crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis

crossmark logo

aÁrea Académica de Química, Universidad Autónoma del Estado de Hidalgo, km 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hidalgo, México, and bCentro Conjunto de Investigación en Química Sustentable UAEM–UNAM, km 14.5 Carretera Toluca-Atlacomulco, Toluca, C.P. 50200, México
*Correspondence e-mail: jgar@uaeh.edu.mx

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 2 June 2024; accepted 15 July 2024; online 25 July 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four com­pounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-di­phenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­­ene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K con­firmed the formation of a mono­nuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O inter­action. The Sn and O atoms are surrounded by hydro­phobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, ππ and H⋯H noncovalent inter­actions. The pairwise inter­action energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.

1. Introduction

The capability of tetra­valent organotin com­pounds to inter­act effectively with electron donors, such as N, S and O, leading to penta- hexa- and even hepta-coordinated structures via both inter- and intra­molecular inter­actions, is well known (Munguia et al., 2007[Munguia, T., López-Cardoso, M., Cervantes-Lee, F. & Pannell, K. H. (2007). Inorg. Chem. 46, 1305-1314.]; Vargas-Pineda et al., 2010[Vargas-Pineda, D. G., Guardado, T., Cervantes-Lee, F., Metta-Magana, A. J. & Pannell, K. H. (2010). Inorg. Chem. 49, 960-968.]). A very important aspect is to understand the role that the heteroatoms con­tained in these com­pounds play in the variations of the structural, electronic and reactivity properties (Fillion et al., 2016[Fillion, E., Kavoosi, A., Nguyen, K. & Ieritano, C. (2016). Chem. Commun. 52, 12813-12816.]). Compounds where the Sn atom has the capacity to intra­molecularly inter­act with sulfur or oxygen are well investigated, for example, in di­thia­stannecine com­plexes (Martínez-Otero et al., 2012a[Martínez-Otero, D., Alvarado-Rodríguez, J. G., Cruz-Borbolla, J., Andrade-López, N., Pandiyan, T., Moreno-Esparza, R., Flores-Álamo, M. & Cantillo-Castillo, J. (2012a). Polyhedron, 33, 367-377.],b[Martínez-Otero, D., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J., Pandiyan, T., Jancik, V., González-Jiménez, E. & Jardinez, C. (2012b). Polyhedron, 40, 1-10.]). The extent of intra­molecular D⋯Sn bonding (D = donor atom) is usually determined by single-crystal X-ray diffraction, Mössbauer spectroscopy (Kárpáti et al., 2007[Kárpáti, S., Szalay, R., Császár, A. G., Süvegh, K. & Nagy, S. (2007). J. Phys. Chem. A, 111, 13172-13181.]) and, less extensively to date, solid-state 119Sn NMR spectroscopy (Lockhart et al., 1985[Lockhart, T. P., Manders, W. F. & Zuckerman, J. J. (1985). J. Am. Chem. Soc. 107, 4546-4547.]; Kümmerlen et al., 1992[Kümmerlen, J., Sebald, A. & Reuter, H. (1992). J. Organomet. Chem. 427, 309-323.]; Munguia et al., 2007[Munguia, T., López-Cardoso, M., Cervantes-Lee, F. & Pannell, K. H. (2007). Inorg. Chem. 46, 1305-1314.]). The present series of com­pounds provides the capacity to understand the effect of changing the Lewis acidity at the central Sn atom upon the nature and magnitude of the intra­molecular D⋯Sn inter­actions.

On the other hand, in relation to the preparation of heterocycles with Sn atoms, the synthetic protocols are usually based on Grignard- (Blanda et al., 1989[Blanda, M. T., Horner, J. H. & Newcomb, M. (1989). J. Org. Chem. 54, 4626-4636.]) or Wurtz-type (Zarl et al., 2009[Zarl, E., Albering, J. H., Fischer, R. C., Flock, M., Genser, D., Seibt, B. & Uhlig, F. (2009). Z. Naturforsch. B: Chem. Sci. 64, 1591-1597.]) reactions, where Sn—C bonds are formed. Nevertheless, another inter­esting and convenient approach to form these bonds is based on the less common Barbier-type reactions assisted by sonochemical activation of the metal surface, for instance, magnesium or copper (Lamandé-Langle et al., 2009[Lamandé-Langle, S., Abarbri, M., Thibonnet, J. & Duchêne, A. (2009). J. Organomet. Chem. 694, 2368-2374.]; Ocampo et al., 2013[Ocampo, R. A., Koll, L. C. & Mandolesi, S. D. (2013). Ultrason. Sonochem. 20, 40-46.]; Cintas et al., 2011[Cintas, P., Palmisano, G. & Cravotto, G. (2011). Ultrason. Sonochem. 18, 836-841.]).

Herein we report the synthesis, by means of a Barbier-type ultrasound-assisted protocol, of a set of organotin heterocycles containing the skeleton derived from 4,5-bis­(bromo­meth­yl)-9,9-dimethyl-9H-xanthene and their structural char­acterization, as well as com­putational studies of 17,17-di­methyl-7,7-diphenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­ene, 7 (see Fig. 1[link]), based on a Hirshfeld surface approach.

[Figure 1]
Figure 1
The synthesis of com­pounds 47. The numbering scheme for the NMR assignments is in green.

2. Experimental

The manipulations involving n-BuLi reagent and Barbier reactions were performed in a dry-nitro­gen atmosphere using standard Schlenk techniques. The solvents N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) and N,N-di­methyl­form­am­ide (DMF) were purchased from Sigma–Aldrich, dried by standard methods and distilled prior to use. The reagents Ph2SnCl2 (95% purity), n-Bu2SnCl2 (96% purity) and Me2SnBr2 (97% purity) used in the syntheses were also purchased from Sigma–Aldrich and used without purification. Bn2SnBr2 was prepared according to a reported method (Sisido et al., 1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]) from the reaction of tin powder, activated with a few drops of water, with benzyl bromide in toluene. Merck Kiesel gel 60 (0.063–0.40 mm) was used for column chromatography purification procedures.

Melting points were determined with a Mel–Temp II instrument. IR spectra were recorded in the 4000–650 cm−1 range on a PerkinElmer System 2000 FT–IR spectrometer, in a solution of di­chloro­methane. 1H, 13C{1H} and 119Sn{1H} NMR spectra were recorded in CDCl3 on a Bruker Avance III 400 MHz spectrometer (400.1 MHz for 1H, 100.0 MHz for 13C and 149.2 MHz for 119Sn) at 23 °C, and calibrated using the residual proton resonance of CDCl3. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. For the assignments, 2D correlation experiments such as COSY (correlated spectroscopy), HSQC (heteronuclear sin­gle quantum correlation) and HMBC (heteronuclear multiple-bond correlation) were used.

The sequence of the reaction steps is summarized in Fig. 1[link]. Compound 3 was prepared by minor modifications to the methodology reported by Besenyei et al. (2013[Besenyei, G., Bitter, I., Párkányi, L., Szalontai, G., Baranyai, P., Kunsági-Máté, E., Faigl, F., Grün, A. & Kubinyi, M. (2013). Polyhedron, 55, 57-66.]). The 4, 5, 6 and 7 organotin(IV) heterocycles were prepared according to the approach reported by García-González et al. (2024[García-González, J. V., Alvarado-Rodríguez, J. G., Andrade-López, N., Guerra-Poot, C. G. & Martínez-Otero, D. (2024). Struct. Chem. 35, 659-667.]), by the reaction of precursor 3 with an excess of magnesium turnings and the corresponding diorganodihalogenstannane(IV) (R2SnX2; X = Cl and Br) as limiting reagent in anhydrous tetra­hydro­furan (THF). The mixture was sonicated for 20 min at room temperature and was then stirred magnetically for 20 h. The mixture was treated according to the general method to yield the com­pounds of general formula [{Me2C(C6H3CH2)2O}SnR2] (See Fig. 1[link]).

2.1. Synthesis and crystallization

2.1.1. Synthesis of the di­aldehyde Me2C(C6H3CHO)2O (1)

9,9-Dimethyl-9H-xanthene (5.0 g, 23.8 mmol) was dissolved in dry hexane (60 ml), under a nitro­gen atmosphere, and TMEDA (8.9 ml, 59.5 mmol) was added at 23 °C. A solution of n-butyl­lithium in hexa­nes (2.5 M, 21 ml, 52.4 mmol) was added dropwise to the mixture, forming a dark-red solution. This was refluxed for 30 min and cooled to 23 °C before dry DMF (7.0 ml, 83.3 mmol) was poured into the reaction mixture. The dark solution was stirred for 1 h whilst its colour became white. Aqueous hydro­chloric acid (90 ml, 2 M) was added and the mixture was stirred for 15 min. The precipitate was filtered off, washed sequentially with water and hexane, and dried to yield 1 as a yellow solid (yield: 5.7 g, 90%). The pro­duct crystallized by slow evaporation from ethyl acetate as yellow prisms. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 10.69 (s, 2H, H1), 7.81 (dd, J = 7.60, 1.60 Hz, 2H, H5), 7.71 (dd, J = 7.80, 1.60 Hz, 2H, H7), 7.26 (dd, J = 7.60 Hz, 2H, H6), 1.69 (6H, s, H9). 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 188.7 (C1), 151.4 (C3), 132.5 (C5), 131.1 (C4), 127.8 (C7), 124.3(C2), 124.1 (C6), 34.0 (C8), 32.5 (C9).

2.1.2. Synthesis of the diol Me2C(C6H3CH2OH)2O (2)

To an EtOH solution (50 ml) of di­aldehyde 1 (5.7 g, 21.4 mmol) was added NaBH4 (2.4 g, 64.2 mmol) and the resulting mixture was stirred overnight at room temperature. It was then treated with water and acidified with dilute HCl, followed by extraction with di­chloro­methane. The combined organic phases were washed with water, dried (Na2SO4) and the volatiles were removed under reduced pressure to give 5.0 g (86%) of a light-green semi-solid. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.40 (dd, 2H, J = 8.0, 1.50 Hz, H7), 7.16 (dd, 2H, J = 7.0, 1.0 Hz, H5), 7.05 (dd, 2H, J = 7.50 Hz, H6), 4.77 (s, 4H, H1), 1.63 (s, 6H, H9). 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 148.9 (C3), 130.4 (C4), 128.0 (C2), 127.8 (C5), 126.2 (C7), 123.0 (C6), 62.2 (C1), 34.2 (C8), 32.2 (C9).

2.1.3. Synthesis of dibrominated com­pound Me2C(C6H3CH2Br)2O (3)

To a toluene solution (30 ml) of 2 (5 g, 18.5 mmol) was added HBr (6.4 ml, 55.5 mmol) dissolved in toluene (10 ml) dropwise, and the resulting mixture was refluxed for 22 h. A saturated aqueous NaHCO3 solution (20 ml) was added carefully, followed by extraction with CHCl3 (20 ml). The organic phase was separated, dried (Na2SO4) and evaporated to give a brown solid. The com­pound was purified by column chromatography using silica as the stationary phase and di­chloro­methane as eluent to give a white crystalline solid (yield: 6.67 g, 91%). The pro­duct crystallized by slow evaporation from di­chloro­methane as clear plates. 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.40 (dd, 2H, J = 7.50, 1.0 Hz, H7), 7.27 (dd, 2H, J = 7.50, 1.50 Hz, H5), 7.07 (dd, 2H, J = 8.0 Hz, H6), 4.83 (s, 4H, H1), 1.64 (s, 6H, H9). 13C{1H} NMR (ppm) (CDCl3, 400 MHz): δ 148.1 (C3), 130.4 (C4), 128.9 (C5), 127.2 (C7), 125.4 (C2), 123.4 (C6), 34.3, (C8), 32.7 (C9), 29.0 (C1).

2.1.4. Synthesis of organotin(IV) heterocycles [{Me2C(C6H3CH2)2O}SnR2] (4–7)

General method: a mixture of magnesium turnings, precursor 3 and R2SnX2 was mixed in freshly distilled anhydrous THF. The reaction was immersed in a commercial ultrasound bath (VMR 250D, working fre­quency: 35 kHz) for 20 min at 20 °C. Afterwards, the mixture was stirred at room temperature for 20 h. The mixture was vacuum evaporated and the addition of 30 ml of ethyl ether yielded a precipitate that was removed. The ethereal solution was washed with NaCl solution (20 ml, 5% w/v). The organic phase was separated and dried over Na2SO4 and the solvents were removed under reduced pressure to obtain the desired pro­duct.

Compound 4: Mg (0.037 g, 1.515 mmol); 3 (0.200 g, 0.505 mmol); Me2SnBr2 (0.153 g, 0.480 mmol); THF (15 ml). Colourless viscous liquid (0.172 g, 0.446 mmol, 93%). IR (DCM, cm−1): 3062, 2970, 2924, 2667, 1689, 1615, 1434, 1261, 1210, 747; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.11 (d, J = 7.05 Hz, 2H, H5), 7.04 (d, J = 6.75 Hz, 2H, H7), 6.99 (dd, J = 7.44 Hz, 2H, H6), 2.44 [s, 2J(1H–119Sn) = 58.71 Hz, 4H, H1], 1.66 (s, 6H, H9), −0.35 [s, 2J(1H–119Sn) = 49.14 Hz, 6H, H10]; 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.2 (C3), 134.8 (C4), 131.6 (C2), 126.5 (C7), 123.4 (C6), 119.8 (C5), 36.8 (C8), 26.7 (C9), 17.3 [1J(13C–119/117Sn) = 324.5/310.1 Hz, C1], −10.3 [1J(13C–119/117Sn) = 395.1/282.9, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ 26.8.

Compound 5: Mg (0.074 g, 3.03 mmol); 3 (0.400g, 1.01 mmol); n-Bu2SnCl2 (0.307 g, 0.96 mmol); THF (20 ml). Colourless viscous liquid (0.414 g, 0.883 mmol, 92%). IR (DCM, cm−1): 2955, 2923, 2869, 1615, 1581, 1434, 1261, 1206, 743; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.09 (d, J = 7.38 Hz, 2H, H5), 7.04 (dd, J = 6.86 Hz, 2H, H7), 6.98 (d, J = 7.47 Hz, 2H, H6), 2.43 [s, 2J(1H–119Sn) = 53.83 Hz, 4H, H1], 1.64 (s, 6H, H9), 1.17–1.03 (m, 4H, H11 and H12), 0.72 (t, J = 7.02 Hz, 6H, H13), 0.46 (t, J = 7.63 Hz, 4H, H10); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.4 (C3), 134.9 (C4), 132.0 (C2), 126.4 (C7), 123.4 (C6), 119.7 (C5), 36.9 (C8), 28.7 (C11), 27.1 (C12), 26.7 (C9), 16.2 [1J(13C–119/117Sn) = 280.7/268.1 Hz, C1], 13.7 (C13), 10.7 [1J(13C–119/117Sn) = 304.8/291.2 Hz, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ 14.4.

Compound 6: Mg (0.037 g, 1.515 mmol); 3 (0.200 g, 0.505 mmol); Bn2SnBr2 (0.221 g, 0.480 mmol); THF (15 ml). Colourless viscous liquid (0.235 g, 0.437 mmol, 91%). IR (DCM, cm−1): 3026, 2968, 2920, 1598, 1434, 1264, 1209, 734, 696; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.12 (dd, J = 6.70 Hz, 2.39 Hz, 2H, H5), 7.06 (dd, J = 7.59 Hz, 4H, H13), 7.02–6.97 (m, 4H, H7 and H14), 6.92 (dd, J = 7.45 Hz, 2H, H6), 6.61 (d, J = 8.20 Hz, 4H, H12), 2.34 [s, 2J(1H–119Sn) = 57.07 Hz, 4H, H1], 1.87 [s, 2J(1H–119Sn) = 55.95 Hz, 4H, H10], 1.62 (s, 6H, H9); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 152.6 (C3), 141.9 (C11), 134.5 (C4), 130.2 (C2), 128.4 (C13), 127.1 (C12), 127.0 (C7), 123.6 (C14), 123.3 (C6), 120.3 (C5), 36.6 (C8), 26.8 (C9), 19.5 [1J(13C–119/117Sn) = 235.6/225.5 Hz, C1], 16.3 [1J(13C–119/117Sn) = 306.7/292.3 Hz, C10]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ −8.6.

Compound 7: Mg (0.074 g, 3.03 mmol); 3 (0.400 g, 1.01 mmol); Ph2SnCl2 (0.344 g, 0.96 mmol); THF (20 ml). White solid (0.463 g, 0.91 mmol, 95%); m.p. 79 °C. The pro­duct crystallized by slow evaporation from ethyl ether as clear prisms. IR (DCM, cm−1): 3062, 2970, 2925, 1616, 1579, 1428, 1263, 1209, 726, 697; 1H NMR (ppm) (CDCl3, 400.1 MHz): δ 7.19–7.13 (m, 6H, H7 and H14), 7.12 (d, J = 2.07 Hz, 2H, H7), 7.10 (d, J = 3.29 Hz, 2H, H5), 7.06 (d, J = 7.44 Hz, 4H, H11), 6.97 (dd, J = 7.61 Hz, 2H, H6), 2.87 [s, 2J(1H–119Sn) = 64.66 Hz, 4H, H1], 1.64 (s, 6H, H9); 13C{1H} NMR (ppm) (CDCl3, 100 MHz): δ 153.1 (C3), 140.9 (C10), 136.4 (C11), 134.9 (C4), 130.0 (C2), 128.6 (C13), 128.2 (C12), 127.1 (C7), 123.7 (C6), 120.5 (C5), 36.8 (C8), 26.8 (C9), 16.8 [1J(13C–119/117Sn) = 369.2/353.2 Hz, C1]; 119Sn{1H} NMR (ppm) (CDCl3, 149.2 MHz): δ −78.5.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene groups, and 1.5Ueq(C) for methyl groups.

Table 1
Experimental details

For both determinations: [Sn(C6H5)2(C17H16O)], Mr = 509.19, monoclinic, P21/n, Z = 8. Experiments were carried out with Mo Kα radiation. Refinement was on 563 parameters. H-atom parameters were constrained.

  7 at 295 K 7 at 100 K
Crystal data
Temperature (K) 295 100
a, b, c (Å) 21.0215 (4), 9.1849 (2), 25.4833 (6) 20.7965 (4), 9.0831 (2), 25.2451 (5)
β (°) 108.497 (2) 107.898 (1)
V3) 4666.14 (18) 4537.93 (16)
μ (mm−1) 1.11 1.15
Crystal size (mm) 0.5 × 0.4 × 0.3 0.49 × 0.37 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur/Gemini diffractometer with an Atlas detector Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.932, 1.000 0.024, 0.049
No. of measured, independent and observed [I > 2σ(I)] reflections 325733, 12850, 8417 73608, 12229, 11436
Rint 0.061 0.017
(sin θ/λ)max−1) 0.697 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.06 0.022, 0.061, 1.06
No. of reflections 12850 12229
Δρmax, Δρmin (e Å−3) 0.85, −0.42 0.48, −0.27
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

The overall linear synthesis of the dibrominated com­pound Me2C(C6H3CH2Br)2O were based on a regioselective double li­thia­tion of the corresponding 9,9-di­methylxanthene, fol­lowed by a formyl­ation reaction with DMF in situ. A reduction of the resulting –CHO groups was then carried out with NaBH4. Afterwards, the synthesis of com­pound 3 was achieved by a substitution reaction of the hydroxyl groups using Br as a nucleophile.

Usually, a typical way to prepare organotin com­pounds is by a two-step method. In the first step, the Grignard com­pound RMgX is prepared in anhydrous ether. Once this com­pound is obtained, it is added to a solution of a tin com­pound such as RnSnX(4–n) (n = 3 to 0), also in an anhydrous ethereal solvent. In this vein, there are some classical examples of the pre­par­ation of cyclic and bicyclic organotin com­pounds (Jurkschat et al., 1985[Jurkschat, K., Tzschach, A., Meunier-Piret, J. & Van Meerssche, M. (1985). J. Organomet. Chem. 290, 285-289.], 1988[Jurkschat, K., Schilling, J., Muegge, C., Tzschach, A., Meunier-Piret, J., Van Meerssche, M., Gielen, M. & Willem, R. (1988). Organometallics, 7, 38-46.]; Beuter et al., 1997[Beuter, M., Kolb, U., Zickgraf, A., Bräu, E., Bletz, M. & Dräger, M. (1997). Polyhedron, 16, 4005-4015.]). These protocols that have used di- and trihalogenate precursors, respectively, yielded mono­nuclear com­pounds that have eight-membered central rings. Thus, we carried out the reactions following an in situ method (Barbier approach), where a mixture of an excess of magnesium turnings with the precursor 3 and the corresponding diorganodihalogenstannane(IV) R2SnX2 (X = Cl and Br) in anhydrous THF was sonicated for 20 min at room temperature and then magnetically stirred for a further 20 h. Thus, we obtained heterocyclic mono­nuclear tin(IV) com­plexes of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = Me (4), n-Bu (5), Bn (6) and Ph (7)] (Fig. 1[link]) that were characterized by spectroscopic data (see below). It is noteworthy that we obtained these mono­nuclear com­plexes. For the sake of com­parison, with more flexible precursors, such as {Ch(C6H4CH2Br)2}, the pro­ducts are dinuclear macroheterocycles of general formula [R2Sn{Ch(C6H4CH2)2}2SnR2] [Ch = O or S and R = n-Bu, Bn or Ph] (García-González et al., 2024[García-González, J. V., Alvarado-Rodríguez, J. G., Andrade-López, N., Guerra-Poot, C. G. & Martínez-Otero, D. (2024). Struct. Chem. 35, 659-667.]).

3.1. NMR data and analysis of coupling constants

For com­pounds 13, the signals of the aromatic protons of the ligand skeleton were observed as an ABC pattern (Fig. S1.1 in the supporting information). In the 13C{1H} NMR spectra (Fig. S1.2), six signals were observed for the different aromatic C atoms; the signals found at higher frequency correspond to the C atoms directly bonded to the heteroatom (oxygen), due to the electron-withdrawing effect. On the other hand, the –CH2– signals were used to determine that the chemical transformations had been successful. The changes of these signals are clearly noticeable in the 13C{1H} NMR spectrum. Thus, when the C atom corresponds to the –CHO functional group, the signal is at 188.7 ppm; when the reduction reaction is carried out for its transformation into the –CH2–OH group, the carbon signal shifts to 62.2 ppm. Then the carbon resonances for –CH2–Br were observed at 29.0 ppm.

The 1H and 13C{1H} NMR spectra in CDCl3 solution of all the organotin heterocycles (47) showed that the {MeC(C6H3CH2)SnR} moieties are magnetically equivalent (Figs. S2.1 and S2.2). In particular, the 2J(1H–119Sn) and 1J(13C–119/117Sn) coupling constant data were fundamental in confirming the formation of the new Sn—CH2 bonds; the 2J constants ranged from 53.8 to 64.7 Hz, while the second 1J constants ranged from 225.5 to 369.2 Hz. These coupling data are smaller than those reported in two com­parable mono­nuclear com­pounds of general formula [{Ch(C6H4CH2)2}SnBr2] (Ch = O or S), where five-coordinated SnIV atoms were observed [2J(1H–119/117Sn) = 83.3 and 82.4 Hz; 1J(13C–119/117Sn) = 461.4 and 482.6 Hz] (Mejía-Rivera et al., 2018[Mejía-Rivera, F. J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J. & Jancik, V. (2018). Inorg. Chem. Commun. 97, 44-48.]). The 119Sn{1H} NMR spectra of all com­pounds in the non­coordinating CDCl3 solvent displayed an intense sharp resonance confirming the existence of one tin species (Fig. S2.3). These chemical shifts ranged from 26.8 to −78.5 ppm and are directly related to the nature of the R group in the sequence: Me > n-Bu > Bn > Ph. Hence, this trend is due to the electron density that these substituents donate to the central Sn atom, making it progressively more shielded and, therefore, causing the 119Sn chemical shift to move to lower frequencies (Holeček et al., 1983[Holeček, J., Nádvorník, M., Handlíř, K. & Lyčka, A. (1983). J. Organomet. Chem. 241, 177-184.]). All 119Sn{1H} chemi­cal shifts agreed with a coordination number of four of the central Sn atom in all com­pounds in solution.

3.2. Structure analysis

3.2.1. Mol­ecular structural analysis for 7 at 100 and 298 K

Compound 7 displayed a relatively low melting point (79 °C); com­pounds 4, 5 and 6 were viscous liquids. We crystallized 7 by slow evaporation from an ethereal solution as colourless plates. Single-crystal X-ray diffraction studies were carried out at 100 and 295 K. In both cases, there are two crystallographically independent mol­ecules in the asymmetric unit (Z′ = 2), denoted hereinafter as 7a (Fig. 2[link], left) and 7b. Despite the different temperatures of the diffraction experiments, the conformations of both 7a and 7b mol­ecules are essentially the same, with an r.m.s. deviation of 0.268 Å (Fig. 2[link], right); the major difference is in a torsional variation of the arene pendant ring that is far away from the folded xanthenyl system (ca 28°, according to the O⋯Sn—C—C system). Now, in order to properly describe the mol­ecular structure, we envisage three main mol­ecular features in these systems: (i) the local geometry around the Sn atom, (ii) the Sn⋯O intra­molecular transannular distance and (iii) the conformation of the central eight-membered ring linked to the folded xanthenyl tricyclic moiety. Thus, for (i), the analysis of the mol­ecular structures revealed com­pounds with four-coordinated Sn atoms inserted in an eight-membered ring; the Sn—C bond distances reflect the different nature of the C(sp3) versus C(sp2) atoms (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]), i.e. the larger the s-character, the shorter the Sn—C bond distance. Considering the C—Sn—C bond angles in both com­pounds, these range from 120.2 to 103.7°, the largest being the –H2C—Sn—CH2– angle associated with the `bite ligand'. Then, for (ii), the presence of an electron donor, such as the O atom in this xanthenyl-type com­pound, opens the possibility of an Sn⋯O intra­molecular transannular inter­action. Thus, we observed that the corresponding distances are 2.969 (1)/2.957 (1) and 2.966 (2)/2.948 (2) Å for 7 at 100 and 295 K, respectively; they are larger than the covalent radii sum [Σrcov(Sn,O) = 2.14 Å] but shorter than the van der Waals radii sum [ΣrvdW(Sn,O) = 3.69 Å] (Porterfield, 1993[Porterfield, W. W. (1993). In Inorganic Chemistry: A Unified Approach, 2nd ed. San Diego: Academic Press.]). Usually, when a donor–acceptor distance fulfils this criterion, secondary bonding is considered (Alcock, 1972[Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-58.]). Lastly, a thorough discussion of point (iii) is crucial to consider a possible Sn⋯O intramolecular transannular inter­action. Firstly, we carried out a search for analogous tin(II) and tin(IV) com­pounds in the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) based on the general formula [{E1(C6H3–nRnE2)2O}Sn] (E1 = any atom; E2 = C, N, P, O, S or Se); we found just two phenoxathiin [{S(C6H3S)2O}Sn] and four xanthenyl [{C(C6H3E)2O}Sn] cores. We observed that these species display just two conformations of the dibenzo eight-membered ring, i.e. they present either boat–boat or boat–chair conformations. The first are associated with Sn⋯O distances shorter than 2.632 Å and the second has been observed when the Sn⋯O distance is close to 3.00 Å. In our case, the 7a and 7b mol­ecules display a boat–chair conformation; as a result, we consider that the Sn⋯O inter­action is very weak, despite the fact that it is shorter than the van der Waals radii sum because of the rigidity of the mirror-related eight-membered central ring.

[Figure 2]
Figure 2
Data at 100 K. (Left) The mol­ecular structure of 7a, with displacement ellipsoids drawn at the 50% probability level. (Right) Superposition of the 7a and 7b mol­ecules. Selected bond distance data (Å): Sn1—C1 2.1759 (14); Sn2—C31 2.1830 (14); Sn1—C8 2.1840 (14); Sn2–C38 2.1818 (14); Sn1—C18 2.1466 (13); Sn2–C48 2.1507 (14); Sn1—C24 2.1343 (14); Sn2—C54 2.1420 (14). Selected torsion (absolute) data (°): O1⋯Sn1—C18—C19 41.9; O2⋯Sn2—C48—C49 68.8.
3.2.2. Analysis of the inter­molecular inter­actions in 7 at 100 and 298 K

The SnIV atom, a common Lewis acid, and the O atom, a usual Lewis base, are practically in the inner part of the mol­ecules, i.e. they are hardly exposed to strong inter­molecular contacts. Thus, the large number of hydro­phobic C—H bonds surrounding the 7a and 7b mol­ecules prompts weak C—H⋯π and ππ aromatic shifted inter­actions. For example, we observed a ππ noncovalent inter­action between the arene rings in a centrosymmetric arrangement of either two 7a or 7b mol­ecules that points to the concavity of the folded xanthenyl tricyclic moiety (Fig. 3[link]); it is noteworthy that this type of inter­action can also be observed in phenoxathiin com­pounds [{S(C6H3S)2O}APh2] [A = Ge (Flores-Chávez et al., 2008[Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., García-Montalvo, V. & Aquino-Torres, E. (2008). Polyhedron, 28, 782-788.]), Sn (Martínez-Otero et al., 2012b[Martínez-Otero, D., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J., Pandiyan, T., Jancik, V., González-Jiménez, E. & Jardinez, C. (2012b). Polyhedron, 40, 1-10.]) and Pb (González-Montiel et al., 2009[González-Montiel, S., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N. & Cogordan, J. A. (2009). Polyhedron, 28, 467-472.]); Fig. 3[link], right], with just one mol­ecule per asymmetric unit (Z′ = 1). In all com­pounds, the inter­planar ππ distance (d1) ranges from 3.345 to 3.591 Å, a typical distance observed for this inter­action. We also show the different shifts according to the centroid–centroid distances (d2). Despite the presence of soft S atoms in these tetrel com­pounds, including different A—S covalent bonds, the persistence of this ππ noncovalent inter­action in all these systems containing {APh2}2+ fragments indicate the importance of this dimeric association as a synthon for the cohesion and packing of the crystals.

[Figure 3]
Figure 3
Centrosymmetric arrangement of π-stacking inter­actions for 7a at 100 K (symmetry code: −x + 1, −y + 1, −z + 1) (left) and for analogous tetrel com­pounds [{S(C6H3S)2O}APh2] (A = Ge, Sn and Pb) (right). Structural data are for all com­pounds.

3.3. Hirshfeld surface analysis

The similarity of the conformations of the 7a and 7b mol­ecules at different temperatures and the observed inter­molecular arrangements prompted us to analyze the noncovalent inter­actions using a Hirshfeld surface approach. We used CrystalExplorer21 (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.], 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with a high standard surface resolution. The surfaces were mapped using a fixed colour scale, red–white–blue, where red highlights contacts shorter than van der Waals (vdW) radii sum, white contacts around the vdW separation and blue contacts longer than the vdW sum.

The surfaces based on the dnorm of 7a and 7b for the crystal data at 100 K mainly exhibit red spots in the vicinity of the aromatic rings, as well as in the methyl­enic H-atom zones; they correspond to the presence of close contacts due to C—H⋯π nonclassical hydrogen bonding and ππ aromatic inter­actions. On the other hand, the data for the two mol­ecules in the asymmetric unit at 295 K do not clearly display the red spots. Thus, it is evident that the shrinking of the unit-cell parameters due to the low-temperature conditions enhances the presence of these inter­molecular contacts; the Hirshfeld surface volumes underwent a 2.78% contraction, from 567.11/583.17 Å3 at 295 K to 551.29/566.90 Å3 at 100 K.

We plotted the 2D fingerprints of the corresponding Hirshfeld surfaces to assess the contribution of each inter­molecular contact; the main contributions are listed in Fig. 4[link] and some selected fingerprint plots are also displayed. As expected, they look very similar for each of 7a and 7b. The analysis of the inter­molecular contact contributions showed that H⋯H contacts are dominant, where the shortest are 2.211 (100 K) and 2.289 Å (295 K), observed between the aromatic H atoms C13—H13⋯H36—C36 of 7a and 7b, respectively. These facts are reflected in the slight shift of the spike positioned at the inter­section di ≃ 1.1/de ≃ 1.1 Å of the 2D fingerprints. The next predominant noncovalent contributions are the C⋯H/H⋯C due to the presence of the aromatic rings. The overall contribution change for these respective inter­actions is close to 1.0%; it is worth mentioning that the O⋯H/H⋯O nonclassical hydrogen bonding essentially remains the same at both temperatures.

[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm (−0.0400 to 1.2000 range), with relative contributions in percentages for the various inter­molecular contacts, and fragment patches for 7a and 7b at 100 and 295 K. Data in parentheses are the superficial area in Å2 and the volume in Å3, respectively. Italic data in curly brackets are the number of inter­acting surrounding fragments and the four major areas as percentages.

The fragment patch plots are useful for calculating the number of mol­ecules that inter­act with a central mol­ecule; also, the area data of these patches can be used to find the external major mol­ecular fragments that are closer to a given HS. In Fig. 4[link] are plotted the corresponding fragment patches over the HS; the numbers of inter­acting mol­ecules are 13 and 15 for mol­ecules 7a and 7b, respectively, regardless of the diffraction temperature. The four larger areas over the HS surfaces are 68.8, 57.5, 55.3 and 53.9 Å2 that represent 52.8% of the superficial area for 7a at 100 K; 63.6, 55.4, 54.7 and 38.7 Å2 (47.2% superficial area) for 7b at 100 K; 68.6, 57.3, 57.2 and 53.7 Å2 (52.5% superficial area) for 7a at 295 K; and 63.9, 55.9, 55.8 and 39.1 Å2 (47.2% superficial area) for 7b at 295 K. Overall, four inter­acting mol­ecules cover more than half of each HS, despite the difference in the number of surrounding mol­ecules. In particular, the major surface area represents the inter­action with another 7a mol­ecule, forming the centrosymmetric arrangement described in Fig. 3[link]. Thus, we decided to analyze the mol­ecular electrostatic potential (MEP) pro­jec­ted onto the Hirshfeld surface to gain a deeper insight. The MEP was calculated with the TONTO quantum modelling package (Jayatilaka & Grimwood, 2003[Jayatilaka, D. & Grimwood, D. J. (2003). Comput. Sci. ICCS, 2660, 142-151.]) implemented in CrystalExplorer21, using the Becke three-parameter Lee–Yang–Parr (B3LYP) hybrid functionals (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) with the DGDZVP basis set (Godbout et al., 1992[Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560-571.]; Sosa et al., 1992[Sosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D. & Dixon, D. A. (1992). J. Phys. Chem. 96, 6630-6636.]). The analysis of the MEP showed that the blue regions, corresponding to positive electrostatic potential, occur around the C—H zones, and faint red regions, corresponding to negative potentials, occur near the centres of the aromatic rings (Fig. 5[link]). The inter­action of these negative potentials between the two arene groups prompted us to analyze the energies for the inter­molecular inter­actions; this analysis was carried out based on the energy framework approach (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). We again used CrystalExplorer21, considering the four energy com­ponents: electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep). The energies were obtained using the B3LYP/DGDZVP level of theory; for the framework construction, we considered a default radius of 3.80 Å.

[Figure 5]
Figure 5
Electrostatic potential mapped on the Hirshfeld surface of 7a at 100 K. Only shown are the potentials at the points of C⋯H and ππ contacts around the concavity of the xanthenyl moiety and its inter­action with the arene group of a second 7a mol­ecule (symmetry code: −x + 1, −y + 1, −z + 1).

For the visual com­parison of the magnitudes of the inter­action energies for com­pound 7 at the two diffraction temperatures, they were adjusted to a cylinder scale of 100 with a cut-off value of 10 kJ mol−1 within 2 × 2 × 2 unit cells (Fig. 6[link]). We also show an energy framework for six inter­locked mol­ecules, where the 7a/7b pair (in black) is in a general position; for the four remaining mol­ecules we used red, green, pink and blue colours, with symmetry operators (−x + 1, −y + 2, −z + 2), (−x + 1, −y + 1, −z + 1), (−x + 1, −y + 2, −z + 1) and (x, y, z − 1), respectively. These six mol­ecules make three centrosymmetric dimers along the c axis; the corresponding centroid-to-centroid distances are 8.15, 8.03, 7.89, 6.76 and 8.15 Å. It is clear that the dispersion forces arising from the C—H⋯π inter­actions make a significant contribution to the supra­molecular architecture in the crystal [total energy data: −50.59 and −41.76 kJ mol−1 for the 7a(green)/7b(pink) and 7a/7b pairs, respectively], as has been stated (Tiekink & Zukerman-Schpector, 2012[Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering Frontiers in Crystal Engineering. Chichester: John Wiley & Sons Ltd.]). In addition, the ππ inter­actions between the arene groups, whose total energy data are −57.14 and −41.76 kJ mol−1 for the 7a/7a(green) and 7b/7b(red) pairs, respectively, are also very important. Overall, the green cylinders joining the centroids of the different 7a and 7b mol­ecules are almost parallel in magnitude with the total energy (cylinders in blue). Finally, the energy frameworks were very useful for visualizing that there are more contributions at low temperature because of the shrinking of the lattice parameters (see, for example, the red cylinders in Fig. 6[link], upper and middle rows).

[Figure 6]
Figure 6
Energy frameworks for com­pound 7 at 100 (upper row) and 295 K (middle row), showing the electrostatic energy (in red), the dispersion energy (in green) and the total energy terms (in blue). The energy frameworks were adjusted to the same scale factor of 100 with a cut-off value of 10 kJ mol−1 within 2 × 2 × 2 unit cells, along the b axis. Energy frameworks for the three centrosymmetric dimers along the c axis (bottom row; 100 K data).

4. Conclusions

We showed that an approach to form Sn—C bonds based on Barbier-type reactions assisted by sonochemical activation of the Mg surface is an easy and successful option to yield organotin mono­nuclear heterocyclic com­pounds when a xanthenyl moiety is used. From the Hirshfeld surface analysis, we also showed that one of the synthesized organotin heterocycles (com­pound 7) crystallized by means of weak C—H⋯π, ππ and H⋯H noncovalent inter­actions; this is related to the relatively low melting point observed for 7 and the absence of crystals for the other organotin heterocycles with either small groups, such as methyl, or more conformationally flexible groups, such as n-butyl or benzyl. In the crystal of 7, the energy frameworks showed that there are more contributions to the architecture of the crystal arrangement at low temperature and that the cohesion between the organotin heterocycles is mainly due to dispersion forces.

Supporting information


Computing details top

17,17-Dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene (7_295K_02) top
Crystal data top
[Sn(C6H5)2(C17H16O)]Dx = 1.450 Mg m3
Mr = 509.19Melting point: 352 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 21.0215 (4) ÅCell parameters from 56362 reflections
b = 9.1849 (2) Åθ = 3.4–25.6°
c = 25.4833 (6) ŵ = 1.11 mm1
β = 108.497 (2)°T = 295 K
V = 4666.14 (18) Å3Block, clear colourless
Z = 80.5 × 0.4 × 0.3 mm
F(000) = 2064
Data collection top
Agilent Xcalibur/Gemini
diffractometer with an Atlas detector
12850 independent reflections
Radiation source: Enhance (Mo) X-ray Source8417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.3659 pixels mm-1θmax = 29.7°, θmin = 3.0°
ω scansh = 2829
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1212
Tmin = 0.932, Tmax = 1.000l = 3535
325733 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0229P)2 + 3.8253P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
12850 reflectionsΔρmax = 0.85 e Å3
563 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.55492 (2)0.13987 (2)0.63958 (2)0.04645 (6)
O10.44023 (8)0.26072 (18)0.66952 (7)0.0419 (4)
C10.57550 (13)0.2853 (3)0.71019 (11)0.0516 (7)
H1A0.5690070.2324930.7410700.062*
H1B0.6221510.3149730.7208340.062*
C20.53233 (13)0.4183 (3)0.69952 (10)0.0437 (6)
C30.46328 (12)0.4033 (3)0.67818 (9)0.0397 (5)
C40.41792 (13)0.5161 (3)0.66182 (10)0.0442 (6)
C50.44453 (16)0.6558 (3)0.66926 (12)0.0564 (7)
H50.4161030.7357310.6592310.068*
C60.51275 (17)0.6768 (3)0.69138 (13)0.0619 (8)
H60.5297040.7711450.6963890.074*
C70.55620 (15)0.5611 (3)0.70618 (11)0.0553 (7)
H70.6020620.5781630.7208120.066*
C80.45968 (13)0.0233 (3)0.61427 (12)0.0523 (7)
H8A0.4610270.0502490.5873470.063*
H8B0.4544230.0263240.6462370.063*
C90.40007 (13)0.1182 (3)0.58983 (11)0.0452 (6)
C100.39174 (12)0.2411 (3)0.61834 (10)0.0402 (5)
C110.34225 (12)0.3445 (3)0.59897 (11)0.0451 (6)
C120.29531 (14)0.3169 (4)0.54757 (12)0.0592 (8)
H120.2605310.3822480.5324190.071*
C130.30068 (15)0.1909 (4)0.51895 (12)0.0673 (9)
H130.2679800.1715010.4853240.081*
C140.35240 (14)0.0948 (3)0.53861 (12)0.0597 (8)
H140.3556400.0137840.5176920.072*
C150.34404 (13)0.4773 (3)0.63572 (11)0.0493 (6)
C160.30323 (16)0.6042 (3)0.60286 (14)0.0680 (9)
H16A0.3064320.6860700.6269710.102*
H16B0.2571220.5755280.5874410.102*
H16C0.3205350.6305720.5735430.102*
C170.31457 (15)0.4332 (4)0.68170 (13)0.0639 (8)
H17A0.3389380.3513280.7016890.096*
H17B0.2682140.4073100.6654000.096*
H17C0.3182110.5134490.7066110.096*
C180.63054 (13)0.0258 (3)0.66188 (12)0.0515 (7)
C190.66470 (16)0.0575 (4)0.71631 (15)0.0746 (9)
H190.6561910.0045020.7444650.090*
C200.7125 (2)0.1699 (6)0.7293 (2)0.1015 (15)
H200.7353640.1918550.7660870.122*
C210.7253 (2)0.2466 (5)0.6883 (3)0.1049 (15)
H210.7579600.3189610.6970730.126*
C220.6914 (2)0.2190 (5)0.6355 (2)0.0966 (13)
H220.6993580.2745840.6077530.116*
C230.64469 (16)0.1085 (4)0.62175 (16)0.0728 (9)
H230.6222110.0893730.5846450.087*
C240.56121 (14)0.2610 (3)0.57022 (12)0.0531 (7)
C250.60390 (17)0.3788 (4)0.57699 (15)0.0715 (9)
H250.6311210.4042910.6122940.086*
C260.60665 (19)0.4599 (4)0.53159 (18)0.0854 (11)
H260.6358990.5384360.5367380.102*
C270.5667 (2)0.4246 (4)0.47966 (17)0.0818 (11)
H270.5685990.4793130.4494770.098*
C280.5237 (2)0.3087 (4)0.47194 (14)0.0809 (11)
H280.4964750.2843340.4365230.097*
C290.52109 (18)0.2280 (4)0.51703 (13)0.0681 (9)
H290.4916500.1496370.5114580.082*
Sn20.41848 (2)0.86546 (2)0.80803 (2)0.04785 (6)
O20.55601 (9)0.7564 (2)0.82774 (7)0.0523 (5)
C310.48984 (14)1.0059 (3)0.78672 (11)0.0545 (7)
H31A0.4939790.9734640.7517250.065*
H31B0.4718471.1040420.7813590.065*
C320.55847 (13)1.0107 (3)0.82865 (10)0.0497 (7)
C330.59119 (13)0.8822 (3)0.84887 (11)0.0487 (6)
C340.65260 (13)0.8710 (4)0.89000 (11)0.0559 (7)
C350.68393 (16)1.0022 (5)0.91010 (13)0.0714 (10)
H350.7258611.0014420.9370560.086*
C360.65404 (17)1.1324 (4)0.89084 (14)0.0703 (9)
H360.6762401.2185500.9047830.084*
C370.59157 (16)1.1387 (4)0.85111 (12)0.0617 (8)
H370.5716161.2284410.8393600.074*
C380.43568 (14)0.6322 (3)0.81566 (13)0.0578 (7)
H38A0.3964060.5856130.8203360.069*
H38B0.4410070.5958800.7815520.069*
C390.49584 (14)0.5895 (3)0.86282 (12)0.0552 (7)
C400.55729 (14)0.6545 (3)0.86822 (12)0.0522 (7)
C410.61563 (15)0.6324 (3)0.91170 (13)0.0600 (7)
C420.61191 (18)0.5344 (4)0.95210 (15)0.0776 (10)
H420.6499210.5151080.9820230.093*
C430.55261 (19)0.4658 (4)0.94826 (17)0.0861 (11)
H430.5511040.4000150.9755980.103*
C440.49518 (17)0.4925 (4)0.90459 (15)0.0736 (9)
H440.4555430.4450760.9030480.088*
C450.67738 (15)0.7186 (4)0.91020 (14)0.0692 (9)
C460.73074 (18)0.7225 (5)0.96749 (16)0.0977 (13)
H46A0.7444850.6249320.9793100.147*
H46B0.7123300.7675490.9934640.147*
H46C0.7687960.7773700.9655730.147*
C470.70683 (19)0.6450 (5)0.86877 (19)0.0999 (14)
H47A0.7455550.6981340.8673200.150*
H47B0.6737640.6439950.8327360.150*
H47C0.7195480.5468280.8804250.150*
C480.32719 (13)0.8917 (3)0.74027 (11)0.0480 (6)
C490.32218 (14)0.9925 (3)0.69897 (12)0.0599 (8)
H490.3580761.0547550.7020050.072*
C500.26533 (16)1.0038 (4)0.65322 (13)0.0706 (9)
H500.2631791.0726910.6259650.085*
C510.21237 (16)0.9128 (4)0.64846 (14)0.0738 (10)
H510.1740930.9192900.6177170.089*
C520.21546 (15)0.8123 (4)0.68869 (15)0.0720 (9)
H520.1791210.7511580.6853620.086*
C530.27255 (13)0.8010 (4)0.73450 (12)0.0567 (7)
H530.2742310.7319850.7616100.068*
C540.41189 (13)0.9403 (3)0.88557 (11)0.0514 (7)
C550.43133 (16)1.0795 (4)0.90461 (13)0.0633 (8)
H550.4464891.1428310.8826770.076*
C560.42884 (18)1.1270 (4)0.95513 (15)0.0763 (10)
H560.4419791.2213900.9668140.092*
C570.40715 (17)1.0358 (5)0.98809 (14)0.0759 (10)
H570.4056341.0676621.0223140.091*
C580.38765 (18)0.8975 (5)0.97062 (15)0.0771 (10)
H580.3729400.8350670.9930810.093*
C590.38967 (16)0.8498 (4)0.91960 (14)0.0662 (8)
H590.3759170.7555870.9080370.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04473 (10)0.04359 (10)0.04977 (11)0.00585 (8)0.01320 (8)0.00553 (8)
O10.0458 (9)0.0361 (9)0.0400 (9)0.0022 (7)0.0084 (8)0.0046 (7)
C10.0461 (14)0.0581 (17)0.0450 (14)0.0004 (12)0.0066 (12)0.0029 (13)
C20.0485 (14)0.0464 (14)0.0360 (12)0.0057 (11)0.0133 (11)0.0029 (11)
C30.0505 (14)0.0377 (13)0.0334 (12)0.0055 (10)0.0168 (11)0.0010 (10)
C40.0570 (15)0.0383 (14)0.0424 (13)0.0014 (11)0.0233 (12)0.0023 (11)
C50.074 (2)0.0383 (15)0.0649 (18)0.0032 (13)0.0334 (16)0.0017 (13)
C60.079 (2)0.0427 (16)0.069 (2)0.0135 (15)0.0310 (17)0.0085 (14)
C70.0569 (16)0.0557 (18)0.0527 (16)0.0153 (14)0.0166 (13)0.0096 (14)
C80.0555 (16)0.0387 (14)0.0606 (17)0.0007 (12)0.0155 (14)0.0017 (12)
C90.0440 (13)0.0419 (15)0.0480 (14)0.0049 (11)0.0123 (11)0.0009 (11)
C100.0424 (13)0.0392 (13)0.0374 (12)0.0032 (10)0.0104 (11)0.0024 (10)
C110.0410 (13)0.0476 (15)0.0472 (14)0.0014 (11)0.0149 (11)0.0072 (12)
C120.0466 (15)0.067 (2)0.0569 (17)0.0051 (14)0.0057 (13)0.0104 (15)
C130.0514 (17)0.092 (2)0.0475 (17)0.0132 (17)0.0003 (14)0.0162 (17)
C140.0552 (17)0.0602 (18)0.0578 (17)0.0057 (14)0.0095 (14)0.0154 (14)
C150.0513 (15)0.0448 (15)0.0564 (16)0.0062 (12)0.0236 (13)0.0046 (12)
C160.0629 (19)0.0579 (19)0.083 (2)0.0214 (15)0.0231 (17)0.0098 (16)
C170.0652 (19)0.069 (2)0.0695 (19)0.0009 (16)0.0382 (16)0.0031 (16)
C180.0388 (13)0.0482 (16)0.0646 (18)0.0022 (11)0.0122 (13)0.0072 (13)
C190.0593 (19)0.081 (2)0.074 (2)0.0078 (17)0.0077 (17)0.0090 (19)
C200.068 (2)0.117 (4)0.101 (3)0.018 (2)0.001 (2)0.045 (3)
C210.068 (2)0.080 (3)0.161 (5)0.029 (2)0.028 (3)0.022 (3)
C220.073 (2)0.083 (3)0.134 (4)0.023 (2)0.032 (3)0.016 (3)
C230.0626 (19)0.074 (2)0.080 (2)0.0159 (17)0.0199 (17)0.0021 (18)
C240.0565 (16)0.0488 (16)0.0572 (17)0.0090 (13)0.0226 (14)0.0079 (13)
C250.067 (2)0.075 (2)0.076 (2)0.0032 (17)0.0277 (17)0.0139 (18)
C260.081 (2)0.081 (3)0.109 (3)0.004 (2)0.051 (2)0.022 (2)
C270.113 (3)0.072 (2)0.085 (3)0.031 (2)0.066 (2)0.028 (2)
C280.125 (3)0.072 (2)0.0535 (19)0.024 (2)0.040 (2)0.0035 (17)
C290.097 (2)0.0500 (18)0.0590 (19)0.0079 (17)0.0264 (18)0.0003 (15)
Sn20.04183 (10)0.05148 (11)0.04543 (10)0.00470 (8)0.00703 (8)0.00517 (8)
O20.0509 (10)0.0599 (12)0.0420 (10)0.0066 (9)0.0087 (8)0.0023 (9)
C310.0544 (16)0.0576 (18)0.0498 (15)0.0072 (13)0.0141 (13)0.0072 (13)
C320.0475 (14)0.0655 (18)0.0393 (13)0.0149 (13)0.0183 (12)0.0011 (13)
C330.0464 (14)0.0612 (18)0.0402 (13)0.0116 (12)0.0159 (12)0.0031 (12)
C340.0411 (14)0.079 (2)0.0459 (15)0.0091 (14)0.0121 (12)0.0036 (14)
C350.0486 (17)0.104 (3)0.0556 (18)0.0227 (18)0.0083 (14)0.0092 (19)
C360.067 (2)0.082 (2)0.0614 (19)0.0339 (18)0.0196 (17)0.0131 (18)
C370.0663 (19)0.068 (2)0.0543 (17)0.0192 (16)0.0240 (15)0.0008 (15)
C380.0510 (15)0.0524 (17)0.0629 (18)0.0106 (13)0.0080 (14)0.0001 (14)
C390.0537 (16)0.0455 (15)0.0627 (18)0.0008 (12)0.0132 (14)0.0024 (13)
C400.0503 (15)0.0528 (17)0.0516 (16)0.0036 (12)0.0132 (13)0.0004 (13)
C410.0525 (16)0.0649 (19)0.0569 (17)0.0085 (14)0.0093 (14)0.0010 (15)
C420.069 (2)0.081 (2)0.071 (2)0.0197 (19)0.0061 (18)0.0193 (19)
C430.083 (2)0.075 (2)0.095 (3)0.009 (2)0.019 (2)0.039 (2)
C440.066 (2)0.063 (2)0.087 (2)0.0015 (16)0.0180 (18)0.0226 (18)
C450.0438 (16)0.091 (3)0.066 (2)0.0054 (16)0.0074 (15)0.0012 (18)
C460.059 (2)0.122 (4)0.088 (3)0.001 (2)0.0105 (19)0.015 (3)
C470.069 (2)0.122 (4)0.115 (3)0.018 (2)0.039 (2)0.011 (3)
C480.0408 (13)0.0546 (17)0.0468 (14)0.0029 (11)0.0113 (11)0.0026 (12)
C490.0483 (15)0.0643 (19)0.0606 (18)0.0004 (14)0.0081 (14)0.0102 (15)
C500.0587 (19)0.082 (2)0.0623 (19)0.0169 (17)0.0071 (16)0.0157 (17)
C510.0470 (17)0.102 (3)0.062 (2)0.0202 (18)0.0027 (15)0.006 (2)
C520.0405 (16)0.096 (3)0.077 (2)0.0099 (16)0.0156 (16)0.017 (2)
C530.0481 (15)0.0680 (19)0.0566 (17)0.0009 (14)0.0204 (13)0.0037 (15)
C540.0430 (14)0.0604 (18)0.0474 (15)0.0002 (12)0.0095 (12)0.0082 (13)
C550.0650 (19)0.064 (2)0.0621 (19)0.0037 (15)0.0216 (15)0.0023 (16)
C560.079 (2)0.079 (2)0.072 (2)0.0003 (19)0.0240 (19)0.0150 (19)
C570.071 (2)0.101 (3)0.0572 (19)0.020 (2)0.0219 (17)0.001 (2)
C580.073 (2)0.100 (3)0.067 (2)0.009 (2)0.0342 (18)0.024 (2)
C590.0674 (19)0.065 (2)0.069 (2)0.0017 (16)0.0254 (16)0.0101 (16)
Geometric parameters (Å, º) top
Sn1—C12.171 (3)Sn2—C312.174 (3)
Sn1—C82.180 (3)Sn2—C382.172 (3)
Sn1—C182.143 (3)Sn2—C482.149 (3)
Sn1—C242.128 (3)Sn2—C542.138 (3)
O1—C31.389 (3)O2—C331.386 (3)
O1—C101.389 (3)O2—C401.387 (3)
C1—H1A0.9700C31—H31A0.9700
C1—H1B0.9700C31—H31B0.9700
C1—C21.495 (4)C31—C321.499 (4)
C2—C31.386 (3)C32—C331.380 (4)
C2—C71.395 (4)C32—C371.394 (4)
C3—C41.380 (3)C33—C341.385 (4)
C4—C51.388 (4)C34—C351.391 (5)
C4—C151.525 (4)C34—C451.525 (5)
C5—H50.9300C35—H350.9300
C5—C61.378 (4)C35—C361.367 (5)
C6—H60.9300C36—H360.9300
C6—C71.374 (4)C36—C371.382 (4)
C7—H70.9300C37—H370.9300
C8—H8A0.9700C38—H38A0.9700
C8—H8B0.9700C38—H38B0.9700
C8—C91.490 (4)C38—C391.494 (4)
C9—C101.384 (4)C39—C401.390 (4)
C9—C141.387 (4)C39—C441.392 (4)
C10—C111.379 (3)C40—C411.382 (4)
C11—C121.390 (4)C41—C421.388 (5)
C11—C151.531 (4)C41—C451.531 (5)
C12—H120.9300C42—H420.9300
C12—C131.391 (4)C42—C431.372 (5)
C13—H130.9300C43—H430.9300
C13—C141.367 (4)C43—C441.380 (5)
C14—H140.9300C44—H440.9300
C15—C161.529 (4)C45—C461.534 (4)
C15—C171.543 (4)C45—C471.539 (5)
C16—H16A0.9600C46—H46A0.9600
C16—H16B0.9600C46—H46B0.9600
C16—H16C0.9600C46—H46C0.9600
C17—H17A0.9600C47—H47A0.9600
C17—H17B0.9600C47—H47B0.9600
C17—H17C0.9600C47—H47C0.9600
C18—C191.375 (4)C48—C491.381 (4)
C18—C231.380 (4)C48—C531.388 (4)
C19—H190.9300C49—H490.9300
C19—C201.405 (5)C49—C501.383 (4)
C20—H200.9300C50—H500.9300
C20—C211.356 (6)C50—C511.367 (5)
C21—H210.9300C51—H510.9300
C21—C221.331 (6)C51—C521.365 (5)
C22—H220.9300C52—H520.9300
C22—C231.378 (5)C52—C531.387 (4)
C23—H230.9300C53—H530.9300
C24—C251.381 (4)C54—C551.383 (4)
C24—C291.384 (4)C54—C591.385 (4)
C25—H250.9300C55—H550.9300
C25—C261.392 (5)C55—C561.376 (5)
C26—H260.9300C56—H560.9300
C26—C271.362 (5)C56—C571.363 (5)
C27—H270.9300C57—H570.9300
C27—C281.369 (6)C57—C581.365 (5)
C28—H280.9300C58—H580.9300
C28—C291.384 (5)C58—C591.386 (5)
C29—H290.9300C59—H590.9300
C1—Sn1—C8118.03 (11)C38—Sn2—C31119.97 (12)
C18—Sn1—C1106.32 (11)C48—Sn2—C31104.11 (10)
C18—Sn1—C8105.32 (10)C48—Sn2—C38105.26 (11)
C24—Sn1—C1108.57 (11)C54—Sn2—C31106.99 (11)
C24—Sn1—C8107.71 (11)C54—Sn2—C38106.99 (12)
C24—Sn1—C18110.81 (11)C54—Sn2—C48113.79 (10)
C10—O1—C3112.74 (18)C33—O2—C40113.1 (2)
Sn1—C1—H1A108.8Sn2—C31—H31A108.5
Sn1—C1—H1B108.8Sn2—C31—H31B108.5
H1A—C1—H1B107.7H31A—C31—H31B107.5
C2—C1—Sn1113.72 (17)C32—C31—Sn2115.06 (18)
C2—C1—H1A108.8C32—C31—H31A108.5
C2—C1—H1B108.8C32—C31—H31B108.5
C3—C2—C1119.3 (2)C33—C32—C31119.6 (3)
C3—C2—C7115.7 (2)C33—C32—C37116.3 (3)
C7—C2—C1124.9 (2)C37—C32—C31124.0 (3)
C2—C3—O1115.2 (2)C32—C33—O2115.2 (2)
C4—C3—O1119.1 (2)C32—C33—C34125.5 (3)
C4—C3—C2125.5 (2)C34—C33—O2119.1 (3)
C3—C4—C5116.3 (3)C33—C34—C35115.6 (3)
C3—C4—C15117.8 (2)C33—C34—C45117.4 (3)
C5—C4—C15125.9 (2)C35—C34—C45126.9 (3)
C4—C5—H5119.8C34—C35—H35119.5
C6—C5—C4120.5 (3)C36—C35—C34121.0 (3)
C6—C5—H5119.8C36—C35—H35119.5
C5—C6—H6119.4C35—C36—H36119.3
C7—C6—C5121.2 (3)C35—C36—C37121.4 (3)
C7—C6—H6119.4C37—C36—H36119.3
C2—C7—H7119.6C32—C37—H37120.0
C6—C7—C2120.8 (3)C36—C37—C32120.0 (3)
C6—C7—H7119.6C36—C37—H37120.0
Sn1—C8—H8A108.7Sn2—C38—H38A108.8
Sn1—C8—H8B108.7Sn2—C38—H38B108.8
H8A—C8—H8B107.6H38A—C38—H38B107.7
C9—C8—Sn1114.10 (18)C39—C38—Sn2113.89 (19)
C9—C8—H8A108.7C39—C38—H38A108.8
C9—C8—H8B108.7C39—C38—H38B108.8
C10—C9—C8119.2 (2)C40—C39—C38119.4 (3)
C10—C9—C14116.5 (2)C40—C39—C44115.7 (3)
C14—C9—C8124.3 (3)C44—C39—C38124.9 (3)
C9—C10—O1114.9 (2)O2—C40—C39114.7 (2)
C11—C10—O1119.5 (2)C41—C40—O2119.9 (3)
C11—C10—C9125.5 (2)C41—C40—C39125.2 (3)
C10—C11—C12116.2 (3)C40—C41—C42116.4 (3)
C10—C11—C15117.4 (2)C40—C41—C45116.6 (3)
C12—C11—C15126.4 (2)C42—C41—C45127.0 (3)
C11—C12—H12120.2C41—C42—H42119.7
C11—C12—C13119.6 (3)C43—C42—C41120.6 (3)
C13—C12—H12120.2C43—C42—H42119.7
C12—C13—H13118.9C42—C43—H43119.4
C14—C13—C12122.2 (3)C42—C43—C44121.2 (3)
C14—C13—H13118.9C44—C43—H43119.4
C9—C14—H14120.1C39—C44—H44119.6
C13—C14—C9119.9 (3)C43—C44—C39120.8 (3)
C13—C14—H14120.1C43—C44—H44119.6
C4—C15—C11106.1 (2)C34—C45—C41106.4 (2)
C4—C15—C16112.2 (2)C34—C45—C46111.6 (3)
C4—C15—C17109.2 (2)C34—C45—C47109.9 (3)
C11—C15—C17108.5 (2)C41—C45—C46111.0 (3)
C16—C15—C11111.8 (2)C41—C45—C47108.6 (3)
C16—C15—C17109.0 (2)C46—C45—C47109.3 (3)
C15—C16—H16A109.5C45—C46—H46A109.5
C15—C16—H16B109.5C45—C46—H46B109.5
C15—C16—H16C109.5C45—C46—H46C109.5
H16A—C16—H16B109.5H46A—C46—H46B109.5
H16A—C16—H16C109.5H46A—C46—H46C109.5
H16B—C16—H16C109.5H46B—C46—H46C109.5
C15—C17—H17A109.5C45—C47—H47A109.5
C15—C17—H17B109.5C45—C47—H47B109.5
C15—C17—H17C109.5C45—C47—H47C109.5
H17A—C17—H17B109.5H47A—C47—H47B109.5
H17A—C17—H17C109.5H47A—C47—H47C109.5
H17B—C17—H17C109.5H47B—C47—H47C109.5
C19—C18—Sn1121.6 (2)C49—C48—Sn2121.3 (2)
C19—C18—C23117.7 (3)C49—C48—C53117.5 (3)
C23—C18—Sn1120.7 (2)C53—C48—Sn2121.1 (2)
C18—C19—H19120.1C48—C49—H49119.0
C18—C19—C20119.9 (4)C48—C49—C50121.9 (3)
C20—C19—H19120.1C50—C49—H49119.0
C19—C20—H20119.9C49—C50—H50120.3
C21—C20—C19120.2 (4)C51—C50—C49119.4 (3)
C21—C20—H20119.9C51—C50—H50120.3
C20—C21—H21119.8C50—C51—H51119.9
C22—C21—C20120.4 (4)C52—C51—C50120.2 (3)
C22—C21—H21119.8C52—C51—H51119.9
C21—C22—H22119.7C51—C52—H52119.8
C21—C22—C23120.5 (4)C51—C52—C53120.3 (3)
C23—C22—H22119.7C53—C52—H52119.8
C18—C23—H23119.3C48—C53—H53119.7
C22—C23—C18121.4 (4)C52—C53—C48120.7 (3)
C22—C23—H23119.3C52—C53—H53119.7
C25—C24—Sn1121.0 (2)C55—C54—Sn2121.5 (2)
C25—C24—C29117.6 (3)C55—C54—C59117.2 (3)
C29—C24—Sn1121.3 (2)C59—C54—Sn2121.3 (2)
C24—C25—H25119.6C54—C55—H55119.1
C24—C25—C26120.8 (4)C56—C55—C54121.8 (3)
C26—C25—H25119.6C56—C55—H55119.1
C25—C26—H26119.8C55—C56—H56119.9
C27—C26—C25120.3 (4)C57—C56—C55120.1 (4)
C27—C26—H26119.8C57—C56—H56119.9
C26—C27—H27120.0C56—C57—H57120.2
C26—C27—C28120.0 (3)C56—C57—C58119.7 (3)
C28—C27—H27120.0C58—C57—H57120.2
C27—C28—H28120.1C57—C58—H58119.8
C27—C28—C29119.7 (4)C57—C58—C59120.3 (3)
C29—C28—H28120.1C59—C58—H58119.8
C24—C29—H29119.2C54—C59—C58120.9 (3)
C28—C29—C24121.6 (3)C54—C59—H59119.5
C28—C29—H29119.2C58—C59—H59119.5
Sn1—C1—C2—C351.9 (3)Sn2—C31—C32—C3349.8 (3)
Sn1—C1—C2—C7123.8 (2)Sn2—C31—C32—C37127.3 (2)
Sn1—C8—C9—C1051.4 (3)Sn2—C38—C39—C4052.0 (3)
Sn1—C8—C9—C14126.3 (3)Sn2—C38—C39—C44124.7 (3)
Sn1—C18—C19—C20178.0 (3)Sn2—C48—C49—C50175.5 (2)
Sn1—C18—C23—C22177.6 (3)Sn2—C48—C53—C52175.7 (2)
Sn1—C24—C25—C26178.4 (3)Sn2—C54—C55—C56178.3 (3)
Sn1—C24—C29—C28178.3 (3)Sn2—C54—C59—C58177.8 (2)
O1—C3—C4—C5177.1 (2)O2—C33—C34—C35178.3 (2)
O1—C3—C4—C151.0 (3)O2—C33—C34—C450.8 (4)
O1—C10—C11—C12179.7 (2)O2—C40—C41—C42176.6 (3)
O1—C10—C11—C150.2 (3)O2—C40—C41—C453.3 (4)
C1—C2—C3—O11.2 (3)C31—C32—C33—O20.2 (4)
C1—C2—C3—C4174.0 (2)C31—C32—C33—C34175.7 (3)
C1—C2—C7—C6175.0 (3)C31—C32—C37—C36178.0 (3)
C2—C3—C4—C52.1 (4)C32—C33—C34—C352.9 (4)
C2—C3—C4—C15176.0 (2)C32—C33—C34—C45174.6 (3)
C3—O1—C10—C9135.2 (2)C33—O2—C40—C39135.6 (3)
C3—O1—C10—C1142.0 (3)C33—O2—C40—C4139.8 (4)
C3—C2—C7—C60.9 (4)C33—C32—C37—C360.8 (4)
C3—C4—C5—C60.6 (4)C33—C34—C35—C361.7 (4)
C3—C4—C15—C1138.8 (3)C33—C34—C45—C4138.5 (4)
C3—C4—C15—C16161.2 (2)C33—C34—C45—C46159.7 (3)
C3—C4—C15—C1777.9 (3)C33—C34—C45—C4778.8 (3)
C4—C5—C6—C70.6 (5)C34—C35—C36—C370.5 (5)
C5—C4—C15—C11139.1 (3)C35—C34—C45—C41138.6 (3)
C5—C4—C15—C1616.7 (4)C35—C34—C45—C4617.5 (5)
C5—C4—C15—C17104.2 (3)C35—C34—C45—C47104.0 (4)
C5—C6—C7—C20.4 (5)C35—C36—C37—C321.8 (5)
C7—C2—C3—O1177.4 (2)C37—C32—C33—O2177.2 (2)
C7—C2—C3—C42.2 (4)C37—C32—C33—C341.6 (4)
C8—C9—C10—O12.4 (3)C38—C39—C40—O20.2 (4)
C8—C9—C10—C11174.6 (2)C38—C39—C40—C41175.5 (3)
C8—C9—C14—C13177.7 (3)C38—C39—C44—C43176.4 (3)
C9—C10—C11—C123.4 (4)C39—C40—C41—C421.6 (5)
C9—C10—C11—C15176.7 (2)C39—C40—C41—C45178.3 (3)
C10—O1—C3—C2134.2 (2)C40—O2—C33—C32133.9 (2)
C10—O1—C3—C441.3 (3)C40—O2—C33—C3442.0 (3)
C10—C9—C14—C130.1 (4)C40—C39—C44—C430.5 (5)
C10—C11—C12—C130.4 (4)C40—C41—C42—C430.6 (5)
C10—C11—C15—C438.1 (3)C40—C41—C45—C3440.5 (4)
C10—C11—C15—C16160.7 (2)C40—C41—C45—C46162.0 (3)
C10—C11—C15—C1779.1 (3)C40—C41—C45—C4777.7 (4)
C11—C12—C13—C142.6 (5)C41—C42—C43—C440.4 (6)
C12—C11—C15—C4142.0 (3)C42—C41—C45—C34139.4 (3)
C12—C11—C15—C1619.4 (4)C42—C41—C45—C4617.9 (5)
C12—C11—C15—C17100.8 (3)C42—C41—C45—C47102.3 (4)
C12—C13—C14—C92.9 (5)C42—C43—C44—C390.4 (6)
C14—C9—C10—O1179.8 (2)C44—C39—C40—O2176.8 (3)
C14—C9—C10—C113.2 (4)C44—C39—C40—C411.6 (5)
C15—C4—C5—C6177.3 (3)C45—C34—C35—C36175.5 (3)
C15—C11—C12—C13179.7 (3)C45—C41—C42—C43179.3 (4)
C18—C19—C20—C210.5 (6)C48—C49—C50—C510.0 (5)
C19—C18—C23—C220.1 (5)C49—C48—C53—C520.2 (4)
C19—C20—C21—C222.0 (7)C49—C50—C51—C520.4 (5)
C20—C21—C22—C232.4 (7)C50—C51—C52—C530.5 (5)
C21—C22—C23—C181.4 (6)C51—C52—C53—C480.2 (5)
C23—C18—C19—C200.5 (5)C53—C48—C49—C500.3 (5)
C24—C25—C26—C270.5 (6)C54—C55—C56—C570.4 (5)
C25—C24—C29—C280.6 (5)C55—C54—C59—C580.4 (5)
C25—C26—C27—C280.2 (6)C55—C56—C57—C580.3 (5)
C26—C27—C28—C290.1 (6)C56—C57—C58—C590.2 (5)
C27—C28—C29—C240.3 (5)C57—C58—C59—C540.5 (5)
C29—C24—C25—C260.7 (5)C59—C54—C55—C560.0 (5)
17,17-Dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene (7_100K_02) top
Crystal data top
[Sn(C6H5)2(C17H16O)]Dx = 1.491 Mg m3
Mr = 509.19Melting point: 352 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 20.7965 (4) ÅCell parameters from 9503 reflections
b = 9.0831 (2) Åθ = 2.5–29.2°
c = 25.2451 (5) ŵ = 1.15 mm1
β = 107.898 (1)°T = 100 K
V = 4537.93 (16) Å3Plate, clear colourless
Z = 80.49 × 0.37 × 0.18 mm
F(000) = 2064
Data collection top
Bruker APEXII CCD
diffractometer
11436 reflections with I > 2σ(I)
φ and ω scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 29.2°, θmin = 2.2°
Tmin = 0.024, Tmax = 0.049h = 2828
73608 measured reflectionsk = 1212
12229 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.9184P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.006
12229 reflectionsΔρmax = 0.48 e Å3
563 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.55556 (2)0.13587 (2)0.63865 (2)0.02226 (3)
O10.43992 (5)0.25792 (10)0.67007 (4)0.02197 (17)
C10.57713 (7)0.28226 (15)0.71021 (6)0.0255 (3)
H1A0.5706300.2276460.7421140.031*
H1B0.6250770.3129060.7205370.031*
C20.53337 (7)0.41707 (15)0.69980 (5)0.0234 (2)
C30.46337 (7)0.40229 (15)0.67882 (5)0.0218 (2)
C40.41779 (7)0.51754 (15)0.66249 (5)0.0232 (2)
C50.44480 (8)0.65949 (15)0.67001 (6)0.0269 (3)
H50.4156930.7423590.6600940.032*
C60.51422 (8)0.67988 (16)0.69198 (6)0.0289 (3)
H60.5319670.7770430.6970910.035*
C70.55802 (7)0.56120 (16)0.70658 (6)0.0271 (3)
H70.6052610.5780200.7213320.033*
C80.45942 (7)0.01781 (15)0.61405 (6)0.0252 (3)
H8A0.4608370.0587690.5865230.030*
H8B0.4537860.0325860.6471120.030*
C90.39955 (7)0.11456 (15)0.58948 (6)0.0230 (2)
C100.39110 (6)0.23909 (14)0.61867 (5)0.0220 (2)
C110.34123 (7)0.34448 (15)0.59910 (6)0.0234 (2)
C120.29395 (7)0.31764 (17)0.54735 (6)0.0278 (3)
H120.2582900.3856780.5323790.033*
C130.29885 (7)0.19139 (18)0.51754 (6)0.0307 (3)
H130.2656950.1732100.4827270.037*
C140.35137 (7)0.09133 (17)0.53774 (6)0.0283 (3)
H140.3544510.0071490.5163180.034*
C150.34302 (7)0.47855 (15)0.63638 (6)0.0243 (2)
C160.30238 (8)0.60764 (17)0.60380 (7)0.0307 (3)
H16A0.3052640.6913690.6289110.046*
H16B0.2550190.5782780.5877030.046*
H16C0.3208130.6360040.5739140.046*
C170.31286 (7)0.43292 (16)0.68283 (6)0.0286 (3)
H17A0.3385170.3497270.7036950.043*
H17B0.2655350.4039780.6661310.043*
H17C0.3154120.5161460.7081020.043*
C180.63155 (7)0.03265 (15)0.66032 (6)0.0251 (3)
C190.66618 (8)0.06474 (18)0.71576 (6)0.0327 (3)
H190.6569530.0096070.7445710.039*
C200.71435 (8)0.1772 (2)0.72940 (8)0.0421 (4)
H200.7378880.1976090.7673210.051*
C210.72774 (8)0.2585 (2)0.68792 (9)0.0429 (4)
H210.7608210.3342780.6971970.051*
C220.69310 (8)0.22976 (19)0.63301 (8)0.0391 (4)
H220.7017970.2869800.6044550.047*
C230.64553 (8)0.11764 (17)0.61914 (7)0.0311 (3)
H230.6221680.0984640.5810890.037*
C240.56080 (7)0.25977 (15)0.56826 (6)0.0256 (3)
C250.60485 (8)0.37940 (17)0.57436 (7)0.0312 (3)
H250.6338220.4047380.6102810.037*
C260.60667 (8)0.46162 (18)0.52835 (7)0.0354 (3)
H260.6371710.5419400.5330350.042*
C270.56438 (9)0.42723 (18)0.47586 (7)0.0346 (3)
H270.5657410.4839870.4446130.042*
C280.51995 (9)0.30971 (18)0.46888 (6)0.0334 (3)
H280.4906190.2861010.4329020.040*
C290.51853 (8)0.22636 (16)0.51491 (6)0.0299 (3)
H290.4882960.1454540.5098840.036*
Sn20.41715 (2)0.86349 (2)0.80709 (2)0.02258 (3)
O20.55663 (5)0.75512 (11)0.82672 (4)0.02531 (19)
C310.48892 (7)1.00771 (16)0.78501 (6)0.0261 (3)
H31A0.4938850.9739940.7491850.031*
H31B0.4699481.1085350.7793040.031*
C320.55760 (7)1.01383 (16)0.82739 (5)0.0252 (3)
C330.59131 (7)0.88340 (16)0.84793 (6)0.0248 (3)
C340.65302 (7)0.87400 (16)0.88956 (6)0.0272 (3)
C350.68430 (7)1.00752 (19)0.91004 (6)0.0322 (3)
H350.7273741.0072190.9375520.039*
C360.65318 (8)1.14002 (17)0.89065 (6)0.0320 (3)
H360.6752301.2295960.9051020.038*
C370.58998 (8)1.14445 (16)0.85026 (6)0.0286 (3)
H370.5688521.2365200.8382490.034*
C380.43515 (7)0.62670 (15)0.81500 (6)0.0271 (3)
H38A0.3946880.5778430.8196840.033*
H38B0.4416620.5891780.7801870.033*
C390.49551 (7)0.58613 (16)0.86303 (6)0.0263 (3)
C400.55741 (7)0.65320 (15)0.86797 (6)0.0252 (3)
C410.61630 (7)0.63241 (16)0.91200 (6)0.0279 (3)
C420.61261 (8)0.53422 (18)0.95359 (7)0.0335 (3)
H420.6515890.5158770.9844110.040*
C430.55245 (8)0.46353 (18)0.95012 (7)0.0352 (3)
H430.5507230.3967100.9786060.042*
C440.49432 (8)0.48888 (17)0.90545 (7)0.0315 (3)
H440.4535500.4393900.9039320.038*
C450.67862 (7)0.71987 (18)0.91043 (6)0.0304 (3)
C460.73187 (8)0.7258 (2)0.96767 (7)0.0395 (4)
H46A0.7716600.7792340.9649500.059*
H46B0.7449100.6253890.9808690.059*
H46C0.7131840.7764860.9939210.059*
C470.70899 (9)0.6459 (2)0.86867 (8)0.0404 (4)
H47A0.6757180.6470270.8314990.061*
H47B0.7210680.5438500.8800820.061*
H47C0.7495260.6996680.8678500.061*
C480.32543 (7)0.89014 (15)0.73919 (6)0.0238 (2)
C490.32167 (7)0.99474 (16)0.69762 (6)0.0272 (3)
H490.3588241.0588820.7010970.033*
C500.26437 (7)1.00656 (17)0.65116 (6)0.0309 (3)
H500.2626571.0780890.6233090.037*
C510.20992 (7)0.91321 (19)0.64589 (6)0.0330 (3)
H510.1709040.9203820.6142410.040*
C520.21241 (7)0.80952 (18)0.68677 (6)0.0317 (3)
H520.1749440.7462390.6831950.038*
C530.26966 (7)0.79784 (16)0.73304 (6)0.0265 (3)
H530.2709030.7263260.7607990.032*
C540.41128 (7)0.93967 (16)0.88577 (6)0.0256 (3)
C550.43248 (7)1.08196 (16)0.90474 (6)0.0281 (3)
H550.4484841.1463410.8819230.034*
C560.43045 (8)1.13034 (17)0.95651 (7)0.0319 (3)
H560.4445241.2274780.9686080.038*
C570.40785 (7)1.03659 (19)0.99047 (6)0.0324 (3)
H570.4067951.0691431.0259580.039*
C580.38684 (8)0.89540 (18)0.97242 (6)0.0322 (3)
H580.3713060.8312180.9955920.039*
C590.38840 (8)0.84728 (17)0.92053 (6)0.0295 (3)
H590.3737450.7503840.9085310.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02178 (5)0.02164 (5)0.02300 (5)0.00205 (3)0.00636 (4)0.00180 (3)
O10.0236 (4)0.0197 (4)0.0208 (4)0.0011 (3)0.0040 (3)0.0009 (3)
C10.0236 (6)0.0275 (6)0.0233 (6)0.0005 (5)0.0042 (5)0.0011 (5)
C20.0250 (6)0.0256 (6)0.0195 (5)0.0010 (5)0.0066 (5)0.0003 (5)
C30.0260 (6)0.0205 (6)0.0198 (5)0.0019 (5)0.0083 (5)0.0002 (4)
C40.0268 (6)0.0234 (6)0.0217 (6)0.0002 (5)0.0108 (5)0.0001 (5)
C50.0331 (7)0.0208 (6)0.0296 (7)0.0011 (5)0.0135 (6)0.0006 (5)
C60.0359 (7)0.0226 (6)0.0306 (7)0.0058 (5)0.0138 (6)0.0035 (5)
C70.0279 (6)0.0278 (7)0.0259 (6)0.0059 (5)0.0088 (5)0.0030 (5)
C80.0262 (6)0.0212 (6)0.0275 (6)0.0004 (5)0.0070 (5)0.0008 (5)
C90.0231 (6)0.0217 (6)0.0238 (6)0.0011 (5)0.0067 (5)0.0009 (5)
C100.0216 (6)0.0234 (6)0.0202 (5)0.0016 (5)0.0053 (4)0.0016 (4)
C110.0228 (6)0.0237 (6)0.0246 (6)0.0006 (5)0.0089 (5)0.0030 (5)
C120.0228 (6)0.0318 (7)0.0273 (6)0.0026 (5)0.0055 (5)0.0049 (5)
C130.0267 (6)0.0382 (8)0.0231 (6)0.0024 (6)0.0015 (5)0.0012 (6)
C140.0280 (7)0.0295 (7)0.0256 (6)0.0030 (5)0.0057 (5)0.0041 (5)
C150.0246 (6)0.0227 (6)0.0269 (6)0.0023 (5)0.0097 (5)0.0017 (5)
C160.0291 (7)0.0280 (7)0.0355 (7)0.0071 (5)0.0108 (6)0.0058 (6)
C170.0297 (7)0.0290 (7)0.0310 (7)0.0005 (5)0.0148 (5)0.0007 (5)
C180.0208 (6)0.0242 (6)0.0296 (6)0.0001 (5)0.0069 (5)0.0028 (5)
C190.0277 (7)0.0376 (8)0.0306 (7)0.0012 (6)0.0057 (5)0.0030 (6)
C200.0300 (8)0.0504 (10)0.0408 (9)0.0069 (7)0.0033 (6)0.0161 (8)
C210.0300 (8)0.0347 (8)0.0621 (11)0.0109 (6)0.0115 (7)0.0115 (8)
C220.0313 (7)0.0347 (8)0.0520 (10)0.0056 (6)0.0137 (7)0.0052 (7)
C230.0264 (7)0.0337 (7)0.0322 (7)0.0031 (5)0.0078 (6)0.0010 (6)
C240.0274 (6)0.0243 (6)0.0264 (6)0.0048 (5)0.0103 (5)0.0026 (5)
C250.0287 (7)0.0320 (7)0.0334 (7)0.0005 (5)0.0104 (6)0.0034 (6)
C260.0345 (8)0.0324 (8)0.0441 (8)0.0001 (6)0.0192 (7)0.0061 (6)
C270.0440 (8)0.0329 (8)0.0349 (7)0.0118 (6)0.0238 (7)0.0094 (6)
C280.0441 (8)0.0317 (7)0.0262 (7)0.0092 (6)0.0132 (6)0.0006 (6)
C290.0369 (7)0.0253 (7)0.0281 (7)0.0019 (6)0.0109 (6)0.0006 (5)
Sn20.02080 (5)0.02382 (5)0.02145 (5)0.00174 (3)0.00404 (3)0.00170 (3)
O20.0260 (5)0.0275 (5)0.0208 (4)0.0041 (4)0.0047 (3)0.0006 (4)
C310.0253 (6)0.0282 (7)0.0232 (6)0.0033 (5)0.0051 (5)0.0022 (5)
C320.0244 (6)0.0307 (7)0.0213 (6)0.0048 (5)0.0083 (5)0.0013 (5)
C330.0239 (6)0.0303 (7)0.0210 (6)0.0049 (5)0.0080 (5)0.0016 (5)
C340.0221 (6)0.0367 (8)0.0232 (6)0.0033 (5)0.0077 (5)0.0002 (5)
C350.0246 (6)0.0443 (9)0.0260 (6)0.0085 (6)0.0056 (5)0.0017 (6)
C360.0305 (7)0.0372 (8)0.0282 (7)0.0133 (6)0.0090 (6)0.0049 (5)
C370.0304 (7)0.0306 (7)0.0257 (6)0.0055 (5)0.0102 (6)0.0002 (5)
C380.0249 (6)0.0254 (7)0.0281 (7)0.0029 (5)0.0039 (5)0.0012 (5)
C390.0252 (6)0.0231 (6)0.0289 (6)0.0002 (5)0.0056 (5)0.0001 (5)
C400.0252 (6)0.0253 (6)0.0245 (6)0.0014 (5)0.0068 (5)0.0013 (5)
C410.0237 (6)0.0310 (7)0.0280 (7)0.0022 (5)0.0062 (5)0.0005 (5)
C420.0292 (7)0.0355 (8)0.0328 (7)0.0065 (6)0.0051 (6)0.0071 (6)
C430.0349 (8)0.0335 (8)0.0358 (8)0.0033 (6)0.0091 (6)0.0119 (6)
C440.0283 (7)0.0286 (7)0.0366 (7)0.0005 (5)0.0088 (6)0.0067 (6)
C450.0216 (6)0.0389 (8)0.0290 (7)0.0009 (6)0.0052 (5)0.0029 (6)
C460.0257 (7)0.0499 (10)0.0361 (8)0.0003 (7)0.0003 (6)0.0070 (7)
C470.0305 (8)0.0485 (10)0.0446 (9)0.0050 (7)0.0150 (7)0.0008 (7)
C480.0216 (6)0.0257 (6)0.0236 (6)0.0012 (5)0.0064 (5)0.0014 (5)
C490.0248 (6)0.0271 (7)0.0282 (6)0.0004 (5)0.0059 (5)0.0026 (5)
C500.0284 (7)0.0338 (7)0.0280 (7)0.0056 (6)0.0052 (5)0.0038 (6)
C510.0219 (6)0.0440 (9)0.0295 (7)0.0062 (6)0.0024 (5)0.0037 (6)
C520.0216 (6)0.0383 (8)0.0352 (7)0.0025 (6)0.0089 (5)0.0069 (6)
C530.0247 (6)0.0282 (7)0.0276 (6)0.0007 (5)0.0097 (5)0.0022 (5)
C540.0223 (6)0.0291 (7)0.0235 (6)0.0007 (5)0.0044 (5)0.0023 (5)
C550.0272 (6)0.0285 (7)0.0280 (6)0.0000 (5)0.0077 (5)0.0016 (5)
C560.0307 (7)0.0318 (8)0.0322 (7)0.0000 (5)0.0081 (6)0.0037 (5)
C570.0275 (7)0.0436 (8)0.0258 (6)0.0063 (6)0.0078 (5)0.0002 (6)
C580.0304 (7)0.0387 (8)0.0292 (7)0.0029 (6)0.0118 (6)0.0079 (6)
C590.0291 (7)0.0301 (7)0.0296 (7)0.0011 (5)0.0092 (6)0.0035 (5)
Geometric parameters (Å, º) top
Sn1—C12.1759 (14)Sn2—C312.1830 (14)
Sn1—C82.1840 (14)Sn2—C382.1818 (14)
Sn1—C182.1466 (13)Sn2—C482.1507 (14)
Sn1—C242.1343 (14)Sn2—C542.1420 (14)
O1—C31.3929 (15)O2—C331.3883 (16)
O1—C101.3906 (15)O2—C401.3898 (17)
C1—H1A0.9900C31—H31A0.9900
C1—H1B0.9900C31—H31B0.9900
C1—C21.4998 (19)C31—C321.4996 (18)
C2—C31.3942 (18)C32—C331.393 (2)
C2—C71.3971 (19)C32—C371.398 (2)
C3—C41.3872 (19)C33—C341.3891 (19)
C4—C51.3958 (19)C34—C351.398 (2)
C4—C151.5322 (19)C34—C451.533 (2)
C5—H50.9500C35—H350.9500
C5—C61.391 (2)C35—C361.383 (2)
C6—H60.9500C36—H360.9500
C6—C71.386 (2)C36—C371.395 (2)
C7—H70.9500C37—H370.9500
C8—H8A0.9900C38—H38A0.9900
C8—H8B0.9900C38—H38B0.9900
C8—C91.4942 (19)C38—C391.4987 (19)
C9—C101.3904 (18)C39—C401.395 (2)
C9—C141.3964 (19)C39—C441.394 (2)
C10—C111.3860 (18)C40—C411.391 (2)
C11—C121.3942 (19)C41—C421.398 (2)
C11—C151.5324 (19)C41—C451.531 (2)
C12—H120.9500C42—H420.9500
C12—C131.392 (2)C42—C431.385 (2)
C13—H130.9500C43—H430.9500
C13—C141.392 (2)C43—C441.396 (2)
C14—H140.9500C44—H440.9500
C15—C161.5292 (19)C45—C461.528 (2)
C15—C171.5469 (19)C45—C471.540 (2)
C16—H16A0.9800C46—H46A0.9800
C16—H16B0.9800C46—H46B0.9800
C16—H16C0.9800C46—H46C0.9800
C17—H17A0.9800C47—H47A0.9800
C17—H17B0.9800C47—H47B0.9800
C17—H17C0.9800C47—H47C0.9800
C18—C191.394 (2)C48—C491.3999 (19)
C18—C231.395 (2)C48—C531.4006 (19)
C19—H190.9500C49—H490.9500
C19—C201.398 (2)C49—C501.3956 (19)
C20—H200.9500C50—H500.9500
C20—C211.378 (3)C50—C511.388 (2)
C21—H210.9500C51—H510.9500
C21—C221.377 (3)C51—C521.386 (2)
C22—H220.9500C52—H520.9500
C22—C231.388 (2)C52—C531.392 (2)
C23—H230.9500C53—H530.9500
C24—C251.399 (2)C54—C551.402 (2)
C24—C291.397 (2)C54—C591.399 (2)
C25—H250.9500C55—H550.9500
C25—C261.391 (2)C55—C561.392 (2)
C26—H260.9500C56—H560.9500
C26—C271.382 (2)C56—C571.389 (2)
C27—H270.9500C57—H570.9500
C27—C281.387 (2)C57—C581.386 (2)
C28—H280.9500C58—H580.9500
C28—C291.395 (2)C58—C591.391 (2)
C29—H290.9500C59—H590.9500
C1—Sn1—C8118.25 (5)C38—Sn2—C31120.22 (6)
C18—Sn1—C1106.05 (5)C48—Sn2—C31103.74 (5)
C18—Sn1—C8105.08 (5)C48—Sn2—C38105.61 (5)
C24—Sn1—C1108.59 (5)C54—Sn2—C31106.33 (5)
C24—Sn1—C8107.38 (5)C54—Sn2—C38106.90 (6)
C24—Sn1—C18111.48 (5)C54—Sn2—C48114.42 (5)
C10—O1—C3112.55 (10)C33—O2—C40112.64 (10)
Sn1—C1—H1A108.9Sn2—C31—H31A108.6
Sn1—C1—H1B108.9Sn2—C31—H31B108.6
H1A—C1—H1B107.7H31A—C31—H31B107.6
C2—C1—Sn1113.23 (9)C32—C31—Sn2114.60 (9)
C2—C1—H1A108.9C32—C31—H31A108.6
C2—C1—H1B108.9C32—C31—H31B108.6
C3—C2—C1119.63 (12)C33—C32—C31119.61 (13)
C3—C2—C7115.96 (13)C33—C32—C37116.39 (13)
C7—C2—C1124.30 (12)C37—C32—C31123.93 (13)
O1—C3—C2115.13 (12)O2—C33—C32115.33 (12)
C4—C3—O1119.30 (12)O2—C33—C34119.34 (13)
C4—C3—C2125.35 (13)C34—C33—C32125.18 (13)
C3—C4—C5116.55 (13)C33—C34—C35116.31 (14)
C3—C4—C15117.63 (12)C33—C34—C45117.31 (13)
C5—C4—C15125.79 (12)C35—C34—C45126.32 (13)
C4—C5—H5119.9C34—C35—H35119.7
C6—C5—C4120.15 (13)C36—C35—C34120.67 (13)
C6—C5—H5119.9C36—C35—H35119.7
C5—C6—H6119.4C35—C36—H36119.4
C7—C6—C5121.28 (13)C35—C36—C37121.15 (14)
C7—C6—H6119.4C37—C36—H36119.4
C2—C7—H7119.7C32—C37—H37119.9
C6—C7—C2120.65 (13)C36—C37—C32120.23 (14)
C6—C7—H7119.7C36—C37—H37119.9
Sn1—C8—H8A108.8Sn2—C38—H38A108.9
Sn1—C8—H8B108.8Sn2—C38—H38B108.9
H8A—C8—H8B107.7H38A—C38—H38B107.8
C9—C8—Sn1113.73 (9)C39—C38—Sn2113.20 (9)
C9—C8—H8A108.8C39—C38—H38A108.9
C9—C8—H8B108.8C39—C38—H38B108.9
C10—C9—C8118.90 (12)C40—C39—C38119.05 (13)
C10—C9—C14116.58 (13)C44—C39—C38124.68 (13)
C14—C9—C8124.49 (13)C44—C39—C40116.22 (13)
C9—C10—O1114.81 (11)O2—C40—C39115.21 (12)
C11—C10—O1119.96 (12)O2—C40—C41119.60 (13)
C11—C10—C9125.14 (12)C41—C40—C39125.04 (13)
C10—C11—C12116.63 (13)C40—C41—C42116.67 (14)
C10—C11—C15117.11 (12)C40—C41—C45116.97 (13)
C12—C11—C15126.26 (12)C42—C41—C45126.37 (13)
C11—C12—H12119.9C41—C42—H42119.8
C13—C12—C11120.19 (13)C43—C42—C41120.37 (14)
C13—C12—H12119.9C43—C42—H42119.8
C12—C13—H13119.4C42—C43—H43119.5
C14—C13—C12121.28 (13)C42—C43—C44121.05 (14)
C14—C13—H13119.4C44—C43—H43119.5
C9—C14—H14120.0C39—C44—C43120.64 (14)
C13—C14—C9120.06 (13)C39—C44—H44119.7
C13—C14—H14120.0C43—C44—H44119.7
C4—C15—C11106.13 (11)C34—C45—C47109.61 (13)
C4—C15—C17109.28 (11)C41—C45—C34105.99 (11)
C11—C15—C17108.28 (11)C41—C45—C47108.65 (13)
C16—C15—C4111.98 (12)C46—C45—C34111.55 (14)
C16—C15—C11111.96 (12)C46—C45—C41111.53 (13)
C16—C15—C17109.10 (11)C46—C45—C47109.41 (13)
C15—C16—H16A109.5C45—C46—H46A109.5
C15—C16—H16B109.5C45—C46—H46B109.5
C15—C16—H16C109.5C45—C46—H46C109.5
H16A—C16—H16B109.5H46A—C46—H46B109.5
H16A—C16—H16C109.5H46A—C46—H46C109.5
H16B—C16—H16C109.5H46B—C46—H46C109.5
C15—C17—H17A109.5C45—C47—H47A109.5
C15—C17—H17B109.5C45—C47—H47B109.5
C15—C17—H17C109.5C45—C47—H47C109.5
H17A—C17—H17B109.5H47A—C47—H47B109.5
H17A—C17—H17C109.5H47A—C47—H47C109.5
H17B—C17—H17C109.5H47B—C47—H47C109.5
C19—C18—Sn1121.19 (11)C49—C48—Sn2120.36 (10)
C19—C18—C23118.07 (13)C49—C48—C53118.01 (13)
C23—C18—Sn1120.69 (10)C53—C48—Sn2121.49 (10)
C18—C19—H19119.7C48—C49—H49119.4
C18—C19—C20120.69 (15)C50—C49—C48121.25 (13)
C20—C19—H19119.7C50—C49—H49119.4
C19—C20—H20120.0C49—C50—H50120.2
C21—C20—C19120.10 (16)C51—C50—C49119.63 (14)
C21—C20—H20120.0C51—C50—H50120.2
C20—C21—H21120.1C50—C51—H51120.0
C22—C21—C20119.87 (15)C52—C51—C50120.06 (14)
C22—C21—H21120.1C52—C51—H51120.0
C21—C22—H22119.8C51—C52—H52119.9
C21—C22—C23120.34 (16)C51—C52—C53120.21 (14)
C23—C22—H22119.8C53—C52—H52119.9
C18—C23—H23119.5C48—C53—H53119.6
C22—C23—C18120.92 (15)C52—C53—C48120.85 (14)
C22—C23—H23119.5C52—C53—H53119.6
C25—C24—Sn1121.15 (11)C55—C54—Sn2120.88 (10)
C29—C24—Sn1120.68 (11)C59—C54—Sn2121.00 (11)
C29—C24—C25118.14 (13)C59—C54—C55118.09 (13)
C24—C25—H25119.7C54—C55—H55119.5
C26—C25—C24120.67 (15)C56—C55—C54120.99 (14)
C26—C25—H25119.7C56—C55—H55119.5
C25—C26—H26119.8C55—C56—H56120.0
C27—C26—C25120.44 (15)C57—C56—C55119.99 (14)
C27—C26—H26119.8C57—C56—H56120.0
C26—C27—H27120.1C56—C57—H57120.1
C26—C27—C28119.89 (14)C58—C57—C56119.78 (14)
C28—C27—H27120.1C58—C57—H57120.1
C27—C28—H28120.1C57—C58—H58119.9
C27—C28—C29119.72 (15)C57—C58—C59120.28 (14)
C29—C28—H28120.1C59—C58—H58119.9
C24—C29—H29119.4C54—C59—H59119.6
C28—C29—C24121.14 (14)C58—C59—C54120.87 (14)
C28—C29—H29119.4C58—C59—H59119.6
Sn1—C1—C2—C351.80 (14)Sn2—C31—C32—C3350.22 (16)
Sn1—C1—C2—C7124.16 (12)Sn2—C31—C32—C37126.76 (12)
Sn1—C8—C9—C1052.23 (15)Sn2—C38—C39—C4052.78 (16)
Sn1—C8—C9—C14125.98 (13)Sn2—C38—C39—C44124.46 (14)
Sn1—C18—C19—C20178.38 (13)Sn2—C48—C49—C50175.34 (11)
Sn1—C18—C23—C22177.96 (12)Sn2—C48—C53—C52175.36 (11)
Sn1—C24—C25—C26178.41 (11)Sn2—C54—C55—C56178.23 (11)
Sn1—C24—C29—C28177.83 (11)Sn2—C54—C59—C58177.77 (11)
O1—C3—C4—C5177.10 (11)O2—C33—C34—C35178.34 (12)
O1—C3—C4—C151.13 (17)O2—C33—C34—C451.07 (19)
O1—C10—C11—C12179.77 (12)O2—C40—C41—C42176.63 (13)
O1—C10—C11—C150.10 (18)O2—C40—C41—C453.0 (2)
C1—C2—C3—O11.03 (17)C31—C32—C33—O20.43 (18)
C1—C2—C3—C4173.59 (12)C31—C32—C33—C34175.85 (13)
C1—C2—C7—C6175.01 (13)C31—C32—C37—C36178.22 (13)
C2—C3—C4—C52.7 (2)C32—C33—C34—C353.1 (2)
C2—C3—C4—C15175.54 (12)C32—C33—C34—C45174.17 (13)
C3—O1—C10—C9135.12 (12)C33—O2—C40—C39135.25 (13)
C3—O1—C10—C1141.64 (16)C33—O2—C40—C4140.53 (17)
C3—C2—C7—C61.09 (19)C33—C32—C37—C361.1 (2)
C3—C4—C5—C61.1 (2)C33—C34—C35—C362.3 (2)
C3—C4—C15—C1139.08 (15)C33—C34—C45—C4138.60 (17)
C3—C4—C15—C16161.52 (12)C33—C34—C45—C46160.19 (13)
C3—C4—C15—C1777.48 (15)C33—C34—C45—C4778.48 (16)
C4—C5—C6—C70.3 (2)C34—C35—C36—C370.0 (2)
C5—C4—C15—C11138.97 (13)C35—C34—C45—C41138.36 (15)
C5—C4—C15—C1616.53 (19)C35—C34—C45—C4616.8 (2)
C5—C4—C15—C17104.47 (15)C35—C34—C45—C47104.56 (17)
C5—C6—C7—C20.3 (2)C35—C36—C37—C321.8 (2)
C7—C2—C3—O1177.32 (11)C37—C32—C33—O2176.77 (12)
C7—C2—C3—C42.7 (2)C37—C32—C33—C341.4 (2)
C8—C9—C10—O11.93 (18)C38—C39—C40—O20.52 (19)
C8—C9—C10—C11174.63 (13)C38—C39—C40—C41176.04 (14)
C8—C9—C14—C13177.38 (14)C38—C39—C44—C43176.65 (15)
C9—C10—C11—C123.8 (2)C39—C40—C41—C421.3 (2)
C9—C10—C11—C15176.50 (12)C39—C40—C41—C45178.29 (14)
C10—O1—C3—C2134.03 (12)C40—O2—C33—C32133.05 (12)
C10—O1—C3—C440.94 (15)C40—O2—C33—C3442.65 (17)
C10—C9—C14—C130.9 (2)C40—C39—C44—C430.7 (2)
C10—C11—C12—C131.1 (2)C40—C41—C42—C430.4 (2)
C10—C11—C15—C438.47 (15)C40—C41—C45—C3440.52 (17)
C10—C11—C15—C16160.92 (12)C40—C41—C45—C46162.12 (14)
C10—C11—C15—C1778.76 (15)C40—C41—C45—C4777.20 (17)
C11—C12—C13—C141.5 (2)C41—C42—C43—C440.3 (3)
C12—C11—C15—C4141.89 (14)C42—C41—C45—C34139.02 (15)
C12—C11—C15—C1619.44 (19)C42—C41—C45—C4617.4 (2)
C12—C11—C15—C17100.88 (16)C42—C41—C45—C47103.26 (18)
C12—C13—C14—C91.6 (2)C42—C43—C44—C390.1 (3)
C14—C9—C10—O1179.72 (12)C44—C39—C40—O2176.95 (13)
C14—C9—C10—C113.7 (2)C44—C39—C40—C411.4 (2)
C15—C4—C5—C6177.01 (13)C45—C34—C35—C36174.64 (14)
C15—C11—C12—C13179.27 (13)C45—C41—C42—C43179.16 (15)
C18—C19—C20—C210.5 (3)C48—C49—C50—C510.1 (2)
C19—C18—C23—C220.7 (2)C49—C48—C53—C520.3 (2)
C19—C20—C21—C220.6 (3)C49—C50—C51—C520.4 (2)
C20—C21—C22—C231.1 (3)C50—C51—C52—C530.5 (2)
C21—C22—C23—C180.4 (3)C51—C52—C53—C480.1 (2)
C23—C18—C19—C201.1 (2)C53—C48—C49—C500.4 (2)
C24—C25—C26—C270.7 (2)C54—C55—C56—C570.7 (2)
C25—C24—C29—C280.1 (2)C55—C54—C59—C580.1 (2)
C25—C26—C27—C280.2 (2)C55—C56—C57—C580.5 (2)
C26—C27—C28—C290.4 (2)C56—C57—C58—C590.1 (2)
C27—C28—C29—C240.5 (2)C57—C58—C59—C540.2 (2)
C29—C24—C25—C260.5 (2)C59—C54—C55—C560.4 (2)
 

Acknowledgements

JVGG acknowledges a scholarship from CONAHCYT. This research was supported by CONAHCYT. EZM acknowledges financial assistance from the SNII–CONAHCYT.

Funding information

The following funding is acknowledged: Consejo Nacional de Humanidades, Ciencias y Tecnologías (grant No. A1-S-12381; grant No. 791450 to J. Viridiana García-González).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAlcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1–58.  CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBesenyei, G., Bitter, I., Párkányi, L., Szalontai, G., Baranyai, P., Kunsági-Máté, E., Faigl, F., Grün, A. & Kubinyi, M. (2013). Polyhedron, 55, 57–66.  CrossRef CAS Google Scholar
First citationBeuter, M., Kolb, U., Zickgraf, A., Bräu, E., Bletz, M. & Dräger, M. (1997). Polyhedron, 16, 4005–4015.  CrossRef CAS Google Scholar
First citationBlanda, M. T., Horner, J. H. & Newcomb, M. (1989). J. Org. Chem. 54, 4626–4636.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCintas, P., Palmisano, G. & Cravotto, G. (2011). Ultrason. Sonochem. 18, 836–841.  CrossRef CAS PubMed Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFillion, E., Kavoosi, A., Nguyen, K. & Ieritano, C. (2016). Chem. Commun. 52, 12813–12816.  CrossRef CAS Google Scholar
First citationFlores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., García-Montalvo, V. & Aquino-Torres, E. (2008). Polyhedron, 28, 782–788.  Google Scholar
First citationGarcía-González, J. V., Alvarado-Rodríguez, J. G., Andrade-López, N., Guerra-Poot, C. G. & Martínez-Otero, D. (2024). Struct. Chem. 35, 659–667.  Google Scholar
First citationGodbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571.  CrossRef CAS Web of Science Google Scholar
First citationGonzález-Montiel, S., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N. & Cogordan, J. A. (2009). Polyhedron, 28, 467–472.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoleček, J., Nádvorník, M., Handlíř, K. & Lyčka, A. (1983). J. Organomet. Chem. 241, 177–184.  Google Scholar
First citationJayatilaka, D. & Grimwood, D. J. (2003). Comput. Sci. ICCS, 2660, 142–151.  Google Scholar
First citationJurkschat, K., Schilling, J., Muegge, C., Tzschach, A., Meunier-Piret, J., Van Meerssche, M., Gielen, M. & Willem, R. (1988). Organometallics, 7, 38–46.  CrossRef CAS Google Scholar
First citationJurkschat, K., Tzschach, A., Meunier-Piret, J. & Van Meerssche, M. (1985). J. Organomet. Chem. 290, 285–289.  CrossRef CAS Google Scholar
First citationKárpáti, S., Szalay, R., Császár, A. G., Süvegh, K. & Nagy, S. (2007). J. Phys. Chem. A, 111, 13172–13181.  PubMed Google Scholar
First citationKümmerlen, J., Sebald, A. & Reuter, H. (1992). J. Organomet. Chem. 427, 309–323.  Google Scholar
First citationLamandé-Langle, S., Abarbri, M., Thibonnet, J. & Duchêne, A. (2009). J. Organomet. Chem. 694, 2368–2374.  Google Scholar
First citationLockhart, T. P., Manders, W. F. & Zuckerman, J. J. (1985). J. Am. Chem. Soc. 107, 4546–4547.  CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMartínez-Otero, D., Alvarado-Rodríguez, J. G., Cruz-Borbolla, J., Andrade-López, N., Pandiyan, T., Moreno-Esparza, R., Flores-Álamo, M. & Cantillo-Castillo, J. (2012a). Polyhedron, 33, 367–377.  Google Scholar
First citationMartínez-Otero, D., Flores-Chávez, B., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J., Pandiyan, T., Jancik, V., González-Jiménez, E. & Jardinez, C. (2012b). Polyhedron, 40, 1–10.  Google Scholar
First citationMejía-Rivera, F. J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz-Borbolla, J. & Jancik, V. (2018). Inorg. Chem. Commun. 97, 44–48.  Google Scholar
First citationMunguia, T., López-Cardoso, M., Cervantes-Lee, F. & Pannell, K. H. (2007). Inorg. Chem. 46, 1305–1314.  CrossRef PubMed CAS Google Scholar
First citationOcampo, R. A., Koll, L. C. & Mandolesi, S. D. (2013). Ultrason. Sonochem. 20, 40–46.  CrossRef CAS PubMed Google Scholar
First citationPorterfield, W. W. (1993). In Inorganic Chemistry: A Unified Approach, 2nd ed. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationSosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D. & Dixon, D. A. (1992). J. Phys. Chem. 96, 6630–6636.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering Frontiers in Crystal Engineering. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationVargas-Pineda, D. G., Guardado, T., Cervantes-Lee, F., Metta-Magana, A. J. & Pannell, K. H. (2010). Inorg. Chem. 49, 960–968.  CAS PubMed Google Scholar
First citationZarl, E., Albering, J. H., Fischer, R. C., Flock, M., Genser, D., Seibt, B. & Uhlig, F. (2009). Z. Naturforsch. B: Chem. Sci. 64, 1591–1597.  Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds