crystallography in latin america
Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, and Hirshfeld surface analysis
aÁrea Académica de Química, Universidad Autónoma del Estado de Hidalgo, km 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hidalgo, México, and bCentro Conjunto de Investigación en Química Sustentable UAEM–UNAM, km 14.5 Carretera Toluca-Atlacomulco, Toluca, C.P. 50200, México
*Correspondence e-mail: jgar@uaeh.edu.mx
This article is part of the collection Crystallography in Latin America: a vibrant community.
A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four compounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K confirmed the formation of a mononuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O interaction. The Sn and O atoms are surrounded by hydrophobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent interactions. The pairwise interaction energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.
1. Introduction
The capability of tetravalent organotin compounds to interact effectively with electron donors, such as N, S and O, leading to penta- hexa- and even hepta-coordinated structures via both inter- and intramolecular interactions, is well known (Munguia et al., 2007; Vargas-Pineda et al., 2010). A very important aspect is to understand the role that the heteroatoms contained in these compounds play in the variations of the structural, electronic and reactivity properties (Fillion et al., 2016). Compounds where the Sn atom has the capacity to intramolecularly interact with sulfur or oxygen are well investigated, for example, in dithiastannecine complexes (Martínez-Otero et al., 2012a,b). The extent of intramolecular D⋯Sn bonding (D = donor atom) is usually determined by single-crystal X-ray diffraction, Mössbauer spectroscopy (Kárpáti et al., 2007) and, less extensively to date, solid-state 119Sn NMR spectroscopy (Lockhart et al., 1985; Kümmerlen et al., 1992; Munguia et al., 2007). The present series of compounds provides the capacity to understand the effect of changing the at the central Sn atom upon the nature and magnitude of the intramolecular D⋯Sn interactions.
On the other hand, in relation to the preparation of heterocycles with Sn atoms, the synthetic protocols are usually based on Grignard- (Blanda et al., 1989) or Wurtz-type (Zarl et al., 2009) reactions, where Sn—C bonds are formed. Nevertheless, another interesting and convenient approach to form these bonds is based on the less common Barbier-type reactions assisted by sonochemical activation of the metal surface, for instance, magnesium or copper (Lamandé-Langle et al., 2009; Ocampo et al., 2013; Cintas et al., 2011).
Herein we report the synthesis, by means of a Barbier-type ultrasound-assisted protocol, of a set of organotin heterocycles containing the skeleton derived from 4,5-bis(bromomethyl)-9,9-dimethyl-9H-xanthene and their structural characterization, as well as computational studies of 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, 7 (see Fig. 1), based on a Hirshfeld surface approach.
2. Experimental
The manipulations involving n-BuLi reagent and Barbier reactions were performed in a dry-nitrogen atmosphere using standard Schlenk techniques. The solvents N,N,N′,N′-tetramethylethylenediamine (TMEDA) and N,N-dimethylformamide (DMF) were purchased from Sigma–Aldrich, dried by standard methods and distilled prior to use. The reagents Ph2SnCl2 (95% purity), n-Bu2SnCl2 (96% purity) and Me2SnBr2 (97% purity) used in the syntheses were also purchased from Sigma–Aldrich and used without purification. Bn2SnBr2 was prepared according to a reported method (Sisido et al., 1961) from the reaction of tin powder, activated with a few drops of water, with benzyl bromide in toluene. Merck Kiesel gel 60 (0.063–0.40 mm) was used for purification procedures.
Melting points were determined with a Mel–Temp II instrument. IR spectra were recorded in the 4000–650 cm−1 range on a PerkinElmer System 2000 FT–IR spectrometer, in a solution of dichloromethane. 1H, 13C{1H} and 119Sn{1H} NMR spectra were recorded in CDCl3 on a Bruker Avance III 400 MHz spectrometer (400.1 MHz for 1H, 100.0 MHz for 13C and 149.2 MHz for 119Sn) at 23 °C, and calibrated using the residual proton resonance of CDCl3. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. For the assignments, 2D correlation experiments such as COSY (correlated spectroscopy), HSQC (heteronuclear single quantum correlation) and HMBC (heteronuclear multiple-bond correlation) were used.
The sequence of the reaction steps is summarized in Fig. 1. Compound 3 was prepared by minor modifications to the methodology reported by Besenyei et al. (2013). The 4, 5, 6 and 7 organotin(IV) heterocycles were prepared according to the approach reported by García-González et al. (2024), by the reaction of precursor 3 with an excess of magnesium turnings and the corresponding diorganodihalogenstannane(IV) (R2SnX2; X = Cl and Br) as limiting reagent in anhydrous tetrahydrofuran (THF). The mixture was sonicated for 20 min at room temperature and was then stirred magnetically for 20 h. The mixture was treated according to the general method to yield the compounds of general formula [{Me2C(C6H3CH2)2O}SnR2] (See Fig. 1).
2.1. Synthesis and crystallization
2.1.1. Synthesis of the dialdehyde Me2C(C6H3CHO)2O (1)
9,9-Dimethyl-9H-xanthene (5.0 g, 23.8 mmol) was dissolved in dry hexane (60 ml), under a nitrogen atmosphere, and TMEDA (8.9 ml, 59.5 mmol) was added at 23 °C. A solution of n-butyllithium in hexanes (2.5 M, 21 ml, 52.4 mmol) was added dropwise to the mixture, forming a dark-red solution. This was refluxed for 30 min and cooled to 23 °C before dry DMF (7.0 ml, 83.3 mmol) was poured into the reaction mixture. The dark solution was stirred for 1 h whilst its colour became white. Aqueous hydrochloric acid (90 ml, 2 M) was added and the mixture was stirred for 15 min. The precipitate was filtered off, washed sequentially with water and hexane, and dried to yield 1 as a yellow solid (yield: 5.7 g, 90%). The product crystallized by slow evaporation from ethyl acetate as yellow prisms. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 10.69 (s, 2H, H1), 7.81 (dd, J = 7.60, 1.60 Hz, 2H, H5), 7.71 (dd, J = 7.80, 1.60 Hz, 2H, H7), 7.26 (dd, J = 7.60 Hz, 2H, H6), 1.69 (6H, s, H9). 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 188.7 (C1), 151.4 (C3), 132.5 (C5), 131.1 (C4), 127.8 (C7), 124.3(C2), 124.1 (C6), 34.0 (C8), 32.5 (C9).
2.1.2. Synthesis of the diol Me2C(C6H3CH2OH)2O (2)
To an EtOH solution (50 ml) of dialdehyde 1 (5.7 g, 21.4 mmol) was added NaBH4 (2.4 g, 64.2 mmol) and the resulting mixture was stirred overnight at room temperature. It was then treated with water and acidified with dilute HCl, followed by extraction with dichloromethane. The combined organic phases were washed with water, dried (Na2SO4) and the volatiles were removed under reduced pressure to give 5.0 g (86%) of a light-green semi-solid. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.40 (dd, 2H, J = 8.0, 1.50 Hz, H7), 7.16 (dd, 2H, J = 7.0, 1.0 Hz, H5), 7.05 (dd, 2H, J = 7.50 Hz, H6), 4.77 (s, 4H, H1), 1.63 (s, 6H, H9). 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 148.9 (C3), 130.4 (C4), 128.0 (C2), 127.8 (C5), 126.2 (C7), 123.0 (C6), 62.2 (C1), 34.2 (C8), 32.2 (C9).
2.1.3. Synthesis of dibrominated compound Me2C(C6H3CH2Br)2O (3)
To a toluene solution (30 ml) of 2 (5 g, 18.5 mmol) was added HBr (6.4 ml, 55.5 mmol) dissolved in toluene (10 ml) dropwise, and the resulting mixture was refluxed for 22 h. A saturated aqueous NaHCO3 solution (20 ml) was added carefully, followed by extraction with CHCl3 (20 ml). The organic phase was separated, dried (Na2SO4) and evaporated to give a brown solid. The compound was purified by using silica as the and dichloromethane as to give a white crystalline solid (yield: 6.67 g, 91%). The product crystallized by slow evaporation from dichloromethane as clear plates. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.40 (dd, 2H, J = 7.50, 1.0 Hz, H7), 7.27 (dd, 2H, J = 7.50, 1.50 Hz, H5), 7.07 (dd, 2H, J = 8.0 Hz, H6), 4.83 (s, 4H, H1), 1.64 (s, 6H, H9). 13C{1H} NMR (ppm) (CDCl3, 400 MHz): δ 148.1 (C3), 130.4 (C4), 128.9 (C5), 127.2 (C7), 125.4 (C2), 123.4 (C6), 34.3, (C8), 32.7 (C9), 29.0 (C1).
2.1.4. Synthesis of organotin(IV) heterocycles [{Me2C(C6H3CH2)2O}SnR2] (4–7)
General method: a mixture of magnesium turnings, precursor 3 and R2SnX2 was mixed in freshly distilled anhydrous THF. The reaction was immersed in a commercial ultrasound bath (VMR 250D, working frequency: 35 kHz) for 20 min at 20 °C. Afterwards, the mixture was stirred at room temperature for 20 h. The mixture was vacuum evaporated and the addition of 30 ml of ethyl ether yielded a precipitate that was removed. The ethereal solution was washed with NaCl solution (20 ml, 5% w/v). The organic phase was separated and dried over Na2SO4 and the solvents were removed under reduced pressure to obtain the desired product.
Compound 4: Mg (0.037 g, 1.515 mmol); 3 (0.200 g, 0.505 mmol); Me2SnBr2 (0.153 g, 0.480 mmol); THF (15 ml). Colourless viscous liquid (0.172 g, 0.446 mmol, 93%). IR (DCM, cm−1): 3062, 2970, 2924, 2667, 1689, 1615, 1434, 1261, 1210, 747; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.11 (d, J = 7.05 Hz, 2H, H5), 7.04 (d, J = 6.75 Hz, 2H, H7), 6.99 (dd, J = 7.44 Hz, 2H, H6), 2.44 [s, 2J(1H–119Sn) = 58.71 Hz, 4H, H1], 1.66 (s, 6H, H9), −0.35 [s, 2J(1H–119Sn) = 49.14 Hz, 6H, H10]; 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.2 (C3), 134.8 (C4), 131.6 (C2), 126.5 (C7), 123.4 (C6), 119.8 (C5), 36.8 (C8), 26.7 (C9), 17.3 [1J(13C–119/117Sn) = 324.5/310.1 Hz, C1], −10.3 [1J(13C–119/117Sn) = 395.1/282.9, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ 26.8.
Compound 5: Mg (0.074 g, 3.03 mmol); 3 (0.400g, 1.01 mmol); n-Bu2SnCl2 (0.307 g, 0.96 mmol); THF (20 ml). Colourless viscous liquid (0.414 g, 0.883 mmol, 92%). IR (DCM, cm−1): 2955, 2923, 2869, 1615, 1581, 1434, 1261, 1206, 743; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.09 (d, J = 7.38 Hz, 2H, H5), 7.04 (dd, J = 6.86 Hz, 2H, H7), 6.98 (d, J = 7.47 Hz, 2H, H6), 2.43 [s, 2J(1H–119Sn) = 53.83 Hz, 4H, H1], 1.64 (s, 6H, H9), 1.17–1.03 (m, 4H, H11 and H12), 0.72 (t, J = 7.02 Hz, 6H, H13), 0.46 (t, J = 7.63 Hz, 4H, H10); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.4 (C3), 134.9 (C4), 132.0 (C2), 126.4 (C7), 123.4 (C6), 119.7 (C5), 36.9 (C8), 28.7 (C11), 27.1 (C12), 26.7 (C9), 16.2 [1J(13C–119/117Sn) = 280.7/268.1 Hz, C1], 13.7 (C13), 10.7 [1J(13C–119/117Sn) = 304.8/291.2 Hz, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ 14.4.
Compound 6: Mg (0.037 g, 1.515 mmol); 3 (0.200 g, 0.505 mmol); Bn2SnBr2 (0.221 g, 0.480 mmol); THF (15 ml). Colourless viscous liquid (0.235 g, 0.437 mmol, 91%). IR (DCM, cm−1): 3026, 2968, 2920, 1598, 1434, 1264, 1209, 734, 696; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.12 (dd, J = 6.70 Hz, 2.39 Hz, 2H, H5), 7.06 (dd, J = 7.59 Hz, 4H, H13), 7.02–6.97 (m, 4H, H7 and H14), 6.92 (dd, J = 7.45 Hz, 2H, H6), 6.61 (d, J = 8.20 Hz, 4H, H12), 2.34 [s, 2J(1H–119Sn) = 57.07 Hz, 4H, H1], 1.87 [s, 2J(1H–119Sn) = 55.95 Hz, 4H, H10], 1.62 (s, 6H, H9); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 152.6 (C3), 141.9 (C11), 134.5 (C4), 130.2 (C2), 128.4 (C13), 127.1 (C12), 127.0 (C7), 123.6 (C14), 123.3 (C6), 120.3 (C5), 36.6 (C8), 26.8 (C9), 19.5 [1J(13C–119/117Sn) = 235.6/225.5 Hz, C1], 16.3 [1J(13C–119/117Sn) = 306.7/292.3 Hz, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ −8.6.
Compound 7: Mg (0.074 g, 3.03 mmol); 3 (0.400 g, 1.01 mmol); Ph2SnCl2 (0.344 g, 0.96 mmol); THF (20 ml). White solid (0.463 g, 0.91 mmol, 95%); m.p. 79 °C. The product crystallized by slow evaporation from ethyl ether as clear prisms. IR (DCM, cm−1): 3062, 2970, 2925, 1616, 1579, 1428, 1263, 1209, 726, 697; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.19–7.13 (m, 6H, H7 and H14), 7.12 (d, J = 2.07 Hz, 2H, H7), 7.10 (d, J = 3.29 Hz, 2H, H5), 7.06 (d, J = 7.44 Hz, 4H, H11), 6.97 (dd, J = 7.61 Hz, 2H, H6), 2.87 [s, 2J(1H–119Sn) = 64.66 Hz, 4H, H1], 1.64 (s, 6H, H9); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.1 (C3), 140.9 (C10), 136.4 (C11), 134.9 (C4), 130.0 (C2), 128.6 (C13), 128.2 (C12), 127.1 (C7), 123.7 (C6), 120.5 (C5), 36.8 (C8), 26.8 (C9), 16.8 [1J(13C–119/117Sn) = 369.2/353.2 Hz, C1]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ −78.5.
2.2. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methylene groups, and 1.5Ueq(C) for methyl groups.
details are summarized in Table 13. Results and discussion
The overall linear synthesis of the dibrominated compound Me2C(C6H3CH2Br)2O were based on a regioselective double lithiation of the corresponding 9,9-dimethylxanthene, followed by a formylation reaction with DMF in situ. A reduction of the resulting –CHO groups was then carried out with NaBH4. Afterwards, the synthesis of compound 3 was achieved by a of the hydroxyl groups using Br− as a nucleophile.
Usually, a typical way to prepare organotin compounds is by a two-step method. In the first step, the Grignard compound RMgX is prepared in anhydrous ether. Once this compound is obtained, it is added to a solution of a tin compound such as RnSnX(4–n) (n = 3 to 0), also in an anhydrous ethereal solvent. In this vein, there are some classical examples of the preparation of cyclic and bicyclic organotin compounds (Jurkschat et al., 1985, 1988; Beuter et al., 1997). These protocols that have used di- and trihalogenate precursors, respectively, yielded mononuclear compounds that have eight-membered central rings. Thus, we carried out the reactions following an in situ method (Barbier approach), where a mixture of an excess of magnesium turnings with the precursor 3 and the corresponding diorganodihalogenstannane(IV) R2SnX2 (X = Cl and Br) in anhydrous THF was sonicated for 20 min at room temperature and then magnetically stirred for a further 20 h. Thus, we obtained heterocyclic mononuclear tin(IV) complexes of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = Me (4), n-Bu (5), Bn (6) and Ph (7)] (Fig. 1) that were characterized by spectroscopic data (see below). It is noteworthy that we obtained these mononuclear complexes. For the sake of comparison, with more flexible precursors, such as {Ch(C6H4CH2Br)2}, the products are dinuclear macroheterocycles of general formula [R2Sn{Ch(C6H4CH2)2}2SnR2] [Ch = O or S and R = n-Bu, Bn or Ph] (García-González et al., 2024).
3.1. NMR data and analysis of coupling constants
For compounds 1–3, the signals of the aromatic protons of the ligand skeleton were observed as an ABC pattern (Fig. S1.1 in the supporting information). In the 13C{1H} NMR spectra (Fig. S1.2), six signals were observed for the different aromatic C atoms; the signals found at higher frequency correspond to the C atoms directly bonded to the heteroatom (oxygen), due to the electron-withdrawing effect. On the other hand, the –CH2– signals were used to determine that the chemical transformations had been successful. The changes of these signals are clearly noticeable in the 13C{1H} NMR spectrum. Thus, when the C atom corresponds to the –CHO the signal is at 188.7 ppm; when the reduction reaction is carried out for its transformation into the –CH2–OH group, the carbon signal shifts to 62.2 ppm. Then the carbon resonances for –CH2–Br were observed at 29.0 ppm.
The 1H and 13C{1H} NMR spectra in CDCl3 solution of all the organotin heterocycles (4–7) showed that the {MeC(C6H3CH2)SnR} moieties are magnetically equivalent (Figs. S2.1 and S2.2). In particular, the 2J(1H–119Sn) and 1J(13C–119/117Sn) coupling constant data were fundamental in confirming the formation of the new Sn—CH2 bonds; the 2J constants ranged from 53.8 to 64.7 Hz, while the second 1J constants ranged from 225.5 to 369.2 Hz. These coupling data are smaller than those reported in two comparable mononuclear compounds of general formula [{Ch(C6H4CH2)2}SnBr2] (Ch = O or S), where five-coordinated SnIV atoms were observed [2J(1H–119/117Sn) = 83.3 and 82.4 Hz; 1J(13C–119/117Sn) = 461.4 and 482.6 Hz] (Mejía-Rivera et al., 2018). The 119Sn{1H} NMR spectra of all compounds in the noncoordinating CDCl3 solvent displayed an intense sharp resonance confirming the existence of one tin species (Fig. S2.3). These chemical shifts ranged from 26.8 to −78.5 ppm and are directly related to the nature of the R group in the sequence: Me > n-Bu > Bn > Ph. Hence, this trend is due to the electron density that these substituents donate to the central Sn atom, making it progressively more shielded and, therefore, causing the 119Sn to move to lower frequencies (Holeček et al., 1983). All 119Sn{1H} chemical shifts agreed with a of four of the central Sn atom in all compounds in solution.
3.2. Structure analysis
3.2.1. Molecular structural analysis for 7 at 100 and 298 K
Compound 7 displayed a relatively low melting point (79 °C); compounds 4, 5 and 6 were viscous liquids. We crystallized 7 by slow evaporation from an ethereal solution as colourless plates. Single-crystal X-ray diffraction studies were carried out at 100 and 295 K. In both cases, there are two crystallographically independent molecules in the (Z′ = 2), denoted hereinafter as 7a (Fig. 2, left) and 7b. Despite the different temperatures of the diffraction experiments, the conformations of both 7a and 7b molecules are essentially the same, with an r.m.s. deviation of 0.268 Å (Fig. 2, right); the major difference is in a torsional variation of the arene pendant ring that is far away from the folded xanthenyl system (ca 28°, according to the O⋯Sn—C—C system). Now, in order to properly describe the molecular structure, we envisage three main molecular features in these systems: (i) the local geometry around the Sn atom, (ii) the Sn⋯O intramolecular transannular distance and (iii) the conformation of the central eight-membered ring linked to the folded xanthenyl tricyclic moiety. Thus, for (i), the analysis of the molecular structures revealed compounds with four-coordinated Sn atoms inserted in an eight-membered ring; the Sn—C bond distances reflect the different nature of the C(sp3) versus C(sp2) atoms (Cordero et al., 2008), i.e. the larger the s-character, the shorter the Sn—C bond distance. Considering the C—Sn—C bond angles in both compounds, these range from 120.2 to 103.7°, the largest being the –H2C—Sn—CH2– angle associated with the `bite ligand'. Then, for (ii), the presence of an such as the O atom in this xanthenyl-type compound, opens the possibility of an Sn⋯O intramolecular transannular interaction. Thus, we observed that the corresponding distances are 2.969 (1)/2.957 (1) and 2.966 (2)/2.948 (2) Å for 7 at 100 and 295 K, respectively; they are larger than the covalent radii sum [Σrcov(Sn,O) = 2.14 Å] but shorter than the van der Waals radii sum [ΣrvdW(Sn,O) = 3.69 Å] (Porterfield, 1993). Usually, when a donor–acceptor distance fulfils this criterion, secondary bonding is considered (Alcock, 1972). Lastly, a thorough discussion of point (iii) is crucial to consider a possible Sn⋯O intramolecular transannular interaction. Firstly, we carried out a search for analogous tin(II) and tin(IV) compounds in the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016) based on the general formula [{E1(C6H3–nRnE2)2O}Sn] (E1 = any atom; E2 = C, N, P, O, S or Se); we found just two phenoxathiin [{S(C6H3S)2O}Sn] and four xanthenyl [{C(C6H3E)2O}Sn] cores. We observed that these species display just two conformations of the dibenzo eight-membered ring, i.e. they present either boat–boat or boat–chair conformations. The first are associated with Sn⋯O distances shorter than 2.632 Å and the second has been observed when the Sn⋯O distance is close to 3.00 Å. In our case, the 7a and 7b molecules display a boat–chair conformation; as a result, we consider that the Sn⋯O interaction is very weak, despite the fact that it is shorter than the van der Waals radii sum because of the rigidity of the mirror-related eight-membered central ring.
3.2.2. Analysis of the intermolecular interactions in 7 at 100 and 298 K
The SnIV atom, a common and the O atom, a usual are practically in the inner part of the molecules, i.e. they are hardly exposed to strong intermolecular contacts. Thus, the large number of hydrophobic C—H bonds surrounding the 7a and 7b molecules prompts weak C—H⋯π and π–π aromatic shifted interactions. For example, we observed a π–π noncovalent interaction between the arene rings in a centrosymmetric arrangement of either two 7a or 7b molecules that points to the concavity of the folded xanthenyl tricyclic moiety (Fig. 3); it is noteworthy that this type of interaction can also be observed in phenoxathiin compounds [{S(C6H3S)2O}APh2] [A = Ge (Flores-Chávez et al., 2008), Sn (Martínez-Otero et al., 2012b) and Pb (González-Montiel et al., 2009); Fig. 3, right], with just one molecule per (Z′ = 1). In all compounds, the interplanar π–π distance (d1) ranges from 3.345 to 3.591 Å, a typical distance observed for this interaction. We also show the different shifts according to the centroid–centroid distances (d2). Despite the presence of soft S atoms in these tetrel compounds, including different A—S covalent bonds, the persistence of this π–π noncovalent interaction in all these systems containing {APh2}2+ fragments indicate the importance of this dimeric association as a synthon for the cohesion and packing of the crystals.
3.3. Hirshfeld surface analysis
The similarity of the conformations of the 7a and 7b molecules at different temperatures and the observed intermolecular arrangements prompted us to analyze the noncovalent interactions using a Hirshfeld surface approach. We used CrystalExplorer21 (Spackman et al., 2009, 2021) with a high standard surface resolution. The surfaces were mapped using a fixed colour scale, red–white–blue, where red highlights contacts shorter than van der Waals (vdW) radii sum, white contacts around the vdW separation and blue contacts longer than the vdW sum.
The surfaces based on the dnorm of 7a and 7b for the crystal data at 100 K mainly exhibit red spots in the vicinity of the aromatic rings, as well as in the methylenic H-atom zones; they correspond to the presence of close contacts due to C—H⋯π nonclassical hydrogen bonding and π–π aromatic interactions. On the other hand, the data for the two molecules in the at 295 K do not clearly display the red spots. Thus, it is evident that the shrinking of the unit-cell parameters due to the low-temperature conditions enhances the presence of these intermolecular contacts; the Hirshfeld surface volumes underwent a 2.78% contraction, from 567.11/583.17 Å3 at 295 K to 551.29/566.90 Å3 at 100 K.
We plotted the 2D fingerprints of the corresponding Hirshfeld surfaces to assess the contribution of each intermolecular contact; the main contributions are listed in Fig. 4 and some selected fingerprint plots are also displayed. As expected, they look very similar for each of 7a and 7b. The analysis of the intermolecular contact contributions showed that H⋯H contacts are dominant, where the shortest are 2.211 (100 K) and 2.289 Å (295 K), observed between the aromatic H atoms C13—H13⋯H36—C36 of 7a and 7b, respectively. These facts are reflected in the slight shift of the spike positioned at the intersection di ≃ 1.1/de ≃ 1.1 Å of the 2D fingerprints. The next predominant noncovalent contributions are the C⋯H/H⋯C due to the presence of the aromatic rings. The overall contribution change for these respective interactions is close to 1.0%; it is worth mentioning that the O⋯H/H⋯O nonclassical hydrogen bonding essentially remains the same at both temperatures.
The fragment patch plots are useful for calculating the number of molecules that interact with a central molecule; also, the area data of these patches can be used to find the external major molecular fragments that are closer to a given HS. In Fig. 4 are plotted the corresponding fragment patches over the HS; the numbers of interacting molecules are 13 and 15 for molecules 7a and 7b, respectively, regardless of the diffraction temperature. The four larger areas over the HS surfaces are 68.8, 57.5, 55.3 and 53.9 Å2 that represent 52.8% of the superficial area for 7a at 100 K; 63.6, 55.4, 54.7 and 38.7 Å2 (47.2% superficial area) for 7b at 100 K; 68.6, 57.3, 57.2 and 53.7 Å2 (52.5% superficial area) for 7a at 295 K; and 63.9, 55.9, 55.8 and 39.1 Å2 (47.2% superficial area) for 7b at 295 K. Overall, four interacting molecules cover more than half of each HS, despite the difference in the number of surrounding molecules. In particular, the major surface area represents the interaction with another 7a molecule, forming the centrosymmetric arrangement described in Fig. 3. Thus, we decided to analyze the molecular electrostatic potential (MEP) projected onto the Hirshfeld surface to gain a deeper insight. The MEP was calculated with the TONTO quantum modelling package (Jayatilaka & Grimwood, 2003) implemented in CrystalExplorer21, using the Becke three-parameter Lee–Yang–Parr (B3LYP) hybrid functionals (Becke, 1993) with the DGDZVP basis set (Godbout et al., 1992; Sosa et al., 1992). The analysis of the MEP showed that the blue regions, corresponding to positive electrostatic potential, occur around the C—H zones, and faint red regions, corresponding to negative potentials, occur near the centres of the aromatic rings (Fig. 5). The interaction of these negative potentials between the two arene groups prompted us to analyze the energies for the intermolecular interactions; this analysis was carried out based on the energy framework approach (Mackenzie et al., 2017). We again used CrystalExplorer21, considering the four energy components: electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep). The energies were obtained using the B3LYP/DGDZVP level of theory; for the framework construction, we considered a default radius of 3.80 Å.
For the visual comparison of the magnitudes of the interaction energies for compound 7 at the two diffraction temperatures, they were adjusted to a cylinder scale of 100 with a cut-off value of 10 kJ mol−1 within 2 × 2 × 2 unit cells (Fig. 6). We also show an energy framework for six interlocked molecules, where the 7a/7b pair (in black) is in a general position; for the four remaining molecules we used red, green, pink and blue colours, with symmetry operators (−x + 1, −y + 2, −z + 2), (−x + 1, −y + 1, −z + 1), (−x + 1, −y + 2, −z + 1) and (x, y, z − 1), respectively. These six molecules make three centrosymmetric dimers along the c axis; the corresponding centroid-to-centroid distances are 8.15, 8.03, 7.89, 6.76 and 8.15 Å. It is clear that the dispersion forces arising from the C—H⋯π interactions make a significant contribution to the supramolecular architecture in the crystal [total energy data: −50.59 and −41.76 kJ mol−1 for the 7a(green)/7b(pink) and 7a/7b pairs, respectively], as has been stated (Tiekink & Zukerman-Schpector, 2012). In addition, the π–π interactions between the arene groups, whose total energy data are −57.14 and −41.76 kJ mol−1 for the 7a/7a(green) and 7b/7b(red) pairs, respectively, are also very important. Overall, the green cylinders joining the centroids of the different 7a and 7b molecules are almost parallel in magnitude with the total energy (cylinders in blue). Finally, the energy frameworks were very useful for visualizing that there are more contributions at low temperature because of the shrinking of the lattice parameters (see, for example, the red cylinders in Fig. 6, upper and middle rows).
4. Conclusions
We showed that an approach to form Sn—C bonds based on Barbier-type reactions assisted by sonochemical activation of the Mg surface is an easy and successful option to yield organotin mononuclear heterocyclic compounds when a xanthenyl moiety is used. From the Hirshfeld surface analysis, we also showed that one of the synthesized organotin heterocycles (compound 7) crystallized by means of weak C—H⋯π, π–π and H⋯H noncovalent interactions; this is related to the relatively low melting point observed for 7 and the absence of crystals for the other organotin heterocycles with either small groups, such as methyl, or more conformationally flexible groups, such as n-butyl or benzyl. In the crystal of 7, the energy frameworks showed that there are more contributions to the architecture of the crystal arrangement at low temperature and that the cohesion between the organotin heterocycles is mainly due to dispersion forces.
Supporting information
https://doi.org/10.1107/S2053229624006946/zo3052sup1.cif
contains datablocks 7_295K_02, 7_100K_02, global. DOI:Structure factors: contains datablock 7_295K_02. DOI: https://doi.org/10.1107/S2053229624006946/zo30527_295K_02sup2.hkl
Structure factors: contains datablock 7_100K_02. DOI: https://doi.org/10.1107/S2053229624006946/zo30527_100K_02sup3.hkl
NMR spectra. DOI: https://doi.org/10.1107/S2053229624006946/zo3052sup4.pdf
[Sn(C6H5)2(C17H16O)] | Dx = 1.450 Mg m−3 |
Mr = 509.19 | Melting point: 352 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 21.0215 (4) Å | Cell parameters from 56362 reflections |
b = 9.1849 (2) Å | θ = 3.4–25.6° |
c = 25.4833 (6) Å | µ = 1.11 mm−1 |
β = 108.497 (2)° | T = 295 K |
V = 4666.14 (18) Å3 | Block, clear colourless |
Z = 8 | 0.5 × 0.4 × 0.3 mm |
F(000) = 2064 |
Agilent Xcalibur/Gemini diffractometer with an Atlas detector | 12850 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 8417 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 10.3659 pixels mm-1 | θmax = 29.7°, θmin = 3.0° |
ω scans | h = −28→29 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −12→12 |
Tmin = 0.932, Tmax = 1.000 | l = −35→35 |
325733 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0229P)2 + 3.8253P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.004 |
12850 reflections | Δρmax = 0.85 e Å−3 |
563 parameters | Δρmin = −0.42 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.55492 (2) | 0.13987 (2) | 0.63958 (2) | 0.04645 (6) | |
O1 | 0.44023 (8) | 0.26072 (18) | 0.66952 (7) | 0.0419 (4) | |
C1 | 0.57550 (13) | 0.2853 (3) | 0.71019 (11) | 0.0516 (7) | |
H1A | 0.569007 | 0.232493 | 0.741070 | 0.062* | |
H1B | 0.622151 | 0.314973 | 0.720834 | 0.062* | |
C2 | 0.53233 (13) | 0.4183 (3) | 0.69952 (10) | 0.0437 (6) | |
C3 | 0.46328 (12) | 0.4033 (3) | 0.67818 (9) | 0.0397 (5) | |
C4 | 0.41792 (13) | 0.5161 (3) | 0.66182 (10) | 0.0442 (6) | |
C5 | 0.44453 (16) | 0.6558 (3) | 0.66926 (12) | 0.0564 (7) | |
H5 | 0.416103 | 0.735731 | 0.659231 | 0.068* | |
C6 | 0.51275 (17) | 0.6768 (3) | 0.69138 (13) | 0.0619 (8) | |
H6 | 0.529704 | 0.771145 | 0.696389 | 0.074* | |
C7 | 0.55620 (15) | 0.5611 (3) | 0.70618 (11) | 0.0553 (7) | |
H7 | 0.602062 | 0.578163 | 0.720812 | 0.066* | |
C8 | 0.45968 (13) | 0.0233 (3) | 0.61427 (12) | 0.0523 (7) | |
H8A | 0.461027 | −0.050249 | 0.587347 | 0.063* | |
H8B | 0.454423 | −0.026324 | 0.646237 | 0.063* | |
C9 | 0.40007 (13) | 0.1182 (3) | 0.58983 (11) | 0.0452 (6) | |
C10 | 0.39174 (12) | 0.2411 (3) | 0.61834 (10) | 0.0402 (5) | |
C11 | 0.34225 (12) | 0.3445 (3) | 0.59897 (11) | 0.0451 (6) | |
C12 | 0.29531 (14) | 0.3169 (4) | 0.54757 (12) | 0.0592 (8) | |
H12 | 0.260531 | 0.382248 | 0.532419 | 0.071* | |
C13 | 0.30068 (15) | 0.1909 (4) | 0.51895 (12) | 0.0673 (9) | |
H13 | 0.267980 | 0.171501 | 0.485324 | 0.081* | |
C14 | 0.35240 (14) | 0.0948 (3) | 0.53861 (12) | 0.0597 (8) | |
H14 | 0.355640 | 0.013784 | 0.517692 | 0.072* | |
C15 | 0.34404 (13) | 0.4773 (3) | 0.63572 (11) | 0.0493 (6) | |
C16 | 0.30323 (16) | 0.6042 (3) | 0.60286 (14) | 0.0680 (9) | |
H16A | 0.306432 | 0.686070 | 0.626971 | 0.102* | |
H16B | 0.257122 | 0.575528 | 0.587441 | 0.102* | |
H16C | 0.320535 | 0.630572 | 0.573543 | 0.102* | |
C17 | 0.31457 (15) | 0.4332 (4) | 0.68170 (13) | 0.0639 (8) | |
H17A | 0.338938 | 0.351328 | 0.701689 | 0.096* | |
H17B | 0.268214 | 0.407310 | 0.665400 | 0.096* | |
H17C | 0.318211 | 0.513449 | 0.706611 | 0.096* | |
C18 | 0.63054 (13) | −0.0258 (3) | 0.66188 (12) | 0.0515 (7) | |
C19 | 0.66470 (16) | −0.0575 (4) | 0.71631 (15) | 0.0746 (9) | |
H19 | 0.656191 | −0.004502 | 0.744465 | 0.090* | |
C20 | 0.7125 (2) | −0.1699 (6) | 0.7293 (2) | 0.1015 (15) | |
H20 | 0.735364 | −0.191855 | 0.766087 | 0.122* | |
C21 | 0.7253 (2) | −0.2466 (5) | 0.6883 (3) | 0.1049 (15) | |
H21 | 0.757960 | −0.318961 | 0.697073 | 0.126* | |
C22 | 0.6914 (2) | −0.2190 (5) | 0.6355 (2) | 0.0966 (13) | |
H22 | 0.699358 | −0.274584 | 0.607753 | 0.116* | |
C23 | 0.64469 (16) | −0.1085 (4) | 0.62175 (16) | 0.0728 (9) | |
H23 | 0.622211 | −0.089373 | 0.584645 | 0.087* | |
C24 | 0.56121 (14) | 0.2610 (3) | 0.57022 (12) | 0.0531 (7) | |
C25 | 0.60390 (17) | 0.3788 (4) | 0.57699 (15) | 0.0715 (9) | |
H25 | 0.631121 | 0.404291 | 0.612294 | 0.086* | |
C26 | 0.60665 (19) | 0.4599 (4) | 0.53159 (18) | 0.0854 (11) | |
H26 | 0.635899 | 0.538436 | 0.536738 | 0.102* | |
C27 | 0.5667 (2) | 0.4246 (4) | 0.47966 (17) | 0.0818 (11) | |
H27 | 0.568599 | 0.479313 | 0.449477 | 0.098* | |
C28 | 0.5237 (2) | 0.3087 (4) | 0.47194 (14) | 0.0809 (11) | |
H28 | 0.496475 | 0.284334 | 0.436523 | 0.097* | |
C29 | 0.52109 (18) | 0.2280 (4) | 0.51703 (13) | 0.0681 (9) | |
H29 | 0.491650 | 0.149637 | 0.511458 | 0.082* | |
Sn2 | 0.41848 (2) | 0.86546 (2) | 0.80803 (2) | 0.04785 (6) | |
O2 | 0.55601 (9) | 0.7564 (2) | 0.82774 (7) | 0.0523 (5) | |
C31 | 0.48984 (14) | 1.0059 (3) | 0.78672 (11) | 0.0545 (7) | |
H31A | 0.493979 | 0.973464 | 0.751725 | 0.065* | |
H31B | 0.471847 | 1.104042 | 0.781359 | 0.065* | |
C32 | 0.55847 (13) | 1.0107 (3) | 0.82865 (10) | 0.0497 (7) | |
C33 | 0.59119 (13) | 0.8822 (3) | 0.84887 (11) | 0.0487 (6) | |
C34 | 0.65260 (13) | 0.8710 (4) | 0.89000 (11) | 0.0559 (7) | |
C35 | 0.68393 (16) | 1.0022 (5) | 0.91010 (13) | 0.0714 (10) | |
H35 | 0.725861 | 1.001442 | 0.937056 | 0.086* | |
C36 | 0.65404 (17) | 1.1324 (4) | 0.89084 (14) | 0.0703 (9) | |
H36 | 0.676240 | 1.218550 | 0.904783 | 0.084* | |
C37 | 0.59157 (16) | 1.1387 (4) | 0.85111 (12) | 0.0617 (8) | |
H37 | 0.571616 | 1.228441 | 0.839360 | 0.074* | |
C38 | 0.43568 (14) | 0.6322 (3) | 0.81566 (13) | 0.0578 (7) | |
H38A | 0.396406 | 0.585613 | 0.820336 | 0.069* | |
H38B | 0.441007 | 0.595880 | 0.781552 | 0.069* | |
C39 | 0.49584 (14) | 0.5895 (3) | 0.86282 (12) | 0.0552 (7) | |
C40 | 0.55729 (14) | 0.6545 (3) | 0.86822 (12) | 0.0522 (7) | |
C41 | 0.61563 (15) | 0.6324 (3) | 0.91170 (13) | 0.0600 (7) | |
C42 | 0.61191 (18) | 0.5344 (4) | 0.95210 (15) | 0.0776 (10) | |
H42 | 0.649921 | 0.515108 | 0.982023 | 0.093* | |
C43 | 0.55261 (19) | 0.4658 (4) | 0.94826 (17) | 0.0861 (11) | |
H43 | 0.551104 | 0.400015 | 0.975598 | 0.103* | |
C44 | 0.49518 (17) | 0.4925 (4) | 0.90459 (15) | 0.0736 (9) | |
H44 | 0.455543 | 0.445076 | 0.903048 | 0.088* | |
C45 | 0.67738 (15) | 0.7186 (4) | 0.91020 (14) | 0.0692 (9) | |
C46 | 0.73074 (18) | 0.7225 (5) | 0.96749 (16) | 0.0977 (13) | |
H46A | 0.744485 | 0.624932 | 0.979310 | 0.147* | |
H46B | 0.712330 | 0.767549 | 0.993464 | 0.147* | |
H46C | 0.768796 | 0.777370 | 0.965573 | 0.147* | |
C47 | 0.70683 (19) | 0.6450 (5) | 0.86877 (19) | 0.0999 (14) | |
H47A | 0.745555 | 0.698134 | 0.867320 | 0.150* | |
H47B | 0.673764 | 0.643995 | 0.832736 | 0.150* | |
H47C | 0.719548 | 0.546828 | 0.880425 | 0.150* | |
C48 | 0.32719 (13) | 0.8917 (3) | 0.74027 (11) | 0.0480 (6) | |
C49 | 0.32218 (14) | 0.9925 (3) | 0.69897 (12) | 0.0599 (8) | |
H49 | 0.358076 | 1.054755 | 0.702005 | 0.072* | |
C50 | 0.26533 (16) | 1.0038 (4) | 0.65322 (13) | 0.0706 (9) | |
H50 | 0.263179 | 1.072691 | 0.625965 | 0.085* | |
C51 | 0.21237 (16) | 0.9128 (4) | 0.64846 (14) | 0.0738 (10) | |
H51 | 0.174093 | 0.919290 | 0.617717 | 0.089* | |
C52 | 0.21546 (15) | 0.8123 (4) | 0.68869 (15) | 0.0720 (9) | |
H52 | 0.179121 | 0.751158 | 0.685362 | 0.086* | |
C53 | 0.27255 (13) | 0.8010 (4) | 0.73450 (12) | 0.0567 (7) | |
H53 | 0.274231 | 0.731985 | 0.761610 | 0.068* | |
C54 | 0.41189 (13) | 0.9403 (3) | 0.88557 (11) | 0.0514 (7) | |
C55 | 0.43133 (16) | 1.0795 (4) | 0.90461 (13) | 0.0633 (8) | |
H55 | 0.446489 | 1.142831 | 0.882677 | 0.076* | |
C56 | 0.42884 (18) | 1.1270 (4) | 0.95513 (15) | 0.0763 (10) | |
H56 | 0.441979 | 1.221390 | 0.966814 | 0.092* | |
C57 | 0.40715 (17) | 1.0358 (5) | 0.98809 (14) | 0.0759 (10) | |
H57 | 0.405634 | 1.067662 | 1.022314 | 0.091* | |
C58 | 0.38765 (18) | 0.8975 (5) | 0.97062 (15) | 0.0771 (10) | |
H58 | 0.372940 | 0.835067 | 0.993081 | 0.093* | |
C59 | 0.38967 (16) | 0.8498 (4) | 0.91960 (14) | 0.0662 (8) | |
H59 | 0.375917 | 0.755587 | 0.908037 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.04473 (10) | 0.04359 (10) | 0.04977 (11) | 0.00585 (8) | 0.01320 (8) | 0.00553 (8) |
O1 | 0.0458 (9) | 0.0361 (9) | 0.0400 (9) | −0.0022 (7) | 0.0084 (8) | 0.0046 (7) |
C1 | 0.0461 (14) | 0.0581 (17) | 0.0450 (14) | −0.0004 (12) | 0.0066 (12) | 0.0029 (13) |
C2 | 0.0485 (14) | 0.0464 (14) | 0.0360 (12) | −0.0057 (11) | 0.0133 (11) | −0.0029 (11) |
C3 | 0.0505 (14) | 0.0377 (13) | 0.0334 (12) | −0.0055 (10) | 0.0168 (11) | −0.0010 (10) |
C4 | 0.0570 (15) | 0.0383 (14) | 0.0424 (13) | 0.0014 (11) | 0.0233 (12) | 0.0023 (11) |
C5 | 0.074 (2) | 0.0383 (15) | 0.0649 (18) | 0.0032 (13) | 0.0334 (16) | 0.0017 (13) |
C6 | 0.079 (2) | 0.0427 (16) | 0.069 (2) | −0.0135 (15) | 0.0310 (17) | −0.0085 (14) |
C7 | 0.0569 (16) | 0.0557 (18) | 0.0527 (16) | −0.0153 (14) | 0.0166 (13) | −0.0096 (14) |
C8 | 0.0555 (16) | 0.0387 (14) | 0.0606 (17) | 0.0007 (12) | 0.0155 (14) | −0.0017 (12) |
C9 | 0.0440 (13) | 0.0419 (15) | 0.0480 (14) | −0.0049 (11) | 0.0123 (11) | −0.0009 (11) |
C10 | 0.0424 (13) | 0.0392 (13) | 0.0374 (12) | −0.0032 (10) | 0.0104 (11) | 0.0024 (10) |
C11 | 0.0410 (13) | 0.0476 (15) | 0.0472 (14) | 0.0014 (11) | 0.0149 (11) | 0.0072 (12) |
C12 | 0.0466 (15) | 0.067 (2) | 0.0569 (17) | 0.0051 (14) | 0.0057 (13) | 0.0104 (15) |
C13 | 0.0514 (17) | 0.092 (2) | 0.0475 (17) | −0.0132 (17) | −0.0003 (14) | −0.0162 (17) |
C14 | 0.0552 (17) | 0.0602 (18) | 0.0578 (17) | −0.0057 (14) | 0.0095 (14) | −0.0154 (14) |
C15 | 0.0513 (15) | 0.0448 (15) | 0.0564 (16) | 0.0062 (12) | 0.0236 (13) | 0.0046 (12) |
C16 | 0.0629 (19) | 0.0579 (19) | 0.083 (2) | 0.0214 (15) | 0.0231 (17) | 0.0098 (16) |
C17 | 0.0652 (19) | 0.069 (2) | 0.0695 (19) | −0.0009 (16) | 0.0382 (16) | −0.0031 (16) |
C18 | 0.0388 (13) | 0.0482 (16) | 0.0646 (18) | 0.0022 (11) | 0.0122 (13) | 0.0072 (13) |
C19 | 0.0593 (19) | 0.081 (2) | 0.074 (2) | 0.0078 (17) | 0.0077 (17) | 0.0090 (19) |
C20 | 0.068 (2) | 0.117 (4) | 0.101 (3) | 0.018 (2) | 0.001 (2) | 0.045 (3) |
C21 | 0.068 (2) | 0.080 (3) | 0.161 (5) | 0.029 (2) | 0.028 (3) | 0.022 (3) |
C22 | 0.073 (2) | 0.083 (3) | 0.134 (4) | 0.023 (2) | 0.032 (3) | −0.016 (3) |
C23 | 0.0626 (19) | 0.074 (2) | 0.080 (2) | 0.0159 (17) | 0.0199 (17) | −0.0021 (18) |
C24 | 0.0565 (16) | 0.0488 (16) | 0.0572 (17) | 0.0090 (13) | 0.0226 (14) | 0.0079 (13) |
C25 | 0.067 (2) | 0.075 (2) | 0.076 (2) | −0.0032 (17) | 0.0277 (17) | 0.0139 (18) |
C26 | 0.081 (2) | 0.081 (3) | 0.109 (3) | −0.004 (2) | 0.051 (2) | 0.022 (2) |
C27 | 0.113 (3) | 0.072 (2) | 0.085 (3) | 0.031 (2) | 0.066 (2) | 0.028 (2) |
C28 | 0.125 (3) | 0.072 (2) | 0.0535 (19) | 0.024 (2) | 0.040 (2) | 0.0035 (17) |
C29 | 0.097 (2) | 0.0500 (18) | 0.0590 (19) | 0.0079 (17) | 0.0264 (18) | −0.0003 (15) |
Sn2 | 0.04183 (10) | 0.05148 (11) | 0.04543 (10) | −0.00470 (8) | 0.00703 (8) | 0.00517 (8) |
O2 | 0.0509 (10) | 0.0599 (12) | 0.0420 (10) | −0.0066 (9) | 0.0087 (8) | −0.0023 (9) |
C31 | 0.0544 (16) | 0.0576 (18) | 0.0498 (15) | −0.0072 (13) | 0.0141 (13) | 0.0072 (13) |
C32 | 0.0475 (14) | 0.0655 (18) | 0.0393 (13) | −0.0149 (13) | 0.0183 (12) | −0.0011 (13) |
C33 | 0.0464 (14) | 0.0612 (18) | 0.0402 (13) | −0.0116 (12) | 0.0159 (12) | −0.0031 (12) |
C34 | 0.0411 (14) | 0.079 (2) | 0.0459 (15) | −0.0091 (14) | 0.0121 (12) | −0.0036 (14) |
C35 | 0.0486 (17) | 0.104 (3) | 0.0556 (18) | −0.0227 (18) | 0.0083 (14) | −0.0092 (19) |
C36 | 0.067 (2) | 0.082 (2) | 0.0614 (19) | −0.0339 (18) | 0.0196 (17) | −0.0131 (18) |
C37 | 0.0663 (19) | 0.068 (2) | 0.0543 (17) | −0.0192 (16) | 0.0240 (15) | −0.0008 (15) |
C38 | 0.0510 (15) | 0.0524 (17) | 0.0629 (18) | −0.0106 (13) | 0.0080 (14) | 0.0001 (14) |
C39 | 0.0537 (16) | 0.0455 (15) | 0.0627 (18) | 0.0008 (12) | 0.0132 (14) | 0.0024 (13) |
C40 | 0.0503 (15) | 0.0528 (17) | 0.0516 (16) | 0.0036 (12) | 0.0132 (13) | −0.0004 (13) |
C41 | 0.0525 (16) | 0.0649 (19) | 0.0569 (17) | 0.0085 (14) | 0.0093 (14) | 0.0010 (15) |
C42 | 0.069 (2) | 0.081 (2) | 0.071 (2) | 0.0197 (19) | 0.0061 (18) | 0.0193 (19) |
C43 | 0.083 (2) | 0.075 (2) | 0.095 (3) | 0.009 (2) | 0.019 (2) | 0.039 (2) |
C44 | 0.066 (2) | 0.063 (2) | 0.087 (2) | 0.0015 (16) | 0.0180 (18) | 0.0226 (18) |
C45 | 0.0438 (16) | 0.091 (3) | 0.066 (2) | 0.0054 (16) | 0.0074 (15) | −0.0012 (18) |
C46 | 0.059 (2) | 0.122 (4) | 0.088 (3) | 0.001 (2) | −0.0105 (19) | 0.015 (3) |
C47 | 0.069 (2) | 0.122 (4) | 0.115 (3) | 0.018 (2) | 0.039 (2) | −0.011 (3) |
C48 | 0.0408 (13) | 0.0546 (17) | 0.0468 (14) | 0.0029 (11) | 0.0113 (11) | −0.0026 (12) |
C49 | 0.0483 (15) | 0.0643 (19) | 0.0606 (18) | 0.0004 (14) | 0.0081 (14) | 0.0102 (15) |
C50 | 0.0587 (19) | 0.082 (2) | 0.0623 (19) | 0.0169 (17) | 0.0071 (16) | 0.0157 (17) |
C51 | 0.0470 (17) | 0.102 (3) | 0.062 (2) | 0.0202 (18) | 0.0027 (15) | −0.006 (2) |
C52 | 0.0405 (16) | 0.096 (3) | 0.077 (2) | −0.0099 (16) | 0.0156 (16) | −0.017 (2) |
C53 | 0.0481 (15) | 0.0680 (19) | 0.0566 (17) | −0.0009 (14) | 0.0204 (13) | −0.0037 (15) |
C54 | 0.0430 (14) | 0.0604 (18) | 0.0474 (15) | −0.0002 (12) | 0.0095 (12) | 0.0082 (13) |
C55 | 0.0650 (19) | 0.064 (2) | 0.0621 (19) | −0.0037 (15) | 0.0216 (15) | 0.0023 (16) |
C56 | 0.079 (2) | 0.079 (2) | 0.072 (2) | −0.0003 (19) | 0.0240 (19) | −0.0150 (19) |
C57 | 0.071 (2) | 0.101 (3) | 0.0572 (19) | 0.020 (2) | 0.0219 (17) | 0.001 (2) |
C58 | 0.073 (2) | 0.100 (3) | 0.067 (2) | 0.009 (2) | 0.0342 (18) | 0.024 (2) |
C59 | 0.0674 (19) | 0.065 (2) | 0.069 (2) | −0.0017 (16) | 0.0254 (16) | 0.0101 (16) |
Sn1—C1 | 2.171 (3) | Sn2—C31 | 2.174 (3) |
Sn1—C8 | 2.180 (3) | Sn2—C38 | 2.172 (3) |
Sn1—C18 | 2.143 (3) | Sn2—C48 | 2.149 (3) |
Sn1—C24 | 2.128 (3) | Sn2—C54 | 2.138 (3) |
O1—C3 | 1.389 (3) | O2—C33 | 1.386 (3) |
O1—C10 | 1.389 (3) | O2—C40 | 1.387 (3) |
C1—H1A | 0.9700 | C31—H31A | 0.9700 |
C1—H1B | 0.9700 | C31—H31B | 0.9700 |
C1—C2 | 1.495 (4) | C31—C32 | 1.499 (4) |
C2—C3 | 1.386 (3) | C32—C33 | 1.380 (4) |
C2—C7 | 1.395 (4) | C32—C37 | 1.394 (4) |
C3—C4 | 1.380 (3) | C33—C34 | 1.385 (4) |
C4—C5 | 1.388 (4) | C34—C35 | 1.391 (5) |
C4—C15 | 1.525 (4) | C34—C45 | 1.525 (5) |
C5—H5 | 0.9300 | C35—H35 | 0.9300 |
C5—C6 | 1.378 (4) | C35—C36 | 1.367 (5) |
C6—H6 | 0.9300 | C36—H36 | 0.9300 |
C6—C7 | 1.374 (4) | C36—C37 | 1.382 (4) |
C7—H7 | 0.9300 | C37—H37 | 0.9300 |
C8—H8A | 0.9700 | C38—H38A | 0.9700 |
C8—H8B | 0.9700 | C38—H38B | 0.9700 |
C8—C9 | 1.490 (4) | C38—C39 | 1.494 (4) |
C9—C10 | 1.384 (4) | C39—C40 | 1.390 (4) |
C9—C14 | 1.387 (4) | C39—C44 | 1.392 (4) |
C10—C11 | 1.379 (3) | C40—C41 | 1.382 (4) |
C11—C12 | 1.390 (4) | C41—C42 | 1.388 (5) |
C11—C15 | 1.531 (4) | C41—C45 | 1.531 (5) |
C12—H12 | 0.9300 | C42—H42 | 0.9300 |
C12—C13 | 1.391 (4) | C42—C43 | 1.372 (5) |
C13—H13 | 0.9300 | C43—H43 | 0.9300 |
C13—C14 | 1.367 (4) | C43—C44 | 1.380 (5) |
C14—H14 | 0.9300 | C44—H44 | 0.9300 |
C15—C16 | 1.529 (4) | C45—C46 | 1.534 (4) |
C15—C17 | 1.543 (4) | C45—C47 | 1.539 (5) |
C16—H16A | 0.9600 | C46—H46A | 0.9600 |
C16—H16B | 0.9600 | C46—H46B | 0.9600 |
C16—H16C | 0.9600 | C46—H46C | 0.9600 |
C17—H17A | 0.9600 | C47—H47A | 0.9600 |
C17—H17B | 0.9600 | C47—H47B | 0.9600 |
C17—H17C | 0.9600 | C47—H47C | 0.9600 |
C18—C19 | 1.375 (4) | C48—C49 | 1.381 (4) |
C18—C23 | 1.380 (4) | C48—C53 | 1.388 (4) |
C19—H19 | 0.9300 | C49—H49 | 0.9300 |
C19—C20 | 1.405 (5) | C49—C50 | 1.383 (4) |
C20—H20 | 0.9300 | C50—H50 | 0.9300 |
C20—C21 | 1.356 (6) | C50—C51 | 1.367 (5) |
C21—H21 | 0.9300 | C51—H51 | 0.9300 |
C21—C22 | 1.331 (6) | C51—C52 | 1.365 (5) |
C22—H22 | 0.9300 | C52—H52 | 0.9300 |
C22—C23 | 1.378 (5) | C52—C53 | 1.387 (4) |
C23—H23 | 0.9300 | C53—H53 | 0.9300 |
C24—C25 | 1.381 (4) | C54—C55 | 1.383 (4) |
C24—C29 | 1.384 (4) | C54—C59 | 1.385 (4) |
C25—H25 | 0.9300 | C55—H55 | 0.9300 |
C25—C26 | 1.392 (5) | C55—C56 | 1.376 (5) |
C26—H26 | 0.9300 | C56—H56 | 0.9300 |
C26—C27 | 1.362 (5) | C56—C57 | 1.363 (5) |
C27—H27 | 0.9300 | C57—H57 | 0.9300 |
C27—C28 | 1.369 (6) | C57—C58 | 1.365 (5) |
C28—H28 | 0.9300 | C58—H58 | 0.9300 |
C28—C29 | 1.384 (5) | C58—C59 | 1.386 (5) |
C29—H29 | 0.9300 | C59—H59 | 0.9300 |
C1—Sn1—C8 | 118.03 (11) | C38—Sn2—C31 | 119.97 (12) |
C18—Sn1—C1 | 106.32 (11) | C48—Sn2—C31 | 104.11 (10) |
C18—Sn1—C8 | 105.32 (10) | C48—Sn2—C38 | 105.26 (11) |
C24—Sn1—C1 | 108.57 (11) | C54—Sn2—C31 | 106.99 (11) |
C24—Sn1—C8 | 107.71 (11) | C54—Sn2—C38 | 106.99 (12) |
C24—Sn1—C18 | 110.81 (11) | C54—Sn2—C48 | 113.79 (10) |
C10—O1—C3 | 112.74 (18) | C33—O2—C40 | 113.1 (2) |
Sn1—C1—H1A | 108.8 | Sn2—C31—H31A | 108.5 |
Sn1—C1—H1B | 108.8 | Sn2—C31—H31B | 108.5 |
H1A—C1—H1B | 107.7 | H31A—C31—H31B | 107.5 |
C2—C1—Sn1 | 113.72 (17) | C32—C31—Sn2 | 115.06 (18) |
C2—C1—H1A | 108.8 | C32—C31—H31A | 108.5 |
C2—C1—H1B | 108.8 | C32—C31—H31B | 108.5 |
C3—C2—C1 | 119.3 (2) | C33—C32—C31 | 119.6 (3) |
C3—C2—C7 | 115.7 (2) | C33—C32—C37 | 116.3 (3) |
C7—C2—C1 | 124.9 (2) | C37—C32—C31 | 124.0 (3) |
C2—C3—O1 | 115.2 (2) | C32—C33—O2 | 115.2 (2) |
C4—C3—O1 | 119.1 (2) | C32—C33—C34 | 125.5 (3) |
C4—C3—C2 | 125.5 (2) | C34—C33—O2 | 119.1 (3) |
C3—C4—C5 | 116.3 (3) | C33—C34—C35 | 115.6 (3) |
C3—C4—C15 | 117.8 (2) | C33—C34—C45 | 117.4 (3) |
C5—C4—C15 | 125.9 (2) | C35—C34—C45 | 126.9 (3) |
C4—C5—H5 | 119.8 | C34—C35—H35 | 119.5 |
C6—C5—C4 | 120.5 (3) | C36—C35—C34 | 121.0 (3) |
C6—C5—H5 | 119.8 | C36—C35—H35 | 119.5 |
C5—C6—H6 | 119.4 | C35—C36—H36 | 119.3 |
C7—C6—C5 | 121.2 (3) | C35—C36—C37 | 121.4 (3) |
C7—C6—H6 | 119.4 | C37—C36—H36 | 119.3 |
C2—C7—H7 | 119.6 | C32—C37—H37 | 120.0 |
C6—C7—C2 | 120.8 (3) | C36—C37—C32 | 120.0 (3) |
C6—C7—H7 | 119.6 | C36—C37—H37 | 120.0 |
Sn1—C8—H8A | 108.7 | Sn2—C38—H38A | 108.8 |
Sn1—C8—H8B | 108.7 | Sn2—C38—H38B | 108.8 |
H8A—C8—H8B | 107.6 | H38A—C38—H38B | 107.7 |
C9—C8—Sn1 | 114.10 (18) | C39—C38—Sn2 | 113.89 (19) |
C9—C8—H8A | 108.7 | C39—C38—H38A | 108.8 |
C9—C8—H8B | 108.7 | C39—C38—H38B | 108.8 |
C10—C9—C8 | 119.2 (2) | C40—C39—C38 | 119.4 (3) |
C10—C9—C14 | 116.5 (2) | C40—C39—C44 | 115.7 (3) |
C14—C9—C8 | 124.3 (3) | C44—C39—C38 | 124.9 (3) |
C9—C10—O1 | 114.9 (2) | O2—C40—C39 | 114.7 (2) |
C11—C10—O1 | 119.5 (2) | C41—C40—O2 | 119.9 (3) |
C11—C10—C9 | 125.5 (2) | C41—C40—C39 | 125.2 (3) |
C10—C11—C12 | 116.2 (3) | C40—C41—C42 | 116.4 (3) |
C10—C11—C15 | 117.4 (2) | C40—C41—C45 | 116.6 (3) |
C12—C11—C15 | 126.4 (2) | C42—C41—C45 | 127.0 (3) |
C11—C12—H12 | 120.2 | C41—C42—H42 | 119.7 |
C11—C12—C13 | 119.6 (3) | C43—C42—C41 | 120.6 (3) |
C13—C12—H12 | 120.2 | C43—C42—H42 | 119.7 |
C12—C13—H13 | 118.9 | C42—C43—H43 | 119.4 |
C14—C13—C12 | 122.2 (3) | C42—C43—C44 | 121.2 (3) |
C14—C13—H13 | 118.9 | C44—C43—H43 | 119.4 |
C9—C14—H14 | 120.1 | C39—C44—H44 | 119.6 |
C13—C14—C9 | 119.9 (3) | C43—C44—C39 | 120.8 (3) |
C13—C14—H14 | 120.1 | C43—C44—H44 | 119.6 |
C4—C15—C11 | 106.1 (2) | C34—C45—C41 | 106.4 (2) |
C4—C15—C16 | 112.2 (2) | C34—C45—C46 | 111.6 (3) |
C4—C15—C17 | 109.2 (2) | C34—C45—C47 | 109.9 (3) |
C11—C15—C17 | 108.5 (2) | C41—C45—C46 | 111.0 (3) |
C16—C15—C11 | 111.8 (2) | C41—C45—C47 | 108.6 (3) |
C16—C15—C17 | 109.0 (2) | C46—C45—C47 | 109.3 (3) |
C15—C16—H16A | 109.5 | C45—C46—H46A | 109.5 |
C15—C16—H16B | 109.5 | C45—C46—H46B | 109.5 |
C15—C16—H16C | 109.5 | C45—C46—H46C | 109.5 |
H16A—C16—H16B | 109.5 | H46A—C46—H46B | 109.5 |
H16A—C16—H16C | 109.5 | H46A—C46—H46C | 109.5 |
H16B—C16—H16C | 109.5 | H46B—C46—H46C | 109.5 |
C15—C17—H17A | 109.5 | C45—C47—H47A | 109.5 |
C15—C17—H17B | 109.5 | C45—C47—H47B | 109.5 |
C15—C17—H17C | 109.5 | C45—C47—H47C | 109.5 |
H17A—C17—H17B | 109.5 | H47A—C47—H47B | 109.5 |
H17A—C17—H17C | 109.5 | H47A—C47—H47C | 109.5 |
H17B—C17—H17C | 109.5 | H47B—C47—H47C | 109.5 |
C19—C18—Sn1 | 121.6 (2) | C49—C48—Sn2 | 121.3 (2) |
C19—C18—C23 | 117.7 (3) | C49—C48—C53 | 117.5 (3) |
C23—C18—Sn1 | 120.7 (2) | C53—C48—Sn2 | 121.1 (2) |
C18—C19—H19 | 120.1 | C48—C49—H49 | 119.0 |
C18—C19—C20 | 119.9 (4) | C48—C49—C50 | 121.9 (3) |
C20—C19—H19 | 120.1 | C50—C49—H49 | 119.0 |
C19—C20—H20 | 119.9 | C49—C50—H50 | 120.3 |
C21—C20—C19 | 120.2 (4) | C51—C50—C49 | 119.4 (3) |
C21—C20—H20 | 119.9 | C51—C50—H50 | 120.3 |
C20—C21—H21 | 119.8 | C50—C51—H51 | 119.9 |
C22—C21—C20 | 120.4 (4) | C52—C51—C50 | 120.2 (3) |
C22—C21—H21 | 119.8 | C52—C51—H51 | 119.9 |
C21—C22—H22 | 119.7 | C51—C52—H52 | 119.8 |
C21—C22—C23 | 120.5 (4) | C51—C52—C53 | 120.3 (3) |
C23—C22—H22 | 119.7 | C53—C52—H52 | 119.8 |
C18—C23—H23 | 119.3 | C48—C53—H53 | 119.7 |
C22—C23—C18 | 121.4 (4) | C52—C53—C48 | 120.7 (3) |
C22—C23—H23 | 119.3 | C52—C53—H53 | 119.7 |
C25—C24—Sn1 | 121.0 (2) | C55—C54—Sn2 | 121.5 (2) |
C25—C24—C29 | 117.6 (3) | C55—C54—C59 | 117.2 (3) |
C29—C24—Sn1 | 121.3 (2) | C59—C54—Sn2 | 121.3 (2) |
C24—C25—H25 | 119.6 | C54—C55—H55 | 119.1 |
C24—C25—C26 | 120.8 (4) | C56—C55—C54 | 121.8 (3) |
C26—C25—H25 | 119.6 | C56—C55—H55 | 119.1 |
C25—C26—H26 | 119.8 | C55—C56—H56 | 119.9 |
C27—C26—C25 | 120.3 (4) | C57—C56—C55 | 120.1 (4) |
C27—C26—H26 | 119.8 | C57—C56—H56 | 119.9 |
C26—C27—H27 | 120.0 | C56—C57—H57 | 120.2 |
C26—C27—C28 | 120.0 (3) | C56—C57—C58 | 119.7 (3) |
C28—C27—H27 | 120.0 | C58—C57—H57 | 120.2 |
C27—C28—H28 | 120.1 | C57—C58—H58 | 119.8 |
C27—C28—C29 | 119.7 (4) | C57—C58—C59 | 120.3 (3) |
C29—C28—H28 | 120.1 | C59—C58—H58 | 119.8 |
C24—C29—H29 | 119.2 | C54—C59—C58 | 120.9 (3) |
C28—C29—C24 | 121.6 (3) | C54—C59—H59 | 119.5 |
C28—C29—H29 | 119.2 | C58—C59—H59 | 119.5 |
Sn1—C1—C2—C3 | 51.9 (3) | Sn2—C31—C32—C33 | 49.8 (3) |
Sn1—C1—C2—C7 | −123.8 (2) | Sn2—C31—C32—C37 | −127.3 (2) |
Sn1—C8—C9—C10 | −51.4 (3) | Sn2—C38—C39—C40 | −52.0 (3) |
Sn1—C8—C9—C14 | 126.3 (3) | Sn2—C38—C39—C44 | 124.7 (3) |
Sn1—C18—C19—C20 | 178.0 (3) | Sn2—C48—C49—C50 | 175.5 (2) |
Sn1—C18—C23—C22 | −177.6 (3) | Sn2—C48—C53—C52 | −175.7 (2) |
Sn1—C24—C25—C26 | −178.4 (3) | Sn2—C54—C55—C56 | −178.3 (3) |
Sn1—C24—C29—C28 | 178.3 (3) | Sn2—C54—C59—C58 | 177.8 (2) |
O1—C3—C4—C5 | −177.1 (2) | O2—C33—C34—C35 | −178.3 (2) |
O1—C3—C4—C15 | 1.0 (3) | O2—C33—C34—C45 | −0.8 (4) |
O1—C10—C11—C12 | −179.7 (2) | O2—C40—C41—C42 | 176.6 (3) |
O1—C10—C11—C15 | 0.2 (3) | O2—C40—C41—C45 | −3.3 (4) |
C1—C2—C3—O1 | 1.2 (3) | C31—C32—C33—O2 | −0.2 (4) |
C1—C2—C3—C4 | −174.0 (2) | C31—C32—C33—C34 | −175.7 (3) |
C1—C2—C7—C6 | 175.0 (3) | C31—C32—C37—C36 | 178.0 (3) |
C2—C3—C4—C5 | −2.1 (4) | C32—C33—C34—C35 | −2.9 (4) |
C2—C3—C4—C15 | 176.0 (2) | C32—C33—C34—C45 | 174.6 (3) |
C3—O1—C10—C9 | 135.2 (2) | C33—O2—C40—C39 | 135.6 (3) |
C3—O1—C10—C11 | −42.0 (3) | C33—O2—C40—C41 | −39.8 (4) |
C3—C2—C7—C6 | −0.9 (4) | C33—C32—C37—C36 | 0.8 (4) |
C3—C4—C5—C6 | 0.6 (4) | C33—C34—C35—C36 | 1.7 (4) |
C3—C4—C15—C11 | −38.8 (3) | C33—C34—C45—C41 | −38.5 (4) |
C3—C4—C15—C16 | −161.2 (2) | C33—C34—C45—C46 | −159.7 (3) |
C3—C4—C15—C17 | 77.9 (3) | C33—C34—C45—C47 | 78.8 (3) |
C4—C5—C6—C7 | 0.6 (5) | C34—C35—C36—C37 | 0.5 (5) |
C5—C4—C15—C11 | 139.1 (3) | C35—C34—C45—C41 | 138.6 (3) |
C5—C4—C15—C16 | 16.7 (4) | C35—C34—C45—C46 | 17.5 (5) |
C5—C4—C15—C17 | −104.2 (3) | C35—C34—C45—C47 | −104.0 (4) |
C5—C6—C7—C2 | −0.4 (5) | C35—C36—C37—C32 | −1.8 (5) |
C7—C2—C3—O1 | 177.4 (2) | C37—C32—C33—O2 | 177.2 (2) |
C7—C2—C3—C4 | 2.2 (4) | C37—C32—C33—C34 | 1.6 (4) |
C8—C9—C10—O1 | −2.4 (3) | C38—C39—C40—O2 | 0.2 (4) |
C8—C9—C10—C11 | 174.6 (2) | C38—C39—C40—C41 | 175.5 (3) |
C8—C9—C14—C13 | −177.7 (3) | C38—C39—C44—C43 | −176.4 (3) |
C9—C10—C11—C12 | 3.4 (4) | C39—C40—C41—C42 | 1.6 (5) |
C9—C10—C11—C15 | −176.7 (2) | C39—C40—C41—C45 | −178.3 (3) |
C10—O1—C3—C2 | −134.2 (2) | C40—O2—C33—C32 | −133.9 (2) |
C10—O1—C3—C4 | 41.3 (3) | C40—O2—C33—C34 | 42.0 (3) |
C10—C9—C14—C13 | −0.1 (4) | C40—C39—C44—C43 | 0.5 (5) |
C10—C11—C12—C13 | −0.4 (4) | C40—C41—C42—C43 | −0.6 (5) |
C10—C11—C15—C4 | 38.1 (3) | C40—C41—C45—C34 | 40.5 (4) |
C10—C11—C15—C16 | 160.7 (2) | C40—C41—C45—C46 | 162.0 (3) |
C10—C11—C15—C17 | −79.1 (3) | C40—C41—C45—C47 | −77.7 (4) |
C11—C12—C13—C14 | −2.6 (5) | C41—C42—C43—C44 | −0.4 (6) |
C12—C11—C15—C4 | −142.0 (3) | C42—C41—C45—C34 | −139.4 (3) |
C12—C11—C15—C16 | −19.4 (4) | C42—C41—C45—C46 | −17.9 (5) |
C12—C11—C15—C17 | 100.8 (3) | C42—C41—C45—C47 | 102.3 (4) |
C12—C13—C14—C9 | 2.9 (5) | C42—C43—C44—C39 | 0.4 (6) |
C14—C9—C10—O1 | 179.8 (2) | C44—C39—C40—O2 | −176.8 (3) |
C14—C9—C10—C11 | −3.2 (4) | C44—C39—C40—C41 | −1.6 (5) |
C15—C4—C5—C6 | −177.3 (3) | C45—C34—C35—C36 | −175.5 (3) |
C15—C11—C12—C13 | 179.7 (3) | C45—C41—C42—C43 | 179.3 (4) |
C18—C19—C20—C21 | 0.5 (6) | C48—C49—C50—C51 | 0.0 (5) |
C19—C18—C23—C22 | −0.1 (5) | C49—C48—C53—C52 | 0.2 (4) |
C19—C20—C21—C22 | −2.0 (7) | C49—C50—C51—C52 | 0.4 (5) |
C20—C21—C22—C23 | 2.4 (7) | C50—C51—C52—C53 | −0.5 (5) |
C21—C22—C23—C18 | −1.4 (6) | C51—C52—C53—C48 | 0.2 (5) |
C23—C18—C19—C20 | 0.5 (5) | C53—C48—C49—C50 | −0.3 (5) |
C24—C25—C26—C27 | 0.5 (6) | C54—C55—C56—C57 | 0.4 (5) |
C25—C24—C29—C28 | 0.6 (5) | C55—C54—C59—C58 | −0.4 (5) |
C25—C26—C27—C28 | −0.2 (6) | C55—C56—C57—C58 | −0.3 (5) |
C26—C27—C28—C29 | 0.1 (6) | C56—C57—C58—C59 | −0.2 (5) |
C27—C28—C29—C24 | −0.3 (5) | C57—C58—C59—C54 | 0.5 (5) |
C29—C24—C25—C26 | −0.7 (5) | C59—C54—C55—C56 | 0.0 (5) |
[Sn(C6H5)2(C17H16O)] | Dx = 1.491 Mg m−3 |
Mr = 509.19 | Melting point: 352 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 20.7965 (4) Å | Cell parameters from 9503 reflections |
b = 9.0831 (2) Å | θ = 2.5–29.2° |
c = 25.2451 (5) Å | µ = 1.15 mm−1 |
β = 107.898 (1)° | T = 100 K |
V = 4537.93 (16) Å3 | Plate, clear colourless |
Z = 8 | 0.49 × 0.37 × 0.18 mm |
F(000) = 2064 |
Bruker APEXII CCD diffractometer | 11436 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.017 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 29.2°, θmin = 2.2° |
Tmin = 0.024, Tmax = 0.049 | h = −28→28 |
73608 measured reflections | k = −12→12 |
12229 independent reflections | l = −34→34 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0339P)2 + 1.9184P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.006 |
12229 reflections | Δρmax = 0.48 e Å−3 |
563 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.55556 (2) | 0.13587 (2) | 0.63865 (2) | 0.02226 (3) | |
O1 | 0.43992 (5) | 0.25792 (10) | 0.67007 (4) | 0.02197 (17) | |
C1 | 0.57713 (7) | 0.28226 (15) | 0.71021 (6) | 0.0255 (3) | |
H1A | 0.570630 | 0.227646 | 0.742114 | 0.031* | |
H1B | 0.625077 | 0.312906 | 0.720537 | 0.031* | |
C2 | 0.53337 (7) | 0.41707 (15) | 0.69980 (5) | 0.0234 (2) | |
C3 | 0.46337 (7) | 0.40229 (15) | 0.67882 (5) | 0.0218 (2) | |
C4 | 0.41779 (7) | 0.51754 (15) | 0.66249 (5) | 0.0232 (2) | |
C5 | 0.44480 (8) | 0.65949 (15) | 0.67001 (6) | 0.0269 (3) | |
H5 | 0.415693 | 0.742359 | 0.660094 | 0.032* | |
C6 | 0.51422 (8) | 0.67988 (16) | 0.69198 (6) | 0.0289 (3) | |
H6 | 0.531967 | 0.777043 | 0.697091 | 0.035* | |
C7 | 0.55802 (7) | 0.56120 (16) | 0.70658 (6) | 0.0271 (3) | |
H7 | 0.605261 | 0.578020 | 0.721332 | 0.033* | |
C8 | 0.45942 (7) | 0.01781 (15) | 0.61405 (6) | 0.0252 (3) | |
H8A | 0.460837 | −0.058769 | 0.586523 | 0.030* | |
H8B | 0.453786 | −0.032586 | 0.647112 | 0.030* | |
C9 | 0.39955 (7) | 0.11456 (15) | 0.58948 (6) | 0.0230 (2) | |
C10 | 0.39110 (6) | 0.23909 (14) | 0.61867 (5) | 0.0220 (2) | |
C11 | 0.34123 (7) | 0.34448 (15) | 0.59910 (6) | 0.0234 (2) | |
C12 | 0.29395 (7) | 0.31764 (17) | 0.54735 (6) | 0.0278 (3) | |
H12 | 0.258290 | 0.385678 | 0.532379 | 0.033* | |
C13 | 0.29885 (7) | 0.19139 (18) | 0.51754 (6) | 0.0307 (3) | |
H13 | 0.265695 | 0.173210 | 0.482727 | 0.037* | |
C14 | 0.35137 (7) | 0.09133 (17) | 0.53774 (6) | 0.0283 (3) | |
H14 | 0.354451 | 0.007149 | 0.516318 | 0.034* | |
C15 | 0.34302 (7) | 0.47855 (15) | 0.63638 (6) | 0.0243 (2) | |
C16 | 0.30238 (8) | 0.60764 (17) | 0.60380 (7) | 0.0307 (3) | |
H16A | 0.305264 | 0.691369 | 0.628911 | 0.046* | |
H16B | 0.255019 | 0.578278 | 0.587703 | 0.046* | |
H16C | 0.320813 | 0.636004 | 0.573914 | 0.046* | |
C17 | 0.31286 (7) | 0.43292 (16) | 0.68283 (6) | 0.0286 (3) | |
H17A | 0.338517 | 0.349727 | 0.703695 | 0.043* | |
H17B | 0.265535 | 0.403978 | 0.666131 | 0.043* | |
H17C | 0.315412 | 0.516146 | 0.708102 | 0.043* | |
C18 | 0.63155 (7) | −0.03265 (15) | 0.66032 (6) | 0.0251 (3) | |
C19 | 0.66618 (8) | −0.06474 (18) | 0.71576 (6) | 0.0327 (3) | |
H19 | 0.656953 | −0.009607 | 0.744571 | 0.039* | |
C20 | 0.71435 (8) | −0.1772 (2) | 0.72940 (8) | 0.0421 (4) | |
H20 | 0.737888 | −0.197609 | 0.767321 | 0.051* | |
C21 | 0.72774 (8) | −0.2585 (2) | 0.68792 (9) | 0.0429 (4) | |
H21 | 0.760821 | −0.334278 | 0.697197 | 0.051* | |
C22 | 0.69310 (8) | −0.22976 (19) | 0.63301 (8) | 0.0391 (4) | |
H22 | 0.701797 | −0.286980 | 0.604455 | 0.047* | |
C23 | 0.64553 (8) | −0.11764 (17) | 0.61914 (7) | 0.0311 (3) | |
H23 | 0.622168 | −0.098464 | 0.581089 | 0.037* | |
C24 | 0.56080 (7) | 0.25977 (15) | 0.56826 (6) | 0.0256 (3) | |
C25 | 0.60485 (8) | 0.37940 (17) | 0.57436 (7) | 0.0312 (3) | |
H25 | 0.633822 | 0.404738 | 0.610281 | 0.037* | |
C26 | 0.60667 (8) | 0.46162 (18) | 0.52835 (7) | 0.0354 (3) | |
H26 | 0.637171 | 0.541940 | 0.533035 | 0.042* | |
C27 | 0.56438 (9) | 0.42723 (18) | 0.47586 (7) | 0.0346 (3) | |
H27 | 0.565741 | 0.483987 | 0.444613 | 0.042* | |
C28 | 0.51995 (9) | 0.30971 (18) | 0.46888 (6) | 0.0334 (3) | |
H28 | 0.490619 | 0.286101 | 0.432902 | 0.040* | |
C29 | 0.51853 (8) | 0.22636 (16) | 0.51491 (6) | 0.0299 (3) | |
H29 | 0.488296 | 0.145454 | 0.509884 | 0.036* | |
Sn2 | 0.41715 (2) | 0.86349 (2) | 0.80709 (2) | 0.02258 (3) | |
O2 | 0.55663 (5) | 0.75512 (11) | 0.82672 (4) | 0.02531 (19) | |
C31 | 0.48892 (7) | 1.00771 (16) | 0.78501 (6) | 0.0261 (3) | |
H31A | 0.493885 | 0.973994 | 0.749185 | 0.031* | |
H31B | 0.469948 | 1.108535 | 0.779304 | 0.031* | |
C32 | 0.55760 (7) | 1.01383 (16) | 0.82739 (5) | 0.0252 (3) | |
C33 | 0.59131 (7) | 0.88340 (16) | 0.84793 (6) | 0.0248 (3) | |
C34 | 0.65302 (7) | 0.87400 (16) | 0.88956 (6) | 0.0272 (3) | |
C35 | 0.68430 (7) | 1.00752 (19) | 0.91004 (6) | 0.0322 (3) | |
H35 | 0.727374 | 1.007219 | 0.937552 | 0.039* | |
C36 | 0.65318 (8) | 1.14002 (17) | 0.89065 (6) | 0.0320 (3) | |
H36 | 0.675230 | 1.229596 | 0.905102 | 0.038* | |
C37 | 0.58998 (8) | 1.14445 (16) | 0.85026 (6) | 0.0286 (3) | |
H37 | 0.568852 | 1.236520 | 0.838249 | 0.034* | |
C38 | 0.43515 (7) | 0.62670 (15) | 0.81500 (6) | 0.0271 (3) | |
H38A | 0.394688 | 0.577843 | 0.819684 | 0.033* | |
H38B | 0.441662 | 0.589178 | 0.780187 | 0.033* | |
C39 | 0.49551 (7) | 0.58613 (16) | 0.86303 (6) | 0.0263 (3) | |
C40 | 0.55741 (7) | 0.65320 (15) | 0.86797 (6) | 0.0252 (3) | |
C41 | 0.61630 (7) | 0.63241 (16) | 0.91200 (6) | 0.0279 (3) | |
C42 | 0.61261 (8) | 0.53422 (18) | 0.95359 (7) | 0.0335 (3) | |
H42 | 0.651589 | 0.515877 | 0.984411 | 0.040* | |
C43 | 0.55245 (8) | 0.46353 (18) | 0.95012 (7) | 0.0352 (3) | |
H43 | 0.550723 | 0.396710 | 0.978606 | 0.042* | |
C44 | 0.49432 (8) | 0.48888 (17) | 0.90545 (7) | 0.0315 (3) | |
H44 | 0.453550 | 0.439390 | 0.903932 | 0.038* | |
C45 | 0.67862 (7) | 0.71987 (18) | 0.91043 (6) | 0.0304 (3) | |
C46 | 0.73187 (8) | 0.7258 (2) | 0.96767 (7) | 0.0395 (4) | |
H46A | 0.771660 | 0.779234 | 0.964950 | 0.059* | |
H46B | 0.744910 | 0.625389 | 0.980869 | 0.059* | |
H46C | 0.713184 | 0.776486 | 0.993921 | 0.059* | |
C47 | 0.70899 (9) | 0.6459 (2) | 0.86867 (8) | 0.0404 (4) | |
H47A | 0.675718 | 0.647027 | 0.831499 | 0.061* | |
H47B | 0.721068 | 0.543850 | 0.880082 | 0.061* | |
H47C | 0.749526 | 0.699668 | 0.867850 | 0.061* | |
C48 | 0.32543 (7) | 0.89014 (15) | 0.73919 (6) | 0.0238 (2) | |
C49 | 0.32167 (7) | 0.99474 (16) | 0.69762 (6) | 0.0272 (3) | |
H49 | 0.358824 | 1.058882 | 0.701097 | 0.033* | |
C50 | 0.26437 (7) | 1.00656 (17) | 0.65116 (6) | 0.0309 (3) | |
H50 | 0.262657 | 1.078089 | 0.623309 | 0.037* | |
C51 | 0.20992 (7) | 0.91321 (19) | 0.64589 (6) | 0.0330 (3) | |
H51 | 0.170904 | 0.920382 | 0.614241 | 0.040* | |
C52 | 0.21241 (7) | 0.80952 (18) | 0.68677 (6) | 0.0317 (3) | |
H52 | 0.174944 | 0.746239 | 0.683195 | 0.038* | |
C53 | 0.26966 (7) | 0.79784 (16) | 0.73304 (6) | 0.0265 (3) | |
H53 | 0.270903 | 0.726326 | 0.760799 | 0.032* | |
C54 | 0.41128 (7) | 0.93967 (16) | 0.88577 (6) | 0.0256 (3) | |
C55 | 0.43248 (7) | 1.08196 (16) | 0.90474 (6) | 0.0281 (3) | |
H55 | 0.448484 | 1.146341 | 0.881923 | 0.034* | |
C56 | 0.43045 (8) | 1.13034 (17) | 0.95651 (7) | 0.0319 (3) | |
H56 | 0.444524 | 1.227478 | 0.968608 | 0.038* | |
C57 | 0.40785 (7) | 1.03659 (19) | 0.99047 (6) | 0.0324 (3) | |
H57 | 0.406795 | 1.069143 | 1.025958 | 0.039* | |
C58 | 0.38684 (8) | 0.89540 (18) | 0.97242 (6) | 0.0322 (3) | |
H58 | 0.371306 | 0.831218 | 0.995592 | 0.039* | |
C59 | 0.38840 (8) | 0.84728 (17) | 0.92053 (6) | 0.0295 (3) | |
H59 | 0.373745 | 0.750384 | 0.908531 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.02178 (5) | 0.02164 (5) | 0.02300 (5) | 0.00205 (3) | 0.00636 (4) | 0.00180 (3) |
O1 | 0.0236 (4) | 0.0197 (4) | 0.0208 (4) | −0.0011 (3) | 0.0040 (3) | 0.0009 (3) |
C1 | 0.0236 (6) | 0.0275 (6) | 0.0233 (6) | 0.0005 (5) | 0.0042 (5) | 0.0011 (5) |
C2 | 0.0250 (6) | 0.0256 (6) | 0.0195 (5) | −0.0010 (5) | 0.0066 (5) | −0.0003 (5) |
C3 | 0.0260 (6) | 0.0205 (6) | 0.0198 (5) | −0.0019 (5) | 0.0083 (5) | −0.0002 (4) |
C4 | 0.0268 (6) | 0.0234 (6) | 0.0217 (6) | 0.0002 (5) | 0.0108 (5) | 0.0001 (5) |
C5 | 0.0331 (7) | 0.0208 (6) | 0.0296 (7) | 0.0011 (5) | 0.0135 (6) | 0.0006 (5) |
C6 | 0.0359 (7) | 0.0226 (6) | 0.0306 (7) | −0.0058 (5) | 0.0138 (6) | −0.0035 (5) |
C7 | 0.0279 (6) | 0.0278 (7) | 0.0259 (6) | −0.0059 (5) | 0.0088 (5) | −0.0030 (5) |
C8 | 0.0262 (6) | 0.0212 (6) | 0.0275 (6) | 0.0004 (5) | 0.0070 (5) | −0.0008 (5) |
C9 | 0.0231 (6) | 0.0217 (6) | 0.0238 (6) | −0.0011 (5) | 0.0067 (5) | 0.0009 (5) |
C10 | 0.0216 (6) | 0.0234 (6) | 0.0202 (5) | −0.0016 (5) | 0.0053 (4) | 0.0016 (4) |
C11 | 0.0228 (6) | 0.0237 (6) | 0.0246 (6) | 0.0006 (5) | 0.0089 (5) | 0.0030 (5) |
C12 | 0.0228 (6) | 0.0318 (7) | 0.0273 (6) | 0.0026 (5) | 0.0055 (5) | 0.0049 (5) |
C13 | 0.0267 (6) | 0.0382 (8) | 0.0231 (6) | −0.0024 (6) | 0.0015 (5) | −0.0012 (6) |
C14 | 0.0280 (7) | 0.0295 (7) | 0.0256 (6) | −0.0030 (5) | 0.0057 (5) | −0.0041 (5) |
C15 | 0.0246 (6) | 0.0227 (6) | 0.0269 (6) | 0.0023 (5) | 0.0097 (5) | 0.0017 (5) |
C16 | 0.0291 (7) | 0.0280 (7) | 0.0355 (7) | 0.0071 (5) | 0.0108 (6) | 0.0058 (6) |
C17 | 0.0297 (7) | 0.0290 (7) | 0.0310 (7) | 0.0005 (5) | 0.0148 (5) | 0.0007 (5) |
C18 | 0.0208 (6) | 0.0242 (6) | 0.0296 (6) | 0.0001 (5) | 0.0069 (5) | 0.0028 (5) |
C19 | 0.0277 (7) | 0.0376 (8) | 0.0306 (7) | 0.0012 (6) | 0.0057 (5) | 0.0030 (6) |
C20 | 0.0300 (8) | 0.0504 (10) | 0.0408 (9) | 0.0069 (7) | 0.0033 (6) | 0.0161 (8) |
C21 | 0.0300 (8) | 0.0347 (8) | 0.0621 (11) | 0.0109 (6) | 0.0115 (7) | 0.0115 (8) |
C22 | 0.0313 (7) | 0.0347 (8) | 0.0520 (10) | 0.0056 (6) | 0.0137 (7) | −0.0052 (7) |
C23 | 0.0264 (7) | 0.0337 (7) | 0.0322 (7) | 0.0031 (5) | 0.0078 (6) | −0.0010 (6) |
C24 | 0.0274 (6) | 0.0243 (6) | 0.0264 (6) | 0.0048 (5) | 0.0103 (5) | 0.0026 (5) |
C25 | 0.0287 (7) | 0.0320 (7) | 0.0334 (7) | 0.0005 (5) | 0.0104 (6) | 0.0034 (6) |
C26 | 0.0345 (8) | 0.0324 (8) | 0.0441 (8) | −0.0001 (6) | 0.0192 (7) | 0.0061 (6) |
C27 | 0.0440 (8) | 0.0329 (8) | 0.0349 (7) | 0.0118 (6) | 0.0238 (7) | 0.0094 (6) |
C28 | 0.0441 (8) | 0.0317 (7) | 0.0262 (7) | 0.0092 (6) | 0.0132 (6) | 0.0006 (6) |
C29 | 0.0369 (7) | 0.0253 (7) | 0.0281 (7) | 0.0019 (6) | 0.0109 (6) | −0.0006 (5) |
Sn2 | 0.02080 (5) | 0.02382 (5) | 0.02145 (5) | −0.00174 (3) | 0.00404 (3) | 0.00170 (3) |
O2 | 0.0260 (5) | 0.0275 (5) | 0.0208 (4) | −0.0041 (4) | 0.0047 (3) | −0.0006 (4) |
C31 | 0.0253 (6) | 0.0282 (7) | 0.0232 (6) | −0.0033 (5) | 0.0051 (5) | 0.0022 (5) |
C32 | 0.0244 (6) | 0.0307 (7) | 0.0213 (6) | −0.0048 (5) | 0.0083 (5) | 0.0013 (5) |
C33 | 0.0239 (6) | 0.0303 (7) | 0.0210 (6) | −0.0049 (5) | 0.0080 (5) | −0.0016 (5) |
C34 | 0.0221 (6) | 0.0367 (8) | 0.0232 (6) | −0.0033 (5) | 0.0077 (5) | 0.0002 (5) |
C35 | 0.0246 (6) | 0.0443 (9) | 0.0260 (6) | −0.0085 (6) | 0.0056 (5) | −0.0017 (6) |
C36 | 0.0305 (7) | 0.0372 (8) | 0.0282 (7) | −0.0133 (6) | 0.0090 (6) | −0.0049 (5) |
C37 | 0.0304 (7) | 0.0306 (7) | 0.0257 (6) | −0.0055 (5) | 0.0102 (6) | −0.0002 (5) |
C38 | 0.0249 (6) | 0.0254 (7) | 0.0281 (7) | −0.0029 (5) | 0.0039 (5) | 0.0012 (5) |
C39 | 0.0252 (6) | 0.0231 (6) | 0.0289 (6) | 0.0002 (5) | 0.0056 (5) | 0.0001 (5) |
C40 | 0.0252 (6) | 0.0253 (6) | 0.0245 (6) | 0.0014 (5) | 0.0068 (5) | 0.0013 (5) |
C41 | 0.0237 (6) | 0.0310 (7) | 0.0280 (7) | 0.0022 (5) | 0.0062 (5) | 0.0005 (5) |
C42 | 0.0292 (7) | 0.0355 (8) | 0.0328 (7) | 0.0065 (6) | 0.0051 (6) | 0.0071 (6) |
C43 | 0.0349 (8) | 0.0335 (8) | 0.0358 (8) | 0.0033 (6) | 0.0091 (6) | 0.0119 (6) |
C44 | 0.0283 (7) | 0.0286 (7) | 0.0366 (7) | 0.0005 (5) | 0.0088 (6) | 0.0067 (6) |
C45 | 0.0216 (6) | 0.0389 (8) | 0.0290 (7) | 0.0009 (6) | 0.0052 (5) | 0.0029 (6) |
C46 | 0.0257 (7) | 0.0499 (10) | 0.0361 (8) | −0.0003 (7) | −0.0003 (6) | 0.0070 (7) |
C47 | 0.0305 (8) | 0.0485 (10) | 0.0446 (9) | 0.0050 (7) | 0.0150 (7) | −0.0008 (7) |
C48 | 0.0216 (6) | 0.0257 (6) | 0.0236 (6) | 0.0012 (5) | 0.0064 (5) | −0.0014 (5) |
C49 | 0.0248 (6) | 0.0271 (7) | 0.0282 (6) | 0.0004 (5) | 0.0059 (5) | 0.0026 (5) |
C50 | 0.0284 (7) | 0.0338 (7) | 0.0280 (7) | 0.0056 (6) | 0.0052 (5) | 0.0038 (6) |
C51 | 0.0219 (6) | 0.0440 (9) | 0.0295 (7) | 0.0062 (6) | 0.0024 (5) | −0.0037 (6) |
C52 | 0.0216 (6) | 0.0383 (8) | 0.0352 (7) | −0.0025 (6) | 0.0089 (5) | −0.0069 (6) |
C53 | 0.0247 (6) | 0.0282 (7) | 0.0276 (6) | −0.0007 (5) | 0.0097 (5) | −0.0022 (5) |
C54 | 0.0223 (6) | 0.0291 (7) | 0.0235 (6) | 0.0007 (5) | 0.0044 (5) | 0.0023 (5) |
C55 | 0.0272 (6) | 0.0285 (7) | 0.0280 (6) | 0.0000 (5) | 0.0077 (5) | 0.0016 (5) |
C56 | 0.0307 (7) | 0.0318 (8) | 0.0322 (7) | 0.0000 (5) | 0.0081 (6) | −0.0037 (5) |
C57 | 0.0275 (7) | 0.0436 (8) | 0.0258 (6) | 0.0063 (6) | 0.0078 (5) | −0.0002 (6) |
C58 | 0.0304 (7) | 0.0387 (8) | 0.0292 (7) | 0.0029 (6) | 0.0118 (6) | 0.0079 (6) |
C59 | 0.0291 (7) | 0.0301 (7) | 0.0296 (7) | −0.0011 (5) | 0.0092 (6) | 0.0035 (5) |
Sn1—C1 | 2.1759 (14) | Sn2—C31 | 2.1830 (14) |
Sn1—C8 | 2.1840 (14) | Sn2—C38 | 2.1818 (14) |
Sn1—C18 | 2.1466 (13) | Sn2—C48 | 2.1507 (14) |
Sn1—C24 | 2.1343 (14) | Sn2—C54 | 2.1420 (14) |
O1—C3 | 1.3929 (15) | O2—C33 | 1.3883 (16) |
O1—C10 | 1.3906 (15) | O2—C40 | 1.3898 (17) |
C1—H1A | 0.9900 | C31—H31A | 0.9900 |
C1—H1B | 0.9900 | C31—H31B | 0.9900 |
C1—C2 | 1.4998 (19) | C31—C32 | 1.4996 (18) |
C2—C3 | 1.3942 (18) | C32—C33 | 1.393 (2) |
C2—C7 | 1.3971 (19) | C32—C37 | 1.398 (2) |
C3—C4 | 1.3872 (19) | C33—C34 | 1.3891 (19) |
C4—C5 | 1.3958 (19) | C34—C35 | 1.398 (2) |
C4—C15 | 1.5322 (19) | C34—C45 | 1.533 (2) |
C5—H5 | 0.9500 | C35—H35 | 0.9500 |
C5—C6 | 1.391 (2) | C35—C36 | 1.383 (2) |
C6—H6 | 0.9500 | C36—H36 | 0.9500 |
C6—C7 | 1.386 (2) | C36—C37 | 1.395 (2) |
C7—H7 | 0.9500 | C37—H37 | 0.9500 |
C8—H8A | 0.9900 | C38—H38A | 0.9900 |
C8—H8B | 0.9900 | C38—H38B | 0.9900 |
C8—C9 | 1.4942 (19) | C38—C39 | 1.4987 (19) |
C9—C10 | 1.3904 (18) | C39—C40 | 1.395 (2) |
C9—C14 | 1.3964 (19) | C39—C44 | 1.394 (2) |
C10—C11 | 1.3860 (18) | C40—C41 | 1.391 (2) |
C11—C12 | 1.3942 (19) | C41—C42 | 1.398 (2) |
C11—C15 | 1.5324 (19) | C41—C45 | 1.531 (2) |
C12—H12 | 0.9500 | C42—H42 | 0.9500 |
C12—C13 | 1.392 (2) | C42—C43 | 1.385 (2) |
C13—H13 | 0.9500 | C43—H43 | 0.9500 |
C13—C14 | 1.392 (2) | C43—C44 | 1.396 (2) |
C14—H14 | 0.9500 | C44—H44 | 0.9500 |
C15—C16 | 1.5292 (19) | C45—C46 | 1.528 (2) |
C15—C17 | 1.5469 (19) | C45—C47 | 1.540 (2) |
C16—H16A | 0.9800 | C46—H46A | 0.9800 |
C16—H16B | 0.9800 | C46—H46B | 0.9800 |
C16—H16C | 0.9800 | C46—H46C | 0.9800 |
C17—H17A | 0.9800 | C47—H47A | 0.9800 |
C17—H17B | 0.9800 | C47—H47B | 0.9800 |
C17—H17C | 0.9800 | C47—H47C | 0.9800 |
C18—C19 | 1.394 (2) | C48—C49 | 1.3999 (19) |
C18—C23 | 1.395 (2) | C48—C53 | 1.4006 (19) |
C19—H19 | 0.9500 | C49—H49 | 0.9500 |
C19—C20 | 1.398 (2) | C49—C50 | 1.3956 (19) |
C20—H20 | 0.9500 | C50—H50 | 0.9500 |
C20—C21 | 1.378 (3) | C50—C51 | 1.388 (2) |
C21—H21 | 0.9500 | C51—H51 | 0.9500 |
C21—C22 | 1.377 (3) | C51—C52 | 1.386 (2) |
C22—H22 | 0.9500 | C52—H52 | 0.9500 |
C22—C23 | 1.388 (2) | C52—C53 | 1.392 (2) |
C23—H23 | 0.9500 | C53—H53 | 0.9500 |
C24—C25 | 1.399 (2) | C54—C55 | 1.402 (2) |
C24—C29 | 1.397 (2) | C54—C59 | 1.399 (2) |
C25—H25 | 0.9500 | C55—H55 | 0.9500 |
C25—C26 | 1.391 (2) | C55—C56 | 1.392 (2) |
C26—H26 | 0.9500 | C56—H56 | 0.9500 |
C26—C27 | 1.382 (2) | C56—C57 | 1.389 (2) |
C27—H27 | 0.9500 | C57—H57 | 0.9500 |
C27—C28 | 1.387 (2) | C57—C58 | 1.386 (2) |
C28—H28 | 0.9500 | C58—H58 | 0.9500 |
C28—C29 | 1.395 (2) | C58—C59 | 1.391 (2) |
C29—H29 | 0.9500 | C59—H59 | 0.9500 |
C1—Sn1—C8 | 118.25 (5) | C38—Sn2—C31 | 120.22 (6) |
C18—Sn1—C1 | 106.05 (5) | C48—Sn2—C31 | 103.74 (5) |
C18—Sn1—C8 | 105.08 (5) | C48—Sn2—C38 | 105.61 (5) |
C24—Sn1—C1 | 108.59 (5) | C54—Sn2—C31 | 106.33 (5) |
C24—Sn1—C8 | 107.38 (5) | C54—Sn2—C38 | 106.90 (6) |
C24—Sn1—C18 | 111.48 (5) | C54—Sn2—C48 | 114.42 (5) |
C10—O1—C3 | 112.55 (10) | C33—O2—C40 | 112.64 (10) |
Sn1—C1—H1A | 108.9 | Sn2—C31—H31A | 108.6 |
Sn1—C1—H1B | 108.9 | Sn2—C31—H31B | 108.6 |
H1A—C1—H1B | 107.7 | H31A—C31—H31B | 107.6 |
C2—C1—Sn1 | 113.23 (9) | C32—C31—Sn2 | 114.60 (9) |
C2—C1—H1A | 108.9 | C32—C31—H31A | 108.6 |
C2—C1—H1B | 108.9 | C32—C31—H31B | 108.6 |
C3—C2—C1 | 119.63 (12) | C33—C32—C31 | 119.61 (13) |
C3—C2—C7 | 115.96 (13) | C33—C32—C37 | 116.39 (13) |
C7—C2—C1 | 124.30 (12) | C37—C32—C31 | 123.93 (13) |
O1—C3—C2 | 115.13 (12) | O2—C33—C32 | 115.33 (12) |
C4—C3—O1 | 119.30 (12) | O2—C33—C34 | 119.34 (13) |
C4—C3—C2 | 125.35 (13) | C34—C33—C32 | 125.18 (13) |
C3—C4—C5 | 116.55 (13) | C33—C34—C35 | 116.31 (14) |
C3—C4—C15 | 117.63 (12) | C33—C34—C45 | 117.31 (13) |
C5—C4—C15 | 125.79 (12) | C35—C34—C45 | 126.32 (13) |
C4—C5—H5 | 119.9 | C34—C35—H35 | 119.7 |
C6—C5—C4 | 120.15 (13) | C36—C35—C34 | 120.67 (13) |
C6—C5—H5 | 119.9 | C36—C35—H35 | 119.7 |
C5—C6—H6 | 119.4 | C35—C36—H36 | 119.4 |
C7—C6—C5 | 121.28 (13) | C35—C36—C37 | 121.15 (14) |
C7—C6—H6 | 119.4 | C37—C36—H36 | 119.4 |
C2—C7—H7 | 119.7 | C32—C37—H37 | 119.9 |
C6—C7—C2 | 120.65 (13) | C36—C37—C32 | 120.23 (14) |
C6—C7—H7 | 119.7 | C36—C37—H37 | 119.9 |
Sn1—C8—H8A | 108.8 | Sn2—C38—H38A | 108.9 |
Sn1—C8—H8B | 108.8 | Sn2—C38—H38B | 108.9 |
H8A—C8—H8B | 107.7 | H38A—C38—H38B | 107.8 |
C9—C8—Sn1 | 113.73 (9) | C39—C38—Sn2 | 113.20 (9) |
C9—C8—H8A | 108.8 | C39—C38—H38A | 108.9 |
C9—C8—H8B | 108.8 | C39—C38—H38B | 108.9 |
C10—C9—C8 | 118.90 (12) | C40—C39—C38 | 119.05 (13) |
C10—C9—C14 | 116.58 (13) | C44—C39—C38 | 124.68 (13) |
C14—C9—C8 | 124.49 (13) | C44—C39—C40 | 116.22 (13) |
C9—C10—O1 | 114.81 (11) | O2—C40—C39 | 115.21 (12) |
C11—C10—O1 | 119.96 (12) | O2—C40—C41 | 119.60 (13) |
C11—C10—C9 | 125.14 (12) | C41—C40—C39 | 125.04 (13) |
C10—C11—C12 | 116.63 (13) | C40—C41—C42 | 116.67 (14) |
C10—C11—C15 | 117.11 (12) | C40—C41—C45 | 116.97 (13) |
C12—C11—C15 | 126.26 (12) | C42—C41—C45 | 126.37 (13) |
C11—C12—H12 | 119.9 | C41—C42—H42 | 119.8 |
C13—C12—C11 | 120.19 (13) | C43—C42—C41 | 120.37 (14) |
C13—C12—H12 | 119.9 | C43—C42—H42 | 119.8 |
C12—C13—H13 | 119.4 | C42—C43—H43 | 119.5 |
C14—C13—C12 | 121.28 (13) | C42—C43—C44 | 121.05 (14) |
C14—C13—H13 | 119.4 | C44—C43—H43 | 119.5 |
C9—C14—H14 | 120.0 | C39—C44—C43 | 120.64 (14) |
C13—C14—C9 | 120.06 (13) | C39—C44—H44 | 119.7 |
C13—C14—H14 | 120.0 | C43—C44—H44 | 119.7 |
C4—C15—C11 | 106.13 (11) | C34—C45—C47 | 109.61 (13) |
C4—C15—C17 | 109.28 (11) | C41—C45—C34 | 105.99 (11) |
C11—C15—C17 | 108.28 (11) | C41—C45—C47 | 108.65 (13) |
C16—C15—C4 | 111.98 (12) | C46—C45—C34 | 111.55 (14) |
C16—C15—C11 | 111.96 (12) | C46—C45—C41 | 111.53 (13) |
C16—C15—C17 | 109.10 (11) | C46—C45—C47 | 109.41 (13) |
C15—C16—H16A | 109.5 | C45—C46—H46A | 109.5 |
C15—C16—H16B | 109.5 | C45—C46—H46B | 109.5 |
C15—C16—H16C | 109.5 | C45—C46—H46C | 109.5 |
H16A—C16—H16B | 109.5 | H46A—C46—H46B | 109.5 |
H16A—C16—H16C | 109.5 | H46A—C46—H46C | 109.5 |
H16B—C16—H16C | 109.5 | H46B—C46—H46C | 109.5 |
C15—C17—H17A | 109.5 | C45—C47—H47A | 109.5 |
C15—C17—H17B | 109.5 | C45—C47—H47B | 109.5 |
C15—C17—H17C | 109.5 | C45—C47—H47C | 109.5 |
H17A—C17—H17B | 109.5 | H47A—C47—H47B | 109.5 |
H17A—C17—H17C | 109.5 | H47A—C47—H47C | 109.5 |
H17B—C17—H17C | 109.5 | H47B—C47—H47C | 109.5 |
C19—C18—Sn1 | 121.19 (11) | C49—C48—Sn2 | 120.36 (10) |
C19—C18—C23 | 118.07 (13) | C49—C48—C53 | 118.01 (13) |
C23—C18—Sn1 | 120.69 (10) | C53—C48—Sn2 | 121.49 (10) |
C18—C19—H19 | 119.7 | C48—C49—H49 | 119.4 |
C18—C19—C20 | 120.69 (15) | C50—C49—C48 | 121.25 (13) |
C20—C19—H19 | 119.7 | C50—C49—H49 | 119.4 |
C19—C20—H20 | 120.0 | C49—C50—H50 | 120.2 |
C21—C20—C19 | 120.10 (16) | C51—C50—C49 | 119.63 (14) |
C21—C20—H20 | 120.0 | C51—C50—H50 | 120.2 |
C20—C21—H21 | 120.1 | C50—C51—H51 | 120.0 |
C22—C21—C20 | 119.87 (15) | C52—C51—C50 | 120.06 (14) |
C22—C21—H21 | 120.1 | C52—C51—H51 | 120.0 |
C21—C22—H22 | 119.8 | C51—C52—H52 | 119.9 |
C21—C22—C23 | 120.34 (16) | C51—C52—C53 | 120.21 (14) |
C23—C22—H22 | 119.8 | C53—C52—H52 | 119.9 |
C18—C23—H23 | 119.5 | C48—C53—H53 | 119.6 |
C22—C23—C18 | 120.92 (15) | C52—C53—C48 | 120.85 (14) |
C22—C23—H23 | 119.5 | C52—C53—H53 | 119.6 |
C25—C24—Sn1 | 121.15 (11) | C55—C54—Sn2 | 120.88 (10) |
C29—C24—Sn1 | 120.68 (11) | C59—C54—Sn2 | 121.00 (11) |
C29—C24—C25 | 118.14 (13) | C59—C54—C55 | 118.09 (13) |
C24—C25—H25 | 119.7 | C54—C55—H55 | 119.5 |
C26—C25—C24 | 120.67 (15) | C56—C55—C54 | 120.99 (14) |
C26—C25—H25 | 119.7 | C56—C55—H55 | 119.5 |
C25—C26—H26 | 119.8 | C55—C56—H56 | 120.0 |
C27—C26—C25 | 120.44 (15) | C57—C56—C55 | 119.99 (14) |
C27—C26—H26 | 119.8 | C57—C56—H56 | 120.0 |
C26—C27—H27 | 120.1 | C56—C57—H57 | 120.1 |
C26—C27—C28 | 119.89 (14) | C58—C57—C56 | 119.78 (14) |
C28—C27—H27 | 120.1 | C58—C57—H57 | 120.1 |
C27—C28—H28 | 120.1 | C57—C58—H58 | 119.9 |
C27—C28—C29 | 119.72 (15) | C57—C58—C59 | 120.28 (14) |
C29—C28—H28 | 120.1 | C59—C58—H58 | 119.9 |
C24—C29—H29 | 119.4 | C54—C59—H59 | 119.6 |
C28—C29—C24 | 121.14 (14) | C58—C59—C54 | 120.87 (14) |
C28—C29—H29 | 119.4 | C58—C59—H59 | 119.6 |
Sn1—C1—C2—C3 | 51.80 (14) | Sn2—C31—C32—C33 | 50.22 (16) |
Sn1—C1—C2—C7 | −124.16 (12) | Sn2—C31—C32—C37 | −126.76 (12) |
Sn1—C8—C9—C10 | −52.23 (15) | Sn2—C38—C39—C40 | −52.78 (16) |
Sn1—C8—C9—C14 | 125.98 (13) | Sn2—C38—C39—C44 | 124.46 (14) |
Sn1—C18—C19—C20 | 178.38 (13) | Sn2—C48—C49—C50 | 175.34 (11) |
Sn1—C18—C23—C22 | −177.96 (12) | Sn2—C48—C53—C52 | −175.36 (11) |
Sn1—C24—C25—C26 | −178.41 (11) | Sn2—C54—C55—C56 | −178.23 (11) |
Sn1—C24—C29—C28 | 177.83 (11) | Sn2—C54—C59—C58 | 177.77 (11) |
O1—C3—C4—C5 | −177.10 (11) | O2—C33—C34—C35 | −178.34 (12) |
O1—C3—C4—C15 | 1.13 (17) | O2—C33—C34—C45 | −1.07 (19) |
O1—C10—C11—C12 | −179.77 (12) | O2—C40—C41—C42 | 176.63 (13) |
O1—C10—C11—C15 | −0.10 (18) | O2—C40—C41—C45 | −3.0 (2) |
C1—C2—C3—O1 | 1.03 (17) | C31—C32—C33—O2 | −0.43 (18) |
C1—C2—C3—C4 | −173.59 (12) | C31—C32—C33—C34 | −175.85 (13) |
C1—C2—C7—C6 | 175.01 (13) | C31—C32—C37—C36 | 178.22 (13) |
C2—C3—C4—C5 | −2.7 (2) | C32—C33—C34—C35 | −3.1 (2) |
C2—C3—C4—C15 | 175.54 (12) | C32—C33—C34—C45 | 174.17 (13) |
C3—O1—C10—C9 | 135.12 (12) | C33—O2—C40—C39 | 135.25 (13) |
C3—O1—C10—C11 | −41.64 (16) | C33—O2—C40—C41 | −40.53 (17) |
C3—C2—C7—C6 | −1.09 (19) | C33—C32—C37—C36 | 1.1 (2) |
C3—C4—C5—C6 | 1.1 (2) | C33—C34—C35—C36 | 2.3 (2) |
C3—C4—C15—C11 | −39.08 (15) | C33—C34—C45—C41 | −38.60 (17) |
C3—C4—C15—C16 | −161.52 (12) | C33—C34—C45—C46 | −160.19 (13) |
C3—C4—C15—C17 | 77.48 (15) | C33—C34—C45—C47 | 78.48 (16) |
C4—C5—C6—C7 | 0.3 (2) | C34—C35—C36—C37 | 0.0 (2) |
C5—C4—C15—C11 | 138.97 (13) | C35—C34—C45—C41 | 138.36 (15) |
C5—C4—C15—C16 | 16.53 (19) | C35—C34—C45—C46 | 16.8 (2) |
C5—C4—C15—C17 | −104.47 (15) | C35—C34—C45—C47 | −104.56 (17) |
C5—C6—C7—C2 | −0.3 (2) | C35—C36—C37—C32 | −1.8 (2) |
C7—C2—C3—O1 | 177.32 (11) | C37—C32—C33—O2 | 176.77 (12) |
C7—C2—C3—C4 | 2.7 (2) | C37—C32—C33—C34 | 1.4 (2) |
C8—C9—C10—O1 | −1.93 (18) | C38—C39—C40—O2 | 0.52 (19) |
C8—C9—C10—C11 | 174.63 (13) | C38—C39—C40—C41 | 176.04 (14) |
C8—C9—C14—C13 | −177.38 (14) | C38—C39—C44—C43 | −176.65 (15) |
C9—C10—C11—C12 | 3.8 (2) | C39—C40—C41—C42 | 1.3 (2) |
C9—C10—C11—C15 | −176.50 (12) | C39—C40—C41—C45 | −178.29 (14) |
C10—O1—C3—C2 | −134.03 (12) | C40—O2—C33—C32 | −133.05 (12) |
C10—O1—C3—C4 | 40.94 (15) | C40—O2—C33—C34 | 42.65 (17) |
C10—C9—C14—C13 | 0.9 (2) | C40—C39—C44—C43 | 0.7 (2) |
C10—C11—C12—C13 | −1.1 (2) | C40—C41—C42—C43 | −0.4 (2) |
C10—C11—C15—C4 | 38.47 (15) | C40—C41—C45—C34 | 40.52 (17) |
C10—C11—C15—C16 | 160.92 (12) | C40—C41—C45—C46 | 162.12 (14) |
C10—C11—C15—C17 | −78.76 (15) | C40—C41—C45—C47 | −77.20 (17) |
C11—C12—C13—C14 | −1.5 (2) | C41—C42—C43—C44 | −0.3 (3) |
C12—C11—C15—C4 | −141.89 (14) | C42—C41—C45—C34 | −139.02 (15) |
C12—C11—C15—C16 | −19.44 (19) | C42—C41—C45—C46 | −17.4 (2) |
C12—C11—C15—C17 | 100.88 (16) | C42—C41—C45—C47 | 103.26 (18) |
C12—C13—C14—C9 | 1.6 (2) | C42—C43—C44—C39 | 0.1 (3) |
C14—C9—C10—O1 | 179.72 (12) | C44—C39—C40—O2 | −176.95 (13) |
C14—C9—C10—C11 | −3.7 (2) | C44—C39—C40—C41 | −1.4 (2) |
C15—C4—C5—C6 | −177.01 (13) | C45—C34—C35—C36 | −174.64 (14) |
C15—C11—C12—C13 | 179.27 (13) | C45—C41—C42—C43 | 179.16 (15) |
C18—C19—C20—C21 | −0.5 (3) | C48—C49—C50—C51 | 0.1 (2) |
C19—C18—C23—C22 | −0.7 (2) | C49—C48—C53—C52 | 0.3 (2) |
C19—C20—C21—C22 | −0.6 (3) | C49—C50—C51—C52 | 0.4 (2) |
C20—C21—C22—C23 | 1.1 (3) | C50—C51—C52—C53 | −0.5 (2) |
C21—C22—C23—C18 | −0.4 (3) | C51—C52—C53—C48 | 0.1 (2) |
C23—C18—C19—C20 | 1.1 (2) | C53—C48—C49—C50 | −0.4 (2) |
C24—C25—C26—C27 | 0.7 (2) | C54—C55—C56—C57 | 0.7 (2) |
C25—C24—C29—C28 | −0.1 (2) | C55—C54—C59—C58 | −0.1 (2) |
C25—C26—C27—C28 | −0.2 (2) | C55—C56—C57—C58 | −0.5 (2) |
C26—C27—C28—C29 | −0.4 (2) | C56—C57—C58—C59 | 0.1 (2) |
C27—C28—C29—C24 | 0.5 (2) | C57—C58—C59—C54 | 0.2 (2) |
C29—C24—C25—C26 | −0.5 (2) | C59—C54—C55—C56 | −0.4 (2) |
Acknowledgements
JVGG acknowledges a scholarship from CONAHCYT. This research was supported by CONAHCYT. EZM acknowledges financial assistance from the SNII–CONAHCYT.
Funding information
The following funding is acknowledged: Consejo Nacional de Humanidades, Ciencias y Tecnologías (grant No. A1-S-12381; grant No. 791450 to J. Viridiana García-González).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1–58. CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Besenyei, G., Bitter, I., Párkányi, L., Szalontai, G., Baranyai, P., Kunsági-Máté, E., Faigl, F., Grün, A. & Kubinyi, M. (2013). Polyhedron, 55, 57–66. CrossRef CAS Google Scholar
Beuter, M., Kolb, U., Zickgraf, A., Bräu, E., Bletz, M. & Dräger, M. (1997). Polyhedron, 16, 4005–4015. CrossRef CAS Google Scholar
Blanda, M. T., Horner, J. H. & Newcomb, M. (1989). J. Org. Chem. 54, 4626–4636. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cintas, P., Palmisano, G. & Cravotto, G. (2011). Ultrason. Sonochem. 18, 836–841. CrossRef CAS PubMed Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fillion, E., Kavoosi, A., Nguyen, K. & Ieritano, C. (2016). Chem. Commun. 52, 12813–12816. CrossRef CAS Google Scholar
Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., García-Montalvo, V. & Aquino-Torres, E. (2008). Polyhedron, 28, 782–788. Google Scholar
García-González, J. V., Alvarado-Rodríguez, J. G., Andrade-López, N., Guerra-Poot, C. G. & Martínez-Otero, D. (2024). Struct. Chem. 35, 659–667. Google Scholar
Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571. CrossRef CAS Web of Science Google Scholar
González-Montiel, S., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N. & Cogordan, J. A. (2009). Polyhedron, 28, 467–472. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holeček, J., Nádvorník, M., Handlíř, K. & Lyčka, A. (1983). J. Organomet. Chem. 241, 177–184. Google Scholar
Jayatilaka, D. & Grimwood, D. J. (2003). Comput. Sci. ICCS, 2660, 142–151. Google Scholar
Jurkschat, K., Schilling, J., Muegge, C., Tzschach, A., Meunier-Piret, J., Van Meerssche, M., Gielen, M. & Willem, R. (1988). Organometallics, 7, 38–46. CrossRef CAS Google Scholar
Jurkschat, K., Tzschach, A., Meunier-Piret, J. & Van Meerssche, M. (1985). J. Organomet. Chem. 290, 285–289. CrossRef CAS Google Scholar
Kárpáti, S., Szalay, R., Császár, A. G., Süvegh, K. & Nagy, S. (2007). J. Phys. Chem. A, 111, 13172–13181. PubMed Google Scholar
Kümmerlen, J., Sebald, A. & Reuter, H. (1992). J. Organomet. Chem. 427, 309–323. Google Scholar
Lamandé-Langle, S., Abarbri, M., Thibonnet, J. & Duchêne, A. (2009). J. Organomet. Chem. 694, 2368–2374. Google Scholar
Lockhart, T. P., Manders, W. F. & Zuckerman, J. J. (1985). J. Am. Chem. Soc. 107, 4546–4547. CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Martínez-Otero, D., Alvarado-Rodríguez, J. G., Cruz-Borbolla, J., Andrade-López, N., Pandiyan, T., Moreno-Esparza, R., Flores-Álamo, M. & Cantillo-Castillo, J. (2012a). Polyhedron, 33, 367–377. Google Scholar
Martínez-Otero, D., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J., Pandiyan, T., Jancik, V., González-Jiménez, E. & Jardinez, C. (2012b). Polyhedron, 40, 1–10. Google Scholar
Mejía-Rivera, F. J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J. & Jancik, V. (2018). Inorg. Chem. Commun. 97, 44–48. Google Scholar
Munguia, T., López-Cardoso, M., Cervantes-Lee, F. & Pannell, K. H. (2007). Inorg. Chem. 46, 1305–1314. CrossRef PubMed CAS Google Scholar
Ocampo, R. A., Koll, L. C. & Mandolesi, S. D. (2013). Ultrason. Sonochem. 20, 40–46. CrossRef CAS PubMed Google Scholar
Porterfield, W. W. (1993). In Inorganic Chemistry: A Unified Approach, 2nd ed. San Diego: Academic Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541. CrossRef Web of Science Google Scholar
Sosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D. & Dixon, D. A. (1992). J. Phys. Chem. 96, 6630–6636. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering Frontiers in Crystal Engineering. Chichester: John Wiley & Sons Ltd. Google Scholar
Vargas-Pineda, D. G., Guardado, T., Cervantes-Lee, F., Metta-Magana, A. J. & Pannell, K. H. (2010). Inorg. Chem. 49, 960–968. CAS PubMed Google Scholar
Zarl, E., Albering, J. H., Fischer, R. C., Flock, M., Genser, D., Seibt, B. & Uhlig, F. (2009). Z. Naturforsch. B: Chem. Sci. 64, 1591–1597. Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.