research papers
3-[(Benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione:
and of a precursor to an antimycobacterial squaramideaInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
Dedicated to Professor Reinhard H. H. Neubert on the occasion of his 75th birthday.
The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an antimycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, P21/c, Z = 8, Z′ = 2) and needle-shaped crystals of a triclinic form (3-II, P-1, Z = 4, Z′ = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique molecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique molecules in each polymorph. Density functional theory (DFT) calculations on the free molecule of 3 indicate that a nearly planar conformation is preferred.
1. Introduction
Mycobacterial infections constitute a substantial threat to public health globally. These can be divided into tuberculosis (TB), infections caused by nontuberculous mycobacteria (NTM; Johansen et al., 2020), and leprosy (Shyam et al., 2024). According to the World Health Organization (WHO), a total of 10.6 million people worldwide fell ill with TB and an estimated number of 1.1 million deaths officially classified as caused by TB was recorded in 2022 (World Health Organization, 2023). Hard-to-cure pulmonary diseases caused by NTM are also increasingly seen (Prevots et al., 2023). Drug discovery efforts are vital to fill the drug development pipelines for TB and NTM disease (Dartois & Dick, 2024). In 2012, bedaquiline was the first Federal Drug Administration (FDA)-approved novel anti-TB drug since the approval of rifampicin in 1971 (Rothstein, 2016). Bedaquiline, a diarylquinolone, inhibits the proton pump of the mycobacterial ATP synthase (Andries et al., 2005). Despite its success in the pharmacotherapy of multidrug-resistant TB, bedaquiline exhibits some less favourable pharmacological properties, such as QTc prolongation and drug interactions (Deshkar & Shirure, 2022). Moreover, bedaquiline-resistant strains of Mycobacterium tuberculosis, the etiological agent of TB, have already emerged (Khoshnood et al., 2021). Therefore, the quest for new drug candidates targeting the ATP synthase in mycobacteria is pertinent.
In a target-based screening of 900 000 compounds from AstraZeneca's corporate compound collection, Tantry et al. (2017) discovered the compound class of squaramides as inhibitors of the mycobacterial ATP synthesis. Structure–activity relationship (SAR) exploration and hit-to-lead optimization led to compound 1 with a monoamino–cyclobut-3-ene-1,2-dione scaffold [Fig. 1(a)]. Compound 1 exhibited a minimum (MIC) of 0.03 µM against the reference strain M. tuberculosis H37Rv in vitro and also showed in vivo efficacy in a mouse model of pulmonary TB (Tantry et al., 2017). Recently, Courbon et al. (2023) reported the structure of 1 bound to the Mycobacterium smegmatis ATP synthase, as determined by cryoelectron microscopy [Fig. 1(b)]. The results show that 1 binds to a site distinct from that of bedaquiline. Through scaffold morphing and a subsequent SAR study and optimization, Li et al. (2020) identified the 3,4-diaminocyclobut-3-ene-1,2-dione derivative 2 [Fig. 1(c)], with a MIC of 0.45 µg ml−1 (1.4 µM) against M. tuberculosis H37Rv. Maintaining the 2-picolyl group proved important for activity and the introduction of a benzo-1,3-dioxole group turned out to be favourable. Compound 2 was readily obtained from amido–ester 3 [Fig. 1(d)] by reaction with 2-picolylamine.
In the course of our studies on antimycobacterial squaramides (Courbon et al., 2023), compound 3, the title compound, attracted our interest as a precursor to explore SARs and to optimize the potency of squaramides based on the 3,4-diaminocyclobut-3-ene-1,2-dione scaffold against M. tuberculosis and clinically relevant NTM species. We serendipitously discovered two concomitant polymorphs of 3, whose crystal structures we describe in the present article. Although 3 serves only as a precursor, the observed may have broader implications in drug development (Bhatia et al., 2018). As a matter of routine, we also subjected 3 to susceptibility testing against two NTM species.
2. Experimental
2.1. General
The starting materials were purchased from BLDpharm (Shanghai, China) and used as received. Methanol was distilled before use. High-performance −1. The sample was dissolved in HPLC-grade acetonitrile prior to analysis. The NMR spectrum was recorded on an Agilent Technologies 400 MHz VNMRS spectrometer (abbreviations: s = singlet, bs = broad singlet, d = doublet and bd = broad doublet).
(HPLC) analysis was conducted on a Shimadzu instrument with LC-10 AD pumps and an SPD-M10A VP PDA detector, using a Polaris 5 C18-A column (5 µm, 250 mm × 4.6 mm; Agilent Technologies, Santa Clara, CA, USA) and with water/acetonitrile. The flow rate was 1.2 ml min2.2. Synthesis and crystallization
Dimethyl squarate (1.42 g, 10 mmol) and benzo-1,3-dioxol-5-amine (1.37 g, 10 mmol) were dissolved in methanol (50 ml) and triethylamine (2.8 ml, 20 mmol) was added. The mixture was stirred overnight at room temperature. Subsequently, the precipitate was collected by centrifugation, washed with a small amount of methanol and dried in a vacuum to yield 3 as an off-white solid (yield: 2.26 g, 9.1 mmol, 91%). HPLC purity (254 nm detection): 97.5%. 1H NMR (402 MHz, DMSO-d6): δ 10.59 (s, 1H), 6.95 (bs, 1H), 6.84 (d, 1H), 6.75 (bd, 1H), 5.97 (s, 2H), 4.33 (s, 3H) ppm. Block-shaped crystals of 3-I and needle-shaped crystals of 3-II were found when a HPLC sample of 3 in acetonitrile had evaporated slowly to dryness under ambient conditions.
2.3. X-ray crystallography
After an initial independent atom model (IAM) SHEXL2019 (Sheldrick, 2015b), the of 3-I was refined with aspherical atomic form factors using NoSpherA2 (Kleemiss et al., 2021; Midgley et al., 2021) in OLEX2 (Dolomanov et al., 2009). Hirshfeld-partitioned electron density was calculated in ORCA (Version 5.0; Neese et al., 2020) using the B3LYP method (Becke, 1993; Lee et al., 1988) and the def2-TZVPP basis set (Weigend & Ahlrichs, 2005). The positions and isotropic atomic displacement parameters were refined freely for all H atoms.
withThe 3-II was refined using IAM with SHEXL2019. The was taken into account using TWIN and BASF instructions. Carbon-bound H atoms were placed in geometrically calculated positions, with aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å and methyl C—H = 0.98 Å, and subsequently refined using a riding model,with Uiso(H) = 1.2Ueq(C) (1.5 for methyl groups). The initial torsion angles of the methyl groups were determined via difference Fourier syntheses and subsequently refined while maintaining a tetrahedral structure. Nitrogen-bound H atoms were located in Fobs–Fcalc electron-density maps and refined semi-freely. The N1—H1 distances in both crystallographically distinct molecules were restrained to be similar, with a standard uncerrtainty of 0.02 Å. The corresponding Uiso(H) parameters were refined freely.
ofBFDH (Bravais, Friedel, Donnay and Harker) morphologies (Bravais, 1866; Friedel, 1907) were calculated with Mercury (Macrae et al., 2020), and packing indices were calculated with PLATON (Spek, 2020). For the latter, the H-atom positions in 3-I and 3-II were normalized to make the X—H distances equal to the average neutron diffraction values (C—H = 1.089 Å and N—H = 1.015 Å) (Allen & Bruno, 2010), using Mercury. Crystal data, data collection and structure details are summarized in Table 1.
2.4. Computational methods
Density functional theory (DFT) calculations were performed using ORCA (Version 5.0; Neese et al., 2020) with a B3LYP/G (VWN5) hybrid functional (20% HF exchange) (Becke, 1993; Lee et al., 1988) using a def2-TZVPP basis set (Weigend & Ahlrichs, 2005) with an auxiliary def2/J basis (Weigend, 2006). Optimization of the structure used the BFGS method from an initial Hessian according to Almlöf's model with a very tight self-consistent field convergence threshold (Häser & Almlöf, 1992). Calculations were made on the free molecule of 3. The input structure was taken from the of 3-I. The optimized local minimum-energy structure exhibited only positive modes. Cartesian coordinates of the DFT-optimized structure of 3 can be found in the supporting information.
3. Results and discussion
Two polymorphic forms of 3 were found to crystallize concomitantly from a solution in acetonitrile under ambient conditions, which could be readily distinguished from one another by their external shapes. Colourless block-shaped crystals belong to a monoclinic phase (hereafter 3-I) and colourless needle-shaped crystals correspond to a triclinic phase, in which was encountered (hereafter 3-II).
3.1. Molecular structures of 3 in polymorphs I and II
In both polymeric forms, compound 3 crystallizes with two molecules in the (Z′ = 2). Fig. 2 depicts displacement ellipsoid plots for both crystallographically unique molecules in each crystal form. In each case, the molecules essentially exhibit the conformation shown in Fig. 1(d), albeit with some tilt between the squaramide and the benzo-1,3-dioxole moieties. In 3-I, the angle between the mean planes through the four-membered squaramide ring and the six-membered arene ring is 13.5° for molecule 1 and 14.6° in molecule 2. The tilt is significantly larger in 3-II, as indicated by the angles between the aforementioned mean planes of 41.5° in molecule 1 and 49.4° in molecule 2. The C3—N1—C6—C11 torsion angles also reflect the difference in the molecular conformations in 3-I and 3-II (Table 2).
|
To evaluate the impact of the overall crystal packing on the conformation of 3, we performed DFT calculations on the isolated molecule. The resulting minimum energy molecular structure adopts a nearly planar conformation (see supporting information), as revealed by an angle between the mean planes through the four-membered ring and the benzene ring of 5.2° and a C3—N1—C6—C11 torsion angle of −4.7°. It is worth noting that the related 3-methoxy-4-(naphthalen-2-ylamino)cyclobut-3-ene-1,2-dione adopts approximately the same nearly planar conformation in the crystal (CSD refcode YOHROF; Ávila-Costa et al., 2019).
3.2. of the monoclinic form 3-I
In the chosen 3-I form dimers through N—H⋯O=C hydrogen bonds between the amide group and the carbonyl group of an adjacent molecule (Fig. 3), similar to the above-mentioned YOHROF. The graph-set descriptor is R 22(10) (Bernstein et al., 1995). Table 3 lists the corresponding hydrogen-bond parameters. Although the hydrogen-bond dimers so formed lack and their structure also markedly deviates from approximate local Ci symmetry, it is interesting to note that the two unique molecules that form a dimer represent enantiomeric conformers, as indicated by the signs of the C3—N1—C6—C11 torsion angles (Table 2). The crystal packing in 3-I is remarkably dense, as revealed by a calculated packing index of 76.4% (Kitajgorodskij, 1973) and the calculated crystal density (Table 1). The hydrogen-bond dimers form stacks to give corrugated sheets in the crystal, as revealed by a view along the [102] direction [Fig. 4(a)]. The most prominent feature is stacking of the arene ring of unique molecule 1 and the squaramide ester moiety of unique molecule 2 in adjacent sheets. The distance between the corresponding ring centroids is 3.31 Å. The BFDH morphology calculation, as shown in Fig. 4(b), predicts the shape of the crystals (see supporting information) roughly correctly.
the two crystallographically unique molecules in
|
3.3. of the triclinic form 3-II
The 3-II likewise features dimers formed through N—H⋯O=C hydrogen bonds with an R 22(10) motif (Fig. 5). Table 4 lists the associated hydrogen-bond parameters. In contrast to 3-I, the hydrogen-bond dimers are not formed by crystallographically distinct molecules, but each of the two unique molecules forms a dimer about a crystallographic inversion centre with a symmetry-related molecule (Fig. 5). The calculated crystallographic density of 3-II is virtually equal to that of the monoclinic phase 3-I (Table 1). Likewise, the packing index calculated for 3-II at 76.7% is nearly the same as that of 3-I. In contrast to 3-I, the arene rings and the squaramide moieties of adjacent molecules each assemble to form stacks. The distances between the ring mean planes are ca 3.3 Å. The centroid–centroid separation is 3.70 Å in each case (corresponding to the a lattice parameter). The overall crystal packing of 3-II is distinctly different from that of 3-I. As shown in Fig. 6(a), a view along the [20] direction reveals a herringbone-like pattern. As for 3-I, the BFDH morphology calculation predicts the needle shape of the crystals of 3-II roughly correctly, with the a axis representing the needle axis [Fig. 6(b)].
of the triclinic polymorph
|
The crystals of 3-II were twinned by pseudomerohedry (Parkin, 2021; Parsons, 2003). The conventional triclinic primitive cell of 3-II can be transformed to a C-centred cell as follows:
The C-centred cell so obtained simulates monoclinic metrics with a′ = 3.700, b′ = 24.640, c′ = 22.846 Å and β′ = 93.03°. The in the nonstandard setting C is a twofold rotation about the b-axis direction:
A mirror operation about the plane perpendicular to the b-axis direction of the C-centred cell is an equal description of the The second twin component relative to the can be derived from:
The
expressed with respect to the can then be calculated as follows:In the triclinic axis system of the shows the relationship between the pseudo-monoclinic C-centred and the two twin components with respect to the primitive triclinic cell. The ratio of the fractional volume contributions of the two twin components refined to 0.584 (2):0.416 (2). A similar case of of a triclinic crystal of an organic compound was reported by Bolte & Kettner (1998).
this represents a twofold rotation about the [20] direction. Fig. 73.4. Antimycobacterial evaluation
We wondered whether compound 3 as a precursor to antimycobacterial squaramides (Li et al., 2020) might itself exhibit antimycobacterial activity. Therefore, we evaluated its activity against the NTM species Mycobacterium smegmatis and Mycobacterium abscessus subsp. abscessus. M. smegmatis is a generally considered non-pathogenic model organism in early-stage anti-TB drug discovery (Sundarsingh et al., 2020), whereas M. abscessus is an opportunistic pathogen, which can cause difficult-to-treat lung disease resembling pulmonary TB and extrapulmonary infections in susceptible hosts (Abdelaal et al., 2022). We performed susceptibility testing against M. smegmatis mc2 155 pTEC27 and M. abscessus ATCC 19977 pTEC27 (expressing tomato red fluorescent protein) using the broth microdilution method (Middlebrook 7H9 medium supplemented with 10% albumin–dextrose–saline and containing 0.05% polysorbate 80) with and fluorescence based readout, as described previously (Lang et al., 2023). Up to a compound concentration of 100 µM, however, no growth inhibition of the two aforementioned mycobacterial strains was observed. The results appear to be in line with the SAR studies reported by Tantry et al. (2017) and Li et al. (2020), which found that the 2-picolyl group is critical for activity against M. tuberculosis H37Rv.
4. Conclusions
We report two concomitant polymorphs of the title compound 3 and structurally characterized them by X-ray crystallography. Both the monoclinic form 3-I and the triclinic form 3-II were found to crystallize with two molecules in the (Z′ = 2). The molecular conformations differ significantly between the two polymorphs and variously differ depending on the polymorph. DFT calculations on the isolated molecule suggest that a planar conformation is preferred. Whereas the packing of the molecules in 3-I is characterized by alternate stacking of arene rings and squaramide ester moieties of adjacent molecules, in 3-II, these groups each assemble to form columns. Crystallographic densities and packing indices calculated for 3-I and 3-II indicate that the crystal packing is equally dense within experimental error, which suggests that the difference in energy between the two polymorphs is small. This possibly explains why concomitant crystallization of both crystal forms occurred. As expected, and consistent with previous SAR studies, no in vitro activity of 3 against two mycobacterial strains was observed.
Supporting information
https://doi.org/10.1107/S2053229624006211/vp3038sup1.cif
contains datablocks 3-I, 3-II, global. DOI:Structure factors: contains datablock 3-I. DOI: https://doi.org/10.1107/S2053229624006211/vp30383-Isup2.hkl
Structure factors: contains datablock 3-II. DOI: https://doi.org/10.1107/S2053229624006211/vp30383-IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229624006211/vp30383-Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2053229624006211/vp30383-IIsup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2053229624006211/vp30383-Isup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229624006211/vp3038sup8.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2053229624006211/vp3038sup9.txt
C12H9NO5 | F(000) = 1024.847 |
Mr = 247.21 | Dx = 1.579 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.0541 (7) Å | Cell parameters from 9631 reflections |
b = 13.4304 (7) Å | θ = 2.3–25.0° |
c = 13.1257 (7) Å | µ = 0.13 mm−1 |
β = 115.354 (2)° | T = 100 K |
V = 2079.57 (19) Å3 | Block, colourless |
Z = 8 | 0.07 × 0.07 × 0.05 mm |
Bruker D8 Venture diffractometer | 6382 independent reflections |
Radiation source: IµS-Diamond | 5025 reflections with I ≥ 2σ(I) |
Montel multilayer optics monochromator | Rint = 0.148 |
Detector resolution: 7.391 pixels mm-1 | θmax = 30.7°, θmin = 2.3° |
φ– and ω–scans | h = −18→18 |
Absorption correction: gaussian (SADABS; Bruker, 2016) | k = −19→19 |
Tmin = 0.992, Tmax = 0.997 | l = −18→18 |
806109 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.080 | All H-atom parameters refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0302P)2 + 0.5221P] where P = (Fo2 + 2Fc2)/3 |
6382 reflections | (Δ/σ)max = −0.0002 |
397 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
0 constraints |
Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether Fomblin YR-1800 |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: ORCA 5.0 PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-TZVPP CHARGE: 0 MULTIPLICITY: 1 DATE: 2024-02-18_15-57-08 |
x | y | z | Uiso*/Ueq | ||
C1_1 | 0.26369 (8) | 0.44697 (7) | 0.27179 (7) | 0.01613 (17) | |
C2_1 | 0.27221 (7) | 0.55888 (7) | 0.26774 (7) | 0.01554 (16) | |
C3_1 | 0.21158 (7) | 0.55434 (7) | 0.14363 (7) | 0.01429 (16) | |
C4_1 | 0.20786 (7) | 0.44933 (7) | 0.14776 (7) | 0.01447 (16) | |
C5_1 | 0.17077 (9) | 0.27915 (7) | 0.10794 (8) | 0.01873 (18) | |
H5A_1 | 0.1246 (12) | 0.2748 (10) | 0.1589 (11) | 0.042 (4)* | |
H5B_1 | 0.1331 (13) | 0.2336 (11) | 0.0338 (13) | 0.052 (4)* | |
H5C_1 | 0.2576 (11) | 0.2572 (10) | 0.1573 (11) | 0.039 (3)* | |
C6_1 | 0.11785 (7) | 0.62620 (7) | −0.04802 (7) | 0.01495 (16) | |
C7_1 | 0.11598 (8) | 0.71211 (7) | −0.10882 (8) | 0.01770 (18) | |
H7_1 | 0.1592 (11) | 0.7776 (10) | −0.0630 (10) | 0.031 (3)* | |
C8_1 | 0.05948 (8) | 0.71394 (7) | −0.22702 (8) | 0.01946 (18) | |
H8_1 | 0.0582 (12) | 0.7803 (10) | −0.2737 (11) | 0.040 (4)* | |
C9_1 | 0.00739 (8) | 0.62721 (7) | −0.28028 (8) | 0.01795 (18) | |
C10_1 | 0.00833 (7) | 0.54273 (7) | −0.21896 (7) | 0.01528 (16) | |
C11_1 | 0.06101 (7) | 0.53926 (7) | −0.10312 (7) | 0.01539 (17) | |
H11_1 | 0.0572 (11) | 0.4714 (10) | −0.0596 (11) | 0.032 (3)* | |
C12_1 | −0.08091 (9) | 0.50525 (8) | −0.40248 (8) | 0.02020 (19) | |
H12A_1 | −0.1725 (12) | 0.4984 (10) | −0.4494 (11) | 0.040 (3)* | |
H12B_1 | −0.0339 (11) | 0.4646 (10) | −0.4388 (11) | 0.041 (3)* | |
N1_1 | 0.17809 (7) | 0.62977 (6) | 0.07064 (6) | 0.01611 (15) | |
H1_1 | 0.2063 (12) | 0.7000 (11) | 0.1037 (12) | 0.029 (3)* | |
O1_1 | 0.28910 (7) | 0.38475 (5) | 0.34562 (6) | 0.02350 (15) | |
O2_1 | 0.31200 (6) | 0.62523 (5) | 0.33642 (6) | 0.02118 (15) | |
O3_1 | 0.16809 (6) | 0.38102 (5) | 0.06912 (5) | 0.01823 (14) | |
O4_1 | −0.05020 (7) | 0.60814 (6) | −0.39294 (6) | 0.02496 (16) | |
O5_1 | −0.05040 (6) | 0.46787 (5) | −0.29030 (5) | 0.01980 (14) | |
C1_2 | 0.23258 (8) | 1.00458 (7) | 0.22341 (7) | 0.01576 (17) | |
C2_2 | 0.26011 (8) | 0.89563 (7) | 0.22196 (7) | 0.01526 (16) | |
C3_2 | 0.32099 (7) | 0.89865 (7) | 0.34671 (7) | 0.01437 (16) | |
C4_2 | 0.29175 (7) | 0.99967 (7) | 0.34681 (7) | 0.01422 (16) | |
C5_2 | 0.27582 (9) | 1.16532 (7) | 0.39345 (8) | 0.01903 (18) | |
H5A_2 | 0.1836 (12) | 1.1683 (10) | 0.3457 (12) | 0.045 (4)* | |
H5B_2 | 0.3033 (11) | 1.2105 (10) | 0.4681 (11) | 0.042 (4)* | |
H5C_2 | 0.3154 (12) | 1.1910 (10) | 0.3415 (12) | 0.042 (4)* | |
C6_2 | 0.42635 (8) | 0.82361 (7) | 0.53578 (7) | 0.01480 (17) | |
C7_2 | 0.44992 (8) | 0.73029 (7) | 0.58741 (8) | 0.01704 (17) | |
H7_2 | 0.4288 (11) | 0.6627 (10) | 0.5361 (11) | 0.036 (3)* | |
C8_2 | 0.49833 (8) | 0.72046 (7) | 0.70496 (8) | 0.01809 (18) | |
H8_2 | 0.5161 (12) | 0.6466 (11) | 0.7449 (12) | 0.042 (4)* | |
C9_2 | 0.52104 (8) | 0.80678 (7) | 0.76698 (7) | 0.01549 (17) | |
C10_2 | 0.49879 (7) | 0.89956 (7) | 0.71534 (7) | 0.01472 (16) | |
C11_2 | 0.45216 (8) | 0.91158 (7) | 0.60026 (7) | 0.01543 (17) | |
H11_2 | 0.4357 (11) | 0.9850 (10) | 0.5620 (11) | 0.032 (3)* | |
C12_2 | 0.58083 (9) | 0.92240 (7) | 0.90227 (8) | 0.01991 (19) | |
H12A_2 | 0.5420 (11) | 0.9458 (10) | 0.9575 (11) | 0.042 (4)* | |
H12B_2 | 0.6707 (12) | 0.9374 (11) | 0.9375 (12) | 0.047 (4)* | |
N1_2 | 0.37637 (7) | 0.82530 (6) | 0.41670 (6) | 0.01615 (15) | |
H1_2 | 0.3660 (12) | 0.7574 (11) | 0.3778 (12) | 0.031 (3)* | |
O1_2 | 0.18218 (6) | 1.06711 (5) | 0.15251 (6) | 0.02236 (15) | |
O2_2 | 0.23957 (6) | 0.83191 (5) | 0.15024 (6) | 0.01967 (14) | |
O3_2 | 0.30968 (6) | 1.06339 (5) | 0.42876 (5) | 0.01656 (13) | |
O4_2 | 0.56380 (6) | 0.81791 (5) | 0.88150 (6) | 0.02041 (14) | |
O5_2 | 0.52757 (6) | 0.97254 (5) | 0.79554 (5) | 0.02011 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1_1 | 0.0198 (4) | 0.0155 (4) | 0.0117 (4) | 0.0002 (3) | 0.0053 (3) | −0.0004 (3) |
C2_1 | 0.0176 (4) | 0.0143 (4) | 0.0131 (4) | −0.0009 (3) | 0.0050 (3) | −0.0021 (3) |
C3_1 | 0.0160 (4) | 0.0139 (4) | 0.0119 (4) | −0.0005 (3) | 0.0050 (3) | −0.0013 (3) |
C4_1 | 0.0176 (4) | 0.0135 (4) | 0.0114 (4) | 0.0003 (3) | 0.0054 (3) | −0.0007 (3) |
C5_1 | 0.0232 (5) | 0.0148 (4) | 0.0167 (4) | 0.0000 (3) | 0.0072 (4) | −0.0005 (3) |
C6_1 | 0.0167 (4) | 0.0149 (4) | 0.0137 (4) | 0.0000 (3) | 0.0070 (3) | 0.0004 (3) |
C7_1 | 0.0211 (4) | 0.0149 (4) | 0.0160 (4) | −0.0006 (3) | 0.0069 (3) | 0.0014 (3) |
C8_1 | 0.0243 (5) | 0.0170 (4) | 0.0165 (4) | 0.0003 (4) | 0.0081 (4) | 0.0034 (3) |
C9_1 | 0.0212 (4) | 0.0180 (4) | 0.0137 (4) | 0.0011 (3) | 0.0065 (3) | 0.0030 (3) |
C10_1 | 0.0169 (4) | 0.0165 (4) | 0.0121 (4) | 0.0005 (3) | 0.0059 (3) | 0.0016 (3) |
C11_1 | 0.0169 (4) | 0.0154 (4) | 0.0134 (4) | −0.0012 (3) | 0.0060 (3) | 0.0006 (3) |
C12_1 | 0.0213 (5) | 0.0239 (5) | 0.0134 (4) | −0.0001 (4) | 0.0056 (4) | 0.0006 (3) |
N1_1 | 0.0193 (4) | 0.0139 (3) | 0.0136 (3) | −0.0005 (3) | 0.0057 (3) | −0.0005 (3) |
O1_1 | 0.0345 (4) | 0.0178 (3) | 0.0132 (3) | 0.0020 (3) | 0.0055 (3) | 0.0019 (3) |
O2_1 | 0.0264 (3) | 0.0179 (3) | 0.0156 (3) | −0.0031 (3) | 0.0054 (3) | −0.0039 (3) |
O3_1 | 0.0253 (3) | 0.0149 (3) | 0.0123 (3) | 0.0002 (3) | 0.0061 (3) | −0.0010 (2) |
O4_1 | 0.0342 (4) | 0.0229 (4) | 0.0137 (3) | −0.0013 (3) | 0.0065 (3) | 0.0036 (3) |
O5_1 | 0.0246 (3) | 0.0189 (3) | 0.0134 (3) | −0.0026 (3) | 0.0058 (3) | −0.0002 (2) |
C1_2 | 0.0195 (4) | 0.0144 (4) | 0.0122 (4) | −0.0001 (3) | 0.0056 (3) | 0.0002 (3) |
C2_2 | 0.0185 (4) | 0.0144 (4) | 0.0128 (4) | −0.0004 (3) | 0.0066 (3) | −0.0012 (3) |
C3_2 | 0.0160 (4) | 0.0145 (4) | 0.0126 (4) | 0.0000 (3) | 0.0060 (3) | −0.0010 (3) |
C4_2 | 0.0166 (4) | 0.0135 (4) | 0.0125 (4) | −0.0007 (3) | 0.0062 (3) | −0.0006 (3) |
C5_2 | 0.0251 (5) | 0.0149 (4) | 0.0172 (4) | 0.0008 (3) | 0.0091 (4) | −0.0009 (3) |
C6_2 | 0.0166 (4) | 0.0143 (4) | 0.0132 (4) | 0.0006 (3) | 0.0061 (3) | 0.0000 (3) |
C7_2 | 0.0209 (4) | 0.0136 (4) | 0.0152 (4) | 0.0002 (3) | 0.0065 (3) | −0.0001 (3) |
C8_2 | 0.0228 (4) | 0.0147 (4) | 0.0158 (4) | 0.0002 (3) | 0.0074 (3) | 0.0013 (3) |
C9_2 | 0.0176 (4) | 0.0153 (4) | 0.0129 (4) | 0.0008 (3) | 0.0058 (3) | 0.0016 (3) |
C10_2 | 0.0174 (4) | 0.0142 (4) | 0.0114 (4) | 0.0003 (3) | 0.0051 (3) | 0.0005 (3) |
C11_2 | 0.0186 (4) | 0.0137 (4) | 0.0126 (4) | 0.0000 (3) | 0.0054 (3) | −0.0004 (3) |
C12_2 | 0.0235 (5) | 0.0217 (5) | 0.0126 (4) | −0.0019 (4) | 0.0059 (4) | −0.0006 (3) |
N1_2 | 0.0200 (4) | 0.0148 (4) | 0.0125 (3) | 0.0010 (3) | 0.0059 (3) | −0.0009 (3) |
O1_2 | 0.0313 (4) | 0.0172 (3) | 0.0137 (3) | 0.0026 (3) | 0.0050 (3) | 0.0015 (3) |
O2_2 | 0.0254 (3) | 0.0176 (3) | 0.0150 (3) | −0.0003 (3) | 0.0076 (3) | −0.0039 (2) |
O3_2 | 0.0219 (3) | 0.0142 (3) | 0.0126 (3) | 0.0006 (2) | 0.0065 (2) | −0.0008 (2) |
O4_2 | 0.0256 (4) | 0.0201 (3) | 0.0136 (3) | 0.0021 (3) | 0.0065 (3) | 0.0027 (2) |
O5_2 | 0.0271 (4) | 0.0164 (3) | 0.0135 (3) | 0.0007 (3) | 0.0055 (3) | −0.0012 (2) |
C1_1—C2_1 | 1.5098 (13) | C1_2—C2_2 | 1.5087 (13) |
C1_1—C4_1 | 1.4719 (12) | C1_2—C4_2 | 1.4673 (12) |
C1_1—O1_1 | 1.2132 (11) | C1_2—O1_2 | 1.2165 (11) |
C2_1—C3_1 | 1.4764 (12) | C2_2—C3_2 | 1.4832 (12) |
C2_1—O2_1 | 1.2147 (11) | C2_2—O2_2 | 1.2141 (11) |
C3_1—C4_1 | 1.4130 (12) | C3_2—C4_2 | 1.4096 (12) |
C3_1—N1_1 | 1.3329 (11) | C3_2—N1_2 | 1.3297 (11) |
C4_1—O3_1 | 1.3106 (10) | C4_2—O3_2 | 1.3148 (10) |
C5_1—H5A_1 | 1.077 (14) | C5_2—H5A_2 | 1.094 (14) |
C5_1—H5B_1 | 1.073 (15) | C5_2—H5B_2 | 1.075 (14) |
C5_1—H5C_1 | 1.078 (13) | C5_2—H5C_2 | 1.074 (14) |
C5_1—O3_1 | 1.4551 (11) | C5_2—O3_2 | 1.4522 (11) |
C6_1—C7_1 | 1.3972 (12) | C6_2—C7_2 | 1.3951 (12) |
C6_1—C11_1 | 1.4061 (12) | C6_2—C11_2 | 1.4077 (12) |
C6_1—N1_1 | 1.4133 (11) | C6_2—N1_2 | 1.4127 (11) |
C7_1—H7_1 | 1.078 (13) | C7_2—H7_2 | 1.093 (14) |
C7_1—C8_1 | 1.4041 (13) | C7_2—C8_2 | 1.4009 (13) |
C8_1—H8_1 | 1.077 (14) | C8_2—H8_2 | 1.100 (15) |
C8_1—C9_1 | 1.3787 (13) | C8_2—C9_2 | 1.3740 (13) |
C9_1—C10_1 | 1.3881 (12) | C9_2—C10_2 | 1.3886 (12) |
C9_1—O4_1 | 1.3657 (11) | C9_2—O4_2 | 1.3692 (11) |
C10_1—C11_1 | 1.3753 (12) | C10_2—C11_2 | 1.3751 (12) |
C10_1—O5_1 | 1.3641 (11) | C10_2—O5_2 | 1.3678 (11) |
C11_1—H11_1 | 1.088 (13) | C11_2—H11_2 | 1.085 (13) |
C12_1—H12A_1 | 1.089 (13) | C12_2—H12A_2 | 1.093 (14) |
C12_1—H12B_1 | 1.073 (14) | C12_2—H12B_2 | 1.080 (14) |
C12_1—O4_1 | 1.4294 (13) | C12_2—O4_2 | 1.4287 (12) |
C12_1—O5_1 | 1.4411 (11) | C12_2—O5_2 | 1.4371 (11) |
N1_1—H1_1 | 1.037 (15) | N1_2—H1_2 | 1.026 (15) |
C4_1—C1_1—C2_1 | 87.06 (7) | C4_2—C1_2—C2_2 | 87.40 (7) |
O1_1—C1_1—C2_1 | 135.62 (8) | O1_2—C1_2—C2_2 | 135.53 (8) |
O1_1—C1_1—C4_1 | 137.29 (9) | O1_2—C1_2—C4_2 | 137.06 (9) |
C3_1—C2_1—C1_1 | 89.14 (7) | C3_2—C2_2—C1_2 | 88.71 (7) |
O2_1—C2_1—C1_1 | 135.95 (9) | O2_2—C2_2—C1_2 | 135.94 (8) |
O2_1—C2_1—C3_1 | 134.91 (9) | O2_2—C2_2—C3_2 | 135.33 (9) |
C4_1—C3_1—C2_1 | 90.57 (7) | C4_2—C3_2—C2_2 | 90.57 (7) |
N1_1—C3_1—C2_1 | 128.14 (8) | N1_2—C3_2—C2_2 | 128.19 (8) |
N1_1—C3_1—C4_1 | 141.27 (8) | N1_2—C3_2—C4_2 | 141.23 (8) |
C3_1—C4_1—C1_1 | 93.16 (7) | C3_2—C4_2—C1_2 | 93.26 (7) |
O3_1—C4_1—C1_1 | 134.24 (8) | O3_2—C4_2—C1_2 | 134.35 (8) |
O3_1—C4_1—C3_1 | 132.60 (8) | O3_2—C4_2—C3_2 | 132.37 (8) |
H5B_1—C5_1—H5A_1 | 111.7 (11) | H5B_2—C5_2—H5A_2 | 110.9 (10) |
H5C_1—C5_1—H5A_1 | 109.7 (10) | H5C_2—C5_2—H5A_2 | 109.6 (10) |
H5C_1—C5_1—H5B_1 | 110.2 (11) | H5C_2—C5_2—H5B_2 | 109.5 (10) |
O3_1—C5_1—H5A_1 | 109.4 (7) | O3_2—C5_2—H5A_2 | 109.1 (7) |
O3_1—C5_1—H5B_1 | 106.6 (8) | O3_2—C5_2—H5B_2 | 107.7 (7) |
O3_1—C5_1—H5C_1 | 109.2 (7) | O3_2—C5_2—H5C_2 | 110.0 (7) |
C11_1—C6_1—C7_1 | 121.04 (8) | C11_2—C6_2—C7_2 | 121.05 (8) |
N1_1—C6_1—C7_1 | 117.83 (8) | N1_2—C6_2—C7_2 | 116.95 (8) |
N1_1—C6_1—C11_1 | 121.13 (8) | N1_2—C6_2—C11_2 | 122.00 (8) |
H7_1—C7_1—C6_1 | 118.5 (7) | H7_2—C7_2—C6_2 | 120.1 (7) |
C8_1—C7_1—C6_1 | 121.20 (9) | C8_2—C7_2—C6_2 | 121.42 (9) |
C8_1—C7_1—H7_1 | 120.2 (7) | C8_2—C7_2—H7_2 | 118.4 (7) |
H8_1—C8_1—C7_1 | 121.1 (7) | H8_2—C8_2—C7_2 | 120.9 (8) |
C9_1—C8_1—C7_1 | 117.20 (9) | C9_2—C8_2—C7_2 | 117.01 (8) |
C9_1—C8_1—H8_1 | 121.7 (7) | C9_2—C8_2—H8_2 | 122.1 (8) |
C10_1—C9_1—C8_1 | 121.10 (8) | C10_2—C9_2—C8_2 | 121.40 (8) |
O4_1—C9_1—C8_1 | 129.10 (9) | O4_2—C9_2—C8_2 | 128.73 (8) |
O4_1—C9_1—C10_1 | 109.80 (8) | O4_2—C9_2—C10_2 | 109.85 (8) |
C11_1—C10_1—C9_1 | 123.02 (9) | C11_2—C10_2—C9_2 | 122.90 (8) |
O5_1—C10_1—C9_1 | 109.97 (8) | O5_2—C10_2—C9_2 | 109.65 (7) |
O5_1—C10_1—C11_1 | 127.00 (8) | O5_2—C10_2—C11_2 | 127.43 (8) |
C10_1—C11_1—C6_1 | 116.38 (8) | C10_2—C11_2—C6_2 | 116.19 (8) |
H11_1—C11_1—C6_1 | 123.9 (7) | H11_2—C11_2—C6_2 | 122.3 (7) |
H11_1—C11_1—C10_1 | 119.7 (7) | H11_2—C11_2—C10_2 | 121.5 (7) |
H12B_1—C12_1—H12A_1 | 113.8 (10) | H12B_2—C12_2—H12A_2 | 112.9 (10) |
O4_1—C12_1—H12A_1 | 109.3 (7) | O4_2—C12_2—H12A_2 | 109.3 (7) |
O4_1—C12_1—H12B_1 | 109.8 (7) | O4_2—C12_2—H12B_2 | 108.5 (8) |
O5_1—C12_1—H12A_1 | 107.8 (7) | O5_2—C12_2—H12A_2 | 110.1 (7) |
O5_1—C12_1—H12B_1 | 108.4 (7) | O5_2—C12_2—H12B_2 | 108.3 (8) |
O5_1—C12_1—O4_1 | 107.63 (7) | O5_2—C12_2—O4_2 | 107.66 (7) |
C6_1—N1_1—C3_1 | 128.52 (8) | C6_2—N1_2—C3_2 | 129.28 (8) |
H1_1—N1_1—C3_1 | 116.2 (8) | H1_2—N1_2—C3_2 | 113.4 (8) |
H1_1—N1_1—C6_1 | 115.0 (8) | H1_2—N1_2—C6_2 | 115.9 (8) |
C5_1—O3_1—C4_1 | 116.12 (7) | C5_2—O3_2—C4_2 | 115.42 (7) |
C12_1—O4_1—C9_1 | 106.25 (7) | C12_2—O4_2—C9_2 | 105.89 (7) |
C12_1—O5_1—C10_1 | 105.83 (7) | C12_2—O5_2—C10_2 | 105.86 (7) |
C1_1—C2_1—C3_1—C4_1 | −2.16 (7) | C1_2—C2_2—C3_2—C4_2 | 1.59 (7) |
C1_1—C2_1—C3_1—N1_1 | 176.34 (6) | C1_2—C2_2—C3_2—N1_2 | −178.77 (6) |
C1_1—C4_1—C3_1—C2_1 | 2.22 (7) | C1_2—C4_2—C3_2—C2_2 | −1.64 (7) |
C1_1—C4_1—C3_1—N1_1 | −175.90 (7) | C1_2—C4_2—C3_2—N1_2 | 178.82 (7) |
C1_1—C4_1—O3_1—C5_1 | 4.84 (13) | C1_2—C4_2—O3_2—C5_2 | −8.27 (12) |
C2_1—C3_1—C4_1—O3_1 | −178.29 (6) | C2_2—C3_2—C4_2—O3_2 | 176.92 (6) |
C2_1—C3_1—N1_1—C6_1 | −178.45 (9) | C2_2—C3_2—N1_2—C6_2 | −173.79 (9) |
C3_1—C4_1—O3_1—C5_1 | −174.45 (10) | C3_2—C4_2—O3_2—C5_2 | 173.75 (10) |
C3_1—N1_1—C6_1—C7_1 | −164.77 (10) | C3_2—N1_2—C6_2—C7_2 | 161.89 (10) |
C3_1—N1_1—C6_1—C11_1 | 15.64 (11) | C3_2—N1_2—C6_2—C11_2 | −18.46 (11) |
C6_1—C7_1—C8_1—C9_1 | −0.81 (11) | C6_2—C7_2—C8_2—C9_2 | 0.28 (11) |
C6_1—C11_1—C10_1—C9_1 | −1.65 (10) | C6_2—C11_2—C10_2—C9_2 | 0.66 (10) |
C6_1—C11_1—C10_1—O5_1 | 179.13 (7) | C6_2—C11_2—C10_2—O5_2 | −177.63 (7) |
C7_1—C8_1—C9_1—C10_1 | 1.78 (11) | C7_2—C8_2—C9_2—C10_2 | −1.11 (11) |
C7_1—C8_1—C9_1—O4_1 | −178.25 (8) | C7_2—C8_2—C9_2—O4_2 | 177.37 (8) |
C8_1—C9_1—C10_1—C11_1 | −0.56 (12) | C8_2—C9_2—C10_2—C11_2 | 0.64 (11) |
C8_1—C9_1—C10_1—O5_1 | 178.78 (9) | C8_2—C9_2—C10_2—O5_2 | 179.20 (9) |
C8_1—C9_1—O4_1—C12_1 | 176.58 (11) | C8_2—C9_2—O4_2—C12_2 | 174.65 (11) |
C9_1—C10_1—O5_1—C12_1 | 5.25 (9) | C9_2—C10_2—O5_2—C12_2 | 5.97 (9) |
C9_1—O4_1—C12_1—O5_1 | 6.60 (8) | C9_2—O4_2—C12_2—O5_2 | 10.30 (7) |
C10_1—O5_1—C12_1—O4_1 | −7.28 (7) | C10_2—O5_2—C12_2—O4_2 | −10.03 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1_1—H1_1···O2_2 | 1.037 (15) | 1.864 (15) | 2.8963 (10) | 172.9 (12) |
N1_2—H1_2···O2_1 | 1.026 (15) | 1.901 (15) | 2.8772 (10) | 157.8 (12) |
C12H9NO5 | Z = 4 |
Mr = 247.20 | F(000) = 512 |
Triclinic, P1 | Dx = 1.579 Mg m−3 |
a = 3.7001 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.4583 (15) Å | Cell parameters from 6912 reflections |
c = 22.846 (3) Å | θ = 2.4–24.9° |
α = 89.550 (8)° | µ = 0.13 mm−1 |
β = 86.967 (6)° | T = 100 K |
γ = 81.460 (6)° | Needle, colourless |
V = 1040.0 (2) Å3 | 0.12 × 0.05 × 0.03 mm |
Bruker D8 Venture diffractometer | 5138 independent reflections |
Radiation source: microfocus X-ray tube | 3902 reflections with I > 2σ(I) |
Detector resolution: 7.391 pixels mm-1 | Rint = 0.134 |
φ– and ω–scans | θmax = 28.4°, θmin = 2.4° |
Absorption correction: gaussian (SADABS; Bruker, 2016) | h = −4→4 |
Tmin = 0.991, Tmax = 0.998 | k = −16→16 |
76269 measured reflections | l = −30→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.0992P)2 + 0.138P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5138 reflections | Δρmax = 0.38 e Å−3 |
337 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Extinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.042 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1_1 | 0.2402 (10) | 0.7866 (3) | 0.51046 (13) | 0.0255 (7) | |
C2_1 | 0.1226 (10) | 0.6755 (3) | 0.51094 (13) | 0.0250 (7) | |
C3_1 | 0.2399 (10) | 0.6649 (3) | 0.44813 (13) | 0.0247 (7) | |
C4_1 | 0.3445 (10) | 0.7697 (3) | 0.44802 (13) | 0.0237 (7) | |
C5_1 | 0.5495 (10) | 0.9354 (3) | 0.42243 (14) | 0.0268 (7) | |
H5A_1 | 0.695205 | 0.930734 | 0.457201 | 0.040* | |
H5B_1 | 0.313730 | 0.981055 | 0.431108 | 0.040* | |
H5C_1 | 0.681263 | 0.967252 | 0.389944 | 0.040* | |
C6_1 | 0.3797 (10) | 0.5791 (3) | 0.35222 (13) | 0.0251 (7) | |
C7_1 | 0.5768 (10) | 0.4828 (3) | 0.33207 (14) | 0.0285 (8) | |
H7_1 | 0.612141 | 0.421794 | 0.357437 | 0.034* | |
C8_1 | 0.7247 (10) | 0.4745 (3) | 0.27456 (14) | 0.0285 (8) | |
H8_1 | 0.858046 | 0.408337 | 0.259804 | 0.034* | |
C9_1 | 0.6700 (10) | 0.5655 (3) | 0.24018 (13) | 0.0257 (7) | |
C10_1 | 0.4620 (10) | 0.6604 (3) | 0.26002 (13) | 0.0258 (7) | |
C11_1 | 0.3108 (10) | 0.6714 (3) | 0.31610 (13) | 0.0255 (7) | |
H11_1 | 0.168412 | 0.736995 | 0.329787 | 0.031* | |
C12_1 | 0.6376 (11) | 0.6866 (3) | 0.16599 (14) | 0.0324 (8) | |
H12A_1 | 0.465799 | 0.681057 | 0.134751 | 0.039* | |
H12B_1 | 0.829074 | 0.728670 | 0.150642 | 0.039* | |
N1_1 | 0.2392 (9) | 0.5827 (2) | 0.41202 (11) | 0.0259 (6) | |
H1_1 | 0.187 (14) | 0.517 (3) | 0.430 (2) | 0.055 (14)* | |
O1_1 | 0.2459 (8) | 0.8580 (2) | 0.54614 (10) | 0.0321 (6) | |
O2_1 | −0.0123 (7) | 0.6176 (2) | 0.54736 (10) | 0.0289 (6) | |
O3_1 | 0.4870 (7) | 0.82578 (19) | 0.40592 (9) | 0.0259 (5) | |
O4_1 | 0.7999 (8) | 0.5808 (2) | 0.18365 (10) | 0.0328 (6) | |
O5_1 | 0.4462 (8) | 0.7392 (2) | 0.21652 (10) | 0.0351 (6) | |
C1_2 | −0.0234 (10) | 0.2902 (3) | −0.01201 (13) | 0.0251 (7) | |
C2_2 | 0.1966 (10) | 0.1789 (3) | −0.01516 (13) | 0.0252 (7) | |
C3_2 | 0.1312 (9) | 0.1663 (3) | 0.04828 (13) | 0.0237 (7) | |
C4_2 | −0.0716 (10) | 0.2701 (3) | 0.05150 (13) | 0.0236 (7) | |
C5_2 | −0.4349 (10) | 0.4327 (3) | 0.08122 (15) | 0.0281 (7) | |
H5A_2 | −0.582883 | 0.427038 | 0.047354 | 0.042* | |
H5B_2 | −0.255440 | 0.481501 | 0.071770 | 0.042* | |
H5C_2 | −0.594347 | 0.461496 | 0.114837 | 0.042* | |
C6_2 | 0.1661 (10) | 0.0821 (3) | 0.14662 (12) | 0.0245 (7) | |
C7_2 | 0.0471 (10) | −0.0099 (3) | 0.17147 (14) | 0.0257 (7) | |
H7_2 | 0.004350 | −0.067252 | 0.146838 | 0.031* | |
C8_2 | −0.0108 (10) | −0.0188 (3) | 0.23268 (14) | 0.0286 (8) | |
H8_2 | −0.094132 | −0.080522 | 0.250434 | 0.034* | |
C9_2 | 0.0609 (10) | 0.0671 (3) | 0.26493 (13) | 0.0239 (7) | |
C10_2 | 0.1883 (10) | 0.1576 (3) | 0.23942 (13) | 0.0247 (7) | |
C11_2 | 0.2434 (9) | 0.1692 (3) | 0.18013 (13) | 0.0241 (7) | |
H11_2 | 0.327330 | 0.231263 | 0.162966 | 0.029* | |
C12_2 | 0.1126 (11) | 0.1850 (3) | 0.33644 (13) | 0.0286 (8) | |
H12A_2 | 0.290638 | 0.183380 | 0.367415 | 0.034* | |
H12B_2 | −0.115970 | 0.232001 | 0.349835 | 0.034* | |
N1_2 | 0.2357 (9) | 0.0846 (2) | 0.08406 (11) | 0.0261 (6) | |
H1_2 | 0.347 (12) | 0.017 (3) | 0.0690 (19) | 0.043 (12)* | |
O1_2 | −0.1202 (7) | 0.3619 (2) | −0.04711 (10) | 0.0308 (6) | |
O2_2 | 0.3643 (8) | 0.1206 (2) | −0.05342 (10) | 0.0311 (6) | |
O3_2 | −0.2439 (7) | 0.32517 (19) | 0.09569 (9) | 0.0274 (5) | |
O4_2 | 0.0395 (8) | 0.07640 (19) | 0.32501 (10) | 0.0298 (6) | |
O5_2 | 0.2608 (7) | 0.22682 (19) | 0.28226 (9) | 0.0271 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1_1 | 0.0336 (19) | 0.0267 (17) | 0.0162 (14) | −0.0040 (14) | −0.0017 (13) | 0.0011 (12) |
C2_1 | 0.0349 (19) | 0.0242 (16) | 0.0156 (14) | −0.0020 (14) | −0.0061 (13) | 0.0009 (12) |
C3_1 | 0.0355 (19) | 0.0230 (16) | 0.0156 (14) | −0.0033 (14) | −0.0027 (12) | 0.0004 (12) |
C4_1 | 0.0292 (18) | 0.0259 (17) | 0.0174 (14) | −0.0078 (13) | −0.0030 (13) | −0.0018 (12) |
C5_1 | 0.038 (2) | 0.0245 (17) | 0.0192 (15) | −0.0081 (14) | −0.0047 (13) | −0.0011 (12) |
C6_1 | 0.0335 (19) | 0.0289 (17) | 0.0136 (13) | −0.0070 (14) | −0.0014 (12) | −0.0019 (12) |
C7_1 | 0.040 (2) | 0.0257 (17) | 0.0204 (15) | −0.0062 (15) | −0.0047 (14) | 0.0001 (12) |
C8_1 | 0.041 (2) | 0.0227 (17) | 0.0211 (15) | −0.0025 (15) | −0.0046 (14) | −0.0023 (12) |
C9_1 | 0.0336 (19) | 0.0278 (17) | 0.0158 (14) | −0.0039 (14) | −0.0017 (12) | −0.0065 (12) |
C10_1 | 0.0333 (19) | 0.0263 (16) | 0.0192 (14) | −0.0078 (14) | −0.0030 (13) | −0.0019 (12) |
C11_1 | 0.0352 (19) | 0.0225 (16) | 0.0196 (14) | −0.0058 (14) | −0.0049 (13) | −0.0019 (12) |
C12_1 | 0.045 (2) | 0.0362 (19) | 0.0163 (15) | −0.0061 (17) | −0.0012 (14) | −0.0007 (14) |
N1_1 | 0.0389 (17) | 0.0239 (15) | 0.0160 (12) | −0.0066 (13) | −0.0041 (11) | −0.0006 (11) |
O1_1 | 0.0536 (17) | 0.0276 (13) | 0.0173 (11) | −0.0125 (11) | −0.0016 (10) | −0.0055 (9) |
O2_1 | 0.0414 (15) | 0.0283 (13) | 0.0180 (11) | −0.0090 (11) | −0.0017 (10) | 0.0005 (9) |
O3_1 | 0.0408 (14) | 0.0248 (12) | 0.0137 (10) | −0.0109 (11) | −0.0005 (9) | −0.0011 (9) |
O4_1 | 0.0489 (16) | 0.0322 (13) | 0.0157 (10) | −0.0008 (12) | −0.0034 (10) | −0.0024 (10) |
O5_1 | 0.0567 (17) | 0.0303 (13) | 0.0160 (10) | 0.0003 (12) | 0.0005 (11) | −0.0014 (9) |
C1_2 | 0.0332 (19) | 0.0243 (17) | 0.0178 (14) | −0.0030 (14) | −0.0056 (13) | −0.0014 (12) |
C2_2 | 0.0342 (19) | 0.0255 (17) | 0.0162 (14) | −0.0050 (14) | −0.0032 (13) | −0.0024 (12) |
C3_2 | 0.0309 (18) | 0.0260 (16) | 0.0152 (14) | −0.0065 (14) | −0.0030 (12) | −0.0035 (12) |
C4_2 | 0.0333 (18) | 0.0235 (16) | 0.0144 (13) | −0.0055 (14) | 0.0000 (12) | −0.0006 (12) |
C5_2 | 0.035 (2) | 0.0237 (17) | 0.0246 (15) | −0.0016 (14) | −0.0037 (14) | −0.0017 (13) |
C6_2 | 0.0345 (19) | 0.0251 (16) | 0.0131 (14) | −0.0009 (14) | −0.0035 (12) | 0.0005 (12) |
C7_2 | 0.036 (2) | 0.0223 (15) | 0.0188 (15) | −0.0018 (14) | −0.0063 (13) | −0.0021 (12) |
C8_2 | 0.037 (2) | 0.0250 (17) | 0.0233 (16) | −0.0023 (14) | −0.0023 (14) | 0.0010 (13) |
C9_2 | 0.0316 (18) | 0.0276 (17) | 0.0111 (13) | −0.0002 (14) | 0.0003 (12) | 0.0020 (12) |
C10_2 | 0.0329 (19) | 0.0229 (15) | 0.0181 (14) | −0.0029 (14) | −0.0030 (13) | −0.0023 (12) |
C11_2 | 0.0305 (18) | 0.0236 (16) | 0.0181 (14) | −0.0040 (13) | 0.0001 (12) | −0.0013 (12) |
C12_2 | 0.041 (2) | 0.0297 (18) | 0.0156 (14) | −0.0067 (15) | 0.0000 (14) | −0.0012 (13) |
N1_2 | 0.0372 (17) | 0.0239 (14) | 0.0157 (12) | 0.0009 (12) | −0.0038 (11) | −0.0023 (11) |
O1_2 | 0.0426 (16) | 0.0301 (14) | 0.0181 (11) | −0.0003 (11) | −0.0016 (10) | 0.0008 (9) |
O2_2 | 0.0450 (16) | 0.0301 (13) | 0.0166 (11) | −0.0002 (11) | −0.0013 (10) | −0.0044 (9) |
O3_2 | 0.0390 (14) | 0.0267 (12) | 0.0152 (10) | −0.0009 (10) | 0.0007 (9) | −0.0059 (9) |
O4_2 | 0.0493 (16) | 0.0271 (13) | 0.0138 (10) | −0.0090 (11) | −0.0001 (10) | 0.0000 (9) |
O5_2 | 0.0435 (15) | 0.0263 (12) | 0.0122 (10) | −0.0077 (10) | −0.0009 (9) | −0.0021 (8) |
C1_1—O1_1 | 1.215 (4) | C1_2—C4_2 | 1.476 (4) |
C1_1—C4_1 | 1.467 (4) | C1_2—C2_2 | 1.501 (5) |
C1_1—C2_1 | 1.510 (5) | C2_2—O2_2 | 1.223 (4) |
C2_1—O2_1 | 1.231 (4) | C2_2—C3_2 | 1.468 (4) |
C2_1—C3_1 | 1.478 (4) | C2_2—C4_2 | 2.032 (5) |
C3_1—N1_1 | 1.321 (4) | C3_2—N1_2 | 1.325 (4) |
C3_1—C4_1 | 1.415 (5) | C3_2—C4_2 | 1.396 (5) |
C4_1—O3_1 | 1.318 (4) | C4_2—O3_2 | 1.307 (4) |
C5_1—O3_1 | 1.474 (4) | C5_2—O3_2 | 1.462 (4) |
C5_1—H5A_1 | 0.9800 | C5_2—H5A_2 | 0.9800 |
C5_1—H5B_1 | 0.9800 | C5_2—H5B_2 | 0.9800 |
C5_1—H5C_1 | 0.9800 | C5_2—H5C_2 | 0.9800 |
C6_1—C7_1 | 1.377 (5) | C6_2—C7_2 | 1.393 (5) |
C6_1—C11_1 | 1.409 (5) | C6_2—C11_2 | 1.405 (4) |
C6_1—N1_1 | 1.435 (4) | C6_2—N1_2 | 1.440 (4) |
C7_1—C8_1 | 1.395 (5) | C7_2—C8_2 | 1.410 (5) |
C7_1—H7_1 | 0.9500 | C7_2—H7_2 | 0.9500 |
C8_1—C9_1 | 1.370 (5) | C8_2—C9_2 | 1.370 (5) |
C8_1—H8_1 | 0.9500 | C8_2—H8_2 | 0.9500 |
C9_1—O4_1 | 1.376 (4) | C9_2—O4_2 | 1.376 (3) |
C9_1—C10_1 | 1.378 (5) | C9_2—C10_2 | 1.397 (5) |
C10_1—C11_1 | 1.370 (4) | C10_2—C11_2 | 1.369 (4) |
C10_1—O5_1 | 1.389 (4) | C10_2—O5_2 | 1.372 (4) |
C11_1—H11_1 | 0.9500 | C11_2—H11_2 | 0.9500 |
C12_1—O4_1 | 1.429 (5) | C12_2—O4_2 | 1.447 (4) |
C12_1—O5_1 | 1.432 (4) | C12_2—O5_2 | 1.452 (4) |
C12_1—H12A_1 | 0.9900 | C12_2—H12A_2 | 0.9900 |
C12_1—H12B_1 | 0.9900 | C12_2—H12B_2 | 0.9900 |
N1_1—H1_1 | 0.94 (3) | N1_2—H1_2 | 0.94 (3) |
C1_2—O1_2 | 1.222 (4) | ||
O1_1—C1_1—C4_1 | 136.3 (3) | O2_2—C2_2—C3_2 | 133.7 (3) |
O1_1—C1_1—C2_1 | 136.0 (3) | O2_2—C2_2—C1_2 | 136.4 (3) |
C4_1—C1_1—C2_1 | 87.7 (2) | C3_2—C2_2—C1_2 | 89.9 (3) |
O2_1—C2_1—C3_1 | 135.0 (3) | O2_2—C2_2—C4_2 | 177.1 (3) |
O2_1—C2_1—C1_1 | 136.3 (3) | C3_2—C2_2—C4_2 | 43.41 (18) |
C3_1—C2_1—C1_1 | 88.6 (3) | C1_2—C2_2—C4_2 | 46.46 (18) |
N1_1—C3_1—C4_1 | 139.5 (3) | N1_2—C3_2—C4_2 | 138.3 (3) |
N1_1—C3_1—C2_1 | 129.6 (3) | N1_2—C3_2—C2_2 | 131.3 (3) |
C4_1—C3_1—C2_1 | 90.9 (3) | C4_2—C3_2—C2_2 | 90.3 (3) |
O3_1—C4_1—C3_1 | 131.3 (3) | O3_2—C4_2—C3_2 | 131.5 (3) |
O3_1—C4_1—C1_1 | 135.8 (3) | O3_2—C4_2—C1_2 | 134.8 (3) |
C3_1—C4_1—C1_1 | 92.8 (3) | C3_2—C4_2—C1_2 | 93.7 (3) |
O3_1—C5_1—H5A_1 | 109.5 | O3_2—C4_2—C2_2 | 177.6 (3) |
O3_1—C5_1—H5B_1 | 109.5 | C3_2—C4_2—C2_2 | 46.25 (19) |
H5A_1—C5_1—H5B_1 | 109.5 | C1_2—C4_2—C2_2 | 47.47 (18) |
O3_1—C5_1—H5C_1 | 109.5 | O3_2—C5_2—H5A_2 | 109.5 |
H5A_1—C5_1—H5C_1 | 109.5 | O3_2—C5_2—H5B_2 | 109.5 |
H5B_1—C5_1—H5C_1 | 109.5 | H5A_2—C5_2—H5B_2 | 109.5 |
C7_1—C6_1—C11_1 | 122.3 (3) | O3_2—C5_2—H5C_2 | 109.5 |
C7_1—C6_1—N1_1 | 117.5 (3) | H5A_2—C5_2—H5C_2 | 109.5 |
C11_1—C6_1—N1_1 | 120.2 (3) | H5B_2—C5_2—H5C_2 | 109.5 |
C6_1—C7_1—C8_1 | 120.3 (3) | C7_2—C6_2—C11_2 | 123.0 (3) |
C6_1—C7_1—H7_1 | 119.9 | C7_2—C6_2—N1_2 | 118.4 (3) |
C8_1—C7_1—H7_1 | 119.9 | C11_2—C6_2—N1_2 | 118.5 (3) |
C9_1—C8_1—C7_1 | 117.4 (3) | C6_2—C7_2—C8_2 | 120.9 (3) |
C9_1—C8_1—H8_1 | 121.3 | C6_2—C7_2—H7_2 | 119.6 |
C7_1—C8_1—H8_1 | 121.3 | C8_2—C7_2—H7_2 | 119.6 |
C8_1—C9_1—O4_1 | 129.1 (3) | C9_2—C8_2—C7_2 | 115.7 (3) |
C8_1—C9_1—C10_1 | 122.0 (3) | C9_2—C8_2—H8_2 | 122.1 |
O4_1—C9_1—C10_1 | 108.9 (3) | C7_2—C8_2—H8_2 | 122.1 |
C11_1—C10_1—C9_1 | 122.2 (3) | C8_2—C9_2—O4_2 | 127.0 (3) |
C11_1—C10_1—O5_1 | 127.4 (3) | C8_2—C9_2—C10_2 | 122.7 (3) |
C9_1—C10_1—O5_1 | 110.4 (3) | O4_2—C9_2—C10_2 | 110.2 (3) |
C10_1—C11_1—C6_1 | 115.8 (3) | C11_2—C10_2—O5_2 | 127.1 (3) |
C10_1—C11_1—H11_1 | 122.1 | C11_2—C10_2—C9_2 | 122.9 (3) |
C6_1—C11_1—H11_1 | 122.1 | O5_2—C10_2—C9_2 | 110.0 (3) |
O4_1—C12_1—O5_1 | 107.5 (3) | C10_2—C11_2—C6_2 | 114.8 (3) |
O4_1—C12_1—H12A_1 | 110.2 | C10_2—C11_2—H11_2 | 122.6 |
O5_1—C12_1—H12A_1 | 110.2 | C6_2—C11_2—H11_2 | 122.6 |
O4_1—C12_1—H12B_1 | 110.2 | O4_2—C12_2—O5_2 | 107.7 (2) |
O5_1—C12_1—H12B_1 | 110.2 | O4_2—C12_2—H12A_2 | 110.2 |
H12A_1—C12_1—H12B_1 | 108.5 | O5_2—C12_2—H12A_2 | 110.2 |
C3_1—N1_1—C6_1 | 124.8 (3) | O4_2—C12_2—H12B_2 | 110.2 |
C3_1—N1_1—H1_1 | 116 (3) | O5_2—C12_2—H12B_2 | 110.2 |
C6_1—N1_1—H1_1 | 118 (3) | H12A_2—C12_2—H12B_2 | 108.5 |
C4_1—O3_1—C5_1 | 115.5 (2) | C3_2—N1_2—C6_2 | 126.9 (3) |
C9_1—O4_1—C12_1 | 107.1 (2) | C3_2—N1_2—H1_2 | 121 (3) |
C10_1—O5_1—C12_1 | 105.6 (3) | C6_2—N1_2—H1_2 | 112 (3) |
O1_2—C1_2—C4_2 | 138.1 (3) | C4_2—O3_2—C5_2 | 115.3 (3) |
O1_2—C1_2—C2_2 | 135.8 (3) | C9_2—O4_2—C12_2 | 105.0 (2) |
C4_2—C1_2—C2_2 | 86.1 (2) | C10_2—O5_2—C12_2 | 105.1 (3) |
O1_1—C1_1—C2_1—O2_1 | 0.7 (8) | O1_2—C1_2—C2_2—C3_2 | −178.2 (4) |
C4_1—C1_1—C2_1—O2_1 | −179.4 (4) | C4_2—C1_2—C2_2—C3_2 | 0.4 (3) |
O1_1—C1_1—C2_1—C3_1 | −179.2 (4) | O1_2—C1_2—C2_2—C4_2 | −178.6 (6) |
C4_1—C1_1—C2_1—C3_1 | 0.7 (3) | O2_2—C2_2—C3_2—N1_2 | −0.7 (7) |
O2_1—C2_1—C3_1—N1_1 | −2.1 (7) | C1_2—C2_2—C3_2—N1_2 | 179.5 (4) |
C1_1—C2_1—C3_1—N1_1 | 177.8 (4) | C4_2—C2_2—C3_2—N1_2 | 179.8 (5) |
O2_1—C2_1—C3_1—C4_1 | 179.3 (4) | O2_2—C2_2—C3_2—C4_2 | 179.4 (4) |
C1_1—C2_1—C3_1—C4_1 | −0.7 (3) | C1_2—C2_2—C3_2—C4_2 | −0.4 (3) |
N1_1—C3_1—C4_1—O3_1 | 1.5 (8) | N1_2—C3_2—C4_2—O3_2 | −0.8 (7) |
C2_1—C3_1—C4_1—O3_1 | 179.8 (4) | C2_2—C3_2—C4_2—O3_2 | 179.0 (4) |
N1_1—C3_1—C4_1—C1_1 | −177.6 (5) | N1_2—C3_2—C4_2—C1_2 | −179.4 (4) |
C2_1—C3_1—C4_1—C1_1 | 0.8 (3) | C2_2—C3_2—C4_2—C1_2 | 0.4 (3) |
O1_1—C1_1—C4_1—O3_1 | 0.2 (8) | N1_2—C3_2—C4_2—C2_2 | −179.8 (6) |
C2_1—C1_1—C4_1—O3_1 | −179.7 (4) | O1_2—C1_2—C4_2—O3_2 | −0.4 (8) |
O1_1—C1_1—C4_1—C3_1 | 179.2 (4) | C2_2—C1_2—C4_2—O3_2 | −178.9 (4) |
C2_1—C1_1—C4_1—C3_1 | −0.8 (3) | O1_2—C1_2—C4_2—C3_2 | 178.1 (4) |
C11_1—C6_1—C7_1—C8_1 | 1.7 (5) | C2_2—C1_2—C4_2—C3_2 | −0.4 (3) |
N1_1—C6_1—C7_1—C8_1 | −179.2 (3) | O1_2—C1_2—C4_2—C2_2 | 178.5 (6) |
C6_1—C7_1—C8_1—C9_1 | 1.0 (5) | C11_2—C6_2—C7_2—C8_2 | 1.5 (5) |
C7_1—C8_1—C9_1—O4_1 | 176.4 (4) | N1_2—C6_2—C7_2—C8_2 | 177.3 (3) |
C7_1—C8_1—C9_1—C10_1 | −3.3 (5) | C6_2—C7_2—C8_2—C9_2 | −0.6 (5) |
C8_1—C9_1—C10_1—C11_1 | 3.0 (6) | C7_2—C8_2—C9_2—O4_2 | −177.4 (3) |
O4_1—C9_1—C10_1—C11_1 | −176.7 (3) | C7_2—C8_2—C9_2—C10_2 | −0.9 (5) |
C8_1—C9_1—C10_1—O5_1 | −179.2 (3) | C8_2—C9_2—C10_2—C11_2 | 1.7 (6) |
O4_1—C9_1—C10_1—O5_1 | 1.0 (4) | O4_2—C9_2—C10_2—C11_2 | 178.7 (3) |
C9_1—C10_1—C11_1—C6_1 | −0.3 (5) | C8_2—C9_2—C10_2—O5_2 | −175.7 (3) |
O5_1—C10_1—C11_1—C6_1 | −177.7 (3) | O4_2—C9_2—C10_2—O5_2 | 1.4 (4) |
C7_1—C6_1—C11_1—C10_1 | −2.0 (5) | O5_2—C10_2—C11_2—C6_2 | 176.1 (3) |
N1_1—C6_1—C11_1—C10_1 | 178.9 (3) | C9_2—C10_2—C11_2—C6_2 | −0.8 (5) |
C4_1—C3_1—N1_1—C6_1 | 1.5 (7) | C7_2—C6_2—C11_2—C10_2 | −0.8 (5) |
C2_1—C3_1—N1_1—C6_1 | −176.3 (3) | N1_2—C6_2—C11_2—C10_2 | −176.6 (3) |
C7_1—C6_1—N1_1—C3_1 | 138.8 (4) | C4_2—C3_2—N1_2—C6_2 | −2.5 (7) |
C11_1—C6_1—N1_1—C3_1 | −42.0 (5) | C2_2—C3_2—N1_2—C6_2 | 177.7 (3) |
C3_1—C4_1—O3_1—C5_1 | 178.2 (4) | C7_2—C6_2—N1_2—C3_2 | 134.7 (4) |
C1_1—C4_1—O3_1—C5_1 | −3.1 (6) | C11_2—C6_2—N1_2—C3_2 | −49.3 (5) |
C8_1—C9_1—O4_1—C12_1 | 174.8 (4) | C3_2—C4_2—O3_2—C5_2 | −178.8 (3) |
C10_1—C9_1—O4_1—C12_1 | −5.4 (4) | C1_2—C4_2—O3_2—C5_2 | −0.7 (6) |
O5_1—C12_1—O4_1—C9_1 | 7.7 (4) | C8_2—C9_2—O4_2—C12_2 | −175.5 (4) |
C11_1—C10_1—O5_1—C12_1 | −178.6 (4) | C10_2—C9_2—O4_2—C12_2 | 7.6 (4) |
C9_1—C10_1—O5_1—C12_1 | 3.8 (4) | O5_2—C12_2—O4_2—C9_2 | −13.4 (3) |
O4_1—C12_1—O5_1—C10_1 | −7.0 (4) | C11_2—C10_2—O5_2—C12_2 | 173.1 (4) |
O1_2—C1_2—C2_2—O2_2 | 2.0 (8) | C9_2—C10_2—O5_2—C12_2 | −9.7 (4) |
C4_2—C1_2—C2_2—O2_2 | −179.4 (5) | O4_2—C12_2—O5_2—C10_2 | 14.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1_1—H1_1···O2_1i | 0.94 (3) | 1.95 (4) | 2.880 (4) | 168 (4) |
N1_2—H1_2···O2_2ii | 0.94 (3) | 1.91 (3) | 2.831 (4) | 167 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z. |
3-I | 3-II | |
C3_1—N1_1—C6_1—C11_1 | 15.64 | -42.0 (5) |
C3_2—N1_2—C6_2—C11_2 | -18.46 (11) | -49.3 (5) |
Acknowledgements
We would like to thank Professor Christian W. Lehmann for providing access to the X-ray diffraction facility, Heike Schucht and Lucas Schulte-Zweckel for technical assistance with the
data collections, and Dr Jens-Ulrich Rahfeld, Dr Nadine Taudte and Nadine Jänckel for providing and maintaining the biosafety level 2 laboratory. Open access funding enabled and organized by Projekt DEAL.Funding information
Funding for this research was provided by: German Research Foundation (DFG) (grant No. 432291016 to Adrian Richter); Mukoviszidose Institut gGmbH (Bonn, Germany), the research and development arm of the German Cystic Fibrosis Association Mukoviszidose e.V. (grant No. 2202 to Adrian Richter).
References
Abdelaal, H. F. M., Chan, E. D., Young, L., Baldwin, S. L. & Coler, R. N. (2022). Microorganisms, 10, 1454. Web of Science CrossRef PubMed Google Scholar
Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386. Web of Science CrossRef CAS IUCr Journals Google Scholar
Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W. H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227. Web of Science CrossRef PubMed CAS Google Scholar
Ávila-Costa, M., Donnici, C. L., dos Santos, J. D., Diniz, R., Barros-Barbosa, A., Cuin, A. & de Oliveira, L. F. C. (2019). Spectrochim. Acta A Mol. Biomol. Spectrosc. 223, 117354. Web of Science PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhatia, A., Chopra, S., Nagpal, K., Deb, P. K., Tekade, M. & Tekade, R. K. (2018). Polymorphism and its Implications in Pharmaceutical Product Development, ch. 2, in Advances in Pharmaceutical Product Development and Research, Dosage Form Design Parameters, edited by R. K. Tekade, pp. 31–65. London: Academic Press. Google Scholar
Bolte, M. & Kettner, M. (1998). Acta Cryst. C54, 963–964. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier-Villars. Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA. Google Scholar
Bruker (2022). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Courbon, G. M., Palme, P. R., Mann, L., Richter, A., Imming, P. & Rubinstein, J. L. (2023). EMBO J. 42, e113687. Google Scholar
Dartois, V. & Dick, T. (2024). Nat. Rev. Drug Discov. 23, 381–403. Web of Science CrossRef CAS PubMed Google Scholar
Deshkar, A. T. & Shirure, P. A. (2022). Cureus, 14, e28519. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Miner. 30, 326–455. Google Scholar
Häser, M. & Almlöf, J. (1992). J. Chem. Phys. 96, 489–494. Google Scholar
Johansen, M. D., Herrmann, J. L. & Kremer, L. (2020). Nat. Rev. Microbiol. 18, 392–407. Web of Science CrossRef CAS PubMed Google Scholar
Khoshnood, S., Goudarzi, M., Taki, E., Darbandi, A., Kouhsari, E., Heidary, M., Motahar, M., Moradi, M. & Bazyar, H. (2021). J. Glob. Antimicrob. Resist. 25, 48–59. Web of Science CrossRef CAS PubMed Google Scholar
Kitajgorodskij, A. I. (1973). In Molecular Crystals and Molecules. London: Academic Press. Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Lang, M., Ganapathy, U. S., Mann, L., Abdelaziz, R., Seidel, R. W., Goddard, R., Sequenzia, I., Hoenke, S., Schulze, P., Aragaw, W. W., Csuk, R., Dick, T. & Richter, A. (2023). J. Med. Chem. 66, 5079–5098. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Li, P., Wang, B., Li, G., Fu, L., Zhang, D., Lin, Z., Huang, H. & Lu, Y. (2020). Eur. J. Med. Chem. 206, 112538. Web of Science CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. Web of Science CrossRef IUCr Journals Google Scholar
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108. Web of Science CrossRef PubMed Google Scholar
Parkin, S. R. (2021). Acta Cryst. E77, 452–465. Web of Science CrossRef IUCr Journals Google Scholar
Parsons, S. (2003). Acta Cryst. D59, 1995–2003. Web of Science CrossRef CAS IUCr Journals Google Scholar
Prevots, D. R., Marshall, J. E., Wagner, D. & Morimoto, K. (2023). Clin. Chest Med. 44, 675–721. Web of Science CrossRef PubMed Google Scholar
Rothstein, D. M. (2016). Cold Spring Harb. Perspect. Med. 6, a027011. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shyam, M., Kumar, S. & Singh, V. (2024). Infect. Dis. 10, 251-269. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sundarsingh, J. A. T., Ranjitha, J., Rajan, A. & Shankar, V. (2020). J. Infect. Public Health, 13, 1255–1264. Web of Science PubMed Google Scholar
Tantry, S. J., Markad, S. D., Shinde, V., Bhat, J., Balakrishnan, G., Gupta, A. K., Ambady, A., Raichurkar, A., Kedari, C., Sharma, S., Mudugal, N. V., Narayan, A., Naveen Kumar, C. N., Nanduri, R., Bharath, S., Reddy, J., Panduga, V., Prabhakar, K. R., Kandaswamy, K., Saralaya, R., Kaur, P., Dinesh, N., Guptha, S., Rich, K., Murray, D., Plant, H., Preston, M., Ashton, H., Plant, D., Walsh, J., Alcock, P., Naylor, K., Collier, M., Whiteaker, J., McLaughlin, R. E., Mallya, M., Panda, M., Rudrapatna, S., Ramachandran, V., Shandil, R., Sambandamurthy, V. K., Mdluli, K., Cooper, C. B., Rubin, H., Yano, T., Iyer, P., Narayanan, S., Kavanagh, S., Mukherjee, K., Balasubramanian, V., Hosagrahara, V. P., Solapure, S., Ravishankar, S. & Hameed, P. S. (2017). J. Med. Chem. 60, 1379–1399. Web of Science CrossRef CAS PubMed Google Scholar
Weigend, F. (2006). Phys. Chem. Chem. Phys. 8, 1057–1065. Web of Science CrossRef PubMed CAS Google Scholar
Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
World Health Organization (2023). Global Tuberculosis Report 2023. Geneva: World Health Organization. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.