCl3, 101 MHz): δ 230.8 (d, J = 23.4 Hz), 137.2 (d, J = 41.2 Hz), 133.2 (d, J = 10.7 Hz), 129.9, 128.3 (d, J = 9.5 Hz), 99.6, 89.5, 83.8, 18.9. 31P{1H} NMR (CDCl3, 162 MHz): δ 89.4. IR (ATR; cm−1): ν(CO) = 1941, 1880. MS (EI, 70 eV): m/z = 554.4 (M+ – 2CO), 539.4 (M+ – 2CO – CH3).
2.1.4. Synthesis of [Mn{C5HBr(SMe)3}(PPh3)(CO)2], 4
A solution of 3 (0.29 g, 0.48 mmol) in THF (10 ml) was treated at 195 K with a freshly prepared lithium tetramethylpiperidide (LiTMP) solution (1.19 mmol in 2 ml THF) with stirring for 1 h. MeSSMe (0.110 ml, 1.19 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo. NMR and mass spectra (see Figs. S10, S11 and S28) showed this product to be a mixture of at least four compounds. The MS showed only 3, 4 and 5, but of course without any indication of stereochemistry; the 31P NMR spectrum showed five signals of relevant intensity, assignable to compounds 2, 3, 4 and X, and one further unknown, possibly 5. In the 1H NMR spectrum, there are several signals in the Cp region (5.0–3.7 ppm), that have apparently no counterpart in the SMe region of the spectrum. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (85:15 v/v) eluted two yellow bands. The first (F1) gave apparently unreacted starting material 3 (yield: 0.060 g, 21%; Fig. S12). The second still yielded a mixture and was therefore re-chromatographed, using PE/Et2O (1:1 v/v) as The first fraction (F2.1) left, after full evaporation of the solvent, 4 as a yellow powder (yield: 0.10 g, 0.15 mmol, 31%; Figs. S13 and S14). The second fraction (F2.2) left, after evaporation of the solvent, a yellow product, which, according to its NMR spectra (Figs. S15 and S16), was still a mixture of two main products, 4 and `X', together with small amounts of unidentified by-products. Although compound X could not be isolated in a pure form, the appearance of its 1H NMR spectrum suggests that it is a stereoisomer of 4, like [{C5H(Br-1)[(SMe)3-2,3,4]}Mn(PPh3)(CO)2].
For 4, 1H NMR (CDCl3, 400 MHz): δ 7.59–7.46 (m, 6H), 7.43–7.32 (m, 9H), 3.82 (s, 1H), 2.39 (s, 3H), 2.05 (s, 3H), 1.97 (s, 3H). 31P{1H} NMR (CDCl3, 162 MHz): δ 87.0. IR (ATR; cm−1): ν(CO) = 1941, 1885.
For X, 1H NMR (CDCl3, 400 MHz): δ 4.33 (s, 1H), 2.32/2.24/2.14 (3s, 3 × 3H). 31P{1H} NMR (CDCl3, 162 MHz): δ 88.6.
2.1.5. One-pot reaction of [Mn(C5Br5)(PPh3)(CO)2] (6) with excessive n-butyllithium and MeSSMe: synthesis of [Mn{C5Br3(SMe)2}(PPh3)(CO)2], 7, and [Mn{C5(SMe)5}(PPh3)(CO)2] (11)
Method (a). A solution of 6 (0.20 g, 0.24 mmol) in THF (10 ml) was treated at 195 K with 2.5 M n-BuLi solution (0.20 ml, 0.50 mmol) with stirring for 60 min. MeSSMe (0.040 ml, 0.50 mmol) was then added and the mixture was warmed gradually to room temperature within 16 h. The mixture was filtered through a plug of silica gel and then evaporated in vacuo, yielding 0.12 g of product. NMR (Figs. S17 and S18) and MS (Fig. S29) spectra showed this product to be a mixture of at least four compounds, 7–10, with compound 7 as the dominant product. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (90:10 v/v) eluted a yellow band. After evaporation of the solvent in vacuo, 7 (still impure) was left as a yellow powder (yield: 0.16 g, <0.21 mmol, <87%). Part of this product (0.060 g, <0.08 mmol) was dissolved in THF (10 ml) and treated at 183 K with BuLi solution (0.030 ml, 0.075 mmol) with stirring for 30 min. MeSSMe (0.010 ml, 0.12 mmol) was then added and the mixture was warmed to room temperature within 16 h. The mixture was filtered through a plug of silica gel. Evaporation of the solvent left a yellow powder (0.020 g). This crude product was redissolved in THF (8 ml) and treated at 183 K with BuLi solution (0.010 ml, 0.025 mmol) with stirring for 60 min. Then, still at 183 K, MeSSMe (0.003 ml, 0.04 mmol) was added and the temperature was raised to ambient temperature within 16 h. After complete evaporation of the solvent, the residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. Elution with PE/Et2O (9:1 v/v) produced two fractions. Evaporation of the second fraction (F2) left a yellow powder (0.010 g). NMR spectroscopy (see Figs. S22 and S23) showed this product to be nearly pure 11 contaminated with an unknown product `Y'. Although the latter could not be isolated in a pure form, its 1H NMR data suggest its formulation as [Mn{C5H(SMe)4}(PPh3)(CO)2].
Method (b). The conditions of method (a) were slightly changed, using 0.19 ml n-BuLi solution and stirring for only 30 min. The NMR spectra of the crude product showed the presence of only two compounds, 7 and 8 (Figs. S19–S21). The residue was redissolved in THF (10 ml) and treated at 183 K with 2.5 M n-BuLi solution (0.19 ml, 0.48 mmol) with stirring for 30 min. MeSSMe (0.050 ml, 0.60 mmol) was then added at this temperature. The mixture was warmed gradually to room temperature within 16 h with continuous stirring and was then filtered through a plug of silica gel and evaporated in vacuo. The residue was taken up in the minimum amount of PE and placed on top of a silica-gel column. PE/Et2O (90:10 v/v) eluted a yellow band. Evaporation of the solvent in vacuo left 11 as a yellow powder (yield: 0.050 g, 0.075 mmol, 31%). Recrystallization from PE gave yellow crystals suitable for X-ray diffraction. For spectra, see Figs. S24–S26 and S30.
For 7, 1H NMR (CDCl3, 400 MHz): δ 7.54–7.33 (m, 15H), 2.26 (s, 6H). 13C{1H} NMR (CDCl3, 101 MHz): δ 229.7 (d, J = 24.4 Hz), 134.5 (d, J = 42.4 Hz), 133.9 (d, J = 10.6 Hz), 130.1, 128.3 (d, J = 9.7 Hz), 99.4, 94.2, 90.7, 19.5. 31P{1H} NMR (CDCl3, 162 MHz): δ 82.2. IR (ATR; cm−1): ν(CO) = 1942, 1889. MS (EI, 70 eV): m/z = 767.9 (M+), 711.8 (M+ – 2CO), 696.8 (M+ – 2CO – Me), 677.9 (M+ – 2CO – 2Me), 262.0 (PPh3), 183.0 (PPh2), 108.0 (PPh). HRMS (EI): calculated for C27H21O2PS2Mn79Br3: m/z = 763.7651; found: 763.7654.
For 8, 1H NMR (CDCl3, 270 MHz): δ 7.55–7.16, 4.10 (s, 1H), 2.35 (s, 3H). 31P{1H} NMR (CDCl3, 109 MHz): δ 85.8. MS (EI, 70 eV): m/z = 663.8/665.7 (M+ – 2CO), 648.7/650.8 (M+ – 2CO – Me).
For 9, 1H NMR (CDCl3, 270 MHz): δ 7.55–7.16, 2.36, 2.30. 31P{1H} NMR (CDCl3, 109 MHz): δ 81.9. MS (EI, 70 eV): m/z = 677.8 (M+ – 2CO), 662.8 (M+ – 2CO – Me), 647.8 (M+ – 2CO – 2Me), 416.0 (M+ – 2CO – PPh3), 401.0 (M+ – 2CO – PPh3 – Me).
For 10, MS (EI, 70 eV): m/z = 631.8 (M+ – 2CO), 616.8 (M+ – 2CO – Me), 601.8 (M+ – 2CO – 2Me), 370.0 (M+ – 2CO – PPh3).
For 11, 1H NMR (CDCl3, 400 MHz): δ 7.55–7.48 (m, 6H), 7.40–7.34 (m, 9H), 2.38 (s, 15H). 13C{1H} NMR (CDCl3, 101 MHz): δ 135.9 (d, J = 41.4 Hz), 133.9 (d, J = 10.4 Hz), 129.9, 128.1 (d, J = 9.6 Hz), 102.7, 20.2. 31P{1H} NMR (CDCl3, 162 MHz): δ 82.3. IR (ATR; cm−1): ν(CO) = 1939, 1885. MS (EI, 70 eV): m/z = 668.1 (M+), 612.1 (M+ – 2CO), 597.0 (M+ – 2CO – Me), 582.0 (M+ – 2CO – 2Me), 262.0 (PPh3), 183.0 (PPh2), 108.0 (PPh).
For Y, 1H NMR (CDCl3, 400 MHz): δ 7.55–7.48 (m, 6H), 7.40–7.34 (m, 9H), 5.49 (s, 1H), 2.44 (s, 6H), ≃ 2.38 (hidden under signal of 11). 31P{1H} NMR (CDCl3, 162 MHz): δ 87.3.
2.2. Refinement
Crystal data, data collection and structure . All structures were solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL (Sheldrick, 2015b). In the of all structures, several low-angle reflections had to be omitted due to beam-stop interferences (five in 1b, five in 3, six in 4 and five in 11). For compound 4, the SHELXT solution suggested one Mn, one Br and four S atoms. One of the S atoms turned out to actually be a P atom. Another S atom had significantly higher electron density than the remaining two. It was concluded that this was due to positional disorder with a Br atom. A first difference Fourier synthesis, which showed a residual electron-density peak at a distance of 1.800 Å from the `bromine' atom, confirmed this assumption. No significant electron density was found near the Cp-ring `CH carbon'. Therefore, a model was refined where the two `inner' ring substituent atoms were both in part S and in part Br atoms. gave a 76:24 disorder in favour of the `original' structure solution. In order to stabilize the some SADI restraints had to be employed (SADI restrains particular distances to be identical within certain standard deviations).
details are summarized in Table 1The data for compound 2 are included for comparison. While there was no problem obtaining the solution, proceeded only with difficulty. First, three medium-intensity peaks close to an inversion centre turned up in a difference Fourier synthesis, which when connected had the appearance of a cyclohexane ring. Although cyclohexane was not explicitly used during the synthesis, it may have been part of the petroleum ether that was used for recrystallization. Apparently, `petroleum ether' is not a particular compound, but a mixture of hydrocarbons within a specific range of boiling points. Therefore, the three atoms were refined isotropically with a common displacement parameter, and the site occupancy factor (s.o.f.) was refined as well. gave a value for the s.o.f. of ca 0.75, with a reasonable displacement parameter. Then the s.o.f. was fixed at 0.75 and the displacement parameters were allowed to refine freely, first isotropically and then anisotropically. Finally, methylene H atoms were added according to the standard riding model of SHELXL. While the s.o.f. and displacement parameters appear reasonable, some of the bond lengths appear unreasonably short. One possible explanation might be within the cyclohexane ring, which is quite usual for this molecule. The quality of the data set, however, did not allow for a proper resolution of this disorder. At the same time as the appearance of the solvent molecule, a medium-intensity peak was also localized close to atom H3 of the cyclopentadienyl ligand, with a distance of approximately 1.85 Å to atom C3. As compound 2 possesses we assumed this electron density derived from an alternative bromine position, corresponding to a rotational isomer of the enantiomer of the major orientation (of course, in a centrosymmetric both enantiomers are present anyway). Again, both bromine positions were given a common displacement parameter, and their s.o.f. values were refined. This resulted in an s.o.f. value of only 0.045 for the minor orientation. Then the s.o.f. values were fixed at 0.955 and 0.045, respectively, and the displacement parameters were refined, first isotropically and then anisotropically. The corresponding H atoms were positioned according to the riding model. After this `problem' was solved, another one appeared. A rather large residual electron-density peak turned up only 0.82 Å from the S atom, 1.73 Å from atom C2 and 0.71 Å on the distal side of the Cp ring. We could not find any explanation for this observation. The distance from sulfur is too small to be a methyl group or O atom, and the distance from the Cp plane is too large for a ring substituent. We also tried a without the cyclohexane, using the SQUEEZE (Spek, 2015) model available in PLATON (Spek, 2020). However, this neither provided better statistics nor change anything about the residual high electron density next to the S atom. With this unexplained residual electron density in mind, we refrained from any further structure discussion. However, displacement ellipsoid plots of the current `best' solution are displayed in the supporting information.
3. Results and discussion
3.1. Synthesis
There are numerous synthetic pathways towards aryl thioethers. Some recent approaches have been the catalyzed or uncatalyzed methylthiolation of aryl iodides or bromides (Wang et al., 2020), chlorides (Schmiedtchen et al., 2023) or fluorides (Mörsel et al., 2023), or the visible-light-mediated alkylation of thiophenols (Cai et al., 2021). However, the reaction conditions used in these procedures are unfortunately not applicable neither for the `free' substituted cyclopentadienide nor in the system [MnCp(PPh3)(CO)2], due to rapid decomposition. Therefore, we chose two approaches that had been successful in the ferrocene (Blockhaus et al., 2019) and the [MnCp(CO)3] systems (Sünkel & Motz, 1988). For the first approach, we used [Mn(C5H4Br)(PPh3)(CO)2] as the starting material (Fig. 1), while for the second, [Mn(C5Br5)(PPh3)(CO)2] was employed (Fig. 2). It should be mentioned that the photolysis of [Mn{C5(SMe)5}(CO)3] in the presence of PPh3 (like in the first synthesis of 1b; Kursanov et al., 1970) might work as well, but we didn't try this.
Treatment of 1a with n-BuLi in THF followed by addition of Me2S2 led to the product of Br–Li exchange, i.e. compound 1b, in 85% yield. This compound has been known for over 50 years and had originally been prepared by photolysis of [Mn(C5H4SMe)(CO)3] in the presence of PPh3 (Kursanov et al., 1970). When LDA was used as the base instead of n-BuLi, 1a was deprotonated in the α-position and, after electrophilic quenching with Me2S2, the disubstituted complex 2 was obtained in 79% yield, as an enantiomeric pair due to the Renewed treatment with LDA and Me2S2 gave the trisubstituted compound 3 in 63% yield, apparently exclusively as the 1-bromo-2,5-bis(methylsulfanyl)- isomer. When 3 was treated with LDA/Me2S2, apparently only unreacted 3 could be recovered. Therefore, we decided to use the stronger base LiTMP, in 2.5 equivalents before adding Me2S2. NMR and mass spectrometric examination of the crude reaction product showed the presence of compound 4, together with unreacted starting material 3, presumably 5 and other unknown compounds. allowed the isolation of rather pure compound 4, albeit in rather low yield (31%). The parallel formation of 5 hints at the occurrence of `halogen dance' reactions (Blockhaus et al., 2020).
We then turned to an alternative approach, similar to that described by us for the synthesis of [Mn{C5(SMe)5}(CO)3]. We assumed that treatment of [Mn(C5Br5)(PPh3)(CO)2] (6) with two equivalents of n-BuLi/MeSSMe would yield exclusively the 1,3-disubstituted complex 7 (Fig. 2). However, it turned out that the reaction was extremely sensitive to the relative stoichiometry of the reactants, the reaction time and the presence of moisture. While with apparently exact stoichiometry, a mixture of compounds 7 and 8 was obtained, only a slight excess of n-BuLi gave a mixture of at least five compounds, of which 7–10 could be identified by It was not possible to isolate any of these compounds in sufficient purity for elemental analysis. However, characterization by 1H NMR and 31P NMR spectroscopy, as well as was possible. The unexpected formation of compounds 8–10 is most likely due to a combination of hydrolysis and `halogen dance' or even `sulfur dance' reactions (Gahlot et al., 2024). Therefore, we decided to use these mixtures for further treatment with an excess of n-BuLi/MeSSMe, which yielded rather pure compound 11 (Fig. 2). Further purification steps via and recrystallization gave this compound as a monocrystalline material that could be studied by X-ray diffraction.
3.2. Molecular structures
3.2.1. [Mn(C5H4SMe)(PPh3)(CO)2], 1b
Compound 1b crystallizes in the monoclinic P21/c, with one molecule in the (Fig. 3). The bond parameters of 1b, together with those of the other structures described here, can be found in Table 2. There are no unusual features. In comparison with the ring-unsubstituted parent compound (Sünkel & Klein-Hessling, 2021), the Mn—CO and Mn—CtCp (CtCp is the centroid of the cyclopentadienyl ring) distances are nearly identical, and the Mn—P bond is slightly elongated. In both compounds, one Mn—CO bond bisects one cyclopentadienyl C—C bond, while the other Mn—CO and the Mn—P bond nearly eclipse a C—H bond of the ring. The SMe group in 1b is in a relative trans position with respect to the PPh3 ligand. The methyl group at sulfur is in an axial position. For comparison, the only two mononuclear structures containing a C5H4SMe ligand in the CSD, i.e. [Os(C5H4SMe)(CO)(PPh3)2]+ (CSD refcode ILORUX) and [Os(C5H4SMe)(CO)(PPh3)I] (ILOSAE), contain an equatorial and an axial methyl group, respectively (Johns et al., 2010).
|
3.2.2. [Mn{C5H2Br(SMe)2}(PPh3)(CO)2], 3
Compound 3 crystallizes in the orthorhombic Pbca, with one molecule in the (Fig. 4). The bond parameters can be found in Table 2. Again, there are no unusual features. This time, the C—Br bond is in a relative trans position with respect to the Mn—P bond. One methyl group is in an axial position at atom S5, while the other at S2 is in an equatorial position. The Mn—P, Mn—CO and Mn—CtCp bonds are virtually identical with the corresponding bond lengths in 1b. The same is true for the CCp—S and S—CH3 bonds. The bond angle at the S atom with the equatorial methyl group is significantly larger than the corresponding angle with the axial methyl group, which in turn is identical to the corresponding angle in compound 1b.
3.2.3. Mn{C5HBr(SMe)3}(PPh3)(CO)2], 4
Compound 4 crystallizes in the monoclinic P21/n, with one molecule in the (Fig. 5). There is a 76:24 disorder (i.e. approximately 3:1) between the Br atom and the vicinal `inner' methylsulfanyl group. Since compound 4 is planar chiral, this disorder resembles an unsymmetrical disorder between the two enantiomers.
In comparison with the structures of 1b and 3, the Mn—P, Mn—CO and Mn—CtCp bonds are slightly (but significantly, Δ > 5σ) elongated (Table 2). The two `outer' methylsulfanyl groups are equatorial, with both methyl groups directed towards the unsubstituted C—H bond, while the `inner' methyl group is in an axial position, directed away from the Mn atom. A little bit surprising is the observation that the Mn—P bond nearly eclipses one CCp—S bond, instead of the neighbouring C—H bond, as one might expect. Thus, a rather short S⋯P distance of 3.601 (1) Å results, which is identical to the sum of the van der Waals radii. In addition, all S atoms are significantly closer to the Mn atom than the sum of their van der Waals radii (3.80 Å). This feature is more distinct for the S atoms with axial methyl groups (R ≃ 3.47 Å) than for those with equatorial methyl groups (R ≃ 3.57 Å), and is also observed in the structures of 1b and 3.
3.2.4. [Mn{C5(SMe)5}(PPh3)(CO)2], 11
Compound 11 crystallizes in the monoclinic P21/c, with one molecule in the (Fig. 6). The Mn—P bond length in 11 is longer than in the other three compounds, while the Mn—CO and Mn—CtCp distances are very similar to the values found in 4. All methylsulfanyl groups are significantly tilted away from an `ideal' axial position (C—CCp—S—CMe in the range between 50 and 68° versus 92° in 1b). Four methyl groups are directed away towards the distal side of the cyclopentadienyl ring, while one is on the proximal side. This can be compared to the structures of [Mn{C5(SMe)5}(CO)3], where there are three distal and two proximal SMe groups (Sünkel & Motz, 1988), and of [Fe{C5(SMe)5}(C5H5)], where all the SMe groups are in distal positions (Blockhaus et al., 2019). This orientation with four methyl groups on one side of the ring and one methyl group on the other resembles, however, the situation found in the structure of the uncomplexed `free' anion (Wudl et al., 1981). Theoretical studies of the conformational preferences of poly(methylsulfanyl)benzenes, including hexakis(methylsulfanyl)benzene, have been reported (Lumbroso et al., 1986; Fleurat-Lessard & Volatron, 2009), but to our knowledge no such studies of polythiolated cyclopentaienyl rings exist. All the Mn⋯S distances are in the range 3.52–3.59 Å and are thus significantly shorter than the sum of their van der Waals radii (3.80 Å). For comparison, in [Mn{C5(SMe)5}(CO)3], the Mn⋯S distances range from 3.39 to 3.59 Å. Still, it seems unlikely that there is explicit bonding between Mn and S, as such distances are also the simple geometrical result of π-bonding of the substituted Cp ring to the metal.
3.3. Intermolecular contacts and Hirshfeld analysis
The importance of intermolecular contacts, also termed `noncovalent interactions', for the build-up of crystal structures is undisputed. While the near omnipresence of hydrogen bonds has been known for a long time (mainly due to their structure-directing effects in biomolecules), in recent decades it was recognized that interactions involving halogens, chalcogens and even pnictogens and tetrel elements also have a great influence on the mutual arrangements of molecules in crystals and the terms `halogen bond', `chalcogen bond', `pnictogen bond' and `tetrel bond' were created (Brammer et al., 2023; Vogel et al., 2019; Scheiner, 2023; Scilabra et al., 2019; Mahmudov et al., 2022). For the present study, we looked first only at the interactions involving S and/or Br atoms, using the corresponding feature in Mercury (Macrae et al., 2020). In compound 1b, no such interactions are observed. However, in compound 3, double S⋯Br contacts of 3.414 Å, well below the sum of the van der Waals radii, lead to the formation of `dimers' (Fig. 7).
The C—Br—S angle at Br1 is 153.6 (1)°, while the C—S—Br angles at S2 are 128.0 (1) and 128.8 (1)°. Atom S5 is not involved in such interactions; however, it accepts a hydrogen bond from a phenyl C—H group.
Compound 4 was not included for this study, due to the presence of the S/Br disorder, which did not allow a proper resolution of the relative contributions of these elements.
Compound 11 displays a molecular chain in the crystallographic c direction, which is held together via weak S⋯S contacts (distance of 3.588 Å between atoms S1 and S3, just below the sum of the van der Waals radii). The CCp—S—S angles at S1 and S3 are 139.8 (1) and 168.4 (1)°, respectively. Atoms S2 and S5 serve as hydrogen-bond acceptors towards two arene C—H bonds (Fig. 8). For comparison, in closely related [Mn{C5(SMe)5}(CO)3] (Sünkel & Motz, 1988), only dimer formation via an S⋯S interaction between inversion-related S atoms (3.510 Å) is observed. On the other hand, pentakis(methylsulfanyl)ferrocene employs four S atoms for the formation of parallel undulating (wavy) chains along b using double S⋯S bridges on both sides (Blockhaus et al., 2019).
In order to get a better overview of the intermolecular interactions at work, we undertook a Hirshfeld analysis, using the program CrystalExplorer (Spackman et al., 2021). First, we determined the Hirshfeld surfaces (Fig. 9) and fingerprint plots (Fig. 10).
Evaluation of the fingerprint plots allowed the calculation of the relative contributions of interactions of elements inside and outside the Hirshfeld surface (Table 3).
|
As can be seen, interactions between hydrogen and other elements make up for more than 95% of all interactions and ca a 50% contribution comes from H⋯H interactions. This dominance is in part due to the large number of C—H bonds present (22 in 1b, 23 in 3, 25 in 4 and 30 in 11) in relation to the number of Br and S atoms. For comparison, in [Fe{C5(SMe)5}(C5H5)] (Blockhaus et al., 2019), the interactions with H-atom contributions make up 97%, with 63.4% coming from H⋯H interactions alone (20 C—H bonds). However, S⋯S interactions contribute ca 3%. In [Mn{C5(SMe)5}(CO)3] (Sünkel & Motz, 1988), interactions with H-atom contributions make up ca 88%, with 34.8% coming from H⋯H and 24.6% from H⋯S; S⋯S interactions contribute 2.3%.
We also performed an orbital calculation of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of compounds 1b, 3, 4 (major component) and 11, using the program TONTO (HF/STO-3G), as provided with CrystalExplorer. The results are shown in Fig. 11.
As can be seen, for 1b, the HOMO resides on the S atom, the CO ligands and one arene ring, while the LUMO is concentrated on the cyclopentadienyl ring. In 3, the HOMO is distributed over the CO ligands and the P atom and part of the arene rings, while the LUMO is mainly situated on the Br atom and the SMe groups. In compound 4 (major component), the HOMO resides mainly on two SMe groups, as well as on one arene ring. The LUMO is spread over the metal, the remaining SMe group and the Br atom, as well as on one other arene ring. For compound 11, the HOMO resides on the Cp ring, including two SMe groups and the P atom, while the LUMO is distributed over the Mn atom and the PPh3 ligand.
4. Conclusions
The best approach for the synthesis of [Mn{C5(SMe)5}(PPh3)(CO)2)] appears to be the one-pot reaction of [Mn(C5Br5)(PPh3)(CO)2] first with 2 equivalents of n-BuLi/MeSSMe and then with four equivalents of these reagents. Stepwise reactions, as well as the bottom-up approach starting with [Mn(C5H4Br)(PPh3)(CO)2], lead only to complicated product mixtures, which need multiple purification steps with large losses in yield. The structures of 1b, 3, 4 and 11 with one, two, three or five SMe groups, respectively, show an unpredictable distribution of axial and equatorial methyl groups. S⋯Br contacts in 3 leads to the formation of `dimers', while S⋯S contacts in 11 lead to polymeric one-dimensional strands. Besides these, no structure-directing effects of halogen or chalcogen (S) bonding can be observed.
Supporting information
https://doi.org/10.1107/S205322962400603X/qf3063sup1.cif
contains datablocks compd_1b, compd_3, compd_4, compd_11, comp_2, global. DOI:Structure factors: contains datablock compd_1b. DOI: https://doi.org/10.1107/S205322962400603X/qf3063compd_1bsup2.hkl
Structure factors: contains datablock compd_3. DOI: https://doi.org/10.1107/S205322962400603X/qf3063compd_3sup3.hkl
Structure factors: contains datablock compd_4. DOI: https://doi.org/10.1107/S205322962400603X/qf3063compd_4sup4.hkl
Structure factors: contains datablock compd_11. DOI: https://doi.org/10.1107/S205322962400603X/qf3063compd_11sup5.hkl
Structure factors: contains datablock comp_2. DOI: https://doi.org/10.1107/S205322962400603X/qf3063comp_2sup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205322962400603X/qf3063sup7.pdf
[Mn(C6H7S)(C18H15P)(CO)2] | F(000) = 1000 |
Mr = 484.40 | Dx = 1.379 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7281 (3) Å | Cell parameters from 9883 reflections |
b = 16.8523 (6) Å | θ = 3.0–26.4° |
c = 18.0339 (7) Å | µ = 0.74 mm−1 |
β = 96.696 (1)° | T = 297 K |
V = 2332.65 (15) Å3 | Rod, yellow |
Z = 4 | 0.10 × 0.03 × 0.03 mm |
Bruker D8 VENTURE diffractometer | 4773 independent reflections |
Radiation source: rotating anode generator, Bruker TXS | 4190 reflections with I > 2σ(I) |
Detector resolution: 7.4074 pixels mm-1 | Rint = 0.036 |
mix of ω and phi scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) | h = −9→9 |
Tmin = 0.702, Tmax = 0.745 | k = −21→21 |
46361 measured reflections | l = −21→22 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.9836P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4773 reflections | Δρmax = 0.28 e Å−3 |
281 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5537 (2) | 0.42764 (10) | 0.64027 (10) | 0.0388 (4) | |
C2 | 0.4595 (3) | 0.43295 (11) | 0.56776 (11) | 0.0432 (4) | |
H2 | 0.381408 | 0.472787 | 0.550826 | 0.052* | |
C3 | 0.5057 (3) | 0.36712 (13) | 0.52628 (11) | 0.0482 (5) | |
H3 | 0.462484 | 0.355775 | 0.477126 | 0.058* | |
C4 | 0.6284 (3) | 0.32125 (12) | 0.57171 (12) | 0.0479 (5) | |
H4 | 0.680813 | 0.274719 | 0.557820 | 0.057* | |
C5 | 0.6575 (2) | 0.35865 (12) | 0.64198 (12) | 0.0438 (4) | |
H5 | 0.732479 | 0.340831 | 0.682651 | 0.053* | |
C6 | 0.2130 (2) | 0.36971 (11) | 0.66111 (11) | 0.0419 (4) | |
C7 | 0.4256 (2) | 0.25425 (12) | 0.69360 (11) | 0.0432 (4) | |
C8 | 0.7341 (3) | 0.55679 (16) | 0.69405 (17) | 0.0727 (7) | |
H81A | 0.834736 | 0.523563 | 0.693213 | 0.109* | |
H81B | 0.757010 | 0.596246 | 0.732331 | 0.109* | |
H81C | 0.708122 | 0.582377 | 0.646487 | 0.109* | |
C101 | 0.3447 (2) | 0.18065 (10) | 0.49017 (10) | 0.0338 (4) | |
C102 | 0.3118 (3) | 0.17738 (11) | 0.41275 (10) | 0.0427 (4) | |
H102 | 0.221647 | 0.207305 | 0.388133 | 0.051* | |
C103 | 0.4126 (3) | 0.12982 (13) | 0.37206 (11) | 0.0513 (5) | |
H103 | 0.389198 | 0.127979 | 0.320323 | 0.062* | |
C104 | 0.5466 (3) | 0.08539 (13) | 0.40734 (12) | 0.0524 (5) | |
H104 | 0.612767 | 0.053131 | 0.379688 | 0.063* | |
C105 | 0.5827 (3) | 0.08881 (12) | 0.48392 (12) | 0.0481 (5) | |
H105 | 0.674230 | 0.059297 | 0.508015 | 0.058* | |
C106 | 0.4828 (2) | 0.13608 (11) | 0.52495 (11) | 0.0409 (4) | |
H106 | 0.508292 | 0.138173 | 0.576606 | 0.049* | |
C111 | 0.0476 (2) | 0.28520 (10) | 0.48332 (9) | 0.0342 (4) | |
C112 | 0.0407 (2) | 0.36650 (12) | 0.47192 (11) | 0.0441 (4) | |
H112 | 0.122939 | 0.399212 | 0.498399 | 0.053* | |
C113 | −0.0889 (3) | 0.39947 (14) | 0.42096 (12) | 0.0545 (5) | |
H113 | −0.092180 | 0.454077 | 0.413451 | 0.065* | |
C114 | −0.2110 (3) | 0.35232 (15) | 0.38198 (12) | 0.0552 (6) | |
H114 | −0.296835 | 0.374738 | 0.347914 | 0.066* | |
C115 | −0.2070 (3) | 0.27165 (15) | 0.39313 (12) | 0.0551 (5) | |
H115 | −0.290436 | 0.239510 | 0.366655 | 0.066* | |
C116 | −0.0793 (2) | 0.23812 (12) | 0.44365 (11) | 0.0444 (4) | |
H116 | −0.078177 | 0.183526 | 0.451214 | 0.053* | |
C121 | 0.0969 (2) | 0.16794 (10) | 0.59596 (9) | 0.0342 (4) | |
C122 | −0.0102 (3) | 0.19413 (12) | 0.64774 (11) | 0.0456 (4) | |
H122 | −0.012089 | 0.247755 | 0.659804 | 0.055* | |
C123 | −0.1141 (3) | 0.14162 (15) | 0.68161 (13) | 0.0572 (5) | |
H123 | −0.186917 | 0.160412 | 0.715268 | 0.069* | |
C124 | −0.1105 (3) | 0.06194 (15) | 0.66585 (14) | 0.0611 (6) | |
H124 | −0.179201 | 0.026629 | 0.689176 | 0.073* | |
C125 | −0.0043 (3) | 0.03497 (13) | 0.61527 (15) | 0.0635 (6) | |
H125 | −0.001524 | −0.018893 | 0.604241 | 0.076* | |
C126 | 0.0985 (3) | 0.08723 (12) | 0.58058 (12) | 0.0498 (5) | |
H126 | 0.169783 | 0.068023 | 0.546484 | 0.060* | |
O1 | 0.1026 (2) | 0.40092 (11) | 0.68817 (11) | 0.0715 (5) | |
O2 | 0.4577 (2) | 0.20876 (11) | 0.74104 (10) | 0.0735 (5) | |
P1 | 0.22139 (5) | 0.24217 (2) | 0.54943 (2) | 0.02962 (10) | |
S1 | 0.55170 (7) | 0.49737 (3) | 0.71293 (3) | 0.05091 (14) | |
Mn1 | 0.39016 (3) | 0.32610 (2) | 0.62211 (2) | 0.03037 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0375 (9) | 0.0354 (9) | 0.0440 (10) | −0.0050 (7) | 0.0072 (8) | −0.0005 (7) |
C2 | 0.0447 (10) | 0.0409 (10) | 0.0447 (10) | −0.0054 (8) | 0.0089 (8) | 0.0104 (8) |
C3 | 0.0511 (11) | 0.0585 (12) | 0.0374 (10) | −0.0134 (9) | 0.0157 (9) | −0.0013 (9) |
C4 | 0.0363 (9) | 0.0495 (11) | 0.0607 (13) | −0.0023 (8) | 0.0176 (9) | −0.0111 (9) |
C5 | 0.0306 (9) | 0.0443 (10) | 0.0559 (12) | −0.0023 (8) | 0.0020 (8) | −0.0014 (9) |
C6 | 0.0400 (10) | 0.0407 (10) | 0.0455 (10) | −0.0018 (8) | 0.0072 (8) | −0.0053 (8) |
C7 | 0.0402 (10) | 0.0464 (10) | 0.0409 (10) | −0.0029 (8) | −0.0040 (8) | 0.0024 (8) |
C8 | 0.0618 (15) | 0.0606 (15) | 0.096 (2) | −0.0197 (12) | 0.0093 (14) | −0.0221 (14) |
C101 | 0.0339 (8) | 0.0326 (8) | 0.0351 (9) | 0.0012 (7) | 0.0050 (7) | −0.0019 (7) |
C102 | 0.0438 (10) | 0.0486 (11) | 0.0354 (9) | 0.0062 (8) | 0.0038 (8) | 0.0009 (8) |
C103 | 0.0614 (13) | 0.0578 (12) | 0.0361 (10) | 0.0031 (10) | 0.0112 (9) | −0.0067 (9) |
C104 | 0.0555 (12) | 0.0486 (11) | 0.0560 (13) | 0.0089 (9) | 0.0183 (10) | −0.0130 (10) |
C105 | 0.0450 (11) | 0.0427 (10) | 0.0562 (12) | 0.0121 (8) | 0.0038 (9) | −0.0045 (9) |
C106 | 0.0418 (9) | 0.0393 (9) | 0.0402 (10) | 0.0076 (8) | −0.0008 (8) | −0.0038 (8) |
C111 | 0.0300 (8) | 0.0412 (9) | 0.0315 (8) | 0.0071 (7) | 0.0039 (6) | 0.0045 (7) |
C112 | 0.0414 (10) | 0.0432 (10) | 0.0466 (11) | 0.0069 (8) | 0.0009 (8) | 0.0052 (8) |
C113 | 0.0533 (12) | 0.0553 (12) | 0.0546 (12) | 0.0199 (10) | 0.0054 (10) | 0.0177 (10) |
C114 | 0.0413 (11) | 0.0820 (16) | 0.0415 (11) | 0.0194 (11) | 0.0010 (9) | 0.0146 (11) |
C115 | 0.0404 (10) | 0.0778 (15) | 0.0442 (11) | 0.0018 (10) | −0.0065 (9) | 0.0032 (11) |
C116 | 0.0380 (10) | 0.0499 (11) | 0.0438 (10) | 0.0004 (8) | −0.0021 (8) | 0.0034 (8) |
C121 | 0.0327 (8) | 0.0369 (9) | 0.0320 (8) | 0.0014 (7) | −0.0009 (7) | 0.0048 (7) |
C122 | 0.0443 (10) | 0.0454 (10) | 0.0488 (11) | 0.0037 (8) | 0.0122 (9) | 0.0051 (9) |
C123 | 0.0472 (11) | 0.0714 (15) | 0.0555 (13) | −0.0017 (11) | 0.0168 (10) | 0.0115 (11) |
C124 | 0.0545 (13) | 0.0669 (15) | 0.0616 (14) | −0.0146 (11) | 0.0052 (11) | 0.0248 (12) |
C125 | 0.0733 (15) | 0.0409 (11) | 0.0759 (16) | −0.0115 (11) | 0.0073 (13) | 0.0079 (11) |
C126 | 0.0569 (12) | 0.0382 (10) | 0.0557 (12) | −0.0032 (9) | 0.0119 (10) | −0.0002 (9) |
O1 | 0.0545 (9) | 0.0731 (11) | 0.0919 (13) | 0.0082 (8) | 0.0300 (9) | −0.0257 (10) |
O2 | 0.0848 (12) | 0.0690 (11) | 0.0609 (10) | −0.0069 (9) | −0.0155 (9) | 0.0310 (9) |
P1 | 0.0290 (2) | 0.0307 (2) | 0.0288 (2) | 0.00389 (16) | 0.00205 (16) | 0.00170 (16) |
S1 | 0.0588 (3) | 0.0429 (3) | 0.0525 (3) | −0.0060 (2) | 0.0127 (2) | −0.0082 (2) |
Mn1 | 0.02944 (14) | 0.03077 (14) | 0.03094 (14) | 0.00126 (9) | 0.00370 (10) | 0.00046 (10) |
C1—C5 | 1.411 (3) | C104—C105 | 1.378 (3) |
C1—C2 | 1.423 (3) | C104—H104 | 0.9300 |
C1—S1 | 1.7614 (19) | C105—C106 | 1.382 (3) |
C1—Mn1 | 2.1296 (17) | C105—H105 | 0.9300 |
C2—C3 | 1.407 (3) | C106—H106 | 0.9300 |
C2—Mn1 | 2.1477 (18) | C111—C112 | 1.386 (3) |
C2—H2 | 0.9300 | C111—C116 | 1.393 (3) |
C3—C4 | 1.410 (3) | C111—P1 | 1.8377 (17) |
C3—Mn1 | 2.1497 (18) | C112—C113 | 1.394 (3) |
C3—H3 | 0.9300 | C112—H112 | 0.9300 |
C4—C5 | 1.410 (3) | C113—C114 | 1.364 (3) |
C4—Mn1 | 2.1481 (19) | C113—H113 | 0.9300 |
C4—H4 | 0.9300 | C114—C115 | 1.374 (3) |
C5—Mn1 | 2.1270 (18) | C114—H114 | 0.9300 |
C5—H5 | 0.9300 | C115—C116 | 1.384 (3) |
C6—O1 | 1.158 (2) | C115—H115 | 0.9300 |
C6—Mn1 | 1.7704 (19) | C116—H116 | 0.9300 |
C7—O2 | 1.154 (2) | C121—C126 | 1.389 (3) |
C7—Mn1 | 1.7667 (19) | C121—C122 | 1.390 (3) |
C8—S1 | 1.794 (2) | C121—P1 | 1.8393 (17) |
C8—H81A | 0.9600 | C122—C123 | 1.384 (3) |
C8—H81B | 0.9600 | C122—H122 | 0.9300 |
C8—H81C | 0.9600 | C123—C124 | 1.373 (3) |
C101—C102 | 1.391 (2) | C123—H123 | 0.9300 |
C101—C106 | 1.393 (2) | C124—C125 | 1.374 (4) |
C101—P1 | 1.8338 (17) | C124—H124 | 0.9300 |
C102—C103 | 1.386 (3) | C125—C126 | 1.384 (3) |
C102—H102 | 0.9300 | C125—H125 | 0.9300 |
C103—C104 | 1.373 (3) | C126—H126 | 0.9300 |
C103—H103 | 0.9300 | P1—Mn1 | 2.2407 (5) |
C5—C1—C2 | 107.49 (17) | C112—C113—H113 | 119.7 |
C5—C1—S1 | 126.00 (15) | C113—C114—C115 | 119.90 (19) |
C2—C1—S1 | 126.41 (14) | C113—C114—H114 | 120.0 |
C5—C1—Mn1 | 70.54 (10) | C115—C114—H114 | 120.0 |
C2—C1—Mn1 | 71.25 (10) | C114—C115—C116 | 120.2 (2) |
S1—C1—Mn1 | 126.45 (10) | C114—C115—H115 | 119.9 |
C3—C2—C1 | 107.72 (17) | C116—C115—H115 | 119.9 |
C3—C2—Mn1 | 70.96 (11) | C115—C116—C111 | 120.75 (19) |
C1—C2—Mn1 | 69.88 (10) | C115—C116—H116 | 119.6 |
C3—C2—H2 | 126.1 | C111—C116—H116 | 119.6 |
C1—C2—H2 | 126.1 | C126—C121—C122 | 117.73 (17) |
Mn1—C2—H2 | 124.6 | C126—C121—P1 | 123.89 (14) |
C2—C3—C4 | 108.59 (18) | C122—C121—P1 | 118.34 (14) |
C2—C3—Mn1 | 70.81 (10) | C123—C122—C121 | 121.0 (2) |
C4—C3—Mn1 | 70.79 (11) | C123—C122—H122 | 119.5 |
C2—C3—H3 | 125.7 | C121—C122—H122 | 119.5 |
C4—C3—H3 | 125.7 | C124—C123—C122 | 120.5 (2) |
Mn1—C3—H3 | 124.3 | C124—C123—H123 | 119.8 |
C5—C4—C3 | 107.63 (17) | C122—C123—H123 | 119.8 |
C5—C4—Mn1 | 69.94 (11) | C123—C124—C125 | 119.3 (2) |
C3—C4—Mn1 | 70.91 (11) | C123—C124—H124 | 120.4 |
C5—C4—H4 | 126.2 | C125—C124—H124 | 120.4 |
C3—C4—H4 | 126.2 | C124—C125—C126 | 120.6 (2) |
Mn1—C4—H4 | 124.6 | C124—C125—H125 | 119.7 |
C4—C5—C1 | 108.56 (18) | C126—C125—H125 | 119.7 |
C4—C5—Mn1 | 71.56 (11) | C125—C126—C121 | 120.9 (2) |
C1—C5—Mn1 | 70.74 (10) | C125—C126—H126 | 119.5 |
C4—C5—H5 | 125.7 | C121—C126—H126 | 119.5 |
C1—C5—H5 | 125.7 | C101—P1—C111 | 103.59 (8) |
Mn1—C5—H5 | 123.6 | C101—P1—C121 | 102.50 (8) |
O1—C6—Mn1 | 176.73 (18) | C111—P1—C121 | 100.53 (8) |
O2—C7—Mn1 | 176.40 (18) | C101—P1—Mn1 | 113.03 (6) |
S1—C8—H81A | 109.5 | C111—P1—Mn1 | 117.51 (6) |
S1—C8—H81B | 109.5 | C121—P1—Mn1 | 117.53 (6) |
H81A—C8—H81B | 109.5 | C1—S1—C8 | 98.99 (11) |
S1—C8—H81C | 109.5 | C7—Mn1—C6 | 93.22 (9) |
H81A—C8—H81C | 109.5 | C7—Mn1—C5 | 89.35 (8) |
H81B—C8—H81C | 109.5 | C6—Mn1—C5 | 127.37 (8) |
C102—C101—C106 | 118.12 (16) | C7—Mn1—C1 | 113.56 (8) |
C102—C101—P1 | 124.12 (13) | C6—Mn1—C1 | 94.47 (8) |
C106—C101—P1 | 117.73 (13) | C5—Mn1—C1 | 38.71 (7) |
C103—C102—C101 | 120.41 (18) | C7—Mn1—C2 | 151.88 (8) |
C103—C102—H102 | 119.8 | C6—Mn1—C2 | 94.52 (8) |
C101—C102—H102 | 119.8 | C5—Mn1—C2 | 64.64 (8) |
C104—C103—C102 | 120.68 (19) | C1—Mn1—C2 | 38.87 (7) |
C104—C103—H103 | 119.7 | C7—Mn1—C4 | 102.41 (9) |
C102—C103—H103 | 119.7 | C6—Mn1—C4 | 157.64 (8) |
C103—C104—C105 | 119.68 (18) | C5—Mn1—C4 | 38.50 (8) |
C103—C104—H104 | 120.2 | C1—Mn1—C4 | 64.73 (7) |
C105—C104—H104 | 120.2 | C2—Mn1—C4 | 64.35 (8) |
C104—C105—C106 | 120.02 (19) | C7—Mn1—C3 | 139.76 (9) |
C104—C105—H105 | 120.0 | C6—Mn1—C3 | 126.78 (9) |
C106—C105—H105 | 120.0 | C5—Mn1—C3 | 64.29 (8) |
C105—C106—C101 | 121.06 (18) | C1—Mn1—C3 | 64.58 (7) |
C105—C106—H106 | 119.5 | C2—Mn1—C3 | 38.23 (8) |
C101—C106—H106 | 119.5 | C4—Mn1—C3 | 38.30 (8) |
C112—C111—C116 | 118.32 (16) | C7—Mn1—P1 | 91.40 (6) |
C112—C111—P1 | 119.93 (14) | C6—Mn1—P1 | 94.01 (6) |
C116—C111—P1 | 121.74 (14) | C5—Mn1—P1 | 138.50 (6) |
C111—C112—C113 | 120.29 (19) | C1—Mn1—P1 | 153.08 (5) |
C111—C112—H112 | 119.9 | C2—Mn1—P1 | 114.93 (6) |
C113—C112—H112 | 119.9 | C4—Mn1—P1 | 101.40 (6) |
C114—C113—C112 | 120.6 (2) | C3—Mn1—P1 | 90.04 (6) |
C114—C113—H113 | 119.7 | ||
C5—C1—C2—C3 | 0.4 (2) | C114—C115—C116—C111 | −0.6 (3) |
S1—C1—C2—C3 | 176.85 (14) | C112—C111—C116—C115 | 1.2 (3) |
Mn1—C1—C2—C3 | −61.20 (13) | P1—C111—C116—C115 | −178.80 (16) |
C5—C1—C2—Mn1 | 61.59 (13) | C126—C121—C122—C123 | −1.3 (3) |
S1—C1—C2—Mn1 | −121.95 (15) | P1—C121—C122—C123 | 176.52 (16) |
C1—C2—C3—C4 | −0.5 (2) | C121—C122—C123—C124 | 1.5 (3) |
Mn1—C2—C3—C4 | −61.01 (13) | C122—C123—C124—C125 | −0.9 (4) |
C1—C2—C3—Mn1 | 60.50 (12) | C123—C124—C125—C126 | 0.2 (4) |
C2—C3—C4—C5 | 0.4 (2) | C124—C125—C126—C121 | 0.0 (4) |
Mn1—C3—C4—C5 | −60.60 (13) | C122—C121—C126—C125 | 0.6 (3) |
C2—C3—C4—Mn1 | 61.02 (13) | P1—C121—C126—C125 | −177.09 (17) |
C3—C4—C5—C1 | −0.2 (2) | C102—C101—P1—C111 | 4.93 (18) |
Mn1—C4—C5—C1 | −61.40 (13) | C106—C101—P1—C111 | −176.84 (14) |
C3—C4—C5—Mn1 | 61.23 (13) | C102—C101—P1—C121 | 109.18 (16) |
C2—C1—C5—C4 | −0.1 (2) | C106—C101—P1—C121 | −72.59 (15) |
S1—C1—C5—C4 | −176.61 (14) | C102—C101—P1—Mn1 | −123.32 (15) |
Mn1—C1—C5—C4 | 61.91 (13) | C106—C101—P1—Mn1 | 54.91 (15) |
C2—C1—C5—Mn1 | −62.05 (12) | C112—C111—P1—C101 | −115.98 (15) |
S1—C1—C5—Mn1 | 121.48 (15) | C116—C111—P1—C101 | 64.01 (16) |
C106—C101—C102—C103 | 1.1 (3) | C112—C111—P1—C121 | 138.27 (15) |
P1—C101—C102—C103 | 179.34 (15) | C116—C111—P1—C121 | −41.74 (16) |
C101—C102—C103—C104 | −0.2 (3) | C112—C111—P1—Mn1 | 9.44 (16) |
C102—C103—C104—C105 | −0.8 (3) | C116—C111—P1—Mn1 | −170.56 (13) |
C103—C104—C105—C106 | 0.8 (3) | C126—C121—P1—C101 | −4.02 (18) |
C104—C105—C106—C101 | 0.2 (3) | C122—C121—P1—C101 | 178.35 (15) |
C102—C101—C106—C105 | −1.1 (3) | C126—C121—P1—C111 | 102.60 (17) |
P1—C101—C106—C105 | −179.46 (15) | C122—C121—P1—C111 | −75.03 (16) |
C116—C111—C112—C113 | −1.1 (3) | C126—C121—P1—Mn1 | −128.59 (15) |
P1—C111—C112—C113 | 178.93 (15) | C122—C121—P1—Mn1 | 53.78 (16) |
C111—C112—C113—C114 | 0.4 (3) | C5—C1—S1—C8 | 83.89 (19) |
C112—C113—C114—C115 | 0.3 (3) | C2—C1—S1—C8 | −91.92 (19) |
C113—C114—C115—C116 | −0.1 (3) | Mn1—C1—S1—C8 | 175.31 (14) |
[Mn(C7H8BrS2)(C18H15P)(CO)2] | Dx = 1.557 Mg m−3 |
Mr = 609.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9309 reflections |
a = 16.5563 (7) Å | θ = 2.5–26.4° |
b = 16.2392 (7) Å | µ = 2.29 mm−1 |
c = 19.3372 (9) Å | T = 108 K |
V = 5199.0 (4) Å3 | Block, yellow |
Z = 8 | 0.06 × 0.03 × 0.03 mm |
F(000) = 2464 |
Bruker D8 VENTURE diffractometer | 5317 independent reflections |
Radiation source: rotating anode generator, Bruker TXS | 4408 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.070 |
mix of ω and phi scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) | h = −20→20 |
Tmin = 0.691, Tmax = 0.745 | k = −20→20 |
71764 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0267P)2 + 11.5166P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5317 reflections | Δρmax = 1.75 e Å−3 |
309 parameters | Δρmin = −0.83 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.18681 (18) | 0.52167 (17) | 0.51466 (15) | 0.0205 (6) | |
C2 | 0.18365 (18) | 0.45230 (17) | 0.55881 (15) | 0.0214 (6) | |
C3 | 0.26448 (18) | 0.42375 (17) | 0.56747 (16) | 0.0220 (6) | |
H3 | 0.281054 | 0.378875 | 0.595614 | 0.026* | |
C4 | 0.31593 (18) | 0.47427 (18) | 0.52658 (16) | 0.0233 (6) | |
H4 | 0.372786 | 0.468200 | 0.522309 | 0.028* | |
C5 | 0.26854 (18) | 0.53508 (18) | 0.49330 (15) | 0.0221 (6) | |
C6 | 0.24074 (19) | 0.65699 (19) | 0.59603 (17) | 0.0283 (7) | |
C7 | 0.19870 (18) | 0.54607 (19) | 0.67840 (17) | 0.0263 (7) | |
C21 | 0.1262 (2) | 0.3449 (2) | 0.65856 (18) | 0.0349 (8) | |
H21A | 0.163880 | 0.303603 | 0.640427 | 0.052* | |
H21B | 0.079624 | 0.317112 | 0.679367 | 0.052* | |
H21C | 0.153529 | 0.378298 | 0.693678 | 0.052* | |
C51 | 0.2917 (3) | 0.5539 (3) | 0.35646 (19) | 0.0491 (10) | |
H51A | 0.328874 | 0.506983 | 0.357407 | 0.074* | |
H51B | 0.304977 | 0.589633 | 0.317245 | 0.074* | |
H51C | 0.236126 | 0.533855 | 0.351594 | 0.074* | |
C101 | 0.45914 (17) | 0.61256 (17) | 0.62689 (15) | 0.0191 (6) | |
C102 | 0.53428 (19) | 0.6115 (2) | 0.65933 (17) | 0.0278 (7) | |
H102 | 0.540888 | 0.581784 | 0.701273 | 0.033* | |
C103 | 0.59923 (19) | 0.6530 (2) | 0.63131 (18) | 0.0302 (7) | |
H103 | 0.650198 | 0.651075 | 0.653808 | 0.036* | |
C104 | 0.59068 (19) | 0.6975 (2) | 0.57066 (18) | 0.0301 (7) | |
H104 | 0.635598 | 0.725645 | 0.551288 | 0.036* | |
C105 | 0.5164 (2) | 0.7005 (2) | 0.53868 (18) | 0.0327 (8) | |
H105 | 0.509751 | 0.731983 | 0.497672 | 0.039* | |
C106 | 0.45109 (19) | 0.65771 (19) | 0.56604 (17) | 0.0279 (7) | |
H106 | 0.400434 | 0.659287 | 0.543004 | 0.033* | |
C201 | 0.41323 (17) | 0.45329 (17) | 0.67923 (15) | 0.0202 (6) | |
C202 | 0.3722 (2) | 0.4024 (2) | 0.72517 (18) | 0.0306 (7) | |
H202 | 0.326845 | 0.423365 | 0.749617 | 0.037* | |
C203 | 0.3963 (2) | 0.3217 (2) | 0.7359 (2) | 0.0364 (8) | |
H203 | 0.368081 | 0.288175 | 0.768085 | 0.044* | |
C204 | 0.4610 (2) | 0.29003 (19) | 0.69994 (19) | 0.0340 (8) | |
H204 | 0.477856 | 0.234827 | 0.707483 | 0.041* | |
C205 | 0.5012 (2) | 0.3388 (2) | 0.65304 (18) | 0.0322 (8) | |
H205 | 0.545136 | 0.316785 | 0.627451 | 0.039* | |
C206 | 0.47782 (19) | 0.42054 (19) | 0.64277 (17) | 0.0261 (7) | |
H206 | 0.506333 | 0.453885 | 0.610619 | 0.031* | |
C301 | 0.36830 (18) | 0.60023 (17) | 0.75101 (16) | 0.0214 (6) | |
C302 | 0.4175 (2) | 0.5719 (2) | 0.80497 (17) | 0.0297 (7) | |
H302 | 0.454322 | 0.528196 | 0.796558 | 0.036* | |
C303 | 0.4133 (2) | 0.6066 (2) | 0.87054 (17) | 0.0344 (8) | |
H303 | 0.447248 | 0.586714 | 0.906486 | 0.041* | |
C304 | 0.3596 (2) | 0.6702 (2) | 0.88341 (17) | 0.0343 (8) | |
H304 | 0.355735 | 0.693243 | 0.928451 | 0.041* | |
C305 | 0.3115 (2) | 0.7001 (2) | 0.83062 (17) | 0.0294 (7) | |
H305 | 0.275461 | 0.744425 | 0.839250 | 0.035* | |
C306 | 0.31580 (18) | 0.66550 (18) | 0.76477 (16) | 0.0237 (6) | |
H306 | 0.282601 | 0.686571 | 0.728824 | 0.028* | |
Br1 | 0.09568 (2) | 0.57867 (2) | 0.48202 (2) | 0.03033 (10) | |
O1 | 0.22383 (18) | 0.72561 (14) | 0.58849 (15) | 0.0493 (7) | |
O2 | 0.15558 (15) | 0.54373 (17) | 0.72554 (13) | 0.0432 (6) | |
P1 | 0.37290 (4) | 0.55680 (4) | 0.66341 (4) | 0.01715 (15) | |
S2 | 0.09263 (5) | 0.41001 (5) | 0.58932 (5) | 0.0323 (2) | |
S5 | 0.30077 (6) | 0.61057 (6) | 0.43473 (5) | 0.0351 (2) | |
Mn1 | 0.25793 (2) | 0.54970 (2) | 0.60251 (2) | 0.01677 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0231 (15) | 0.0142 (13) | 0.0242 (15) | 0.0013 (11) | −0.0058 (12) | −0.0001 (11) |
C2 | 0.0224 (14) | 0.0165 (14) | 0.0254 (15) | −0.0038 (12) | −0.0050 (12) | −0.0026 (12) |
C3 | 0.0273 (16) | 0.0110 (13) | 0.0275 (15) | 0.0011 (11) | −0.0043 (13) | −0.0027 (12) |
C4 | 0.0223 (15) | 0.0195 (14) | 0.0281 (16) | 0.0015 (12) | −0.0031 (13) | −0.0047 (12) |
C5 | 0.0242 (15) | 0.0196 (14) | 0.0225 (15) | −0.0010 (12) | −0.0023 (12) | −0.0008 (12) |
C6 | 0.0288 (17) | 0.0203 (16) | 0.0359 (18) | 0.0005 (13) | −0.0114 (14) | −0.0017 (14) |
C7 | 0.0184 (15) | 0.0234 (15) | 0.0372 (18) | −0.0026 (12) | −0.0023 (13) | −0.0080 (14) |
C21 | 0.0350 (18) | 0.0314 (18) | 0.0383 (19) | −0.0051 (15) | 0.0057 (16) | 0.0078 (15) |
C51 | 0.061 (3) | 0.062 (3) | 0.0245 (18) | −0.001 (2) | −0.0047 (17) | −0.0011 (18) |
C101 | 0.0173 (14) | 0.0140 (13) | 0.0259 (15) | −0.0016 (11) | 0.0002 (12) | −0.0006 (11) |
C102 | 0.0230 (15) | 0.0274 (16) | 0.0329 (17) | −0.0036 (13) | −0.0051 (13) | 0.0047 (14) |
C103 | 0.0187 (15) | 0.0287 (17) | 0.0432 (19) | −0.0076 (13) | −0.0050 (14) | 0.0014 (15) |
C104 | 0.0244 (16) | 0.0247 (16) | 0.0414 (19) | −0.0085 (13) | 0.0076 (14) | −0.0013 (14) |
C105 | 0.0352 (18) | 0.0302 (17) | 0.0327 (18) | −0.0095 (14) | 0.0001 (15) | 0.0093 (14) |
C106 | 0.0247 (16) | 0.0256 (16) | 0.0333 (18) | −0.0044 (13) | −0.0044 (13) | 0.0070 (14) |
C201 | 0.0188 (14) | 0.0175 (14) | 0.0242 (15) | 0.0004 (11) | −0.0048 (11) | 0.0019 (12) |
C202 | 0.0277 (16) | 0.0247 (16) | 0.0395 (18) | 0.0031 (13) | 0.0051 (15) | 0.0068 (14) |
C203 | 0.040 (2) | 0.0230 (16) | 0.046 (2) | −0.0015 (15) | 0.0049 (17) | 0.0142 (15) |
C204 | 0.0362 (19) | 0.0178 (15) | 0.048 (2) | 0.0067 (14) | −0.0051 (16) | 0.0057 (15) |
C205 | 0.0308 (17) | 0.0265 (17) | 0.0392 (19) | 0.0101 (14) | −0.0020 (15) | −0.0008 (15) |
C206 | 0.0241 (15) | 0.0234 (15) | 0.0309 (17) | 0.0033 (12) | −0.0005 (13) | 0.0039 (13) |
C301 | 0.0208 (14) | 0.0189 (14) | 0.0246 (14) | −0.0061 (12) | −0.0023 (12) | 0.0013 (12) |
C302 | 0.0319 (18) | 0.0264 (16) | 0.0309 (17) | −0.0019 (14) | −0.0047 (14) | 0.0041 (14) |
C303 | 0.047 (2) | 0.0330 (18) | 0.0235 (16) | −0.0100 (16) | −0.0082 (15) | 0.0046 (14) |
C304 | 0.042 (2) | 0.0366 (19) | 0.0242 (16) | −0.0190 (16) | 0.0037 (15) | −0.0051 (14) |
C305 | 0.0259 (16) | 0.0269 (16) | 0.0353 (18) | −0.0111 (13) | 0.0053 (14) | −0.0110 (14) |
C306 | 0.0195 (14) | 0.0204 (14) | 0.0313 (17) | −0.0056 (12) | −0.0013 (13) | −0.0036 (13) |
Br1 | 0.02633 (17) | 0.02767 (17) | 0.03698 (19) | 0.00277 (13) | −0.01067 (14) | 0.00469 (14) |
O1 | 0.0623 (18) | 0.0153 (12) | 0.0702 (19) | 0.0069 (11) | −0.0254 (15) | −0.0009 (12) |
O2 | 0.0327 (13) | 0.0607 (18) | 0.0361 (14) | −0.0077 (12) | 0.0128 (11) | −0.0122 (13) |
P1 | 0.0152 (3) | 0.0141 (3) | 0.0221 (4) | −0.0002 (3) | −0.0019 (3) | 0.0016 (3) |
S2 | 0.0250 (4) | 0.0310 (4) | 0.0408 (5) | −0.0123 (3) | −0.0080 (3) | 0.0094 (4) |
S5 | 0.0379 (5) | 0.0353 (5) | 0.0322 (4) | −0.0092 (4) | 0.0010 (4) | 0.0103 (4) |
Mn1 | 0.0155 (2) | 0.0113 (2) | 0.0235 (2) | 0.00044 (16) | −0.00246 (17) | −0.00037 (17) |
C1—C2 | 1.414 (4) | C103—C104 | 1.385 (5) |
C1—C5 | 1.431 (4) | C103—H103 | 0.9500 |
C1—Br1 | 1.879 (3) | C104—C105 | 1.378 (5) |
C1—Mn1 | 2.117 (3) | C104—H104 | 0.9500 |
C2—C3 | 1.426 (4) | C105—C106 | 1.390 (4) |
C2—S2 | 1.758 (3) | C105—H105 | 0.9500 |
C2—Mn1 | 2.174 (3) | C106—H106 | 0.9500 |
C3—C4 | 1.423 (4) | C201—C206 | 1.387 (4) |
C3—Mn1 | 2.157 (3) | C201—C202 | 1.390 (4) |
C3—H3 | 0.9500 | C201—P1 | 1.834 (3) |
C4—C5 | 1.416 (4) | C202—C203 | 1.386 (4) |
C4—Mn1 | 2.140 (3) | C202—H202 | 0.9500 |
C4—H4 | 0.9500 | C203—C204 | 1.377 (5) |
C5—S5 | 1.752 (3) | C203—H203 | 0.9500 |
C5—Mn1 | 2.132 (3) | C204—C205 | 1.376 (5) |
C6—O1 | 1.158 (4) | C204—H204 | 0.9500 |
C6—Mn1 | 1.770 (3) | C205—C206 | 1.396 (4) |
C7—O2 | 1.159 (4) | C205—H205 | 0.9500 |
C7—Mn1 | 1.766 (3) | C206—H206 | 0.9500 |
C21—S2 | 1.795 (3) | C301—C306 | 1.396 (4) |
C21—H21A | 0.9800 | C301—C302 | 1.401 (4) |
C21—H21B | 0.9800 | C301—P1 | 1.836 (3) |
C21—H21C | 0.9800 | C302—C303 | 1.389 (5) |
C51—S5 | 1.778 (4) | C302—H302 | 0.9500 |
C51—H51A | 0.9800 | C303—C304 | 1.387 (5) |
C51—H51B | 0.9800 | C303—H303 | 0.9500 |
C51—H51C | 0.9800 | C304—C305 | 1.382 (5) |
C101—C106 | 1.393 (4) | C304—H304 | 0.9500 |
C101—C102 | 1.393 (4) | C305—C306 | 1.393 (4) |
C101—P1 | 1.832 (3) | C305—H305 | 0.9500 |
C102—C103 | 1.380 (4) | C306—H306 | 0.9500 |
C102—H102 | 0.9500 | P1—Mn1 | 2.2413 (8) |
C2—C1—C5 | 109.3 (3) | C201—C202—H202 | 119.4 |
C2—C1—Br1 | 124.4 (2) | C204—C203—C202 | 120.1 (3) |
C5—C1—Br1 | 126.0 (2) | C204—C203—H203 | 119.9 |
C2—C1—Mn1 | 72.98 (16) | C202—C203—H203 | 119.9 |
C5—C1—Mn1 | 70.91 (17) | C205—C204—C203 | 119.6 (3) |
Br1—C1—Mn1 | 127.61 (15) | C205—C204—H204 | 120.2 |
C1—C2—C3 | 107.2 (3) | C203—C204—H204 | 120.2 |
C1—C2—S2 | 123.1 (2) | C204—C205—C206 | 120.5 (3) |
C3—C2—S2 | 129.6 (2) | C204—C205—H205 | 119.8 |
C1—C2—Mn1 | 68.56 (16) | C206—C205—H205 | 119.8 |
C3—C2—Mn1 | 70.13 (16) | C201—C206—C205 | 120.4 (3) |
S2—C2—Mn1 | 129.68 (16) | C201—C206—H206 | 119.8 |
C4—C3—C2 | 108.0 (3) | C205—C206—H206 | 119.8 |
C4—C3—Mn1 | 70.00 (16) | C306—C301—C302 | 118.0 (3) |
C2—C3—Mn1 | 71.43 (16) | C306—C301—P1 | 119.5 (2) |
C4—C3—H3 | 126.0 | C302—C301—P1 | 122.5 (2) |
C2—C3—H3 | 126.0 | C303—C302—C301 | 121.2 (3) |
Mn1—C3—H3 | 124.2 | C303—C302—H302 | 119.4 |
C5—C4—C3 | 108.8 (3) | C301—C302—H302 | 119.4 |
C5—C4—Mn1 | 70.36 (17) | C304—C303—C302 | 119.8 (3) |
C3—C4—Mn1 | 71.33 (17) | C304—C303—H303 | 120.1 |
C5—C4—H4 | 125.6 | C302—C303—H303 | 120.1 |
C3—C4—H4 | 125.6 | C305—C304—C303 | 119.9 (3) |
Mn1—C4—H4 | 124.3 | C305—C304—H304 | 120.0 |
C4—C5—C1 | 106.7 (3) | C303—C304—H304 | 120.0 |
C4—C5—S5 | 127.8 (2) | C304—C305—C306 | 120.3 (3) |
C1—C5—S5 | 125.5 (2) | C304—C305—H305 | 119.9 |
C4—C5—Mn1 | 70.92 (17) | C306—C305—H305 | 119.9 |
C1—C5—Mn1 | 69.72 (17) | C305—C306—C301 | 120.8 (3) |
S5—C5—Mn1 | 125.97 (16) | C305—C306—H306 | 119.6 |
O1—C6—Mn1 | 174.2 (3) | C301—C306—H306 | 119.6 |
O2—C7—Mn1 | 175.7 (3) | C101—P1—C201 | 103.50 (13) |
S2—C21—H21A | 109.5 | C101—P1—C301 | 101.43 (13) |
S2—C21—H21B | 109.5 | C201—P1—C301 | 102.31 (13) |
H21A—C21—H21B | 109.5 | C101—P1—Mn1 | 119.00 (10) |
S2—C21—H21C | 109.5 | C201—P1—Mn1 | 110.46 (9) |
H21A—C21—H21C | 109.5 | C301—P1—Mn1 | 117.98 (10) |
H21B—C21—H21C | 109.5 | C2—S2—C21 | 102.41 (15) |
S5—C51—H51A | 109.5 | C5—S5—C51 | 99.34 (18) |
S5—C51—H51B | 109.5 | C7—Mn1—C6 | 90.14 (15) |
H51A—C51—H51B | 109.5 | C7—Mn1—C1 | 110.54 (13) |
S5—C51—H51C | 109.5 | C6—Mn1—C1 | 93.75 (13) |
H51A—C51—H51C | 109.5 | C7—Mn1—C5 | 149.88 (13) |
H51B—C51—H51C | 109.5 | C6—Mn1—C5 | 93.02 (14) |
C106—C101—C102 | 118.2 (3) | C1—Mn1—C5 | 39.37 (11) |
C106—C101—P1 | 120.7 (2) | C7—Mn1—C4 | 143.16 (13) |
C102—C101—P1 | 121.1 (2) | C6—Mn1—C4 | 125.95 (14) |
C103—C102—C101 | 120.8 (3) | C1—Mn1—C4 | 64.90 (11) |
C103—C102—H102 | 119.6 | C5—Mn1—C4 | 38.71 (11) |
C101—C102—H102 | 119.6 | C7—Mn1—C3 | 104.91 (13) |
C102—C103—C104 | 120.5 (3) | C6—Mn1—C3 | 156.80 (13) |
C102—C103—H103 | 119.7 | C1—Mn1—C3 | 64.66 (11) |
C104—C103—H103 | 119.7 | C5—Mn1—C3 | 65.12 (11) |
C105—C104—C103 | 119.3 (3) | C4—Mn1—C3 | 38.67 (11) |
C105—C104—H104 | 120.3 | C7—Mn1—C2 | 89.12 (13) |
C103—C104—H104 | 120.3 | C6—Mn1—C2 | 126.70 (13) |
C104—C105—C106 | 120.4 (3) | C1—Mn1—C2 | 38.46 (11) |
C104—C105—H105 | 119.8 | C5—Mn1—C2 | 65.21 (11) |
C106—C105—H105 | 119.8 | C4—Mn1—C2 | 64.58 (11) |
C105—C106—C101 | 120.7 (3) | C3—Mn1—C2 | 38.44 (11) |
C105—C106—H106 | 119.7 | C7—Mn1—P1 | 92.11 (10) |
C101—C106—H106 | 119.7 | C6—Mn1—P1 | 97.07 (10) |
C206—C201—C202 | 118.3 (3) | C1—Mn1—P1 | 154.86 (9) |
C206—C201—P1 | 123.2 (2) | C5—Mn1—P1 | 117.14 (8) |
C202—C201—P1 | 118.2 (2) | C4—Mn1—P1 | 90.51 (8) |
C203—C202—C201 | 121.1 (3) | C3—Mn1—P1 | 99.85 (8) |
C203—C202—H202 | 119.4 | C2—Mn1—P1 | 136.22 (8) |
C5—C1—C2—C3 | 2.2 (3) | C201—C202—C203—C204 | −1.1 (6) |
Br1—C1—C2—C3 | 175.9 (2) | C202—C203—C204—C205 | −0.5 (6) |
Mn1—C1—C2—C3 | −59.8 (2) | C203—C204—C205—C206 | 1.3 (5) |
C5—C1—C2—S2 | −173.7 (2) | C202—C201—C206—C205 | −0.9 (5) |
Br1—C1—C2—S2 | −0.1 (4) | P1—C201—C206—C205 | −174.4 (2) |
Mn1—C1—C2—S2 | 124.3 (2) | C204—C205—C206—C201 | −0.7 (5) |
C5—C1—C2—Mn1 | 62.0 (2) | C306—C301—C302—C303 | 1.1 (5) |
Br1—C1—C2—Mn1 | −124.3 (2) | P1—C301—C302—C303 | 179.3 (2) |
C1—C2—C3—C4 | −2.0 (3) | C301—C302—C303—C304 | 0.2 (5) |
S2—C2—C3—C4 | 173.6 (2) | C302—C303—C304—C305 | −1.4 (5) |
Mn1—C2—C3—C4 | −60.8 (2) | C303—C304—C305—C306 | 1.2 (5) |
C1—C2—C3—Mn1 | 58.8 (2) | C304—C305—C306—C301 | 0.1 (5) |
S2—C2—C3—Mn1 | −125.6 (3) | C302—C301—C306—C305 | −1.3 (4) |
C2—C3—C4—C5 | 1.0 (3) | P1—C301—C306—C305 | −179.5 (2) |
Mn1—C3—C4—C5 | −60.7 (2) | C106—C101—P1—C201 | 130.1 (3) |
C2—C3—C4—Mn1 | 61.7 (2) | C102—C101—P1—C201 | −50.3 (3) |
C3—C4—C5—C1 | 0.4 (3) | C106—C101—P1—C301 | −124.1 (3) |
Mn1—C4—C5—C1 | −60.9 (2) | C102—C101—P1—C301 | 55.5 (3) |
C3—C4—C5—S5 | −177.5 (2) | C106—C101—P1—Mn1 | 7.2 (3) |
Mn1—C4—C5—S5 | 121.2 (3) | C102—C101—P1—Mn1 | −173.3 (2) |
C3—C4—C5—Mn1 | 61.3 (2) | C206—C201—P1—C101 | −25.4 (3) |
C2—C1—C5—C4 | −1.6 (3) | C202—C201—P1—C101 | 161.0 (3) |
Br1—C1—C5—C4 | −175.2 (2) | C206—C201—P1—C301 | −130.5 (3) |
Mn1—C1—C5—C4 | 61.7 (2) | C202—C201—P1—C301 | 55.9 (3) |
C2—C1—C5—S5 | 176.3 (2) | C206—C201—P1—Mn1 | 103.0 (3) |
Br1—C1—C5—S5 | 2.8 (4) | C202—C201—P1—Mn1 | −70.5 (3) |
Mn1—C1—C5—S5 | −120.4 (2) | C306—C301—P1—C101 | 95.8 (2) |
C2—C1—C5—Mn1 | −63.3 (2) | C302—C301—P1—C101 | −82.4 (3) |
Br1—C1—C5—Mn1 | 123.1 (2) | C306—C301—P1—C201 | −157.5 (2) |
C106—C101—C102—C103 | −1.0 (5) | C302—C301—P1—C201 | 24.4 (3) |
P1—C101—C102—C103 | 179.5 (3) | C306—C301—P1—Mn1 | −36.1 (3) |
C101—C102—C103—C104 | 0.8 (5) | C302—C301—P1—Mn1 | 145.8 (2) |
C102—C103—C104—C105 | 0.5 (5) | C1—C2—S2—C21 | −165.1 (3) |
C103—C104—C105—C106 | −1.5 (5) | C3—C2—S2—C21 | 19.9 (3) |
C104—C105—C106—C101 | 1.3 (5) | Mn1—C2—S2—C21 | −76.6 (2) |
C102—C101—C106—C105 | −0.1 (5) | C4—C5—S5—C51 | 88.0 (3) |
P1—C101—C106—C105 | 179.5 (3) | C1—C5—S5—C51 | −89.5 (3) |
C206—C201—C202—C203 | 1.8 (5) | Mn1—C5—S5—C51 | −179.0 (2) |
P1—C201—C202—C203 | 175.6 (3) |
[Mn(C8H10BrS)(C18H15P)(CO)2] | F(000) = 1328 |
Mr = 655.48 | Dx = 1.571 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7717 (4) Å | Cell parameters from 9839 reflections |
b = 13.2135 (6) Å | θ = 2.8–28.3° |
c = 23.9428 (12) Å | µ = 2.23 mm−1 |
β = 92.884 (2)° | T = 108 K |
V = 2771.6 (2) Å3 | Block, yellow |
Z = 4 | 0.07 × 0.03 × 0.02 mm |
Bruker D8 VENTURE diffractometer | 6886 independent reflections |
Radiation source: rotating anode generator, Bruker TXS | 5787 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.047 |
mix of ω and phi scans | θmax = 28.3°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) | h = −10→11 |
Tmin = 0.676, Tmax = 0.746 | k = −17→17 |
51088 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0155P)2 + 3.2607P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
6886 reflections | Δρmax = 0.44 e Å−3 |
359 parameters | Δρmin = −0.44 e Å−3 |
13 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2586 (2) | 0.12152 (16) | 0.41353 (10) | 0.0226 (4) | |
C2 | 0.2713 (3) | 0.14498 (17) | 0.47206 (9) | 0.0242 (5) | |
C3 | 0.4047 (3) | 0.20537 (17) | 0.48106 (9) | 0.0235 (5) | |
C4 | 0.4668 (2) | 0.22478 (16) | 0.42827 (9) | 0.0212 (4) | |
H4 | 0.551531 | 0.267237 | 0.421846 | 0.025* | |
C5 | 0.3794 (2) | 0.16929 (16) | 0.38668 (9) | 0.0214 (4) | |
C6 | 0.0321 (3) | 0.27900 (17) | 0.42725 (9) | 0.0237 (5) | |
C7 | 0.2495 (2) | 0.38743 (17) | 0.47259 (9) | 0.0220 (4) | |
C31 | 0.6246 (3) | 0.3260 (2) | 0.52988 (12) | 0.0426 (7) | |
H31A | 0.702148 | 0.290705 | 0.509154 | 0.064* | |
H31B | 0.672121 | 0.354909 | 0.564201 | 0.064* | |
H31C | 0.579318 | 0.380350 | 0.506657 | 0.064* | |
C51 | 0.6220 (3) | 0.1674 (2) | 0.31777 (12) | 0.0419 (7) | |
H51A | 0.649496 | 0.235749 | 0.330551 | 0.063* | |
H51B | 0.658374 | 0.156684 | 0.280187 | 0.063* | |
H51C | 0.669327 | 0.117534 | 0.343513 | 0.063* | |
C101 | 0.4207 (2) | 0.41426 (15) | 0.32760 (9) | 0.0175 (4) | |
C102 | 0.5242 (2) | 0.45669 (17) | 0.36723 (10) | 0.0234 (5) | |
H102 | 0.492976 | 0.469438 | 0.403999 | 0.028* | |
C103 | 0.6716 (3) | 0.48044 (19) | 0.35372 (11) | 0.0295 (5) | |
H103 | 0.740373 | 0.509754 | 0.381040 | 0.035* | |
C104 | 0.7186 (3) | 0.46152 (19) | 0.30049 (11) | 0.0304 (5) | |
H104 | 0.820402 | 0.476476 | 0.291429 | 0.036* | |
C105 | 0.6177 (3) | 0.42092 (18) | 0.26058 (10) | 0.0288 (5) | |
H105 | 0.649759 | 0.408754 | 0.223865 | 0.035* | |
C106 | 0.4688 (2) | 0.39763 (17) | 0.27382 (10) | 0.0236 (5) | |
H106 | 0.399669 | 0.370227 | 0.245978 | 0.028* | |
C201 | 0.1579 (2) | 0.51522 (15) | 0.35974 (8) | 0.0170 (4) | |
C202 | 0.0442 (2) | 0.53725 (16) | 0.39684 (9) | 0.0207 (4) | |
H202 | 0.004787 | 0.484805 | 0.419103 | 0.025* | |
C203 | −0.0114 (3) | 0.63514 (18) | 0.40142 (10) | 0.0278 (5) | |
H203 | −0.088849 | 0.649088 | 0.426688 | 0.033* | |
C204 | 0.0450 (3) | 0.71244 (19) | 0.36946 (11) | 0.0339 (6) | |
H204 | 0.006226 | 0.779235 | 0.372560 | 0.041* | |
C205 | 0.1585 (3) | 0.69178 (18) | 0.33288 (10) | 0.0301 (5) | |
H205 | 0.198447 | 0.744730 | 0.311108 | 0.036* | |
C206 | 0.2137 (2) | 0.59446 (17) | 0.32796 (9) | 0.0224 (4) | |
H206 | 0.290989 | 0.581164 | 0.302534 | 0.027* | |
C301 | 0.1187 (2) | 0.34262 (16) | 0.28881 (8) | 0.0178 (4) | |
C302 | 0.0966 (2) | 0.40326 (17) | 0.24147 (9) | 0.0223 (4) | |
H302 | 0.142408 | 0.468354 | 0.240665 | 0.027* | |
C303 | 0.0077 (3) | 0.36925 (19) | 0.19521 (10) | 0.0282 (5) | |
H303 | −0.007245 | 0.411379 | 0.163251 | 0.034* | |
C304 | −0.0585 (3) | 0.27432 (19) | 0.19585 (10) | 0.0284 (5) | |
H304 | −0.118561 | 0.250991 | 0.164325 | 0.034* | |
C305 | −0.0368 (3) | 0.21353 (19) | 0.24252 (10) | 0.0270 (5) | |
H305 | −0.081821 | 0.148147 | 0.242939 | 0.032* | |
C306 | 0.0503 (2) | 0.24749 (17) | 0.28889 (9) | 0.0218 (4) | |
H306 | 0.063433 | 0.205378 | 0.320930 | 0.026* | |
O1 | −0.09873 (19) | 0.27324 (14) | 0.42857 (8) | 0.0372 (4) | |
O2 | 0.2612 (2) | 0.45272 (13) | 0.50492 (7) | 0.0326 (4) | |
P1 | 0.23045 (6) | 0.38530 (4) | 0.35158 (2) | 0.01510 (11) | |
S3 | 0.47823 (8) | 0.23802 (5) | 0.54754 (3) | 0.03575 (15) | |
S5 | 0.41720 (7) | 0.15300 (5) | 0.31603 (3) | 0.02877 (13) | |
Mn1 | 0.23579 (4) | 0.28206 (2) | 0.42672 (2) | 0.01697 (8) | |
Br1A | 0.1258 (2) | 0.02378 (11) | 0.37839 (6) | 0.0286 (2) | 0.7611 (16) |
S2A | 0.1567 (3) | 0.0935 (3) | 0.5239 (2) | 0.0271 (4) | 0.7611 (16) |
C21A | 0.2531 (4) | −0.0267 (3) | 0.53431 (16) | 0.0405 (9) | 0.7611 (16) |
H21A | 0.252379 | −0.063535 | 0.498781 | 0.061* | 0.7611 (16) |
H21B | 0.200261 | −0.066734 | 0.561858 | 0.061* | 0.7611 (16) |
H21C | 0.358780 | −0.014831 | 0.547959 | 0.061* | 0.7611 (16) |
Br1B | 0.1591 (6) | 0.1001 (5) | 0.5327 (3) | 0.0493 (18) | 0.2389 (16) |
S2B | 0.131 (2) | 0.0365 (10) | 0.3913 (5) | 0.036 (2) | 0.2389 (16) |
C21B | 0.2237 (14) | −0.0773 (8) | 0.4156 (6) | 0.045 (3) | 0.2389 (16) |
H21D | 0.159721 | −0.135744 | 0.405178 | 0.068* | 0.2389 (16) |
H21E | 0.322487 | −0.083621 | 0.398520 | 0.068* | 0.2389 (16) |
H21F | 0.239714 | −0.074587 | 0.456370 | 0.068* | 0.2389 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0240 (11) | 0.0161 (10) | 0.0274 (12) | −0.0042 (8) | −0.0001 (9) | 0.0027 (9) |
C2 | 0.0286 (11) | 0.0213 (11) | 0.0230 (11) | −0.0023 (9) | 0.0040 (9) | 0.0080 (9) |
C3 | 0.0269 (11) | 0.0229 (11) | 0.0204 (11) | −0.0006 (9) | −0.0018 (9) | 0.0070 (9) |
C4 | 0.0210 (10) | 0.0183 (10) | 0.0240 (11) | −0.0015 (8) | −0.0003 (8) | 0.0049 (9) |
C5 | 0.0247 (11) | 0.0165 (10) | 0.0233 (11) | 0.0008 (8) | 0.0033 (9) | 0.0029 (8) |
C6 | 0.0281 (11) | 0.0206 (11) | 0.0228 (11) | −0.0049 (9) | 0.0055 (9) | 0.0022 (9) |
C7 | 0.0264 (11) | 0.0242 (11) | 0.0157 (10) | −0.0028 (9) | 0.0024 (8) | 0.0057 (9) |
C31 | 0.0365 (15) | 0.0550 (18) | 0.0350 (15) | −0.0138 (13) | −0.0097 (12) | −0.0061 (13) |
C51 | 0.0330 (14) | 0.0497 (17) | 0.0442 (16) | 0.0086 (12) | 0.0143 (12) | 0.0046 (13) |
C101 | 0.0158 (9) | 0.0169 (9) | 0.0200 (10) | 0.0004 (7) | 0.0019 (8) | 0.0039 (8) |
C102 | 0.0198 (10) | 0.0285 (12) | 0.0220 (11) | −0.0030 (9) | 0.0007 (8) | 0.0037 (9) |
C103 | 0.0171 (10) | 0.0354 (13) | 0.0355 (14) | −0.0056 (9) | −0.0048 (9) | 0.0073 (11) |
C104 | 0.0156 (10) | 0.0340 (13) | 0.0421 (15) | 0.0013 (9) | 0.0071 (10) | 0.0105 (11) |
C105 | 0.0264 (11) | 0.0315 (12) | 0.0297 (13) | 0.0043 (10) | 0.0136 (10) | 0.0034 (10) |
C106 | 0.0224 (10) | 0.0243 (11) | 0.0244 (11) | −0.0004 (9) | 0.0043 (9) | −0.0016 (9) |
C201 | 0.0151 (9) | 0.0191 (10) | 0.0166 (10) | −0.0025 (8) | −0.0026 (7) | −0.0005 (8) |
C202 | 0.0155 (9) | 0.0245 (11) | 0.0222 (11) | −0.0043 (8) | 0.0014 (8) | 0.0000 (9) |
C203 | 0.0211 (11) | 0.0289 (12) | 0.0339 (13) | 0.0023 (9) | 0.0062 (9) | −0.0020 (10) |
C204 | 0.0361 (13) | 0.0229 (12) | 0.0434 (15) | 0.0082 (10) | 0.0079 (11) | 0.0039 (11) |
C205 | 0.0362 (13) | 0.0231 (11) | 0.0314 (13) | 0.0006 (10) | 0.0060 (10) | 0.0092 (10) |
C206 | 0.0220 (10) | 0.0257 (11) | 0.0196 (11) | 0.0009 (9) | 0.0030 (8) | 0.0038 (9) |
C301 | 0.0164 (9) | 0.0209 (10) | 0.0160 (10) | −0.0001 (8) | 0.0009 (8) | −0.0019 (8) |
C302 | 0.0241 (11) | 0.0245 (11) | 0.0180 (10) | 0.0017 (9) | −0.0009 (8) | −0.0016 (9) |
C303 | 0.0301 (12) | 0.0377 (13) | 0.0165 (11) | 0.0054 (10) | −0.0024 (9) | −0.0023 (10) |
C304 | 0.0222 (11) | 0.0431 (14) | 0.0196 (11) | −0.0002 (10) | −0.0007 (9) | −0.0124 (10) |
C305 | 0.0241 (11) | 0.0305 (12) | 0.0269 (12) | −0.0084 (9) | 0.0042 (9) | −0.0097 (10) |
C306 | 0.0204 (10) | 0.0252 (11) | 0.0200 (11) | −0.0033 (8) | 0.0025 (8) | −0.0016 (9) |
O1 | 0.0234 (9) | 0.0379 (10) | 0.0510 (12) | −0.0059 (7) | 0.0099 (8) | 0.0056 (9) |
O2 | 0.0493 (11) | 0.0271 (9) | 0.0212 (8) | −0.0062 (8) | 0.0013 (8) | −0.0034 (7) |
P1 | 0.0148 (2) | 0.0172 (2) | 0.0133 (2) | −0.00280 (19) | 0.00064 (18) | 0.00045 (19) |
S3 | 0.0447 (4) | 0.0419 (4) | 0.0197 (3) | −0.0054 (3) | −0.0077 (3) | 0.0082 (3) |
S5 | 0.0346 (3) | 0.0255 (3) | 0.0270 (3) | −0.0041 (2) | 0.0088 (2) | −0.0073 (2) |
Mn1 | 0.01927 (15) | 0.01714 (15) | 0.01465 (15) | −0.00385 (12) | 0.00220 (12) | 0.00208 (12) |
Br1A | 0.0344 (3) | 0.0202 (4) | 0.0311 (5) | −0.0119 (3) | 0.0011 (3) | −0.0032 (3) |
S2A | 0.0272 (9) | 0.0231 (8) | 0.0317 (11) | −0.0041 (6) | 0.0075 (6) | 0.0096 (7) |
C21A | 0.049 (2) | 0.0285 (17) | 0.045 (2) | 0.0000 (15) | 0.0081 (17) | 0.0193 (16) |
Br1B | 0.069 (2) | 0.0315 (15) | 0.050 (3) | −0.0072 (11) | 0.0247 (15) | 0.0108 (14) |
S2B | 0.045 (3) | 0.022 (3) | 0.041 (5) | −0.015 (2) | 0.002 (4) | −0.009 (3) |
C21B | 0.039 (6) | 0.026 (6) | 0.071 (9) | 0.003 (5) | 0.008 (6) | 0.001 (6) |
C1—C5 | 1.416 (3) | C104—H104 | 0.9500 |
C1—C2 | 1.434 (3) | C105—C106 | 1.394 (3) |
C1—S2B | 1.656 (14) | C105—H105 | 0.9500 |
C1—Br1A | 1.906 (3) | C106—H106 | 0.9500 |
C1—Mn1 | 2.155 (2) | C201—C206 | 1.397 (3) |
C2—C3 | 1.424 (3) | C201—C202 | 1.399 (3) |
C2—S2A | 1.771 (5) | C201—P1 | 1.845 (2) |
C2—Br1B | 1.890 (7) | C202—C203 | 1.389 (3) |
C2—Mn1 | 2.127 (2) | C202—H202 | 0.9500 |
C3—C4 | 1.425 (3) | C203—C204 | 1.383 (3) |
C3—S3 | 1.742 (2) | C203—H203 | 0.9500 |
C3—Mn1 | 2.173 (2) | C204—C205 | 1.386 (3) |
C4—C5 | 1.428 (3) | C204—H204 | 0.9500 |
C4—Mn1 | 2.162 (2) | C205—C206 | 1.381 (3) |
C4—H4 | 0.9500 | C205—H205 | 0.9500 |
C5—S5 | 1.753 (2) | C206—H206 | 0.9500 |
C5—Mn1 | 2.202 (2) | C301—C306 | 1.393 (3) |
C6—O1 | 1.152 (3) | C301—C302 | 1.394 (3) |
C6—Mn1 | 1.788 (2) | C301—P1 | 1.841 (2) |
C7—O2 | 1.160 (3) | C302—C303 | 1.396 (3) |
C7—Mn1 | 1.774 (2) | C302—H302 | 0.9500 |
C31—S3 | 1.798 (3) | C303—C304 | 1.383 (3) |
C31—H31A | 0.9800 | C303—H303 | 0.9500 |
C31—H31B | 0.9800 | C304—C305 | 1.382 (3) |
C31—H31C | 0.9800 | C304—H304 | 0.9500 |
C51—S5 | 1.805 (3) | C305—C306 | 1.390 (3) |
C51—H51A | 0.9800 | C305—H305 | 0.9500 |
C51—H51B | 0.9800 | C306—H306 | 0.9500 |
C51—H51C | 0.9800 | P1—Mn1 | 2.2563 (6) |
C101—C106 | 1.392 (3) | S2A—C21A | 1.811 (5) |
C101—C102 | 1.397 (3) | C21A—H21A | 0.9800 |
C101—P1 | 1.833 (2) | C21A—H21B | 0.9800 |
C102—C103 | 1.384 (3) | C21A—H21C | 0.9800 |
C102—H102 | 0.9500 | S2B—C21B | 1.793 (13) |
C103—C104 | 1.382 (4) | C21B—H21D | 0.9800 |
C103—H103 | 0.9500 | C21B—H21E | 0.9800 |
C104—C105 | 1.378 (4) | C21B—H21F | 0.9800 |
C5—C1—C2 | 108.93 (19) | C203—C204—C205 | 119.5 (2) |
C5—C1—S2B | 131.8 (5) | C203—C204—H204 | 120.2 |
C2—C1—S2B | 118.6 (5) | C205—C204—H204 | 120.2 |
C5—C1—Br1A | 123.81 (18) | C206—C205—C204 | 120.2 (2) |
C2—C1—Br1A | 126.40 (17) | C206—C205—H205 | 119.9 |
C5—C1—Mn1 | 72.83 (12) | C204—C205—H205 | 119.9 |
C2—C1—Mn1 | 69.35 (12) | C205—C206—C201 | 121.1 (2) |
S2B—C1—Mn1 | 130.4 (5) | C205—C206—H206 | 119.4 |
Br1A—C1—Mn1 | 132.24 (12) | C201—C206—H206 | 119.4 |
C3—C2—C1 | 106.96 (19) | C306—C301—C302 | 118.5 (2) |
C3—C2—S2A | 126.9 (2) | C306—C301—P1 | 119.14 (16) |
C1—C2—S2A | 125.6 (2) | C302—C301—P1 | 122.30 (16) |
C3—C2—Br1B | 121.0 (3) | C301—C302—C303 | 120.6 (2) |
C1—C2—Br1B | 131.7 (3) | C301—C302—H302 | 119.7 |
C3—C2—Mn1 | 72.42 (12) | C303—C302—H302 | 119.7 |
C1—C2—Mn1 | 71.53 (12) | C304—C303—C302 | 120.1 (2) |
S2A—C2—Mn1 | 127.65 (17) | C304—C303—H303 | 120.0 |
Br1B—C2—Mn1 | 126.2 (2) | C302—C303—H303 | 120.0 |
C2—C3—C4 | 108.3 (2) | C305—C304—C303 | 119.7 (2) |
C2—C3—S3 | 122.75 (17) | C305—C304—H304 | 120.1 |
C4—C3—S3 | 128.74 (17) | C303—C304—H304 | 120.1 |
C2—C3—Mn1 | 68.91 (12) | C304—C305—C306 | 120.4 (2) |
C4—C3—Mn1 | 70.39 (12) | C304—C305—H305 | 119.8 |
S3—C3—Mn1 | 129.93 (13) | C306—C305—H305 | 119.8 |
C3—C4—C5 | 108.09 (19) | C305—C306—C301 | 120.6 (2) |
C3—C4—Mn1 | 71.24 (12) | C305—C306—H306 | 119.7 |
C5—C4—Mn1 | 72.43 (12) | C301—C306—H306 | 119.7 |
C3—C4—H4 | 126.0 | C101—P1—C301 | 105.32 (9) |
C5—C4—H4 | 126.0 | C101—P1—C201 | 99.41 (9) |
Mn1—C4—H4 | 122.1 | C301—P1—C201 | 101.48 (9) |
C1—C5—C4 | 107.46 (19) | C101—P1—Mn1 | 113.16 (7) |
C1—C5—S5 | 124.44 (17) | C301—P1—Mn1 | 117.03 (7) |
C4—C5—S5 | 127.95 (16) | C201—P1—Mn1 | 118.15 (7) |
C1—C5—Mn1 | 69.27 (12) | C3—S3—C31 | 100.44 (12) |
C4—C5—Mn1 | 69.37 (12) | C5—S5—C51 | 101.60 (12) |
S5—C5—Mn1 | 130.03 (12) | C7—Mn1—C6 | 92.86 (10) |
O1—C6—Mn1 | 177.3 (2) | C7—Mn1—C2 | 110.42 (9) |
O2—C7—Mn1 | 176.22 (19) | C6—Mn1—C2 | 95.61 (9) |
S3—C31—H31A | 109.5 | C7—Mn1—C1 | 149.24 (9) |
S3—C31—H31B | 109.5 | C6—Mn1—C1 | 94.53 (9) |
H31A—C31—H31B | 109.5 | C2—Mn1—C1 | 39.13 (9) |
S3—C31—H31C | 109.5 | C7—Mn1—C4 | 103.30 (9) |
H31A—C31—H31C | 109.5 | C6—Mn1—C4 | 158.16 (9) |
H31B—C31—H31C | 109.5 | C2—Mn1—C4 | 65.17 (8) |
S5—C51—H51A | 109.5 | C1—Mn1—C4 | 64.16 (8) |
S5—C51—H51B | 109.5 | C7—Mn1—C3 | 88.42 (9) |
H51A—C51—H51B | 109.5 | C6—Mn1—C3 | 129.55 (9) |
S5—C51—H51C | 109.5 | C2—Mn1—C3 | 38.66 (8) |
H51A—C51—H51C | 109.5 | C1—Mn1—C3 | 64.10 (9) |
H51B—C51—H51C | 109.5 | C4—Mn1—C3 | 38.37 (8) |
C106—C101—C102 | 118.35 (19) | C7—Mn1—C5 | 141.11 (9) |
C106—C101—P1 | 125.43 (16) | C6—Mn1—C5 | 125.58 (9) |
C102—C101—P1 | 116.22 (16) | C2—Mn1—C5 | 64.76 (8) |
C103—C102—C101 | 121.0 (2) | C1—Mn1—C5 | 37.90 (8) |
C103—C102—H102 | 119.5 | C4—Mn1—C5 | 38.19 (8) |
C101—C102—H102 | 119.5 | C3—Mn1—C5 | 63.72 (8) |
C104—C103—C102 | 120.0 (2) | C7—Mn1—P1 | 90.98 (7) |
C104—C103—H103 | 120.0 | C6—Mn1—P1 | 92.22 (7) |
C102—C103—H103 | 120.0 | C2—Mn1—P1 | 156.73 (7) |
C105—C104—C103 | 119.9 (2) | C1—Mn1—P1 | 118.47 (6) |
C105—C104—H104 | 120.1 | C4—Mn1—P1 | 101.96 (6) |
C103—C104—H104 | 120.1 | C3—Mn1—P1 | 138.21 (6) |
C104—C105—C106 | 120.3 (2) | C5—Mn1—P1 | 92.95 (6) |
C104—C105—H105 | 119.8 | C2—S2A—C21A | 99.0 (2) |
C106—C105—H105 | 119.8 | S2A—C21A—H21A | 109.5 |
C101—C106—C105 | 120.4 (2) | S2A—C21A—H21B | 109.5 |
C101—C106—H106 | 119.8 | H21A—C21A—H21B | 109.5 |
C105—C106—H106 | 119.8 | S2A—C21A—H21C | 109.5 |
C206—C201—C202 | 118.06 (19) | H21A—C21A—H21C | 109.5 |
C206—C201—P1 | 120.49 (16) | H21B—C21A—H21C | 109.5 |
C202—C201—P1 | 121.44 (16) | C1—S2B—C21B | 100.1 (9) |
C203—C202—C201 | 120.6 (2) | S2B—C21B—H21D | 109.5 |
C203—C202—H202 | 119.7 | S2B—C21B—H21E | 109.5 |
C201—C202—H202 | 119.7 | H21D—C21B—H21E | 109.5 |
C204—C203—C202 | 120.5 (2) | S2B—C21B—H21F | 109.5 |
C204—C203—H203 | 119.8 | H21D—C21B—H21F | 109.5 |
C202—C203—H203 | 119.8 | H21E—C21B—H21F | 109.5 |
C5—C1—C2—C3 | −1.8 (2) | C102—C101—C106—C105 | 1.4 (3) |
S2B—C1—C2—C3 | 170.1 (6) | P1—C101—C106—C105 | −178.77 (17) |
Br1A—C1—C2—C3 | 167.84 (17) | C104—C105—C106—C101 | −0.6 (4) |
Mn1—C1—C2—C3 | −64.23 (15) | C206—C201—C202—C203 | 0.4 (3) |
C5—C1—C2—S2A | −174.0 (2) | P1—C201—C202—C203 | −178.47 (17) |
Br1A—C1—C2—S2A | −4.4 (3) | C201—C202—C203—C204 | −0.2 (4) |
Mn1—C1—C2—S2A | 123.6 (2) | C202—C203—C204—C205 | −0.3 (4) |
C5—C1—C2—Br1B | −175.1 (3) | C203—C204—C205—C206 | 0.7 (4) |
S2B—C1—C2—Br1B | −3.2 (7) | C204—C205—C206—C201 | −0.5 (4) |
Mn1—C1—C2—Br1B | 122.5 (3) | C202—C201—C206—C205 | −0.1 (3) |
C5—C1—C2—Mn1 | 62.43 (15) | P1—C201—C206—C205 | 178.81 (18) |
S2B—C1—C2—Mn1 | −125.7 (6) | C306—C301—C302—C303 | 0.1 (3) |
Br1A—C1—C2—Mn1 | −127.93 (18) | P1—C301—C302—C303 | −178.32 (17) |
C1—C2—C3—C4 | 4.1 (2) | C301—C302—C303—C304 | −0.5 (3) |
S2A—C2—C3—C4 | 176.2 (2) | C302—C303—C304—C305 | 0.3 (3) |
Br1B—C2—C3—C4 | 178.3 (3) | C303—C304—C305—C306 | 0.3 (3) |
Mn1—C2—C3—C4 | −59.54 (15) | C304—C305—C306—C301 | −0.8 (3) |
C1—C2—C3—S3 | −171.62 (17) | C302—C301—C306—C305 | 0.6 (3) |
S2A—C2—C3—S3 | 0.5 (3) | P1—C301—C306—C305 | 178.98 (16) |
Br1B—C2—C3—S3 | 2.5 (4) | C106—C101—P1—C301 | −5.0 (2) |
Mn1—C2—C3—S3 | 124.75 (17) | C102—C101—P1—C301 | 174.82 (16) |
C1—C2—C3—Mn1 | 63.63 (15) | C106—C101—P1—C201 | −109.79 (19) |
S2A—C2—C3—Mn1 | −124.3 (2) | C102—C101—P1—C201 | 70.06 (18) |
Br1B—C2—C3—Mn1 | −122.2 (3) | C106—C101—P1—Mn1 | 123.98 (18) |
C2—C3—C4—C5 | −4.9 (2) | C102—C101—P1—Mn1 | −56.16 (18) |
S3—C3—C4—C5 | 170.51 (17) | C306—C301—P1—C101 | 123.01 (17) |
Mn1—C3—C4—C5 | −63.49 (15) | C302—C301—P1—C101 | −58.62 (19) |
C2—C3—C4—Mn1 | 58.63 (16) | C306—C301—P1—C201 | −133.77 (17) |
S3—C3—C4—Mn1 | −126.0 (2) | C302—C301—P1—C201 | 44.60 (19) |
C2—C1—C5—C4 | −1.2 (2) | C306—C301—P1—Mn1 | −3.68 (19) |
S2B—C1—C5—C4 | −171.6 (7) | C302—C301—P1—Mn1 | 174.69 (15) |
Br1A—C1—C5—C4 | −171.13 (16) | C206—C201—P1—C101 | 26.67 (19) |
Mn1—C1—C5—C4 | 59.08 (15) | C202—C201—P1—C101 | −154.49 (17) |
C2—C1—C5—S5 | 174.69 (16) | C206—C201—P1—C301 | −81.20 (18) |
S2B—C1—C5—S5 | 4.3 (7) | C202—C201—P1—C301 | 97.63 (18) |
Br1A—C1—C5—S5 | 4.7 (3) | C206—C201—P1—Mn1 | 149.41 (15) |
Mn1—C1—C5—S5 | −125.05 (17) | C202—C201—P1—Mn1 | −31.76 (19) |
C2—C1—C5—Mn1 | −60.25 (15) | C2—C3—S3—C31 | −172.4 (2) |
S2B—C1—C5—Mn1 | 129.3 (7) | C4—C3—S3—C31 | 12.8 (2) |
Br1A—C1—C5—Mn1 | 129.79 (18) | Mn1—C3—S3—C31 | −83.51 (18) |
C3—C4—C5—C1 | 3.7 (2) | C1—C5—S5—C51 | −148.7 (2) |
Mn1—C4—C5—C1 | −59.02 (15) | C4—C5—S5—C51 | 26.3 (2) |
C3—C4—C5—S5 | −171.97 (17) | Mn1—C5—S5—C51 | 120.45 (16) |
Mn1—C4—C5—S5 | 125.31 (18) | C3—C2—S2A—C21A | −90.2 (3) |
C3—C4—C5—Mn1 | 62.72 (15) | C1—C2—S2A—C21A | 80.5 (3) |
C106—C101—C102—C103 | −0.9 (3) | Mn1—C2—S2A—C21A | 174.0 (2) |
P1—C101—C102—C103 | 179.28 (18) | C5—C1—S2B—C21B | 95.2 (8) |
C101—C102—C103—C104 | −0.5 (4) | C2—C1—S2B—C21B | −74.5 (9) |
C102—C103—C104—C105 | 1.3 (4) | Mn1—C1—S2B—C21B | −160.9 (5) |
C103—C104—C105—C106 | −0.8 (4) |
[Mn(C10H15S)(C18H15P)(CO)2] | F(000) = 1384 |
Mr = 668.75 | Dx = 1.515 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5274 (5) Å | Cell parameters from 9916 reflections |
b = 13.6748 (5) Å | θ = 2.8–27.1° |
c = 17.9841 (7) Å | µ = 0.89 mm−1 |
β = 107.934 (1)° | T = 107 K |
V = 2931.2 (2) Å3 | Block, yellow |
Z = 4 | 0.03 × 0.03 × 0.02 mm |
Bruker D8 VENTURE diffractometer | 6471 independent reflections |
Radiation source: rotating anode generator, Bruker TXS | 5457 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.056 |
mix of ω and phi scans | θmax = 27.1°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) | h = −16→16 |
Tmin = 0.714, Tmax = 0.746 | k = −17→17 |
46511 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0268P)2 + 3.0744P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
6471 reflections | Δρmax = 0.41 e Å−3 |
357 parameters | Δρmin = −0.50 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.83539 (16) | 0.29472 (14) | 0.76384 (11) | 0.0125 (4) | |
C2 | 0.78895 (16) | 0.26517 (14) | 0.68393 (12) | 0.0135 (4) | |
C3 | 0.87147 (16) | 0.28357 (14) | 0.64538 (11) | 0.0137 (4) | |
C4 | 0.96808 (16) | 0.32536 (14) | 0.70010 (11) | 0.0131 (4) | |
C5 | 0.94590 (16) | 0.33082 (14) | 0.77426 (11) | 0.0122 (4) | |
C6 | 0.78109 (18) | 0.46298 (16) | 0.58931 (13) | 0.0182 (4) | |
C7 | 0.91475 (17) | 0.52416 (15) | 0.71980 (12) | 0.0159 (4) | |
C11 | 0.7707 (2) | 0.14652 (16) | 0.84312 (14) | 0.0256 (5) | |
H11A | 0.707174 | 0.121871 | 0.800406 | 0.038* | |
H11B | 0.762567 | 0.125891 | 0.893290 | 0.038* | |
H11C | 0.840774 | 0.120232 | 0.837860 | 0.038* | |
C12 | 0.7201 (2) | 0.07918 (17) | 0.64081 (16) | 0.0309 (6) | |
H12A | 0.756807 | 0.076923 | 0.599926 | 0.046* | |
H12B | 0.659383 | 0.030940 | 0.629301 | 0.046* | |
H12C | 0.775142 | 0.064165 | 0.691476 | 0.046* | |
C13 | 0.9611 (2) | 0.15832 (17) | 0.56224 (13) | 0.0239 (5) | |
H13A | 1.034358 | 0.186743 | 0.589965 | 0.036* | |
H13B | 0.962295 | 0.132937 | 0.511550 | 0.036* | |
H13C | 0.944694 | 0.104879 | 0.593374 | 0.036* | |
C14 | 1.0675 (2) | 0.42142 (17) | 0.60000 (13) | 0.0236 (5) | |
H14A | 1.024044 | 0.380411 | 0.556497 | 0.035* | |
H14B | 1.137165 | 0.442087 | 0.590701 | 0.035* | |
H14C | 1.023285 | 0.479200 | 0.604037 | 0.035* | |
C15 | 1.07197 (18) | 0.25387 (16) | 0.91484 (12) | 0.0206 (5) | |
H15A | 1.003813 | 0.229547 | 0.924446 | 0.031* | |
H15B | 1.130852 | 0.263273 | 0.964824 | 0.031* | |
H15C | 1.097329 | 0.206310 | 0.883143 | 0.031* | |
C21 | 0.68358 (17) | 0.52150 (14) | 0.80934 (11) | 0.0127 (4) | |
C22 | 0.78584 (17) | 0.51244 (14) | 0.86795 (12) | 0.0149 (4) | |
H22 | 0.850027 | 0.490340 | 0.855295 | 0.018* | |
C23 | 0.79473 (18) | 0.53553 (15) | 0.94503 (12) | 0.0181 (4) | |
H23 | 0.864998 | 0.529479 | 0.984609 | 0.022* | |
C24 | 0.70221 (19) | 0.56707 (15) | 0.96413 (12) | 0.0192 (4) | |
H24 | 0.708087 | 0.581327 | 1.016945 | 0.023* | |
C25 | 0.59997 (18) | 0.57802 (16) | 0.90576 (13) | 0.0204 (5) | |
H25 | 0.536154 | 0.600412 | 0.918756 | 0.024* | |
C26 | 0.59083 (18) | 0.55641 (16) | 0.82878 (12) | 0.0182 (4) | |
H26 | 0.521193 | 0.565378 | 0.789064 | 0.022* | |
C31 | 0.54838 (16) | 0.41557 (14) | 0.67273 (11) | 0.0123 (4) | |
C32 | 0.50516 (17) | 0.40075 (14) | 0.59230 (12) | 0.0148 (4) | |
H32 | 0.544190 | 0.426062 | 0.558829 | 0.018* | |
C33 | 0.40608 (17) | 0.34962 (15) | 0.56055 (12) | 0.0176 (4) | |
H33 | 0.376488 | 0.341291 | 0.505565 | 0.021* | |
C34 | 0.35043 (18) | 0.31075 (16) | 0.60931 (13) | 0.0204 (5) | |
H34 | 0.281374 | 0.277189 | 0.587808 | 0.025* | |
C35 | 0.39548 (19) | 0.32083 (17) | 0.68930 (13) | 0.0223 (5) | |
H35 | 0.358677 | 0.291637 | 0.722675 | 0.027* | |
C36 | 0.49376 (17) | 0.37304 (15) | 0.72148 (12) | 0.0166 (4) | |
H36 | 0.523817 | 0.379817 | 0.776584 | 0.020* | |
C51 | 0.62613 (16) | 0.60824 (14) | 0.66044 (11) | 0.0119 (4) | |
C52 | 0.70379 (17) | 0.68375 (15) | 0.66788 (12) | 0.0149 (4) | |
H52 | 0.780817 | 0.672174 | 0.694765 | 0.018* | |
C53 | 0.66970 (18) | 0.77576 (15) | 0.63639 (12) | 0.0165 (4) | |
H53 | 0.723525 | 0.826350 | 0.641772 | 0.020* | |
C54 | 0.55753 (18) | 0.79394 (15) | 0.59720 (12) | 0.0176 (4) | |
H54 | 0.534531 | 0.856712 | 0.575546 | 0.021* | |
C55 | 0.47930 (18) | 0.72024 (16) | 0.58977 (12) | 0.0186 (4) | |
H55 | 0.402407 | 0.732360 | 0.562848 | 0.022* | |
C56 | 0.51305 (17) | 0.62829 (15) | 0.62171 (12) | 0.0163 (4) | |
H56 | 0.458540 | 0.578477 | 0.617134 | 0.020* | |
Mn1 | 0.82771 (2) | 0.42018 (2) | 0.68787 (2) | 0.01044 (8) | |
O1 | 0.75636 (16) | 0.48643 (13) | 0.52464 (9) | 0.0334 (4) | |
O2 | 0.97898 (13) | 0.58724 (11) | 0.74077 (10) | 0.0245 (4) | |
P1 | 0.67503 (4) | 0.48976 (4) | 0.70839 (3) | 0.01046 (10) | |
S1 | 0.77351 (4) | 0.27881 (4) | 0.83908 (3) | 0.01521 (11) | |
S2 | 0.66271 (4) | 0.20100 (4) | 0.64403 (3) | 0.02024 (12) | |
S3 | 0.85401 (4) | 0.25121 (4) | 0.54721 (3) | 0.01705 (11) | |
S4 | 1.10035 (4) | 0.35255 (4) | 0.68976 (3) | 0.01745 (11) | |
S5 | 1.04219 (4) | 0.36957 (4) | 0.86318 (3) | 0.01510 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0143 (9) | 0.0118 (9) | 0.0121 (9) | 0.0015 (7) | 0.0049 (8) | 0.0010 (7) |
C2 | 0.0127 (9) | 0.0124 (9) | 0.0147 (10) | 0.0004 (7) | 0.0032 (8) | −0.0001 (8) |
C3 | 0.0149 (10) | 0.0141 (9) | 0.0119 (9) | 0.0008 (8) | 0.0041 (8) | −0.0006 (8) |
C4 | 0.0132 (9) | 0.0124 (9) | 0.0139 (10) | 0.0034 (7) | 0.0044 (8) | 0.0004 (8) |
C5 | 0.0108 (9) | 0.0130 (9) | 0.0115 (9) | 0.0018 (7) | 0.0017 (7) | 0.0006 (7) |
C6 | 0.0188 (10) | 0.0194 (10) | 0.0186 (11) | 0.0074 (8) | 0.0088 (9) | 0.0013 (9) |
C7 | 0.0138 (10) | 0.0167 (10) | 0.0181 (10) | 0.0039 (8) | 0.0061 (8) | 0.0033 (8) |
C11 | 0.0357 (13) | 0.0184 (11) | 0.0272 (12) | −0.0004 (10) | 0.0162 (11) | 0.0036 (9) |
C12 | 0.0292 (13) | 0.0203 (12) | 0.0430 (15) | −0.0031 (10) | 0.0108 (11) | −0.0089 (11) |
C13 | 0.0310 (13) | 0.0217 (11) | 0.0210 (11) | 0.0055 (10) | 0.0108 (10) | −0.0035 (9) |
C14 | 0.0261 (12) | 0.0268 (12) | 0.0203 (11) | −0.0065 (9) | 0.0105 (9) | 0.0010 (9) |
C15 | 0.0220 (11) | 0.0231 (11) | 0.0141 (10) | 0.0050 (9) | 0.0018 (9) | 0.0046 (9) |
C21 | 0.0178 (10) | 0.0110 (9) | 0.0098 (9) | −0.0010 (8) | 0.0050 (8) | 0.0013 (7) |
C22 | 0.0159 (10) | 0.0145 (9) | 0.0144 (10) | 0.0007 (8) | 0.0047 (8) | 0.0002 (8) |
C23 | 0.0202 (11) | 0.0187 (10) | 0.0124 (10) | 0.0007 (8) | 0.0005 (8) | −0.0005 (8) |
C24 | 0.0309 (12) | 0.0175 (10) | 0.0099 (10) | 0.0007 (9) | 0.0075 (9) | −0.0017 (8) |
C25 | 0.0213 (11) | 0.0239 (11) | 0.0190 (11) | 0.0043 (9) | 0.0107 (9) | −0.0025 (9) |
C26 | 0.0172 (10) | 0.0216 (11) | 0.0153 (10) | 0.0030 (8) | 0.0042 (8) | −0.0005 (8) |
C31 | 0.0105 (9) | 0.0130 (9) | 0.0125 (9) | 0.0026 (7) | 0.0022 (7) | −0.0004 (7) |
C32 | 0.0160 (10) | 0.0158 (10) | 0.0141 (10) | 0.0014 (8) | 0.0067 (8) | 0.0002 (8) |
C33 | 0.0179 (10) | 0.0181 (10) | 0.0131 (10) | 0.0036 (8) | −0.0007 (8) | −0.0043 (8) |
C34 | 0.0138 (10) | 0.0209 (11) | 0.0251 (12) | −0.0034 (8) | 0.0037 (9) | −0.0070 (9) |
C35 | 0.0211 (11) | 0.0241 (11) | 0.0240 (12) | −0.0060 (9) | 0.0103 (9) | −0.0003 (9) |
C36 | 0.0166 (10) | 0.0201 (10) | 0.0129 (10) | −0.0027 (8) | 0.0046 (8) | −0.0005 (8) |
C51 | 0.0144 (9) | 0.0137 (9) | 0.0086 (9) | 0.0020 (7) | 0.0050 (7) | 0.0004 (7) |
C52 | 0.0156 (10) | 0.0169 (10) | 0.0124 (9) | 0.0009 (8) | 0.0045 (8) | 0.0010 (8) |
C53 | 0.0202 (10) | 0.0165 (10) | 0.0136 (10) | −0.0030 (8) | 0.0061 (8) | −0.0002 (8) |
C54 | 0.0238 (11) | 0.0152 (10) | 0.0150 (10) | 0.0049 (8) | 0.0079 (9) | 0.0038 (8) |
C55 | 0.0148 (10) | 0.0216 (11) | 0.0191 (10) | 0.0042 (8) | 0.0049 (8) | 0.0022 (9) |
C56 | 0.0133 (10) | 0.0194 (10) | 0.0167 (10) | −0.0001 (8) | 0.0052 (8) | 0.0009 (8) |
Mn1 | 0.01027 (14) | 0.01196 (14) | 0.00930 (14) | 0.00097 (11) | 0.00335 (11) | 0.00041 (11) |
O1 | 0.0463 (11) | 0.0411 (10) | 0.0159 (8) | 0.0217 (9) | 0.0141 (8) | 0.0122 (8) |
O2 | 0.0202 (8) | 0.0175 (8) | 0.0339 (9) | −0.0040 (6) | 0.0057 (7) | 0.0003 (7) |
P1 | 0.0101 (2) | 0.0124 (2) | 0.0089 (2) | 0.00042 (18) | 0.00284 (18) | 0.00015 (19) |
S1 | 0.0178 (2) | 0.0160 (2) | 0.0142 (2) | 0.00022 (19) | 0.0084 (2) | 0.00203 (19) |
S2 | 0.0159 (3) | 0.0197 (3) | 0.0236 (3) | −0.0019 (2) | 0.0038 (2) | −0.0038 (2) |
S3 | 0.0190 (3) | 0.0211 (3) | 0.0107 (2) | 0.0018 (2) | 0.0041 (2) | −0.0033 (2) |
S4 | 0.0118 (2) | 0.0233 (3) | 0.0186 (3) | 0.0008 (2) | 0.0067 (2) | 0.0014 (2) |
S5 | 0.0138 (2) | 0.0182 (2) | 0.0109 (2) | 0.00023 (19) | 0.00027 (18) | −0.00120 (19) |
C1—C5 | 1.427 (3) | C15—H15C | 0.9800 |
C1—C2 | 1.433 (3) | C21—C22 | 1.391 (3) |
C1—S1 | 1.768 (2) | C21—C26 | 1.397 (3) |
C1—Mn1 | 2.1769 (19) | C21—P1 | 1.837 (2) |
C2—C3 | 1.433 (3) | C22—C23 | 1.392 (3) |
C2—S2 | 1.757 (2) | C22—H22 | 0.9500 |
C2—Mn1 | 2.171 (2) | C23—C24 | 1.376 (3) |
C3—C4 | 1.423 (3) | C23—H23 | 0.9500 |
C3—S3 | 1.767 (2) | C24—C25 | 1.392 (3) |
C3—Mn1 | 2.152 (2) | C24—H24 | 0.9500 |
C4—C5 | 1.446 (3) | C25—C26 | 1.385 (3) |
C4—S4 | 1.763 (2) | C25—H25 | 0.9500 |
C4—Mn1 | 2.1410 (19) | C26—H26 | 0.9500 |
C5—S5 | 1.762 (2) | C31—C32 | 1.394 (3) |
C5—Mn1 | 2.1640 (19) | C31—C36 | 1.394 (3) |
C6—O1 | 1.153 (3) | C31—P1 | 1.825 (2) |
C6—Mn1 | 1.785 (2) | C32—C33 | 1.385 (3) |
C7—O2 | 1.160 (3) | C32—H32 | 0.9500 |
C7—Mn1 | 1.776 (2) | C33—C34 | 1.383 (3) |
C11—S1 | 1.811 (2) | C33—H33 | 0.9500 |
C11—H11A | 0.9800 | C34—C35 | 1.381 (3) |
C11—H11B | 0.9800 | C34—H34 | 0.9500 |
C11—H11C | 0.9800 | C35—C36 | 1.386 (3) |
C12—S2 | 1.823 (2) | C35—H35 | 0.9500 |
C12—H12A | 0.9800 | C36—H36 | 0.9500 |
C12—H12B | 0.9800 | C51—C52 | 1.397 (3) |
C12—H12C | 0.9800 | C51—C56 | 1.400 (3) |
C13—S3 | 1.806 (2) | C51—P1 | 1.849 (2) |
C13—H13A | 0.9800 | C52—C53 | 1.392 (3) |
C13—H13B | 0.9800 | C52—H52 | 0.9500 |
C13—H13C | 0.9800 | C53—C54 | 1.387 (3) |
C14—S4 | 1.804 (2) | C53—H53 | 0.9500 |
C14—H14A | 0.9800 | C54—C55 | 1.383 (3) |
C14—H14B | 0.9800 | C54—H54 | 0.9500 |
C14—H14C | 0.9800 | C55—C56 | 1.393 (3) |
C15—S5 | 1.814 (2) | C55—H55 | 0.9500 |
C15—H15A | 0.9800 | C56—H56 | 0.9500 |
C15—H15B | 0.9800 | Mn1—P1 | 2.2659 (6) |
C5—C1—C2 | 107.89 (17) | C25—C26—H26 | 119.9 |
C5—C1—S1 | 125.34 (15) | C21—C26—H26 | 119.9 |
C2—C1—S1 | 126.51 (15) | C32—C31—C36 | 118.86 (18) |
C5—C1—Mn1 | 70.32 (11) | C32—C31—P1 | 117.59 (15) |
C2—C1—Mn1 | 70.54 (11) | C36—C31—P1 | 123.55 (15) |
S1—C1—Mn1 | 129.22 (10) | C33—C32—C31 | 120.89 (19) |
C1—C2—C3 | 107.77 (17) | C33—C32—H32 | 119.6 |
C1—C2—S2 | 125.95 (15) | C31—C32—H32 | 119.6 |
C3—C2—S2 | 125.64 (15) | C34—C33—C32 | 119.67 (19) |
C1—C2—Mn1 | 70.99 (11) | C34—C33—H33 | 120.2 |
C3—C2—Mn1 | 69.94 (11) | C32—C33—H33 | 120.2 |
S2—C2—Mn1 | 131.69 (11) | C35—C34—C33 | 119.9 (2) |
C4—C3—C2 | 108.81 (17) | C35—C34—H34 | 120.1 |
C4—C3—S3 | 127.49 (15) | C33—C34—H34 | 120.1 |
C2—C3—S3 | 123.60 (15) | C34—C35—C36 | 120.8 (2) |
C4—C3—Mn1 | 70.21 (11) | C34—C35—H35 | 119.6 |
C2—C3—Mn1 | 71.34 (11) | C36—C35—H35 | 119.6 |
S3—C3—Mn1 | 127.26 (11) | C35—C36—C31 | 119.80 (19) |
C3—C4—C5 | 107.13 (17) | C35—C36—H36 | 120.1 |
C3—C4—S4 | 129.66 (15) | C31—C36—H36 | 120.1 |
C5—C4—S4 | 122.71 (15) | C52—C51—C56 | 118.11 (18) |
C3—C4—Mn1 | 71.06 (11) | C52—C51—P1 | 118.83 (15) |
C5—C4—Mn1 | 71.24 (11) | C56—C51—P1 | 122.89 (15) |
S4—C4—Mn1 | 129.07 (11) | C53—C52—C51 | 120.79 (19) |
C1—C5—C4 | 108.38 (17) | C53—C52—H52 | 119.6 |
C1—C5—S5 | 126.06 (15) | C51—C52—H52 | 119.6 |
C4—C5—S5 | 125.48 (15) | C54—C53—C52 | 120.32 (19) |
C1—C5—Mn1 | 71.30 (11) | C54—C53—H53 | 119.8 |
C4—C5—Mn1 | 69.52 (11) | C52—C53—H53 | 119.8 |
S5—C5—Mn1 | 127.42 (10) | C55—C54—C53 | 119.69 (19) |
O1—C6—Mn1 | 175.31 (19) | C55—C54—H54 | 120.2 |
O2—C7—Mn1 | 174.41 (18) | C53—C54—H54 | 120.2 |
S1—C11—H11A | 109.5 | C54—C55—C56 | 120.12 (19) |
S1—C11—H11B | 109.5 | C54—C55—H55 | 119.9 |
H11A—C11—H11B | 109.5 | C56—C55—H55 | 119.9 |
S1—C11—H11C | 109.5 | C55—C56—C51 | 120.95 (19) |
H11A—C11—H11C | 109.5 | C55—C56—H56 | 119.5 |
H11B—C11—H11C | 109.5 | C51—C56—H56 | 119.5 |
S2—C12—H12A | 109.5 | C7—Mn1—C6 | 92.24 (10) |
S2—C12—H12B | 109.5 | C7—Mn1—C4 | 92.78 (8) |
H12A—C12—H12B | 109.5 | C6—Mn1—C4 | 107.93 (8) |
S2—C12—H12C | 109.5 | C7—Mn1—C3 | 127.69 (8) |
H12A—C12—H12C | 109.5 | C6—Mn1—C3 | 88.47 (9) |
H12B—C12—H12C | 109.5 | C4—Mn1—C3 | 38.73 (7) |
S3—C13—H13A | 109.5 | C7—Mn1—C5 | 90.21 (8) |
S3—C13—H13B | 109.5 | C6—Mn1—C5 | 147.16 (8) |
H13A—C13—H13B | 109.5 | C4—Mn1—C5 | 39.24 (7) |
S3—C13—H13C | 109.5 | C3—Mn1—C5 | 64.66 (7) |
H13A—C13—H13C | 109.5 | C7—Mn1—C2 | 154.30 (8) |
H13B—C13—H13C | 109.5 | C6—Mn1—C2 | 106.63 (9) |
S4—C14—H14A | 109.5 | C4—Mn1—C2 | 65.19 (7) |
S4—C14—H14B | 109.5 | C3—Mn1—C2 | 38.72 (7) |
H14A—C14—H14B | 109.5 | C5—Mn1—C2 | 64.45 (7) |
S4—C14—H14C | 109.5 | C7—Mn1—C1 | 121.60 (8) |
H14A—C14—H14C | 109.5 | C6—Mn1—C1 | 145.00 (9) |
H14B—C14—H14C | 109.5 | C4—Mn1—C1 | 65.29 (7) |
S5—C15—H15A | 109.5 | C3—Mn1—C1 | 64.65 (7) |
S5—C15—H15B | 109.5 | C5—Mn1—C1 | 38.38 (7) |
H15A—C15—H15B | 109.5 | C2—Mn1—C1 | 38.47 (7) |
S5—C15—H15C | 109.5 | C7—Mn1—P1 | 94.37 (7) |
H15A—C15—H15C | 109.5 | C6—Mn1—P1 | 89.40 (7) |
H15B—C15—H15C | 109.5 | C4—Mn1—P1 | 160.97 (6) |
C22—C21—C26 | 118.92 (18) | C3—Mn1—P1 | 137.93 (6) |
C22—C21—P1 | 119.18 (15) | C5—Mn1—P1 | 123.05 (5) |
C26—C21—P1 | 121.89 (15) | C2—Mn1—P1 | 102.93 (5) |
C21—C22—C23 | 120.45 (19) | C1—Mn1—P1 | 96.03 (5) |
C21—C22—H22 | 119.8 | C31—P1—C21 | 104.97 (9) |
C23—C22—H22 | 119.8 | C31—P1—C51 | 101.30 (9) |
C24—C23—C22 | 120.29 (19) | C21—P1—C51 | 99.44 (9) |
C24—C23—H23 | 119.9 | C31—P1—Mn1 | 113.29 (6) |
C22—C23—H23 | 119.9 | C21—P1—Mn1 | 117.70 (7) |
C23—C24—C25 | 119.73 (19) | C51—P1—Mn1 | 117.84 (6) |
C23—C24—H24 | 120.1 | C1—S1—C11 | 99.92 (10) |
C25—C24—H24 | 120.1 | C2—S2—C12 | 98.91 (10) |
C26—C25—C24 | 120.30 (19) | C3—S3—C13 | 99.72 (10) |
C26—C25—H25 | 119.9 | C4—S4—C14 | 103.97 (10) |
C24—C25—H25 | 119.9 | C5—S5—C15 | 100.24 (10) |
C25—C26—C21 | 120.27 (19) | ||
C5—C1—C2—C3 | −0.1 (2) | P1—C31—C32—C33 | −176.58 (15) |
S1—C1—C2—C3 | −174.49 (14) | C31—C32—C33—C34 | −1.5 (3) |
Mn1—C1—C2—C3 | 60.56 (14) | C32—C33—C34—C35 | −1.8 (3) |
C5—C1—C2—S2 | 171.05 (15) | C33—C34—C35—C36 | 2.7 (3) |
S1—C1—C2—S2 | −3.3 (3) | C34—C35—C36—C31 | −0.3 (3) |
Mn1—C1—C2—S2 | −128.25 (16) | C32—C31—C36—C35 | −2.9 (3) |
C5—C1—C2—Mn1 | −60.70 (13) | P1—C31—C36—C35 | 177.53 (16) |
S1—C1—C2—Mn1 | 124.95 (16) | C56—C51—C52—C53 | −1.1 (3) |
C1—C2—C3—C4 | −0.7 (2) | P1—C51—C52—C53 | −176.48 (15) |
S2—C2—C3—C4 | −171.96 (15) | C51—C52—C53—C54 | 0.2 (3) |
Mn1—C2—C3—C4 | 60.50 (14) | C52—C53—C54—C55 | 0.3 (3) |
C1—C2—C3—S3 | 175.89 (14) | C53—C54—C55—C56 | 0.2 (3) |
S2—C2—C3—S3 | 4.7 (3) | C54—C55—C56—C51 | −1.1 (3) |
Mn1—C2—C3—S3 | −122.88 (15) | C52—C51—C56—C55 | 1.6 (3) |
C1—C2—C3—Mn1 | −61.23 (13) | P1—C51—C56—C55 | 176.74 (16) |
S2—C2—C3—Mn1 | 127.55 (16) | C32—C31—P1—C21 | 164.63 (15) |
C2—C3—C4—C5 | 1.3 (2) | C36—C31—P1—C21 | −15.75 (19) |
S3—C3—C4—C5 | −175.15 (15) | C32—C31—P1—C51 | 61.53 (16) |
Mn1—C3—C4—C5 | 62.51 (13) | C36—C31—P1—C51 | −118.84 (17) |
C2—C3—C4—S4 | 173.26 (15) | C32—C31—P1—Mn1 | −65.66 (16) |
S3—C3—C4—S4 | −3.2 (3) | C36—C31—P1—Mn1 | 113.96 (16) |
Mn1—C3—C4—S4 | −125.53 (17) | C22—C21—P1—C31 | 134.26 (16) |
C2—C3—C4—Mn1 | −61.21 (14) | C26—C21—P1—C31 | −47.07 (19) |
S3—C3—C4—Mn1 | 122.34 (17) | C22—C21—P1—C51 | −121.26 (16) |
C2—C1—C5—C4 | 0.9 (2) | C26—C21—P1—C51 | 57.41 (18) |
S1—C1—C5—C4 | 175.38 (14) | C22—C21—P1—Mn1 | 7.20 (18) |
Mn1—C1—C5—C4 | −59.89 (13) | C26—C21—P1—Mn1 | −174.13 (15) |
C2—C1—C5—S5 | −176.00 (14) | C52—C51—P1—C31 | −174.23 (15) |
S1—C1—C5—S5 | −1.6 (3) | C56—C51—P1—C31 | 10.64 (19) |
Mn1—C1—C5—S5 | 123.17 (16) | C52—C51—P1—C21 | 78.29 (17) |
C2—C1—C5—Mn1 | 60.84 (13) | C56—C51—P1—C21 | −96.83 (18) |
S1—C1—C5—Mn1 | −124.73 (15) | C52—C51—P1—Mn1 | −50.07 (17) |
C3—C4—C5—C1 | −1.4 (2) | C56—C51—P1—Mn1 | 134.80 (15) |
S4—C4—C5—C1 | −174.03 (14) | C5—C1—S1—C11 | −109.70 (18) |
Mn1—C4—C5—C1 | 61.01 (13) | C2—C1—S1—C11 | 63.7 (2) |
C3—C4—C5—S5 | 175.57 (15) | Mn1—C1—S1—C11 | 157.66 (14) |
S4—C4—C5—S5 | 2.9 (3) | C1—C2—S2—C12 | −101.27 (19) |
Mn1—C4—C5—S5 | −122.03 (15) | C3—C2—S2—C12 | 68.4 (2) |
C3—C4—C5—Mn1 | −62.40 (13) | Mn1—C2—S2—C12 | 162.59 (15) |
S4—C4—C5—Mn1 | 124.96 (15) | C4—C3—S3—C13 | 62.7 (2) |
C26—C21—C22—C23 | 1.6 (3) | C2—C3—S3—C13 | −113.22 (18) |
P1—C21—C22—C23 | −179.71 (16) | Mn1—C3—S3—C13 | 155.46 (13) |
C21—C22—C23—C24 | 0.4 (3) | C3—C4—S4—C14 | 50.6 (2) |
C22—C23—C24—C25 | −1.5 (3) | C5—C4—S4—C14 | −138.59 (17) |
C23—C24—C25—C26 | 0.6 (3) | Mn1—C4—S4—C14 | −46.93 (16) |
C24—C25—C26—C21 | 1.3 (3) | C1—C5—S5—C15 | 67.77 (19) |
C22—C21—C26—C25 | −2.4 (3) | C4—C5—S5—C15 | −108.66 (18) |
P1—C21—C26—C25 | 178.90 (16) | Mn1—C5—S5—C15 | 161.08 (13) |
C36—C31—C32—C33 | 3.8 (3) |
[Mn(C6H6SBr)(C18H15P)(CO)2]·0.75C6H12 | Z = 1 |
Mr = 1189.73 | F(000) = 604 |
Triclinic, P1 | Dx = 1.545 Mg m−3 |
a = 10.3309 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7727 (5) Å | Cell parameters from 9912 reflections |
c = 13.0821 (6) Å | θ = 2.6–28.3° |
α = 87.692 (2)° | µ = 2.25 mm−1 |
β = 82.138 (2)° | T = 108 K |
γ = 62.507 (2)° | Block, yellow |
V = 1278.93 (11) Å3 | 0.05 × 0.03 × 0.02 mm |
Bruker D8 VENTURE diffractometer | 6351 independent reflections |
Radiation source: rotating anode generator, Bruker TXS | 5421 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.030 |
mix of ω and phi scans | θmax = 28.3°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) | h = −13→13 |
Tmin = 0.691, Tmax = 0.746 | k = −14→14 |
21220 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.0645P)2 + 9.2055P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
6351 reflections | Δρmax = 5.86 e Å−3 |
328 parameters | Δρmin = −1.71 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.54715 (7) | 0.16470 (6) | 0.71308 (5) | 0.01502 (15) | |
P1 | 0.35816 (11) | 0.28583 (11) | 0.83519 (8) | 0.0142 (2) | |
S1 | 0.82456 (14) | 0.06450 (15) | 0.51171 (11) | 0.0360 (3) | |
C1 | 0.5101 (5) | 0.1883 (5) | 0.5539 (3) | 0.0227 (9) | |
H1 | 0.491185 | 0.269896 | 0.515011 | 0.027* | 0.045 |
Br1 | 0.47595 (6) | 0.33947 (6) | 0.46706 (4) | 0.03273 (16) | 0.955 |
C2 | 0.6519 (5) | 0.0759 (5) | 0.5634 (3) | 0.0259 (9) | |
C3 | 0.6293 (6) | −0.0246 (5) | 0.6256 (4) | 0.0272 (10) | |
H3 | 0.704560 | −0.111543 | 0.644236 | 0.033* | 0.955 |
Br1A | 0.8104 (13) | −0.1748 (11) | 0.6135 (8) | 0.032 (2) | 0.045 |
C4 | 0.4770 (6) | 0.0253 (5) | 0.6557 (4) | 0.0259 (10) | |
H4 | 0.432080 | −0.021757 | 0.697919 | 0.031* | |
C5 | 0.4023 (5) | 0.1587 (5) | 0.6114 (3) | 0.0245 (9) | |
H5 | 0.298887 | 0.217106 | 0.619266 | 0.029* | |
C6 | 0.6095 (5) | 0.2937 (5) | 0.7088 (3) | 0.0210 (8) | |
C7 | 0.6602 (5) | 0.0691 (5) | 0.8083 (3) | 0.0206 (8) | |
C8 | 0.8528 (7) | −0.0069 (7) | 0.3874 (4) | 0.0406 (14) | |
H8A | 0.843033 | −0.093309 | 0.392390 | 0.061* | |
H8B | 0.951684 | −0.027761 | 0.353846 | 0.061* | |
H8C | 0.779304 | 0.060516 | 0.346471 | 0.061* | |
C11 | 0.4023 (5) | 0.2896 (4) | 0.9659 (3) | 0.0178 (8) | |
C12 | 0.5177 (5) | 0.3198 (5) | 0.9780 (4) | 0.0232 (9) | |
H12 | 0.574311 | 0.332310 | 0.918705 | 0.028* | |
C13 | 0.5502 (6) | 0.3318 (5) | 1.0754 (4) | 0.0296 (10) | |
H13 | 0.628362 | 0.352716 | 1.082559 | 0.035* | |
C14 | 0.4681 (7) | 0.3131 (6) | 1.1624 (4) | 0.0351 (12) | |
H14 | 0.490055 | 0.321166 | 1.229262 | 0.042* | |
C15 | 0.3556 (7) | 0.2829 (6) | 1.1515 (4) | 0.0392 (13) | |
H15 | 0.299858 | 0.270087 | 1.211285 | 0.047* | |
C16 | 0.3214 (6) | 0.2705 (6) | 1.0537 (3) | 0.0291 (10) | |
H16 | 0.243299 | 0.249221 | 1.047335 | 0.035* | |
C21 | 0.2484 (4) | 0.4735 (4) | 0.8155 (3) | 0.0173 (8) | |
C22 | 0.2642 (5) | 0.5289 (5) | 0.7200 (4) | 0.0235 (9) | |
H22 | 0.334099 | 0.469859 | 0.665733 | 0.028* | |
C23 | 0.1781 (6) | 0.6705 (5) | 0.7029 (4) | 0.0299 (10) | |
H23 | 0.189550 | 0.707571 | 0.637129 | 0.036* | |
C24 | 0.0764 (5) | 0.7571 (5) | 0.7814 (4) | 0.0294 (10) | |
H24 | 0.017167 | 0.853396 | 0.769258 | 0.035* | |
C25 | 0.0606 (5) | 0.7040 (5) | 0.8774 (4) | 0.0253 (9) | |
H25 | −0.008946 | 0.763828 | 0.931452 | 0.030* | |
C26 | 0.1462 (5) | 0.5630 (5) | 0.8950 (3) | 0.0215 (8) | |
H26 | 0.135349 | 0.526954 | 0.961299 | 0.026* | |
C31 | 0.2178 (5) | 0.2245 (4) | 0.8538 (3) | 0.0169 (8) | |
C32 | 0.0758 (5) | 0.3063 (5) | 0.8310 (3) | 0.0216 (8) | |
H32 | 0.047084 | 0.399577 | 0.809408 | 0.026* | |
C33 | −0.0257 (5) | 0.2530 (6) | 0.8394 (4) | 0.0270 (10) | |
H33 | −0.122260 | 0.309435 | 0.822666 | 0.032* | |
C34 | 0.0153 (5) | 0.1173 (5) | 0.8722 (4) | 0.0266 (10) | |
H34 | −0.053502 | 0.081039 | 0.878505 | 0.032* | |
C35 | 0.1565 (6) | 0.0348 (5) | 0.8958 (3) | 0.0249 (9) | |
H35 | 0.183997 | −0.057732 | 0.918830 | 0.030* | |
C36 | 0.2584 (5) | 0.0870 (5) | 0.8858 (3) | 0.0200 (8) | |
H36 | 0.355770 | 0.029192 | 0.900736 | 0.024* | |
O1 | 0.6538 (4) | 0.3752 (4) | 0.7021 (3) | 0.0331 (8) | |
O2 | 0.7383 (4) | 0.0040 (4) | 0.8672 (3) | 0.0281 (7) | |
C1S | 1.0331 (18) | −0.4060 (19) | 0.466 (2) | 0.115 (7) | 0.75 |
H1S1 | 1.005659 | −0.318186 | 0.428126 | 0.138* | 0.75 |
H1S2 | 1.129538 | −0.433667 | 0.490033 | 0.138* | 0.75 |
C2S | 0.9323 (15) | −0.3857 (16) | 0.5470 (15) | 0.091 (5) | 0.75 |
H2S1 | 0.931956 | −0.318171 | 0.596311 | 0.109* | 0.75 |
H2S2 | 0.833780 | −0.345250 | 0.523974 | 0.109* | 0.75 |
C3S | 0.958 (2) | −0.499 (3) | 0.5917 (11) | 0.118 (8) | 0.75 |
H3S1 | 1.050981 | −0.533266 | 0.621448 | 0.142* | 0.75 |
H3S2 | 0.877962 | −0.481000 | 0.649513 | 0.142* | 0.75 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0159 (3) | 0.0169 (3) | 0.0122 (3) | −0.0083 (2) | 0.0018 (2) | −0.0032 (2) |
P1 | 0.0150 (5) | 0.0168 (5) | 0.0121 (4) | −0.0091 (4) | 0.0009 (3) | −0.0027 (3) |
S1 | 0.0235 (6) | 0.0392 (7) | 0.0344 (7) | −0.0100 (5) | 0.0134 (5) | 0.0014 (5) |
C1 | 0.030 (2) | 0.028 (2) | 0.0128 (18) | −0.0164 (19) | −0.0009 (16) | −0.0005 (16) |
Br1 | 0.0388 (3) | 0.0344 (3) | 0.0205 (2) | −0.0140 (2) | −0.0012 (2) | 0.00277 (19) |
C2 | 0.030 (2) | 0.026 (2) | 0.016 (2) | −0.0107 (19) | 0.0068 (17) | −0.0084 (17) |
C3 | 0.036 (3) | 0.020 (2) | 0.022 (2) | −0.0100 (19) | 0.0038 (19) | −0.0100 (17) |
Br1A | 0.039 (6) | 0.024 (5) | 0.022 (5) | −0.005 (4) | 0.001 (4) | −0.010 (4) |
C4 | 0.037 (3) | 0.028 (2) | 0.020 (2) | −0.022 (2) | 0.0001 (18) | −0.0078 (17) |
C5 | 0.028 (2) | 0.035 (2) | 0.016 (2) | −0.020 (2) | −0.0012 (17) | −0.0065 (17) |
C6 | 0.019 (2) | 0.027 (2) | 0.0156 (19) | −0.0107 (17) | 0.0017 (15) | −0.0025 (16) |
C7 | 0.0175 (19) | 0.020 (2) | 0.023 (2) | −0.0088 (16) | 0.0033 (16) | −0.0042 (16) |
C8 | 0.044 (3) | 0.052 (3) | 0.027 (3) | −0.027 (3) | 0.015 (2) | −0.020 (2) |
C11 | 0.024 (2) | 0.0171 (19) | 0.0147 (18) | −0.0106 (16) | −0.0032 (15) | −0.0030 (14) |
C12 | 0.025 (2) | 0.026 (2) | 0.021 (2) | −0.0138 (18) | −0.0026 (17) | −0.0035 (17) |
C13 | 0.037 (3) | 0.030 (2) | 0.029 (2) | −0.018 (2) | −0.016 (2) | −0.0044 (19) |
C14 | 0.060 (4) | 0.031 (3) | 0.018 (2) | −0.022 (3) | −0.015 (2) | −0.0013 (19) |
C15 | 0.064 (4) | 0.044 (3) | 0.017 (2) | −0.032 (3) | 0.000 (2) | 0.000 (2) |
C16 | 0.042 (3) | 0.039 (3) | 0.015 (2) | −0.028 (2) | 0.0022 (19) | −0.0041 (18) |
C21 | 0.0163 (18) | 0.0175 (19) | 0.0192 (19) | −0.0090 (15) | 0.0000 (15) | −0.0024 (15) |
C22 | 0.025 (2) | 0.019 (2) | 0.022 (2) | −0.0081 (17) | 0.0053 (17) | −0.0024 (16) |
C23 | 0.030 (2) | 0.023 (2) | 0.029 (2) | −0.0077 (19) | 0.0028 (19) | 0.0054 (18) |
C24 | 0.025 (2) | 0.018 (2) | 0.040 (3) | −0.0063 (18) | 0.002 (2) | −0.0043 (19) |
C25 | 0.021 (2) | 0.023 (2) | 0.029 (2) | −0.0095 (18) | 0.0041 (18) | −0.0100 (18) |
C26 | 0.019 (2) | 0.024 (2) | 0.021 (2) | −0.0101 (17) | 0.0026 (16) | −0.0059 (16) |
C31 | 0.0198 (19) | 0.022 (2) | 0.0124 (17) | −0.0138 (16) | 0.0028 (14) | −0.0035 (14) |
C32 | 0.023 (2) | 0.026 (2) | 0.019 (2) | −0.0142 (18) | −0.0030 (16) | 0.0004 (16) |
C33 | 0.022 (2) | 0.041 (3) | 0.025 (2) | −0.020 (2) | −0.0026 (17) | −0.0010 (19) |
C34 | 0.030 (2) | 0.038 (3) | 0.023 (2) | −0.026 (2) | 0.0045 (18) | −0.0063 (19) |
C35 | 0.035 (2) | 0.026 (2) | 0.020 (2) | −0.021 (2) | 0.0039 (18) | −0.0037 (17) |
C36 | 0.021 (2) | 0.022 (2) | 0.0185 (19) | −0.0119 (17) | 0.0015 (16) | −0.0038 (15) |
O1 | 0.036 (2) | 0.036 (2) | 0.037 (2) | −0.0267 (17) | 0.0000 (16) | 0.0009 (16) |
O2 | 0.0236 (16) | 0.0275 (17) | 0.0297 (18) | −0.0075 (14) | −0.0090 (14) | 0.0038 (14) |
C1S | 0.069 (10) | 0.084 (10) | 0.21 (2) | −0.039 (9) | −0.065 (13) | 0.076 (13) |
C2S | 0.053 (7) | 0.078 (9) | 0.114 (12) | −0.001 (6) | −0.024 (8) | −0.052 (9) |
C3S | 0.106 (13) | 0.24 (3) | 0.058 (8) | −0.115 (16) | −0.040 (8) | 0.055 (12) |
Mn1—C6 | 1.778 (5) | C14—H14 | 0.9500 |
Mn1—C7 | 1.778 (5) | C15—C16 | 1.400 (7) |
Mn1—C3 | 2.124 (4) | C15—H15 | 0.9500 |
Mn1—C2 | 2.130 (4) | C16—H16 | 0.9500 |
Mn1—C4 | 2.142 (4) | C21—C22 | 1.384 (6) |
Mn1—C1 | 2.153 (4) | C21—C26 | 1.402 (6) |
Mn1—C5 | 2.157 (4) | C22—C23 | 1.394 (6) |
Mn1—P1 | 2.2426 (11) | C22—H22 | 0.9500 |
P1—C21 | 1.834 (4) | C23—C24 | 1.380 (7) |
P1—C11 | 1.835 (4) | C23—H23 | 0.9500 |
P1—C31 | 1.837 (4) | C24—C25 | 1.380 (7) |
S1—C8 | 1.757 (5) | C24—H24 | 0.9500 |
S1—C2 | 1.769 (5) | C25—C26 | 1.389 (7) |
C1—C5 | 1.409 (6) | C25—H25 | 0.9500 |
C1—C2 | 1.424 (7) | C26—H26 | 0.9500 |
C1—Br1 | 1.870 (5) | C31—C32 | 1.386 (6) |
C1—H1 | 0.9500 | C31—C36 | 1.404 (6) |
C2—C3 | 1.414 (7) | C32—C33 | 1.400 (6) |
C3—C4 | 1.409 (7) | C32—H32 | 0.9500 |
C3—Br1A | 1.814 (12) | C33—C34 | 1.389 (7) |
C3—H3 | 0.9500 | C33—H33 | 0.9500 |
C4—C5 | 1.424 (7) | C34—C35 | 1.384 (7) |
C4—H4 | 0.9500 | C34—H34 | 0.9500 |
C5—H5 | 0.9500 | C35—C36 | 1.395 (6) |
C6—O1 | 1.158 (6) | C35—H35 | 0.9500 |
C7—O2 | 1.157 (6) | C36—H36 | 0.9500 |
C8—H8A | 0.9800 | C1S—C3Si | 1.26 (3) |
C8—H8B | 0.9800 | C1S—C2S | 1.32 (2) |
C8—H8C | 0.9800 | C1S—H1S1 | 0.9900 |
C11—C16 | 1.392 (6) | C1S—H1S2 | 0.9900 |
C11—C12 | 1.402 (6) | C2S—C3S | 1.26 (2) |
C12—C13 | 1.386 (6) | C2S—H2S1 | 0.9900 |
C12—H12 | 0.9500 | C2S—H2S2 | 0.9900 |
C13—C14 | 1.390 (8) | C3S—H3S1 | 0.9900 |
C13—H13 | 0.9500 | C3S—H3S2 | 0.9900 |
C14—C15 | 1.370 (9) | ||
C6—Mn1—C7 | 92.4 (2) | S1—C8—H8C | 109.5 |
C6—Mn1—C3 | 130.5 (2) | H8A—C8—H8C | 109.5 |
C7—Mn1—C3 | 88.9 (2) | H8B—C8—H8C | 109.5 |
C6—Mn1—C2 | 96.08 (19) | C16—C11—C12 | 118.6 (4) |
C7—Mn1—C2 | 110.3 (2) | C16—C11—P1 | 122.7 (3) |
C3—Mn1—C2 | 38.83 (18) | C12—C11—P1 | 118.6 (3) |
C6—Mn1—C4 | 157.66 (19) | C13—C12—C11 | 120.9 (4) |
C7—Mn1—C4 | 105.0 (2) | C13—C12—H12 | 119.5 |
C3—Mn1—C4 | 38.58 (19) | C11—C12—H12 | 119.5 |
C2—Mn1—C4 | 65.07 (19) | C12—C13—C14 | 119.8 (5) |
C6—Mn1—C1 | 93.66 (19) | C12—C13—H13 | 120.1 |
C7—Mn1—C1 | 149.07 (19) | C14—C13—H13 | 120.1 |
C3—Mn1—C1 | 64.38 (19) | C15—C14—C13 | 119.8 (4) |
C2—Mn1—C1 | 38.84 (18) | C15—C14—H14 | 120.1 |
C4—Mn1—C1 | 64.22 (18) | C13—C14—H14 | 120.1 |
C6—Mn1—C5 | 123.9 (2) | C14—C15—C16 | 121.0 (5) |
C7—Mn1—C5 | 143.4 (2) | C14—C15—H15 | 119.5 |
C3—Mn1—C5 | 64.7 (2) | C16—C15—H15 | 119.5 |
C2—Mn1—C5 | 65.09 (19) | C11—C16—C15 | 119.8 (5) |
C4—Mn1—C5 | 38.68 (19) | C11—C16—H16 | 120.1 |
C1—Mn1—C5 | 38.17 (17) | C15—C16—H16 | 120.1 |
C6—Mn1—P1 | 92.24 (14) | C22—C21—C26 | 118.8 (4) |
C7—Mn1—P1 | 91.15 (14) | C22—C21—P1 | 119.8 (3) |
C3—Mn1—P1 | 137.23 (14) | C26—C21—P1 | 121.4 (3) |
C2—Mn1—P1 | 156.51 (15) | C21—C22—C23 | 120.5 (4) |
C4—Mn1—P1 | 101.06 (13) | C21—C22—H22 | 119.8 |
C1—Mn1—P1 | 118.84 (13) | C23—C22—H22 | 119.8 |
C5—Mn1—P1 | 92.09 (13) | C24—C23—C22 | 120.2 (5) |
C21—P1—C11 | 100.49 (19) | C24—C23—H23 | 119.9 |
C21—P1—C31 | 102.39 (19) | C22—C23—H23 | 119.9 |
C11—P1—C31 | 103.84 (19) | C23—C24—C25 | 120.0 (4) |
C21—P1—Mn1 | 117.10 (14) | C23—C24—H24 | 120.0 |
C11—P1—Mn1 | 116.99 (14) | C25—C24—H24 | 120.0 |
C31—P1—Mn1 | 113.90 (13) | C24—C25—C26 | 120.1 (4) |
C8—S1—C2 | 102.4 (3) | C24—C25—H25 | 120.0 |
C5—C1—C2 | 109.0 (4) | C26—C25—H25 | 120.0 |
C5—C1—Br1 | 126.4 (4) | C25—C26—C21 | 120.4 (4) |
C2—C1—Br1 | 124.3 (3) | C25—C26—H26 | 119.8 |
C5—C1—Mn1 | 71.1 (2) | C21—C26—H26 | 119.8 |
C2—C1—Mn1 | 69.7 (3) | C32—C31—C36 | 118.9 (4) |
Br1—C1—Mn1 | 130.1 (2) | C32—C31—P1 | 122.2 (3) |
C5—C1—H1 | 125.5 | C36—C31—P1 | 118.8 (3) |
C2—C1—H1 | 125.5 | C31—C32—C33 | 120.7 (4) |
Mn1—C1—H1 | 125.3 | C31—C32—H32 | 119.6 |
C3—C2—C1 | 106.8 (4) | C33—C32—H32 | 119.6 |
C3—C2—S1 | 125.9 (4) | C34—C33—C32 | 119.8 (4) |
C1—C2—S1 | 127.3 (4) | C34—C33—H33 | 120.1 |
C3—C2—Mn1 | 70.3 (2) | C32—C33—H33 | 120.1 |
C1—C2—Mn1 | 71.4 (2) | C35—C34—C33 | 120.0 (4) |
S1—C2—Mn1 | 121.7 (3) | C35—C34—H34 | 120.0 |
C4—C3—C2 | 108.9 (4) | C33—C34—H34 | 120.0 |
C4—C3—Br1A | 146.5 (6) | C34—C35—C36 | 120.3 (4) |
C2—C3—Br1A | 103.4 (5) | C34—C35—H35 | 119.9 |
C4—C3—Mn1 | 71.4 (3) | C36—C35—H35 | 119.9 |
C2—C3—Mn1 | 70.8 (3) | C35—C36—C31 | 120.2 (4) |
Br1A—C3—Mn1 | 129.5 (5) | C35—C36—H36 | 119.9 |
C4—C3—H3 | 125.5 | C31—C36—H36 | 119.9 |
C2—C3—H3 | 125.5 | C3Si—C1S—C2S | 109.4 (15) |
Mn1—C3—H3 | 123.8 | C3Si—C1S—H1S1 | 109.8 |
C3—C4—C5 | 107.9 (4) | C2S—C1S—H1S1 | 109.8 |
C3—C4—Mn1 | 70.0 (3) | C3Si—C1S—H1S2 | 109.8 |
C5—C4—Mn1 | 71.2 (3) | C2S—C1S—H1S2 | 109.8 |
C3—C4—H4 | 126.0 | H1S1—C1S—H1S2 | 108.2 |
C5—C4—H4 | 126.0 | C3S—C2S—C1S | 111.0 (14) |
Mn1—C4—H4 | 124.4 | C3S—C2S—H2S1 | 109.4 |
C1—C5—C4 | 107.4 (4) | C1S—C2S—H2S1 | 109.4 |
C1—C5—Mn1 | 70.8 (3) | C3S—C2S—H2S2 | 109.4 |
C4—C5—Mn1 | 70.1 (3) | C1S—C2S—H2S2 | 109.4 |
C1—C5—H5 | 126.3 | H2S1—C2S—H2S2 | 108.0 |
C4—C5—H5 | 126.3 | C1Si—C3S—C2S | 113.9 (14) |
Mn1—C5—H5 | 124.4 | C1Si—C3S—H3S1 | 108.8 |
O1—C6—Mn1 | 177.1 (4) | C2S—C3S—H3S1 | 108.8 |
O2—C7—Mn1 | 177.3 (4) | C1Si—C3S—H3S2 | 108.8 |
S1—C8—H8A | 109.5 | C2S—C3S—H3S2 | 108.8 |
S1—C8—H8B | 109.5 | H3S1—C3S—H3S2 | 107.7 |
H8A—C8—H8B | 109.5 | ||
C5—C1—C2—C3 | 1.4 (5) | C16—C11—C12—C13 | −0.6 (7) |
Br1—C1—C2—C3 | −172.7 (3) | P1—C11—C12—C13 | 176.4 (4) |
Mn1—C1—C2—C3 | 61.8 (3) | C11—C12—C13—C14 | 0.3 (7) |
C5—C1—C2—S1 | −176.7 (3) | C12—C13—C14—C15 | 0.0 (8) |
Br1—C1—C2—S1 | 9.3 (6) | C13—C14—C15—C16 | 0.0 (9) |
Mn1—C1—C2—S1 | −116.2 (4) | C12—C11—C16—C15 | 0.5 (7) |
C5—C1—C2—Mn1 | −60.5 (3) | P1—C11—C16—C15 | −176.2 (4) |
Br1—C1—C2—Mn1 | 125.4 (3) | C14—C15—C16—C11 | −0.2 (9) |
C8—S1—C2—C3 | 95.3 (5) | C11—P1—C21—C22 | 140.8 (4) |
C8—S1—C2—C1 | −87.1 (5) | C31—P1—C21—C22 | −112.4 (4) |
C8—S1—C2—Mn1 | −177.1 (3) | Mn1—P1—C21—C22 | 13.0 (4) |
C1—C2—C3—C4 | −1.0 (5) | C11—P1—C21—C26 | −40.3 (4) |
S1—C2—C3—C4 | 177.1 (3) | C31—P1—C21—C26 | 66.6 (4) |
Mn1—C2—C3—C4 | 61.6 (3) | Mn1—P1—C21—C26 | −168.1 (3) |
C1—C2—C3—Br1A | 169.8 (5) | C26—C21—C22—C23 | −1.0 (7) |
S1—C2—C3—Br1A | −12.1 (6) | P1—C21—C22—C23 | 177.9 (4) |
Mn1—C2—C3—Br1A | −127.6 (4) | C21—C22—C23—C24 | 0.1 (8) |
C1—C2—C3—Mn1 | −62.6 (3) | C22—C23—C24—C25 | 0.7 (8) |
S1—C2—C3—Mn1 | 115.5 (4) | C23—C24—C25—C26 | −0.5 (8) |
C2—C3—C4—C5 | 0.2 (5) | C24—C25—C26—C21 | −0.4 (7) |
Br1A—C3—C4—C5 | −163.5 (8) | C22—C21—C26—C25 | 1.2 (6) |
Mn1—C3—C4—C5 | 61.5 (3) | P1—C21—C26—C25 | −177.8 (3) |
C2—C3—C4—Mn1 | −61.2 (3) | C21—P1—C31—C32 | 13.2 (4) |
Br1A—C3—C4—Mn1 | 135.1 (9) | C11—P1—C31—C32 | 117.4 (4) |
C2—C1—C5—C4 | −1.2 (5) | Mn1—P1—C31—C32 | −114.2 (3) |
Br1—C1—C5—C4 | 172.7 (3) | C21—P1—C31—C36 | −171.1 (3) |
Mn1—C1—C5—C4 | −60.9 (3) | C11—P1—C31—C36 | −66.8 (4) |
C2—C1—C5—Mn1 | 59.6 (3) | Mn1—P1—C31—C36 | 61.5 (3) |
Br1—C1—C5—Mn1 | −126.4 (4) | C36—C31—C32—C33 | −0.1 (6) |
C3—C4—C5—C1 | 0.6 (5) | P1—C31—C32—C33 | 175.6 (3) |
Mn1—C4—C5—C1 | 61.3 (3) | C31—C32—C33—C34 | 0.8 (7) |
C3—C4—C5—Mn1 | −60.7 (3) | C32—C33—C34—C35 | −0.5 (7) |
C21—P1—C11—C16 | 96.5 (4) | C33—C34—C35—C36 | −0.6 (7) |
C31—P1—C11—C16 | −9.2 (4) | C34—C35—C36—C31 | 1.3 (6) |
Mn1—P1—C11—C16 | −135.6 (4) | C32—C31—C36—C35 | −0.9 (6) |
C21—P1—C11—C12 | −80.3 (4) | P1—C31—C36—C35 | −176.8 (3) |
C31—P1—C11—C12 | 174.0 (3) | C3Si—C1S—C2S—C3S | 53 (2) |
Mn1—P1—C11—C12 | 47.6 (4) | C1S—C2S—C3S—C1Si | −56 (2) |
Symmetry code: (i) −x+2, −y−1, −z+1. |
1b | 3 | 4 | 11 | |
Mn—-P | 2.2408 (5) | 2.2413 (8) | 2.2565 (7) | 2.2660 (6) |
Mn—CO | 1.770 (2) | 1.770 (3) | 1.788 (3) | 1.786 (1) |
1.767 (2) | 1.766 (3) | 1.774 (2) | 1.776 (2) | |
Mn—CtCp | 1.772 (1) | 1.770 (1) | 1.792 (1) | 1.785 (1) |
CCp—Br | – | 1.874 (3) | 1.871 (3)* | – |
Ccp—S, average | 1.766 (2) | 1.755 (2) | 1.748 (3) | 1.763 (2) |
S—CMe, average | 1.794 (3) | 1.786 (4) | 1.802 (3) | 1.811 (2) |
Mn···S | 3.4778 (6) | 3.564 (1) | 3.590 (1)/3.551 (1) | 3.5157 (7)– |
3.465 (1) | 3.47 (1) | 3.5880 (6) | ||
CCp—S—CMe | 99.0 (1) | 102.4 (2) | 100.5 (1) | 98.9 (1)– |
99.4 (2) | 101.6 (1) | 104.0 (1) | ||
C—CCp—S—CMe | 92.0 (2) | 19.9 (3) | 12.8 (3)/26.4 (3) | 50.6 (2)– |
88.0 (3) | 83.1 (3) | 68.4 (2) | ||
S–CtCp—Mn—P | 158.9 | 91.8 | 127.6/19.3 | Meaningless |
127.0 | -161.8 |
Note: (*) major component. |
1b | 3 | 4 | 11 | |
H···H | 49.5 | 42.5 | 45.2 | 55.4 |
H···C | 22.9 | 22.4 | 20.8 | 15.4 |
H···O | 19.4 | 15.8 | 15.1 | 12.0 |
H···S | 6.4 | 8.0 | 10.5 | 14.8 |
H···Br | – | 8.4 | 7.2 | – |
Br···S | – | 2.1 | 0.2 | – |
S···S | 0.0 | 0.0 | 0.3 | 0.6 |
C···C | 1.4 | 0.3 | 0.0 | 0.4 |
Acknowledgements
Open access funding enabled and organized by Projekt DEAL.
References
Blockhaus, T., Bernhartzeder, S., Kempinger, W., Klein–Hessling, C., Weigand, S. & Sünkel, K. (2020). Eur. J. Org. Chem. 2020, 6576–6587. Web of Science CSD CrossRef CAS Google Scholar
Blockhaus, T., Klein–Hessling, C., Zehetmaier, P. M., Zott, F. L., Jangra, H., Karaghiosoff, K. & Sünkel, K. (2019). Chem. A Eur. J. 25, 12684–12688. Web of Science CrossRef CAS Google Scholar
Brammer, L., Peuronen, A. & Roseveare, T. M. (2023). Acta Cryst. C79, 204–216. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, Y.-P., Nie, F.-Y. & Song, Q.-H. (2021). J. Org. Chem. 86, 12419–12426. Web of Science CrossRef CAS PubMed Google Scholar
Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. (2017). Chem. Rev. 117, 5521–5577. Web of Science CrossRef CAS PubMed Google Scholar
Feng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200–1216. Web of Science CrossRef CAS PubMed Google Scholar
Fleurat-Lessard, P. & Volatron, F. (2009). Chem. Phys. Lett. 477, 32–36. CAS Google Scholar
Gahlot, S., Schmitt, J.-L., Chevalier, A., Villa, M., Roy, M., Ceroni, P., Lehn, J.-M. & Gingras, M. (2024). Chem. Eur. J. 30, e202400231. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Johns, P. M., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2010). Organometallics, 29, 5358–5365. Web of Science CSD CrossRef CAS Google Scholar
Klein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad Nauk SSSR, 19, 2776. Google Scholar
Li, P., Yang, Y., Wang, X. & Wu, X. (2021). J. Heterocycl. Chem. 58, 1225–1251. Web of Science CrossRef CAS Google Scholar
Lumbroso, H., Liégeois, C., Testaferri, L. & Tiecco, M. (1986). J. Mol. Struct. 144, 121–133. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mörsel, S., Kellner, R. & Hirsch, A. (2023). Eur. J. Org. Chem. 26, e202300299. Google Scholar
Riebe, S., Vallet, C., van der Vight, F., Gonzalez–Abradelo, D., Wölper, C., Strassert, C. A., Jansen, G., Knauer, S. & Voskuhl, J. (2017). Chem. A Eur. J. 23, 13660–13668. Web of Science CSD CrossRef CAS Google Scholar
Scheiner, S. (2023). J. Phys. Chem. A, 127, 4695–4703. Web of Science CrossRef CAS PubMed Google Scholar
Schmiedtchen, M., Maisuls, I., Wölper, C., Strassert, C. A. & Voskuhl, J. (2023). ChemPhotoChem, e202300209. Google Scholar
Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324. Web of Science CrossRef CAS PubMed Google Scholar
Seneviratne, K. N. & Winter, C. H. (1997). Organometallics, 16, 2498–2499. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sünkel, K. & Klein-Hessling, C. (2021). Acta Cryst. C77, 633–640. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sünkel, K. & Motz, D. (1988). Angew. Chem. 100, 970–971. Google Scholar
Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891. Web of Science CrossRef CAS Google Scholar
Wang, Y.-Y., Wu, X.-M. & Yang, M.-H. (2020). Synlett, 31, 1226–1230. CAS Google Scholar
Wudl, F., Nalewajek, D., Rotella, F. J. & Gebert, E. (1981). J. Am. Chem. Soc. 103, 5885–5890. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.