crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

crossmark logo

aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*Correspondence e-mail: wxcoliveira@ufmg.br

Edited by A. Lemmerer, University of the Witwatersrand, South Africa (Received 31 May 2024; accepted 23 July 2024; online 23 August 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N′-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.

1. Introduction

In an attempt to obtain single crystals, it is very common to try to dissolve the studied material in various solvents. Usually, the solvents selected for recrystallization are those commonly found in the chemistry laboratory (e.g. water, ethanol, acetone, aceto­nitrile, chloro­form, di­methyl­formamide, etc.). In general, the solvent is inert, but some solvents can react with the dissolved material, resulting in unexpected products. It is possible to perform a retrosynthetic analysis of a desired material by analyzing the crystal structure of the product obtained, although this may limit its further use. Generally, reactions where the solvent acts as a reactant are solvolysis (Nath et al., 2014[Nath, J. K., Kirillov, A. M. & Baruah, J. B. (2014). RSC Adv. 4, 47876-47886.]; Simões et al., 2013a[Simões, T. R. G., do Pim, W. D., Silva, I. F., Oliveira, W. X. C., Pinheiro, C. B., Pereira, C. L. M., Lloret, F., Julve, M. & Stumpf, H. O. (2013a). CrystEngComm, 15, 10165-10170.]), cyclization (Odame et al., 2013[Odame, F., Kleyi, P., Hosten, E., Betz, R., Lobb, K. & Tshentu, Z. (2013). Molecules, 18, 14293-14305.]), ligand displacement (Yu et al., 2020[Yu, D., Shao, Q., Song, Q., Cui, J., Zhang, Y., Wu, B., Ge, L., Wang, Y., Zhang, Y., Qin, Y., Vajtai, T., Ajayan, P. M., Wang, H., Xu, T. & Wu, T. (2020). Nat. Commun. 11, 927.]) and crystal-to-crystal conversions (Wu et al., 2013[Wu, J. J., Ye, Y. X., Qiu, Y. Y., Qiao, Z. P., Cao, M. L. & Ye, B. H. (2013). Inorg. Chem. 52, 6450-6456.]; Li et al., 2020[Li, Q. Q., Liu, H., Zheng, T. T., Liu, P., Song, J. X. & Wang, Y. Y. (2020). CrystEngComm, 22, 6750-6775.]; Simões et al., 2013b[Simões, T. R. G., Mambrini, R. V., Reis, D. O., Marinho, M. V., Ribeiro, M. A., Pinheiro, C. B., Ferrando-Soria, J., Déniz, M., Ruiz-Pérez, C., Cangussu, D., Stumpf, H. O., Lloret, F. & Julve, M. (2013b). Dalton Trans. 42, 5778-5795.]). Most often, these reactions occur when the solvent is water-rich and/or contains reactive organic groups, such as carbonyl groups.

Among the common solvents that contain carbonyl groups in their mol­ecular structure, acetone stands out due to how easy it is to manipulate. It is not just an innocent solvent, as it can react with dissolved com­pounds (Kumar et al., 2006[Kumar, R., Chaudhary, P., Nimesh, S., Verma, A. K. & Chandra, R. (2006). Green Chem. 8, 519-521.]). An aldol condensation is highly likely to occur resulting in the formation of 4-hy­droxy-4-methyl­pentan-2-one, also known as diacetone alcohol (DAA). DAA is present in relatively large amounts in pure acetone, constituting around 12% by weight at 20 °C (Podrebarac et al., 1997[Podrebarac, G. G., Ng, F. T. T. & Rempel, G. L. (1997). Chem. Eng. Sci. 52, 2991-3002.]), catalyzed by the presence of a basic solute, which facilitates proton abstraction. The same behaviour is observed with acidic solutes, but in this case, DAA undergoes dehydration catalyzed by the acid, forming 4-methyl­pent-3-en-2-one, or mesityl oxide. This behaviour is shown in Fig. 1[link].

[Figure 1]
Figure 1
The diacetone alcohol (DAA) formation mechanism in the presence of a base (top) and the DAA dehydration mechanism catalyzed by an acid (bottom).

Although acetone can react with acidic and basic solutes, DAA and mesityl oxide are less reactive, as they are stabilized by inter­molecular hy­dro­gen bonds and electron delocalization in the α,β-unsaturated ketone, respectively. Other reactions with these com­pounds are observed in situations where the product has another stabilizing effect, such as ring formation (Climent et al., 2009[Climent, M. J., Corma, A., Iborra, S. & Santos, L. L. (2009). Chem. Eur. J. 15, 8834-8841.]). For example, DAA-rich acetone can react with dissolved vicinal aromatic di­amines, forming a seven-membered ring. When the di­amine used is o-phenyl­enedi­amine or its derivatives, cyclization leads to the formation of 5H-1,5-ben­zo­di­az­e­pine (Kuo et al., 2008[Kuo, C.-W., Wang, C.-C., Kavala, V. & Yao, C.-F. (2008). Molecules, 13, 2313-2325.]; Climent et al., 2009[Climent, M. J., Corma, A., Iborra, S. & Santos, L. L. (2009). Chem. Eur. J. 15, 8834-8841.]; Pozarentzi et al., 2002[Pozarentzi, M., Stephanidou-Stephanatou, J. & Tsoleridis, C. A. (2002). Tetrahedron Lett. 43, 1755-1758.]). However, it is reported that for vicinal di­amines with electron-withdrawing groups, such as 1,2-di­nitro-4,5-phenyl­enedi­amine, the formation of single crystals from acetone occurs without the occurrence of a reaction (Siri & Braunstein, 2005[Siri, O. & Braunstein, P. (2005). New J. Chem. 29, 75-79.]). Coordinated di­amines have shown resistance to solutions containing acetone (Dhakal et al., 2023[Dhakal, B., Corbin, B. A., Parada, A. S., Sakai, J. G., Felton, E. A., McDonald, L. T., Gross, A. J., Nichol, G. S. & Felton, G. A. N. (2023). Inorganics, 11, 374.]).

In this article, we present the crystal structures of two products obtained during attempts to grow single crystals of N,N′-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) and its di­hydro­chloric acid salt 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) from acetone, namely, 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine (2) and 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate (3). The mol­ecular structures of 1, 2 and 3 are shown in Fig. 2[link].

[Figure 2]
Figure 2
The mol­ecular structures of (a) 1, (b) 2, showing commonly used ring labelling in ben­zo­di­az­e­pines, and (c) 3.

2. Experimental

All solvents and materials were used as received without further purification. 1,2-Bis­(4-methyl­ben­zene­sul­fon­am­ido)-4,5-di­nitro­ben­zene was synthesized as described in the literature (Rombouts et al., 2014[Rombouts, J. A., Ravensbergen, J., Frese, R. N., Kennis, J. T. M., Ehlers, A. W., Slootweg, J. C., Ruijter, E., Lammertsma, K. & Orru, R. V. A. (2014). Chem. A Eur. J. 20, 10285-10291.]).

2.1. Materials synthesis

2.1.1. General procedure for the reduction of 1,2-bis­(4-methyl­ben­zene­sul­fon­am­ido)-4,5-di­nitro­ben­zene

In a 50 ml round-bottomed flask, 1,2-bis­(4-methyl­ben­zene­sul­fon­am­ido)-4,5-di­nitro­ben­zene (350 mg, 0.69 mmol) and metallic tin (200 mg, 1.68 mmol) were added to a mixture of ethanol and concentrated hydro­chloric acid (37%) (16 ml, 1:1 v/v). The suspension was placed on a magnetic stirrer at 90 °C and refluxed for 3 h. Upon com­pletion of the reaction, a light-beige solid precipitated. The contents of the flask were transferred to a plastic tube and centrifuged for 10 min at 6000 rpm to separate the solid from the solution.

2.1.2. N,N′-(4,5-Di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1)

Following the general procedure, the supernatant was discarded, the residual solid suspended in ethyl acetate (20 ml), transferred to a separating funnel and washed with water (2 × 20 ml), followed by a wash with brine (20 ml). The organic phase obtained was then dried with anhydrous sodium sulfate and evaporated under reduced pre­ssure, resulting in an ochre-coloured solid (yield: 68%, 0.203 g, 0.48 mmol; m.p. 181–182 °C). 1H NMR [ppm, DMSO-d6 (dimethyl sulfoxide-d6)]: δ 2.35 (s, 6H, CH3-tos­yl), 4.54 (s, 4H, NH2), 6.14 (s, 2H, CH-phen­yl), 7.32 (d, 4H, CH-tos­yl), 8.52 (s, 2H, NH-tosyl­amide) 13C NMR (ppm, dept signal): δ 21.50(+), 111.30(+), 120.51, 127.40(+), 129.91(+), 134.08, 136.74, 143.48. IR (cm−1): 3371 and 3258 [ν(N—H)]; 3058 and 3030 [ν(C—H)]; 2970, 2948, 2926 and 2808 [ν(CH3) + ν(N—H)]; 1659 and 1626 [δ(N—H)]; 1593 [ν(C=C)]; 1384 and 1155 (νsim and νassim SO2).

2.1.3. 4,5-(4-Methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-di­am­inium dichloride (1·2HCl)

Following the general procedure, the supernatant was discarded, the solid suspended in a mixture of ethanol and hydro­chloric acid (3.0 ml, 1:1 v/v), and recentrifuged to eliminate tin salts. The beige solid was left to dry under low pressure for 24 h [yield: 89%, 0.261 g, 0.584 mmol; m.p. 207 °C (decom­position)]. 1H NMR (ppm, DMSO-d6): δ 2.34 (s, 6H, CH3-tos­yl), 6.70 (s, 2H, H-phen­yl), 7.33 (d, 4H, aromatic H-tos­yl), 7.58 (d, 4H, aromatic H-tos­yl), 9.09 (s, 2H, NH-tosyl­amide). 13C NMR (ppm, dept signal): δ 21.05(+), 111.52(+), 120.74, 126.96(+), 129.50(+), 132.67, 136.26, 143.14. IR (cm−1): 3136 [ν(N—H)]; 3033 [ν(C—H)]; 2926, 2835, 2770 and 2569 [ν(CH3) + ν(N—H)]; 1635 [δ(N—H)]; 1588 [ν(C=C)]; 1346 and 1154 (νsim and νassim SO2).

2.1.4. 2,2,4-Trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine (2)

Single crystals of 2 were first obtained by dissolving 1 (5.0 mg) in acetone (10 ml) and allowing it to evaporate at room temperature in an open vial. A few small plate-like crystals of 2 appeared alongside a very viscous amber liquid when the solvent was evaporated. To obtain it on a larger scale, 1·2HCl (197 mg, 0.380 mmol) was dissolved in acetone (50 ml) and tri­ethyl­amine (750 µl, 5.38 mmol) was added. After 1 h, a light-yellow powder precipitated. This powder, com­posed mostly of (Et3NH)Cl, was filtered off and the solution was evaporated to dryness in a rotatory evaporator. The resulting pale-yellow powder was washed with a small amount of water and left to dry at low pressure and room temperature for 24 h [yield: 41%, 98.0 mg, 0.186 mmol; m.p. 209 °C (decom­position)]. 1H NMR (ppm, DMSO-d6): δ 1.12 (s, 6H, CH3-tos­yl), 2.06 (s, 2H, CH2-ben­zo­di­az­e­pine), 2.11 (s, 3H, CH3-imine), 2.35 (s, 6H, CH3-amine), 5.00 (s, 1H, NH-ben­zo­di­az­e­pine), 6.45 (s, 1H, ben­zo­di­az­e­pine aromatic C—H), 6.58 (s, 1H, ben­zo­di­az­e­pine aromatic C—H), 7.33 (d, 4H, aromatic tos­yl), 7.52 (d, 2H, aromatic tos­yl), 7.62 (d, 2H, aromatic tos­yl), 8.86 (s, 2H, NH-tosyl­amide). 13C NMR (ppm, dept signal): δ 21.00(+), 29.35(+), 29.73(+), 45.56(−), 65.45, 114.30(+), 120.59, 124.23(+), 126.87(+), 127.13(+), 128.40, 129.49(+), 129.58(+), 135.85, 136.15, 138.22, 143.31, 143.45, 171.35. IR (cm−1): 3335, 3322 [ν(N—H)]; 3065 and 3021 [ν(C—H)]; 2966, 2921, 2859 [ν(CH3) + ν(CH2)]; 2653 [ν(N—H)]; 1728 [ν(C—N)]; 1640 [δ(N—H)]; 1595 [ν(C=C)]; 1325 and 1157 (νsim and νassim SO2).

2.1.5. 2,2,4-Trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate (3)

Up to this point, com­pound 3 had only been obtained as single crystals by dissolving 1·2HCl (5.0 mg) in acetone (7.0 ml). The resulting solution was left to crystallize and, after 2 d, a few small plate-like crystals of 3 appeared alongside a very viscous dark liquid.

2.2. Single-crystal X-ray diffraction

X-ray diffraction data collections on single crystals of 2 and 3 were made with a Rigaku Synergy diffractometer using Cu Kα radiation (λ = 1.54184 Å) at LabCri (Laboratório de Cristalografia da UFMG). Measurements were performed at 293 K, as shown in Table 1[link]. The crystallization water mol­ecule in 3 had its occupancy freely refined and the final occupancy found was around 0.30. At the final refinement step, it was fixed at this value for convergence purposes. For 3, the benzo­­di­az­e­pinium methyl­ene (C3), methyl (C5 and C6) and ammonium (N2) groups have multiple possible positions, the latter being split over two positions and the others over three. H atoms were located in difference maps and included as fixed contributions according to the riding model (Johnson, 1971[Johnson, C. K. (1971). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 217-219. Copenhagen: Munksgaard.]). The difference maps for 2 and 3 revealed two possible positions for the H atoms in the imine methyl group (C1); thus, they were added over two positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C atoms, C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene C atoms, and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for aromatic amide, imine and ammonium N atoms. For the crystallization water mol­ecule, the H atoms were added using its solid-state geometry (Kuhs & Lehmann, 1981[Kuhs, W. F. & Lehmann, M. S. (1981). Nature, 294, 432-434.]), with O—H = 1.00 Å and Uiso(H) = 1.5Ueq(O).

Table 1
Experimental details

Experiments were carried out at 293 K with Cu Kα radiation using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. The absorption correction was Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H atoms were treated by a mixture of independent and constrained refinement.

  2 3
Crystal data
Chemical formula C26H30N4O4S2 C26H31N4O4S2+·Cl1·0.3H2O
Mr 526.66 568.52
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
a, b, c (Å) 30.0416 (9), 9.7018 (1), 24.0984 (7) 12.0993 (2), 13.4307 (2), 17.3586 (3)
β (°) 129.744 (5) 103.667 (2)
V3) 5400.6 (4) 2740.94 (8)
Z 8 4
μ (mm−1) 2.10 3.00
Crystal size (mm) 0.19 × 0.07 × 0.06 0.19 × 0.15 × 0.03
 
Data collection
Tmin, Tmax 0.603, 1.000 0.498, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 76569, 4942, 3970 24340, 5837, 4787
Rint 0.069 0.039
(sin θ/λ)max−1) 0.602 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.07 0.041, 0.121, 1.07
No. of reflections 4942 5837
No. of parameters 334 433
No. of restraints 9 74
Δρmax, Δρmin (e Å−3) 0.41, −0.34 0.30, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SUPERFLIP (Palatinus et al., 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2019 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

All the figures were obtained using Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and images of both structures with atomic displacements are shown in Fig. S1 of the sup­porting information.

Polycrystalline X-ray diffraction data for 2 were recorded on a PanAnlaytical Emperian in θθ mode using ca 20 mg of material com­pacted in a rotatory silicon sample holder and Cu Kα radiation. The experimental and calculated diffraction patterns obtained from the CIF using Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) are shown in Fig. S11 in the sup­porting information.

2.3. Chemical characterizations

NMR analysis (1H, 13C and DEPT-135) was conducted using a Bruker Avance III 400, operating at 400 MHz for 1H. Approximately 30 mg of each com­pound was dissolved in DMSO-d6 (700 µl) with 0.03% v/v of tetra­methyl­silane (TMS) as the inter­nal standard (Figs. S3–S11 in the sup­porting information). IR spectra were recorded on a PerkinElmer FT–IR GX spectrometer in ATR (attenuated total reflectance) mode, with a resolution of 4 cm−1 (Figs. S12–S14 in the sup­porting information).

3. Results and discussion

3.1. Crystal structure description

Compound 2 crystallizes in the centrosymmetric monoclinic space group C2/c. It consists of a 5H-ben­zo­di­az­e­pine group with methyl substitutions at positions 2 (C2) and 4 (C4) (see the ben­zo­di­az­e­pine labelling scheme in Fig. 2[link]), with position 4 being doubly substituted. Additionally, positions 8 (C9) and 9 (C10) are substituted by N-tosyl­amido groups, which are linked to the aromatic ring through the N atoms. The crystalline form does not include any solvent mol­ecules. The crystal structure of 2 with the atom labelling is depicted in Fig. 3[link].

[Figure 3]
Figure 3
The crystal structure of 2 with the atomic labelling.

The seven-membered ring in the ben­zo­di­az­e­pine part in 2 has a boat-like conformation; atoms C2, C4, N1 and N2 are almost coplanar, while atoms C3, C7 and C12 are all on the same side of this plane (see Fig. 4[link]). In this ring, the imine group is easily found, with an N1—C2 bond length of 1.282 (2) Å and an N2—C4 bond length of 1.486 (2) Å. The first is typical for imines, while the second is slightly shorter than expected for single C—N bonds, mainly due to resonance with the ben­zo­di­az­e­pine aromatic ring. To achieve this boat-type conformation, atoms N1 and N2 deviate from the arene ring, both deviating out of plane to the same side of the arene mean plane. The atom–plane distances are 0.223 (3) Å for N1 and 0.1044 (18) Å for N2. Atom N1 presents a greater deviation because it is involved in a double bond with C2, presenting greater hindrance and more rigorous restrictions to accommodate the boat-like conformation.

[Figure 4]
Figure 4
(a) Side view of the ben­zo­di­az­e­pine portion of 2, showcasing its boat-like conformation. The atoms highlighted as orange spheres show those that are participating in the boat-like conformation. (b) Ideal boat-like conformation for a seven-membered ring.

The tosyl­amide groups are almost perpendicular to the ben­zo­di­az­e­pine aromatic ring, with angles between the amide planes and the aromatic ring of 60.33 (15) and 82.94 (12)° for atoms N3 and N4, respectively. Each N atom points to a different side of the arene plane, with torsion angles around the N—C bond of −100.64 (19) (C9—C10—N4—S2) and −121.32 (18)° (C10—C9—N3—S1). This indicates that hy­dro­gen bonds predominate over the resonance of nitro­gen with the aromatic ring. Atoms N3 and N4 deviate from the aromatic-ring mean plane by 0.046 (3) and −0.115 (3) Å, respectively, due to these torsions. Consequently, the tosyl­amide N—H group is involved in intra­molecular inter­actions with various geometric restrictions, inter­acting with the sul­fon­am­ide O atom (N3—H3⋯O3; see Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3 0.90 (1) 2.59 (2) 3.267 (3) 133 (2)
N4—H4⋯N1i 0.90 (1) 1.97 (1) 2.860 (2) 167 (2)
C1—H1B⋯C16i 0.96 2.76 3.584 (4) 145
C1—H1B⋯C17i 0.96 2.82 3.600 (4) 139
C1—H1C⋯O4i 0.96 2.59 3.434 (4) 147
C26—H26B⋯C16i 0.96 3.19 4.094 (5) 157
N2—H2⋯O2ii 0.93 (1) 2.40 (1) 3.253 (2) 153 (1)
C14—H14⋯O1iii 0.93 2.45 3.356 (3) 165
C1—H1A⋯O4iv 0.96 2.34 3.293 (3) 176
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The crystal packing of 2 is mainly ruled by hy­dro­gen bonds. One of the amides (N4) is involved in a hydrogen bond with a free N atom of ben­zo­di­az­e­pine [N1i; symmetry code: (i) −x + 1, −y + 1, −z], resulting in a supramolecular dimer. There is also a weak C1—H1C⋯O4i hy­dro­gen bond, which is shown in Fig. 5[link](a) (see also Table 2[link]). It was found that, due to the torsion angles around the N—S tosyl­amide group, the mol­ecule has a groove that is filled with the tosyl aromatic ring of the supramolecular dimer's partner molecule. In this cavity, C—H⋯Car (ar is aromatic) inter­actions can be observed where the aromatic ring (C13–C18) is surrounded by two methyl groups, one from the ben­zo­di­az­e­pine imine group (C1) and the other from the tosyl substituent (C26). This occurs reciprocally, as the surrounded molecule also includes the surrounding molecule in its groove. This inter­action is shown in Fig. 5[link](b). All hy­dro­gen bonds are detailed in Table 2[link].

[Figure 5]
Figure 5
(a) Dimeric hy­dro­gen bonds in 2, shown as blue dotted lines, involving a tosylamide N—H group as donor and the imine N atom as acceptor. C—H⋯O inter­actions between methyl groups and sul­fon­am­ide O atoms are shown as green dotted lines. The aromatic rings of the tosyl groups have been omitted for better visualization. (b) Methyl C—H⋯Car inter­actions in the dimeric unit, viewed along the hy­dro­gen bonds. O atoms and all H atoms, except for those in the methyl substituents of the tosyl groups and in the imine groups, have been omitted. [Symmetry code: (i) −x + 1, −y + 1, −z.]

The inter­actions between dimers extend along the crystallographic c direction via hy­dro­gen bonds. The N2 atom of the ben­zo­di­az­e­pine inter­acts with atom O2ii [symmetry code: (ii) −x + 1, y, −z + [{1\over 2}]] of a neighbouring sul­fon­am­ide group (see Fig. 6[link]), forming a supra­molecular chain. To achieve inter­actions in all three dimensions, the supra­molecular chains inter­act along the crystallographic a and b directions via C—H⋯O inter­actions involving both tosyl groups [C1—H1C⋯O4i and C14—H14⋯O1iii; symmetry code: (iii) −x + [{1\over 2}], −y + [{1\over 2}], −z], as well as hydro­phobic contacts between the aliphatic ben­zo­di­az­e­pine C5 and C6 methyl groups and the tosyl groups (see Fig. S3 in the sup­porting information).

[Figure 6]
Figure 6
(a) Hydrogen bonding between mol­ecules from adjacent supra­molecular chains in 2, involving ben­zo­di­az­e­pine amine and tosyl O atoms. [Symmetry code: (ii) −x + 1, y, −z + [{1\over 2}].] (b) Supra­molecular inter­actions between the chains along the crystallographic c axis, viewed along the supra­molecular chain.

For com­pound 3, the crystal structure will be described in comparison with that of 2, since their molecular structures are very similar. It crystallizes in the centrosymmetric monoclinic space group P21/c and consists of a 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine mol­ecule protonated at the N1 atom, with a chloride anion as counter-ion and a water mol­ecule. The crystal structure is shown in Fig. 7[link]. The water mol­ecule is found with an incom­plete occupancy. The refined occupancy is 0.3 water mol­ecules per ben­zo­di­az­e­pinium chloride unit.

[Figure 7]
Figure 7
The crystal structure of 3 with the atomic labelling. Atoms N2, C3, C5 and C6 are disordered and the presented components highlight the closest to the ideal envelope-like conformation. The chloride ion and crystallization water mol­ecule have been omitted for better visualization.

The ben­zo­di­az­e­pine portion in hydrated salt 3 adopts an envelope-like conformation (see Fig. 8[link]), with atoms C2, C4, N1, N2, C7 and C12 almost in the same plane, while only atom C3 is raised from the mean plane formed by those atoms. Within this ring, the C—N bond lengths are very close to those observed in 2, with an N1—C2 bond length of 1.277 (2) Å and an N2—C4 bond length of 1.421 (9) Å [and N2A—C4 = 1.431 (8) Å]. Protonation of benzodiazepine does not change the imine characteristics or the aromatic amine bond length. In the envelope-like conformation, atoms N1 and N2 deviate slightly from the plane of the arene ring, with the distances between these atoms and the mean plane being 0.158 (3) Å for N1 and 0.047 (5) Å for N2 [0.2530 (3) Å for N2A]. This possibly occurs as a result of the imine now having to accommodate another atom, thus requiring it to be parallel to the arene ring to avoid axial inter­actions.

[Figure 8]
Figure 8
(a) Side view of the ben­zo­di­az­e­pine portion of 3, showcasing its envelope-like conformation. The atoms highlighted as orange spheres are those participating in the envelope-like conformation. (b) The ideal envelope-like conformation for a seven-membered ring.

In 3, similar to 2, the tosyl­amide groups show low electronic resonance with the ben­zo­di­az­e­pine aromatic ring due to the large torsion around it, resulting in a relatively large angle between the amides and the aromatic ring. The angle between the N3-containing amide (C9/N3/S1 mean plane) and the arene ring (atoms C7–C12) is 46.24 (19)°, and that with the N4 atom (C10/N4/S2 mean plane) is 63.40 (16)°. Both amide N atoms in 3 are pointing to the same side of the arene plane (in contrast to 2) caused by the hy­dro­gen-bond inter­action with the chloride anion. The torsion angles around the N—S bond are 135.23 (19) (C9—N3—S1—C13) and 116.6 (2)° (C10—N4—S2—C20). This means that the hy­dro­gen bonds in this com­pound lead to a lower bulk energy and restrict the resonance of the N atoms with the arene ring. Atoms N3 and N4 deviate from the plane of the aromatic ring by 0.046 (3) and −0.115 (3) Å, respectively, also as a result of these torsions.

The crystal packing of 3 is strongly influenced by hy­dro­gen bonds involving the chloride anion. The chloride anion plays a key role in the supra­molecular inter­actions, connecting two ben­zo­di­az­e­pine units [N3—H3⋯Cl1, N4—H4⋯Cl1 and N1—H1⋯Cl1i; symmetry code: (i) −x + 1, −y + 1, −z] and the water mol­ecule (O5—H5G⋯Cl1). The hy­dro­gen bonds around the chloride anion form two fused rings, one with eight com­ponents and the other with seven, in addition to a discrete inter­action. This motif is defined as R22(8) R21(7)D (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), where a discrete inter­action occurs between the chloride and the iminium group (N1i) of a second ben­zo­di­az­e­pine unit. The sum of the hy­dro­gen bonds involving chloride anions leads to a dimeric motif. Furthermore, the aromatic amine (N2) connects the dimeric units by inter­acting with the adjacent tosyl O atom [O3ii; symmetry code: (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]] in a discrete way. All mentioned hy­dro­gen bonds are shown in Fig. 9[link] and listed in Table 3[link]. The com­bination of these hy­dro­gen bonds forms a two-dimensional (2D) supra­molecular polymer parallel to the bc crystallographic plane that is layered up to the a crystallographic axis via weak hy­dro­gen bonds relative to the aromatic tosyl C—H and iminium methyl groups inter­acting with sulfonyl O atoms of neighbouring tosyl groups [C21—H21⋯O1iii and C1—H1A⋯O4iv; symmetry codes: (iii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iv) x − 1, y, z]. These are sup­ported by several hydro­phobic inter­actions, mainly involving the toluene substituent of the tosyl groups [C26—H26B⋯C14v, C19—H19B⋯C14vi and C19—H19B⋯C15vi; symmetry codes: (v) x, −y + [{1\over 2}], z − [{1\over 2}]; (vi) x − 2, −y + 1, −z + 1].

Table 3
Hydrogen-bond geometry (Å, °) for 3

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl1 0.95 (1) 2.28 (1) 3.2256 (15) 177 (1)
N4—H4⋯Cl1 0.94 (1) 2.25 (1) 3.1685 (15) 166 (2)
N1—H1⋯Cl1i 0.90 (1) 2.19 (1) 3.0834 (16) 175 (2)
N2A—H2A⋯O3ii 0.90 (1) 2.28 (4) 3.111 (18) 154 (5)
O5—H5G⋯Cl1 1.01 (1) 2.05 (2) 3.050 (8) 170 (10)
O5—H5F⋯O2 1.00 (1) 2.02 (4) 2.921 (9) 148 (7)
C21—H21⋯O1iii 0.93 2.58 3.482 (3) 163
C1—H1A⋯O4iv 0.96 2.31 3.218 (3) 157
C26—H26B⋯C14v 0.96 3.41 3.896 (5) 114
C19—H19B⋯C14vi 0.96 2.85 3.664 (5) 143
C19—H19B⋯C15vi 0.96 2.73 3.458 (6) 133
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (iv) [x-1, y, z]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+2, -y+1, -z+1].
[Figure 9]
Figure 9
The hy­dro­gen-bond net in 3, featuring the Etter R22(8) R21(7)D motif around the Cl atom and showing the atom labelling. The tosyl aromatic rings have been omitted for better visualization. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iv) x, −y + [{1\over 2}], z − [{1\over 2}].]

3.2. Cyclization reaction with the solvent

Both 1 and 1·2HCl have tosyl­amide groups in para positions relative to the amines, which are very weak electron-density donors. Moreover, 1·2HCl has its amine groups protonated. Therefore, a low probability of these com­pounds reacting with acetone can be expected. The ability to form ben­zo­di­az­e­pines from recrystallization in acetone might be associated with the fact that 1 partially acts as a base, promoting the cyclization reaction with free di­amines. In contrast, 1·2HCl is a strong acid that, in this solvent, is deprotonated, acidifying the solution and thus leading to cyclization with the di­amine fraction fully deprotonated. This may explain both the low yields of 2 and 3, and the presence of a viscous liquid between their single crystals. This thick liquid is likely a combination of unreacted di­amine, its conjugate acid, along with DAA and mesityl oxide. The last two are liquids with high boiling points and their qu­anti­ties are increased in the presence of basic or acidic solutes. To evaluate this, com­pound 2 was synthesized adding a weak base to the di­amine solution, in this case, tri­ethyl­amine. In the mentioned reaction, the ben­zo­di­az­e­pine derivative was isolated in significant yield, corroborating that 1 acts as a base in this reaction during crystallization tests. In conclusion, it appears that only strong electron-withdrawing substituents on the aromatic ring of vicinal di­amines can make them weakly basic enough to avoid reaction with acetone, as seen with 1,2-di­nitro-4,5-phenyl­enedi­amine, which can be crystallized from an acetone-rich solution (Siri & Braunstein, 2005[Siri, O. & Braunstein, P. (2005). New J. Chem. 29, 75-79.]). Aromatic di­amines with electron-withdrawing substituents can still form ben­zo­di­az­e­pines with acetone on addition of a strong acid or base (Heravi et al. 2007[Heravi, M. M., Derikvand, F., Ranjbar, L. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 261, 156-159.]; Nardi et al., 2011[Nardi, M., Cozza, A., Maiuolo, L., Oliverio, M. & Procopio, A. (2011). Tetrahedron Lett. 52, 4827-4834.]).

4. Conclusions

This article has demonstrated how a solvent, acetone in this case, can be reactive and is not innocent in crystallization processes. The reported case shows its incom­patibility with vicinal aromatic di­amines when they are substituted with a weak electron-density donor, such as tosyl­amide, which produced ben­zo­di­az­e­pines. Compounds 1 and 1·2HCl were dissolved in acetone, producing 2 and 3, respectively. They were firstly obtained in very low yield, as single crystals, but we report the synthesis of 2 on a larger scale, using a base to promote the cyclization. Attempts to obtain salt 3 from 1·2HCl on a large scale in acidic acetone solution did not lead to the desired product in excessive qu­antity, corroborating the dehydration of diacetone alcohol to mesityl oxide, which most likely does not participate in the formation of ben­zo­di­az­e­pine.

Supporting information


Computing details top

2,2,4-Trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepine (2) top
Crystal data top
C26H30N4O4S2F(000) = 2224
Mr = 526.66Dx = 1.295 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 30.0416 (9) ÅCell parameters from 17655 reflections
b = 9.7018 (1) Åθ = 3.7–73.4°
c = 24.0984 (7) ŵ = 2.10 mm1
β = 129.744 (5)°T = 293 K
V = 5400.6 (4) Å3Needle, yellow
Z = 80.19 × 0.07 × 0.06 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
4942 independent reflections
Radiation source: micro-focus sealed X-ray tube3970 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.069
ω scansθmax = 68.2°, θmin = 3.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
h = 3636
Tmin = 0.603, Tmax = 1.000k = 1111
76569 measured reflectionsl = 2929
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0632P)2 + 2.9523P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4942 reflectionsΔρmax = 0.41 e Å3
334 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data integration and scaling of the reflections for all compounds was conducted with the CRYSALIS suite (Rigaku, 2022). Final unit cell parameters were based on the fitting of all reflections? positions. Analytical absorption corrections and the space group identification were executed using the CRYSALIS suite (Rigaku, 2022). The structures of all compounds were solved by direct methods using the SUPERFLIP program (Palatinus et al., 2007).

For each compound, the positions of all atoms could be unambiguously assigned on consecutive difference Fourier maps. Refinements were performed using SHELXL (Sheldrick, 2015) based on F2 through full-matrix least square routine. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.71423 (9)0.4329 (3)0.19402 (12)0.0680 (6)
H1A0.7480990.3821800.2317710.102*0.5
H1B0.7126250.4392050.1530130.102*0.5
H1C0.7158820.5238910.2109250.102*0.5
H1D0.7029710.5146710.1653680.102*0.5
H1E0.7384460.4576460.2441260.102*0.5
H1F0.7351880.3729600.1862150.102*0.5
C20.66158 (8)0.3607 (2)0.17283 (10)0.0488 (4)
C30.66800 (8)0.2267 (2)0.20855 (10)0.0513 (5)
H3A0.7064410.1902250.2323220.062*
H3B0.6402570.1611560.1716840.062*
C40.65887 (8)0.2389 (2)0.26430 (9)0.0484 (4)
C50.71114 (9)0.3070 (3)0.33294 (11)0.0679 (6)
H5A0.7448750.2512820.3536610.102*
H5B0.7169950.3965750.3216300.102*
H5C0.7045150.3161150.3668140.102*
C60.64897 (11)0.0963 (2)0.28054 (13)0.0682 (6)
H6A0.6821630.0394720.2997760.102*
H6B0.6431050.1034260.3151990.102*
H6C0.6153910.0556900.2369240.102*
C70.55854 (8)0.31690 (18)0.15961 (9)0.0436 (4)
C80.50567 (8)0.2786 (2)0.14068 (10)0.0486 (4)
H80.5038670.2527060.1763580.058*
C90.45640 (8)0.27889 (19)0.06986 (10)0.0465 (4)
C100.45868 (8)0.31373 (18)0.01528 (9)0.0438 (4)
C110.51167 (8)0.34938 (19)0.03504 (9)0.0444 (4)
H110.5138700.3711460.0007320.053*
C120.56160 (7)0.35358 (19)0.10667 (9)0.0427 (4)
C130.33911 (9)0.4654 (2)0.02408 (11)0.0591 (5)
C140.28100 (10)0.4917 (3)0.01446 (13)0.0736 (7)
H140.2573940.4279480.0154120.088*
C150.25843 (13)0.6157 (3)0.05191 (16)0.0919 (9)
H150.2193780.6345610.0775110.110*
C160.29200 (17)0.7107 (3)0.05218 (17)0.0916 (9)
C170.34921 (16)0.6808 (3)0.01489 (19)0.0909 (9)
H170.3722950.7429350.0158210.109*
C180.37328 (12)0.5608 (3)0.02388 (16)0.0780 (7)
H180.4125290.5436770.0499990.094*
C190.2659 (2)0.8455 (4)0.0940 (2)0.1455 (17)
H19A0.2255380.8488710.1166380.218*
H19B0.2855860.9219050.0613960.218*
H19C0.2700760.8506520.1302200.218*
C200.43894 (10)0.1860 (2)0.12497 (11)0.0632 (6)
C210.48001 (12)0.0821 (3)0.09237 (14)0.0790 (7)
H210.4800130.0153340.0646890.095*
C220.52097 (13)0.0788 (3)0.10140 (17)0.0924 (9)
H220.5482840.0083890.0796240.111*
C230.52286 (14)0.1764 (4)0.14163 (16)0.0905 (9)
C240.48214 (14)0.2816 (3)0.17212 (16)0.0909 (9)
H240.4831350.3504380.1981850.109*
C250.44044 (12)0.2867 (3)0.16476 (13)0.0751 (7)
H250.4132620.3574490.1863580.090*
C260.56767 (18)0.1675 (5)0.1511 (2)0.1352 (16)
H26A0.5627040.2429660.1803520.203*
H26B0.6056360.1716890.1047210.203*
H26C0.5632530.0820000.1742470.203*
N10.61176 (6)0.41314 (17)0.12280 (8)0.0475 (4)
N20.60800 (7)0.32881 (17)0.23443 (8)0.0499 (4)
H20.59383 (15)0.3100 (8)0.25826 (17)0.060*
N30.40186 (7)0.23456 (19)0.04887 (9)0.0558 (4)
H30.3770 (8)0.206 (2)0.0027 (4)0.067*
N40.40591 (7)0.32307 (17)0.05841 (8)0.0503 (4)
H40.3964 (7)0.4083 (5)0.0781 (5)0.060*
O10.32280 (7)0.2228 (2)0.05207 (11)0.0861 (6)
O20.41265 (7)0.3463 (2)0.14866 (8)0.0839 (5)
O30.39019 (9)0.07239 (18)0.07875 (11)0.0930 (6)
O40.33343 (7)0.2375 (2)0.18079 (9)0.0909 (6)
S10.36929 (2)0.31189 (6)0.07423 (3)0.06194 (18)
S20.38699 (2)0.19603 (6)0.11374 (3)0.06646 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (10)0.0943 (17)0.0613 (12)0.0013 (10)0.0265 (10)0.0116 (12)
C20.0371 (9)0.0644 (12)0.0416 (9)0.0026 (8)0.0237 (8)0.0026 (8)
C30.0434 (10)0.0588 (12)0.0463 (10)0.0100 (9)0.0262 (9)0.0040 (8)
C40.0413 (10)0.0580 (11)0.0385 (9)0.0044 (8)0.0220 (8)0.0050 (8)
C50.0471 (12)0.0961 (18)0.0439 (11)0.0032 (11)0.0215 (10)0.0054 (11)
C60.0698 (14)0.0670 (14)0.0662 (13)0.0073 (11)0.0428 (12)0.0137 (11)
C70.0381 (9)0.0481 (10)0.0416 (9)0.0037 (7)0.0242 (8)0.0008 (7)
C80.0445 (10)0.0599 (11)0.0463 (10)0.0047 (8)0.0313 (9)0.0075 (8)
C90.0382 (9)0.0495 (10)0.0525 (10)0.0005 (8)0.0293 (9)0.0034 (8)
C100.0356 (9)0.0476 (10)0.0401 (9)0.0005 (7)0.0205 (8)0.0013 (7)
C110.0391 (9)0.0521 (10)0.0399 (9)0.0002 (8)0.0243 (8)0.0037 (8)
C120.0360 (9)0.0475 (10)0.0413 (9)0.0004 (7)0.0231 (8)0.0018 (7)
C130.0508 (11)0.0724 (14)0.0584 (12)0.0019 (10)0.0368 (10)0.0062 (10)
C140.0533 (13)0.0841 (17)0.0733 (15)0.0012 (12)0.0358 (12)0.0070 (13)
C150.0704 (17)0.098 (2)0.0825 (18)0.0249 (16)0.0376 (15)0.0003 (16)
C160.119 (3)0.0717 (17)0.090 (2)0.0168 (18)0.070 (2)0.0034 (14)
C170.114 (3)0.0690 (17)0.115 (2)0.0007 (16)0.085 (2)0.0013 (15)
C180.0742 (16)0.0747 (16)0.0983 (19)0.0039 (13)0.0612 (16)0.0024 (14)
C190.196 (5)0.098 (3)0.147 (4)0.062 (3)0.112 (4)0.039 (2)
C200.0641 (14)0.0605 (13)0.0468 (11)0.0013 (10)0.0270 (10)0.0106 (9)
C210.0810 (17)0.0591 (14)0.0716 (15)0.0039 (12)0.0370 (14)0.0016 (11)
C220.0811 (19)0.0809 (19)0.091 (2)0.0200 (15)0.0439 (17)0.0080 (16)
C230.088 (2)0.109 (2)0.0741 (17)0.0166 (17)0.0517 (16)0.0078 (16)
C240.104 (2)0.106 (2)0.0770 (17)0.0195 (18)0.0642 (17)0.0119 (16)
C250.0814 (17)0.0794 (16)0.0606 (14)0.0176 (13)0.0437 (13)0.0072 (12)
C260.116 (3)0.201 (5)0.111 (3)0.034 (3)0.082 (3)0.008 (3)
N10.0352 (8)0.0597 (9)0.0427 (8)0.0015 (7)0.0227 (7)0.0040 (7)
N20.0413 (8)0.0666 (10)0.0376 (8)0.0053 (7)0.0234 (7)0.0006 (7)
N30.0410 (9)0.0674 (11)0.0582 (10)0.0059 (8)0.0314 (8)0.0007 (8)
N40.0369 (8)0.0565 (10)0.0431 (8)0.0031 (7)0.0189 (7)0.0008 (7)
O10.0602 (10)0.1048 (14)0.1098 (14)0.0049 (9)0.0619 (11)0.0222 (11)
O20.0597 (10)0.1425 (17)0.0554 (9)0.0101 (10)0.0396 (8)0.0065 (10)
O30.1036 (14)0.0680 (11)0.0985 (13)0.0360 (10)0.0605 (12)0.0145 (10)
O40.0485 (9)0.1245 (15)0.0551 (9)0.0182 (10)0.0125 (8)0.0205 (10)
S10.0451 (3)0.0872 (4)0.0618 (3)0.0008 (2)0.0380 (3)0.0107 (3)
S20.0538 (3)0.0693 (4)0.0535 (3)0.0189 (2)0.0238 (3)0.0126 (2)
Geometric parameters (Å, º) top
C1—C21.490 (3)C14—C151.393 (4)
C1—H1A0.9600C14—H140.9300
C1—H1B0.9600C15—C161.369 (5)
C1—H1C0.9600C15—H150.9300
C1—H1D0.9600C16—C171.368 (5)
C1—H1E0.9600C16—C191.527 (5)
C1—H1F0.9600C17—C181.373 (4)
C2—N11.283 (2)C17—H170.9300
C2—C31.502 (3)C18—H180.9300
C3—C41.538 (3)C19—H19A0.9600
C3—H3A0.9700C19—H19B0.9600
C3—H3B0.9700C19—H19C0.9600
C4—N21.486 (2)C20—C211.384 (3)
C4—C61.519 (3)C20—C251.390 (4)
C4—C51.522 (3)C20—S21.749 (3)
C5—H5A0.9600C21—C221.380 (4)
C5—H5B0.9600C21—H210.9300
C5—H5C0.9600C22—C231.382 (5)
C6—H6A0.9600C22—H220.9300
C6—H6B0.9600C23—C241.389 (4)
C6—H6C0.9600C23—C261.505 (5)
C7—C121.383 (3)C24—C251.374 (4)
C7—C81.394 (3)C24—H240.9300
C7—N21.431 (2)C25—H250.9300
C8—C91.369 (3)C26—H26A0.9600
C8—H80.9300C26—H26B0.9600
C9—C101.402 (3)C26—H26C0.9600
C9—N31.437 (2)N2—H20.926 (2)
C10—C111.382 (3)N3—S11.6305 (19)
C10—N41.440 (2)N3—H30.899 (2)
C11—C121.386 (2)N4—S21.6282 (17)
C11—H110.9300N4—H40.904 (2)
C12—N11.416 (2)O1—S11.4243 (17)
C13—C141.379 (3)O2—S11.4274 (17)
C13—C181.385 (3)O3—S21.4336 (19)
C13—S11.761 (2)O4—S21.4275 (18)
C2—C1—H1A109.5C16—C15—H15119.0
C2—C1—H1B109.5C14—C15—H15119.0
H1A—C1—H1B109.5C17—C16—C15118.3 (3)
C2—C1—H1C109.5C17—C16—C19121.0 (4)
H1A—C1—H1C109.5C15—C16—C19120.7 (4)
H1B—C1—H1C109.5C16—C17—C18121.4 (3)
C2—C1—H1D109.5C16—C17—H17119.3
C2—C1—H1E109.5C18—C17—H17119.3
H1D—C1—H1E109.5C17—C18—C13120.0 (3)
C2—C1—H1F109.5C17—C18—H18120.0
H1D—C1—H1F109.5C13—C18—H18120.0
H1E—C1—H1F109.5C16—C19—H19A109.5
N1—C2—C1118.73 (19)C16—C19—H19B109.5
N1—C2—C3121.80 (17)H19A—C19—H19B109.5
C1—C2—C3119.43 (17)C16—C19—H19C109.5
C2—C3—C4113.85 (16)H19A—C19—H19C109.5
C2—C3—H3A108.8H19B—C19—H19C109.5
C4—C3—H3A108.8C21—C20—C25119.6 (3)
C2—C3—H3B108.8C21—C20—S2120.8 (2)
C4—C3—H3B108.8C25—C20—S2119.55 (19)
H3A—C3—H3B107.7C22—C21—C20119.2 (3)
N2—C4—C6110.45 (17)C22—C21—H21120.4
N2—C4—C5107.38 (17)C20—C21—H21120.4
C6—C4—C5110.58 (17)C21—C22—C23122.4 (3)
N2—C4—C3108.95 (14)C21—C22—H22118.8
C6—C4—C3109.17 (18)C23—C22—H22118.8
C5—C4—C3110.28 (17)C22—C23—C24117.2 (3)
C4—C5—H5A109.5C22—C23—C26120.6 (3)
C4—C5—H5B109.5C24—C23—C26122.2 (3)
H5A—C5—H5B109.5C25—C24—C23121.7 (3)
C4—C5—H5C109.5C25—C24—H24119.1
H5A—C5—H5C109.5C23—C24—H24119.1
H5B—C5—H5C109.5C24—C25—C20119.9 (3)
C4—C6—H6A109.5C24—C25—H25120.1
C4—C6—H6B109.5C20—C25—H25120.1
H6A—C6—H6B109.5C23—C26—H26A109.5
C4—C6—H6C109.5C23—C26—H26B109.5
H6A—C6—H6C109.5H26A—C26—H26B109.5
H6B—C6—H6C109.5C23—C26—H26C109.5
C12—C7—C8120.05 (16)H26A—C26—H26C109.5
C12—C7—N2120.93 (16)H26B—C26—H26C109.5
C8—C7—N2118.80 (16)C2—N1—C12119.57 (16)
C9—C8—C7120.35 (17)C7—N2—C4118.74 (15)
C9—C8—H8119.8C7—N2—H2104.3 (3)
C7—C8—H8119.8C4—N2—H2108.8 (3)
C8—C9—C10120.51 (17)C9—N3—S1123.55 (15)
C8—C9—N3121.27 (17)C9—N3—H3112.6 (16)
C10—C9—N3118.08 (16)S1—N3—H3112.4 (16)
C11—C10—C9118.27 (16)C10—N4—S2119.65 (13)
C11—C10—N4121.76 (16)C10—N4—H4115.7 (7)
C9—C10—N4119.75 (16)S2—N4—H4115.8 (7)
C10—C11—C12121.84 (17)O1—S1—O2120.08 (12)
C10—C11—H11119.1O1—S1—N3105.07 (11)
C12—C11—H11119.1O2—S1—N3107.10 (10)
C7—C12—C11118.95 (17)O1—S1—C13107.74 (11)
C7—C12—N1122.57 (16)O2—S1—C13108.70 (12)
C11—C12—N1117.92 (16)N3—S1—C13107.52 (10)
C14—C13—C18119.8 (2)O4—S2—O3120.33 (12)
C14—C13—S1119.55 (19)O4—S2—N4105.31 (11)
C18—C13—S1120.68 (18)O3—S2—N4107.14 (10)
C13—C14—C15118.6 (3)O4—S2—C20108.19 (12)
C13—C14—H14120.7O3—S2—C20108.26 (13)
C15—C14—H14120.7N4—S2—C20106.86 (9)
C16—C15—C14122.0 (3)
N1—C2—C3—C477.0 (2)C26—C23—C24—C25178.2 (3)
C1—C2—C3—C4105.2 (2)C23—C24—C25—C201.1 (4)
C2—C3—C4—N243.0 (2)C21—C20—C25—C240.7 (4)
C2—C3—C4—C6163.73 (17)S2—C20—C25—C24178.2 (2)
C2—C3—C4—C574.6 (2)C1—C2—N1—C12173.93 (18)
C12—C7—C8—C90.9 (3)C3—C2—N1—C128.2 (3)
N2—C7—C8—C9173.77 (17)C7—C12—N1—C246.0 (3)
C7—C8—C9—C101.9 (3)C11—C12—N1—C2142.70 (19)
C7—C8—C9—N3177.50 (18)C12—C7—N2—C466.2 (2)
C8—C9—C10—C110.9 (3)C8—C7—N2—C4119.17 (19)
N3—C9—C10—C11176.63 (17)C6—C4—N2—C780.7 (2)
C8—C9—C10—N4175.58 (17)C5—C4—N2—C7158.70 (17)
N3—C9—C10—N48.7 (3)C3—C4—N2—C739.3 (2)
C9—C10—C11—C121.1 (3)C8—C9—N3—S163.0 (2)
N4—C10—C11—C12173.48 (17)C10—C9—N3—S1121.29 (18)
C8—C7—C12—C111.0 (3)C11—C10—N4—S284.8 (2)
N2—C7—C12—C11175.60 (17)C9—C10—N4—S2100.66 (19)
C8—C7—C12—N1170.16 (17)C9—N3—S1—O1170.52 (16)
N2—C7—C12—N14.4 (3)C9—N3—S1—O241.78 (19)
C10—C11—C12—C72.0 (3)C9—N3—S1—C1374.90 (18)
C10—C11—C12—N1169.54 (17)C14—C13—S1—O113.3 (2)
C18—C13—C14—C151.0 (4)C18—C13—S1—O1167.7 (2)
S1—C13—C14—C15178.0 (2)C14—C13—S1—O2118.3 (2)
C13—C14—C15—C160.8 (4)C18—C13—S1—O260.7 (2)
C14—C15—C16—C170.7 (5)C14—C13—S1—N3126.10 (19)
C14—C15—C16—C19179.8 (3)C18—C13—S1—N354.9 (2)
C15—C16—C17—C182.0 (5)C10—N4—S2—O4179.53 (15)
C19—C16—C17—C18178.8 (3)C10—N4—S2—O350.30 (18)
C16—C17—C18—C131.9 (4)C10—N4—S2—C2065.56 (17)
C14—C13—C18—C170.3 (4)C21—C20—S2—O4141.53 (19)
S1—C13—C18—C17179.3 (2)C25—C20—S2—O441.1 (2)
C25—C20—C21—C221.5 (4)C21—C20—S2—O39.6 (2)
S2—C20—C21—C22178.9 (2)C25—C20—S2—O3173.00 (18)
C20—C21—C22—C230.4 (4)C21—C20—S2—N4105.52 (19)
C21—C22—C23—C241.3 (5)C25—C20—S2—N471.9 (2)
C21—C22—C23—C26179.0 (3)C10—C9—N3—S1121.29 (18)
C22—C23—C24—C252.0 (5)C9—C10—N4—S2100.66 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.90 (1)2.59 (2)3.268 (3)133 (2)
N4—H4···N1i0.90 (1)1.97 (1)2.861 (2)168 (2)
C1—H1B···C16i0.962.763.584 (4)145
C1—H1B···C17i0.962.823.600 (4)139
C1—H1C···O4i0.962.593.434 (4)147
C26—H26B···C16i0.963.194.094 (5)157
N2—H2···O2ii0.93 (1)2.40 (1)3.254 (2)154 (1)
C14—H14···O1iii0.932.453.356 (3)165
C1—H1A···O4iv0.962.343.293 (3)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2.
2,2,4-Trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepin-1-ium chloride 0.3-hydrate (3) top
Crystal data top
C26H31N4O4S2+·Cl1·0.3H2OF(000) = 1196
Mr = 568.52Dx = 1.378 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.0993 (2) ÅCell parameters from 11735 reflections
b = 13.4307 (2) Åθ = 3.7–78.1°
c = 17.3586 (3) ŵ = 3.00 mm1
β = 103.667 (2)°T = 293 K
V = 2740.94 (8) Å3Plate, yellow
Z = 40.19 × 0.15 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5837 independent reflections
Radiation source: micro-focus sealed X-ray tube4787 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.039
ω scansθmax = 79.7°, θmin = 3.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
h = 1515
Tmin = 0.498, Tmax = 1.000k = 167
24340 measured reflectionsl = 2222
Refinement top
Refinement on F274 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.3926P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.015
5837 reflectionsΔρmax = 0.30 e Å3
433 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data integration and scaling of the reflections for all compounds was conducted with the CRYSALIS suite (Rigaku, 2022). Final unit cell parameters were based on the fitting of all reflections? positions. Analytical absorption corrections and the space group identification were executed using the CRYSALIS suite (Rigaku, 2022). The structures of all compounds were solved by direct methods using the SUPERFLIP program (Palatinus et al., 2007).

For each compound, the positions of all atoms could be unambiguously assigned on consecutive difference Fourier maps. Refinements were performed using SHELXL (Sheldrick, 2015) based on F2 through full-matrix least square routine. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.04460 (19)0.3882 (2)0.09107 (17)0.0742 (6)
H1A0.0158040.3884150.1183340.111*0.5
H1B0.0192370.4201830.0405070.111*0.5
H1C0.0660360.3207840.0833820.111*0.5
H1D0.0621170.3645060.0431480.111*0.5
H1E0.0270750.3327380.1209750.111*0.5
H1F0.0197230.4321370.0781000.111*0.5
C20.14379 (18)0.44258 (16)0.13885 (14)0.0599 (5)
C30.1294 (14)0.4818 (9)0.2175 (9)0.059 (3)0.364 (17)
H3A0.0506080.4732070.2196510.071*0.364 (17)
H3B0.1755480.4417280.2595180.071*0.364 (17)
C3A0.0868 (10)0.5267 (10)0.1747 (9)0.064 (3)0.180 (5)
H3A10.0470210.5691680.1318270.077*0.180 (5)
H3A20.0300020.4974800.1990000.077*0.180 (5)
C3B0.1594 (10)0.4767 (6)0.2242 (5)0.0511 (19)0.456 (17)
H3B10.0980100.4497760.2451380.061*0.456 (17)
H3B20.2302070.4497480.2555180.061*0.456 (17)
C40.16105 (19)0.58891 (16)0.23335 (15)0.0637 (5)
C50.160 (2)0.6065 (14)0.3199 (9)0.098 (5)0.364 (17)
H5A0.0854650.5916800.3276280.148*0.364 (17)
H5B0.2148780.5640950.3532040.148*0.364 (17)
H5C0.1779760.6748510.3334140.148*0.364 (17)
C5A0.102 (3)0.663 (2)0.2679 (17)0.095 (6)0.180 (5)
H5A10.0355090.6346590.2795100.142*0.180 (5)
H5A20.1515990.6875240.3159780.142*0.180 (5)
H5A30.0810450.7174360.2313040.142*0.180 (5)
C5B0.1203 (12)0.6346 (10)0.3010 (8)0.086 (5)0.456 (17)
H5B10.1264790.7057770.2989460.129*0.456 (17)
H5B20.0423310.6165010.2967790.129*0.456 (17)
H5B30.1661220.6106730.3504270.129*0.456 (17)
C60.0531 (10)0.6370 (15)0.1759 (13)0.114 (5)0.364 (17)
H6A0.0143210.6039440.1826770.171*0.364 (17)
H6B0.0491460.7064070.1882960.171*0.364 (17)
H6C0.0589770.6299080.1220300.171*0.364 (17)
C6A0.2172 (14)0.4997 (10)0.2991 (8)0.083 (5)0.180 (5)
H6A10.1572720.4656400.3159870.124*0.180 (5)
H6A20.2584720.4530890.2746550.124*0.180 (5)
H6A30.2678930.5295310.3441570.124*0.180 (5)
C6B0.0909 (13)0.6463 (11)0.1561 (9)0.122 (5)0.456 (17)
H6B10.1123500.6211230.1099660.183*0.456 (17)
H6B20.0109150.6360050.1507400.183*0.456 (17)
H6B30.1074170.7162670.1613630.183*0.456 (17)
C70.35175 (15)0.58189 (13)0.19626 (11)0.0459 (4)
C80.45823 (15)0.62927 (12)0.21358 (11)0.0456 (4)
H80.4689490.6845080.2468210.055*
C90.54745 (14)0.59709 (12)0.18321 (9)0.0403 (3)
C100.53355 (14)0.51243 (12)0.13425 (10)0.0417 (3)
C110.42854 (15)0.46747 (12)0.11424 (10)0.0447 (4)
H110.4175720.4136410.0795600.054*
C120.33801 (14)0.50047 (12)0.14461 (10)0.0423 (3)
C130.77760 (17)0.58891 (16)0.33833 (13)0.0586 (5)
C140.7695 (3)0.5834 (3)0.41662 (16)0.0881 (8)
H140.7297950.6317950.4374420.106*
C150.8207 (3)0.5059 (3)0.4629 (2)0.1119 (12)
H150.8160080.5025560.5155280.134*
C160.8792 (3)0.4326 (3)0.4332 (2)0.0973 (10)
C170.8859 (2)0.4391 (2)0.3547 (2)0.0872 (8)
H170.9253970.3905770.3339080.105*
C180.8346 (2)0.51710 (17)0.30679 (15)0.0673 (5)
H180.8387310.5205750.2540400.081*
C190.9379 (4)0.3478 (3)0.4859 (3)0.1435 (18)
H19A0.9739460.3041070.4555280.215*
H19B0.9940520.3747060.5294570.215*
H19C0.8824610.3111590.5059370.215*
C200.62321 (17)0.28371 (13)0.04958 (11)0.0510 (4)
C210.5324 (2)0.22358 (19)0.05155 (16)0.0746 (7)
H210.4981600.2259910.0941590.089*
C220.4927 (3)0.1591 (2)0.0113 (2)0.0888 (8)
H220.4303330.1188660.0106320.107*
C230.5426 (3)0.15274 (19)0.07427 (15)0.0775 (7)
C240.6339 (3)0.21332 (17)0.07439 (14)0.0771 (7)
H240.6694210.2096810.1163500.093*
C250.6739 (2)0.27929 (15)0.01361 (13)0.0648 (6)
H250.7349590.3207470.0151150.078*
C260.4980 (4)0.0818 (3)0.1427 (2)0.1213 (14)
H26A0.5433530.0877310.1809520.182*
H26B0.5019830.0147240.1231100.182*
H26C0.4203950.0981170.1671970.182*
N10.23353 (13)0.45073 (11)0.11264 (9)0.0478 (3)
H10.2338 (19)0.4203 (15)0.0665 (8)0.057*
N20.2767 (12)0.616 (2)0.242 (2)0.059 (4)0.46 (8)
H20.308 (4)0.666 (4)0.274 (3)0.061 (17)*0.46 (8)
N2A0.2612 (15)0.6303 (8)0.216 (2)0.054 (3)0.54 (8)
H2A0.281 (4)0.689 (2)0.240 (4)0.056 (14)*0.54 (8)
N30.65085 (13)0.65168 (11)0.19616 (9)0.0461 (3)
H30.6907 (11)0.6490 (14)0.1552 (6)0.055*
N40.62609 (13)0.47384 (11)0.10581 (10)0.0494 (3)
H40.6666 (13)0.5179 (8)0.0810 (12)0.059*
O10.64945 (13)0.74462 (12)0.32091 (9)0.0679 (4)
O20.81601 (13)0.74603 (11)0.26263 (10)0.0647 (4)
O30.64571 (13)0.32884 (11)0.19698 (8)0.0588 (3)
O40.79906 (12)0.37377 (12)0.13173 (11)0.0703 (4)
S10.72286 (4)0.69330 (3)0.28105 (3)0.05025 (13)
S20.68051 (4)0.36448 (3)0.12885 (3)0.04832 (13)
Cl10.77582 (6)0.64137 (5)0.05150 (3)0.0808 (2)
O50.8361 (12)0.8495 (6)0.1186 (6)0.145 (4)0.3
H5F0.845 (16)0.837 (9)0.1767 (14)0.217*0.3
H5G0.812 (16)0.785 (5)0.090 (5)0.217*0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (11)0.0913 (16)0.0869 (17)0.0177 (11)0.0154 (11)0.0042 (13)
C20.0508 (10)0.0610 (11)0.0722 (13)0.0108 (9)0.0231 (10)0.0090 (9)
C30.052 (7)0.065 (4)0.069 (4)0.010 (4)0.028 (4)0.008 (3)
C3A0.047 (5)0.071 (5)0.078 (6)0.004 (4)0.021 (5)0.013 (5)
C3B0.041 (4)0.058 (3)0.060 (3)0.008 (2)0.022 (3)0.007 (2)
C40.0493 (11)0.0647 (12)0.0854 (15)0.0077 (9)0.0324 (11)0.0138 (10)
C50.155 (13)0.064 (8)0.097 (7)0.034 (8)0.072 (8)0.028 (5)
C5A0.105 (11)0.090 (12)0.121 (13)0.034 (10)0.090 (11)0.012 (10)
C5B0.096 (7)0.071 (9)0.121 (9)0.025 (6)0.085 (8)0.028 (7)
C60.046 (5)0.079 (6)0.209 (13)0.020 (5)0.012 (7)0.002 (6)
C6A0.104 (12)0.082 (9)0.074 (9)0.014 (8)0.042 (9)0.014 (7)
C6B0.066 (7)0.074 (5)0.195 (11)0.028 (6)0.028 (7)0.002 (6)
C70.0399 (8)0.0469 (8)0.0531 (9)0.0004 (7)0.0155 (7)0.0015 (7)
C80.0425 (9)0.0449 (8)0.0505 (9)0.0014 (7)0.0133 (7)0.0060 (7)
C90.0364 (8)0.0438 (8)0.0402 (8)0.0005 (6)0.0081 (6)0.0027 (6)
C100.0378 (8)0.0448 (8)0.0443 (8)0.0012 (6)0.0131 (7)0.0008 (6)
C110.0430 (9)0.0445 (8)0.0474 (9)0.0023 (7)0.0126 (7)0.0039 (7)
C120.0350 (8)0.0449 (8)0.0466 (9)0.0025 (6)0.0089 (7)0.0015 (7)
C130.0458 (10)0.0680 (12)0.0574 (11)0.0094 (9)0.0031 (9)0.0001 (9)
C140.0862 (19)0.117 (2)0.0585 (13)0.0072 (16)0.0119 (13)0.0091 (14)
C150.116 (3)0.143 (3)0.0682 (17)0.006 (2)0.0053 (17)0.0305 (19)
C160.0831 (19)0.095 (2)0.096 (2)0.0129 (16)0.0138 (17)0.0302 (17)
C170.0715 (16)0.0658 (14)0.114 (2)0.0009 (12)0.0012 (15)0.0073 (14)
C180.0613 (12)0.0619 (12)0.0745 (14)0.0022 (10)0.0076 (11)0.0012 (10)
C190.123 (3)0.128 (3)0.151 (4)0.009 (3)0.027 (3)0.067 (3)
C200.0546 (10)0.0469 (9)0.0538 (10)0.0097 (8)0.0170 (8)0.0003 (7)
C210.0700 (15)0.0812 (15)0.0793 (15)0.0171 (12)0.0313 (13)0.0241 (12)
C220.0756 (17)0.0878 (17)0.101 (2)0.0160 (14)0.0172 (15)0.0305 (16)
C230.099 (2)0.0662 (13)0.0595 (13)0.0223 (13)0.0024 (13)0.0118 (11)
C240.118 (2)0.0617 (12)0.0573 (12)0.0185 (14)0.0316 (14)0.0023 (10)
C250.0870 (16)0.0518 (10)0.0634 (12)0.0080 (10)0.0336 (12)0.0064 (9)
C260.168 (4)0.098 (2)0.081 (2)0.020 (2)0.004 (2)0.0343 (17)
N10.0393 (7)0.0534 (8)0.0512 (8)0.0047 (6)0.0117 (6)0.0044 (6)
N20.047 (3)0.069 (6)0.067 (8)0.005 (3)0.025 (4)0.022 (5)
N2A0.051 (3)0.045 (3)0.075 (8)0.005 (2)0.032 (4)0.009 (3)
N30.0399 (7)0.0539 (8)0.0457 (8)0.0062 (6)0.0128 (6)0.0045 (6)
N40.0462 (8)0.0460 (7)0.0628 (9)0.0011 (6)0.0261 (7)0.0019 (6)
O10.0584 (9)0.0778 (9)0.0680 (9)0.0007 (7)0.0163 (7)0.0254 (7)
O20.0539 (8)0.0638 (8)0.0754 (10)0.0187 (7)0.0136 (7)0.0066 (7)
O30.0634 (9)0.0612 (7)0.0532 (7)0.0051 (6)0.0169 (7)0.0038 (6)
O40.0397 (7)0.0790 (9)0.0943 (12)0.0061 (7)0.0201 (7)0.0029 (8)
S10.0423 (2)0.0536 (2)0.0542 (3)0.00587 (17)0.01008 (18)0.00933 (18)
S20.0398 (2)0.0520 (2)0.0550 (3)0.00360 (17)0.01484 (18)0.00086 (18)
Cl10.0862 (4)0.1064 (4)0.0587 (3)0.0452 (3)0.0346 (3)0.0196 (3)
O50.239 (13)0.091 (5)0.124 (7)0.054 (7)0.082 (8)0.020 (5)
Geometric parameters (Å, º) top
C1—C21.480 (3)C8—H80.9300
C1—H1A0.9600C9—C101.406 (2)
C1—H1B0.9600C9—N31.421 (2)
C1—H1C0.9600C10—C111.375 (2)
C1—H1D0.9600C10—N41.424 (2)
C1—H1E0.9600C11—C121.395 (2)
C1—H1F0.9600C11—H110.9300
C2—N11.277 (3)C12—N11.421 (2)
C2—C31.511 (11)C13—C181.372 (3)
C2—C3B1.519 (9)C13—C141.387 (3)
C2—C3A1.530 (10)C13—S11.756 (2)
C3—C41.498 (11)C14—C151.371 (5)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.381 (5)
C3A—C41.453 (11)C15—H150.9300
C3A—H3A10.9700C16—C171.386 (5)
C3A—H3A20.9700C16—C191.528 (5)
C3B—C41.515 (9)C17—C181.390 (4)
C3B—H3B10.9700C17—H170.9300
C3B—H3B20.9700C18—H180.9300
C4—N21.421 (10)C19—H19A0.9600
C4—N2A1.431 (8)C19—H19B0.9600
C4—C5A1.44 (3)C19—H19C0.9600
C4—C5B1.508 (8)C20—C211.370 (3)
C4—C51.525 (12)C20—C251.379 (3)
C4—C61.582 (11)C20—S21.761 (2)
C4—C6B1.605 (10)C21—C221.387 (4)
C4—C6A1.683 (13)C21—H210.9300
C5—H5A0.9600C22—C231.371 (4)
C5—H5B0.9600C22—H220.9300
C5—H5C0.9600C23—C241.373 (4)
C5A—H5A10.9600C23—C261.519 (4)
C5A—H5A20.9600C24—C251.375 (3)
C5A—H5A30.9600C24—H240.9300
C5B—H5B10.9600C25—H250.9300
C5B—H5B20.9600C26—H26A0.9600
C5B—H5B30.9600C26—H26B0.9600
C6—H6A0.9600C26—H26C0.9600
C6—H6B0.9600N1—H10.899 (9)
C6—H6C0.9600N2—H20.901 (10)
C6A—H6A10.9600N2A—H2A0.901 (10)
C6A—H6A20.9600N3—S11.6237 (15)
C6A—H6A30.9600N3—H30.949 (7)
C6B—H6B10.9600N4—S21.6207 (16)
C6B—H6B20.9600N4—H40.936 (7)
C6B—H6B30.9600O1—S11.4259 (15)
C7—N2A1.382 (10)O2—S11.4297 (14)
C7—C121.399 (2)O3—S21.4283 (14)
C7—C81.404 (2)O4—S21.4289 (15)
C7—N21.413 (13)O5—H5F1.003 (10)
C8—C91.378 (2)O5—H5G1.006 (10)
C2—C1—H1A109.5C8—C7—N2114.2 (5)
C2—C1—H1B109.5C9—C8—C7122.55 (16)
H1A—C1—H1B109.5C9—C8—H8118.7
C2—C1—H1C109.5C7—C8—H8118.7
H1A—C1—H1C109.5C8—C9—C10119.50 (15)
H1B—C1—H1C109.5C8—C9—N3121.17 (15)
C2—C1—H1D109.5C10—C9—N3119.20 (14)
C2—C1—H1E109.5C11—C10—C9118.64 (15)
H1D—C1—H1E109.5C11—C10—N4120.53 (15)
C2—C1—H1F109.5C9—C10—N4120.83 (15)
H1D—C1—H1F109.5C10—C11—C12121.74 (16)
H1E—C1—H1F109.5C10—C11—H11119.1
N1—C2—C1119.2 (2)C12—C11—H11119.1
N1—C2—C3125.5 (6)C11—C12—C7120.36 (15)
C1—C2—C3115.3 (6)C11—C12—N1114.10 (15)
N1—C2—C3B113.7 (5)C7—C12—N1125.28 (15)
C1—C2—C3B126.3 (4)C18—C13—C14120.8 (2)
N1—C2—C3A125.8 (5)C18—C13—S1119.54 (18)
C1—C2—C3A102.0 (5)C14—C13—S1119.5 (2)
C4—C3—C2115.0 (9)C15—C14—C13119.2 (3)
C4—C3—H3A108.5C15—C14—H14120.4
C2—C3—H3A108.5C13—C14—H14120.4
C4—C3—H3B108.5C14—C15—C16121.6 (3)
C2—C3—H3B108.5C14—C15—H15119.2
H3A—C3—H3B107.5C16—C15—H15119.2
C4—C3A—C2116.5 (8)C15—C16—C17118.4 (3)
C4—C3A—H3A1108.2C15—C16—C19120.9 (4)
C2—C3A—H3A1108.2C17—C16—C19120.6 (4)
C4—C3A—H3A2108.2C16—C17—C18120.9 (3)
C2—C3A—H3A2108.2C16—C17—H17119.5
H3A1—C3A—H3A2107.3C18—C17—H17119.5
C4—C3B—C2113.4 (6)C13—C18—C17119.1 (3)
C4—C3B—H3B1108.9C13—C18—H18120.5
C2—C3B—H3B1108.9C17—C18—H18120.5
C4—C3B—H3B2108.9C16—C19—H19A109.5
C2—C3B—H3B2108.9C16—C19—H19B109.5
H3B1—C3B—H3B2107.7H19A—C19—H19B109.5
N2A—C4—C5A110.3 (11)C16—C19—H19C109.5
N2A—C4—C3A119.2 (13)H19A—C19—H19C109.5
C5A—C4—C3A114.1 (15)H19B—C19—H19C109.5
N2—C4—C3118.0 (12)C21—C20—C25120.3 (2)
C5B—C4—C3B119.2 (7)C21—C20—S2120.89 (16)
N2—C4—C595.7 (15)C25—C20—S2118.76 (17)
C3—C4—C5105.6 (9)C20—C21—C22118.7 (2)
N2—C4—C6127.3 (19)C20—C21—H21120.7
C3—C4—C698.0 (11)C22—C21—H21120.7
C5—C4—C6111.0 (11)C23—C22—C21122.0 (3)
C5B—C4—C6B104.4 (8)C23—C22—H22119.0
C3B—C4—C6B113.5 (7)C21—C22—H22119.0
N2A—C4—C6A101.3 (12)C22—C23—C24118.1 (2)
C5A—C4—C6A111.8 (12)C22—C23—C26121.3 (3)
C3A—C4—C6A98.6 (8)C24—C23—C26120.6 (3)
C4—C5—H5A109.5C23—C24—C25121.2 (2)
C4—C5—H5B109.5C23—C24—H24119.4
H5A—C5—H5B109.5C25—C24—H24119.4
C4—C5—H5C109.5C24—C25—C20119.7 (2)
H5A—C5—H5C109.5C24—C25—H25120.1
H5B—C5—H5C109.5C20—C25—H25120.1
C4—C5A—H5A1109.5C23—C26—H26A109.5
C4—C5A—H5A2109.5C23—C26—H26B109.5
H5A1—C5A—H5A2109.5H26A—C26—H26B109.5
C4—C5A—H5A3109.5C23—C26—H26C109.5
H5A1—C5A—H5A3109.5H26A—C26—H26C109.5
H5A2—C5A—H5A3109.5H26B—C26—H26C109.5
C4—C5B—H5B1109.5C2—N1—C12130.82 (17)
C4—C5B—H5B2109.5C2—N1—H1117.4 (14)
H5B1—C5B—H5B2109.5C12—N1—H1111.8 (14)
C4—C5B—H5B3109.5C7—N2—C4127.3 (10)
H5B1—C5B—H5B3109.5C7—N2—H2112 (3)
H5B2—C5B—H5B3109.5C4—N2—H2121 (3)
C4—C6—H6A109.5C7—N2A—C4129.0 (8)
C4—C6—H6B109.5C7—N2A—H2A113 (2)
H6A—C6—H6B109.5C4—N2A—H2A113 (2)
C4—C6—H6C109.5C9—N3—S1125.77 (12)
H6A—C6—H6C109.5C9—N3—H3116.5 (7)
H6B—C6—H6C109.5S1—N3—H3115.7 (7)
C4—C6A—H6A1109.5C10—N4—S2123.45 (12)
C4—C6A—H6A2109.5C10—N4—H4118.0 (7)
H6A1—C6A—H6A2109.5S2—N4—H4117.4 (7)
C4—C6A—H6A3109.5O1—S1—O2118.91 (10)
H6A1—C6A—H6A3109.5O1—S1—N3110.15 (9)
H6A2—C6A—H6A3109.5O2—S1—N3104.47 (9)
C4—C6B—H6B1109.5O1—S1—C13107.83 (11)
C4—C6B—H6B2109.5O2—S1—C13108.09 (10)
H6B1—C6B—H6B2109.5N3—S1—C13106.79 (9)
C4—C6B—H6B3109.5O3—S2—O4119.35 (10)
H6B1—C6B—H6B3109.5O3—S2—N4109.02 (8)
H6B2—C6B—H6B3109.5O4—S2—N4105.98 (9)
N2A—C7—C12122.9 (10)O3—S2—C20107.58 (9)
N2A—C7—C8118.3 (7)O4—S2—C20106.72 (10)
C12—C7—C8117.10 (15)N4—S2—C20107.67 (9)
C12—C7—N2128.2 (5)H5F—O5—H5G107 (2)
N1—C2—C3—C451.1 (15)C21—C22—C23—C240.6 (5)
C1—C2—C3—C4130.7 (9)C21—C22—C23—C26179.9 (3)
N1—C2—C3A—C446.8 (14)C22—C23—C24—C250.6 (4)
C1—C2—C3A—C4173.1 (9)C26—C23—C24—C25178.7 (3)
N1—C2—C3B—C476.3 (8)C23—C24—C25—C201.3 (4)
C1—C2—C3B—C4114.2 (6)C21—C20—C25—C240.8 (3)
C2—C3A—C4—N2A49.8 (16)S2—C20—C25—C24176.93 (18)
C2—C3A—C4—C5A177.0 (12)C1—C2—N1—C12178.0 (2)
C2—C3A—C4—C6A58.3 (12)C3—C2—N1—C123.9 (9)
C2—C3—C4—N265 (2)C3B—C2—N1—C1211.7 (5)
C2—C3—C4—C5170.4 (16)C3A—C2—N1—C1243.9 (8)
C2—C3—C4—C675.1 (15)C11—C12—N1—C2160.1 (2)
C2—C3B—C4—C5B151.0 (10)C7—C12—N1—C225.7 (3)
C2—C3B—C4—C6B27.3 (14)C12—C7—N2—C414 (5)
N2A—C7—C8—C9167.0 (15)C8—C7—N2—C4174 (3)
C12—C7—C8—C91.4 (3)C3—C4—N2—C741 (4)
N2—C7—C8—C9171.2 (19)C5—C4—N2—C7152 (4)
C7—C8—C9—C101.4 (3)C6—C4—N2—C786 (4)
C7—C8—C9—N3174.40 (16)C12—C7—N2A—C442 (4)
C8—C9—C10—C113.8 (2)C8—C7—N2A—C4153 (2)
N3—C9—C10—C11172.07 (15)C5A—C4—N2A—C7167 (3)
C8—C9—C10—N4176.23 (16)C3A—C4—N2A—C759 (3)
N3—C9—C10—N47.9 (2)C6A—C4—N2A—C748 (3)
C9—C10—C11—C123.5 (3)C8—C9—N3—S148.9 (2)
N4—C10—C11—C12176.55 (16)C10—C9—N3—S1135.36 (15)
C10—C11—C12—C70.6 (3)C11—C10—N4—S263.7 (2)
C10—C11—C12—N1175.10 (16)C9—C10—N4—S2116.33 (16)
N2A—C7—C12—C11166.7 (13)C9—N3—S1—O148.84 (18)
C8—C7—C12—C111.8 (3)C9—N3—S1—O2177.63 (15)
N2—C7—C12—C11170 (2)C9—N3—S1—C1367.99 (17)
N2A—C7—C12—N17.1 (14)C18—C13—S1—O1168.47 (17)
C8—C7—C12—N1172.00 (16)C14—C13—S1—O115.9 (2)
N2—C7—C12—N117 (2)C18—C13—S1—O261.8 (2)
C18—C13—C14—C151.0 (4)C14—C13—S1—O2113.8 (2)
S1—C13—C14—C15174.6 (3)C18—C13—S1—N350.1 (2)
C13—C14—C15—C160.7 (6)C14—C13—S1—N3134.3 (2)
C14—C15—C16—C170.4 (6)C10—N4—S2—O316.93 (18)
C14—C15—C16—C19178.7 (3)C10—N4—S2—O4146.59 (16)
C15—C16—C17—C180.4 (5)C10—N4—S2—C2099.50 (16)
C19—C16—C17—C18178.8 (3)C21—C20—S2—O320.1 (2)
C14—C13—C18—C171.0 (4)C25—C20—S2—O3157.57 (16)
S1—C13—C18—C17174.57 (18)C21—C20—S2—O4149.3 (2)
C16—C17—C18—C130.7 (4)C25—C20—S2—O428.37 (19)
C25—C20—C21—C220.4 (4)C21—C20—S2—N497.3 (2)
S2—C20—C21—C22178.0 (2)C25—C20—S2—N485.05 (18)
C20—C21—C22—C231.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.95 (1)2.28 (1)3.2256 (15)177 (1)
N4—H4···Cl10.94 (1)2.25 (1)3.1686 (15)166 (2)
N1—H1···Cl1i0.90 (1)2.19 (1)3.0837 (16)174 (2)
N2—H2···O3ii0.90 (1)2.28 (4)3.114 (19)154 (6)
N2A—H2A···O3ii0.90 (1)2.25 (2)3.142 (17)173 (4)
O5—H5G···Cl11.01 (1)2.05 (2)3.050 (8)170 (10)
O5—H5F···O21.00 (1)2.02 (4)2.921 (9)148 (7)
C21—H21···O1iii0.932.583.482 (3)163
C1—H1A···O4iv0.962.313.218 (3)157
C26—H26B···C14v0.963.413.896 (5)114
C19—H19B···C14vi0.962.853.664 (5)143
C19—H19B···C15vi0.962.733.458 (6)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z1/2; (vi) x+2, y+1, z+1.
 

Acknowledgements

The authors are thankful to CNPQ, FAPEMIG and PRPq-UFMG for financial support, and to CAPES for scholarships. They are also thankful to LabCri (http://www.labcri.ufmg.br/) for providing the single-crystal and polycrystalline diffraction facilities, and the Bioanalytical Facility NEPS–DQ (https://ne.qui.ufmg.br) for all chemical characterizations.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (award No. 420443/2018-5); Fundação de Amparo Pesquisa do Estado de Minas Gerais (award Nos. APQ-01948-22 and APQ-05311-23).

References

First citationCliment, M. J., Corma, A., Iborra, S. & Santos, L. L. (2009). Chem. Eur. J. 15, 8834–8841.  CrossRef PubMed CAS Google Scholar
First citationDhakal, B., Corbin, B. A., Parada, A. S., Sakai, J. G., Felton, E. A., McDonald, L. T., Gross, A. J., Nichol, G. S. & Felton, G. A. N. (2023). Inorganics, 11, 374.  CSD CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHeravi, M. M., Derikvand, F., Ranjbar, L. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 261, 156–159.  CrossRef CAS Google Scholar
First citationJohnson, C. K. (1971). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 217–219. Copenhagen: Munksgaard.  Google Scholar
First citationKuhs, W. F. & Lehmann, M. S. (1981). Nature, 294, 432–434.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R., Chaudhary, P., Nimesh, S., Verma, A. K. & Chandra, R. (2006). Green Chem. 8, 519–521.  Web of Science CrossRef CAS Google Scholar
First citationKuo, C.-W., Wang, C.-C., Kavala, V. & Yao, C.-F. (2008). Molecules, 13, 2313–2325.  CrossRef PubMed CAS Google Scholar
First citationLi, Q. Q., Liu, H., Zheng, T. T., Liu, P., Song, J. X. & Wang, Y. Y. (2020). CrystEngComm, 22, 6750–6775.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardi, M., Cozza, A., Maiuolo, L., Oliverio, M. & Procopio, A. (2011). Tetrahedron Lett. 52, 4827–4834.  CrossRef CAS Google Scholar
First citationNath, J. K., Kirillov, A. M. & Baruah, J. B. (2014). RSC Adv. 4, 47876–47886.  CSD CrossRef CAS Google Scholar
First citationOdame, F., Kleyi, P., Hosten, E., Betz, R., Lobb, K. & Tshentu, Z. (2013). Molecules, 18, 14293–14305.  CSD CrossRef PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPodrebarac, G. G., Ng, F. T. T. & Rempel, G. L. (1997). Chem. Eng. Sci. 52, 2991–3002.  CrossRef CAS Google Scholar
First citationPozarentzi, M., Stephanidou-Stephanatou, J. & Tsoleridis, C. A. (2002). Tetrahedron Lett. 43, 1755–1758.  CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRombouts, J. A., Ravensbergen, J., Frese, R. N., Kennis, J. T. M., Ehlers, A. W., Slootweg, J. C., Ruijter, E., Lammertsma, K. & Orru, R. V. A. (2014). Chem. A Eur. J. 20, 10285–10291.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimões, T. R. G., do Pim, W. D., Silva, I. F., Oliveira, W. X. C., Pinheiro, C. B., Pereira, C. L. M., Lloret, F., Julve, M. & Stumpf, H. O. (2013a). CrystEngComm, 15, 10165–10170.  Google Scholar
First citationSimões, T. R. G., Mambrini, R. V., Reis, D. O., Marinho, M. V., Ribeiro, M. A., Pinheiro, C. B., Ferrando-Soria, J., Déniz, M., Ruiz-Pérez, C., Cangussu, D., Stumpf, H. O., Lloret, F. & Julve, M. (2013b). Dalton Trans. 42, 5778–5795.  PubMed Google Scholar
First citationSiri, O. & Braunstein, P. (2005). New J. Chem. 29, 75–79.  CSD CrossRef CAS Google Scholar
First citationWu, J. J., Ye, Y. X., Qiu, Y. Y., Qiao, Z. P., Cao, M. L. & Ye, B. H. (2013). Inorg. Chem. 52, 6450–6456.  CSD CrossRef CAS PubMed Google Scholar
First citationYu, D., Shao, Q., Song, Q., Cui, J., Zhang, Y., Wu, B., Ge, L., Wang, Y., Zhang, Y., Qin, Y., Vajtai, T., Ajayan, P. M., Wang, H., Xu, T. & Wu, T. (2020). Nat. Commun. 11, 927.  CrossRef PubMed Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds