crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Multivalent hy­dro­gen-bonded architectures directed by self-com­plementarity between [Cu(2,2′-bi­imid­az­ole)] and malonate building blocks

crossmark logo

aLaboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apto. 21827, Caracas 1020-A, Venezuela, and bDepartamento de Ciencias Químicas y Ambientales, Facultad de Ciencias Naturales y Matemáticas (FCNM), and Center of Nanotechnology Research and Development, CIDNA, Escuela Superior Politécnica del Litoral (ESPOL), 30.5 vía Perimetral, Guayaquil, Ecuador
*Correspondence e-mail: ratenciof@gmail.com

Edited by T. Ohhara, J-PARC Center, Japan Atomic Energy Agency, Japan (Received 14 June 2024; accepted 12 August 2024; online 19 August 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

The synthesis and structural characterization of four novel supra­molecular hy­dro­gen-bonded arrangements based on self-assembly from mol­ecular `[Cu(2,2′-bi­imid­az­ole)]' modules and malonate anions are pre­sent­ed, namely, tetra­kis­(2,2′-bi­imid­az­ole)di-μ-chlorido-dimal­on­atotricopper(II) penta­hydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua­(2,2′-bi­imid­az­ole)­mal­on­atocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis­[aqua­bis­(2,2′-bi­imid­az­ole)­cop­per(II)] di­mal­on­atodi­perchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis­(2,2′-bi­imid­az­ole)­copper(II) bis­[bis­(2,2′-bi­imid­az­ole)(2-carb­oxy­acetato)mal­on­atocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These as­sem­blies are characterized by self-com­plementary donor–acceptor mol­ecular inter­actions, demonstrating a recurrent and distinctive pattern of hy­dro­gen-bonding preferences among the carboxyl­ate, carb­oxy­lic acid and N—H groups of the coordinated 2,2′-bi­imid­az­ole and malonate ligands. Additionally, co­or­din­ation of the carboxyl­ate group with the metallic centre helps sustain re­mark­able supra­molecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal com­plexes, into a single structure.

1. Introduction

The construction of supra­molecular assemblies sustained from hy­dro­gen-bonded inter­actions has led to the development of many materials with attractive properties, finding applications in both academic and industrial settings (Lehn, 1990[Lehn, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1319.]; Brammer et al., 2000[Brammer, L., Rivas, J. C. M., Atencio, R., Fang, S. & Pigge, F. C. (2000). J. Chem. Soc. Dalton Trans. pp. 3855-3867.]; Mali et al., 2012[Mali, K. S., Adisoejoso, J., Ghijsens, E., De Cat, I. & De Feyter, S. (2012). Acc. Chem. Res. 45, 1309-1320.]; Ewen & Steinke, 2008[Ewen, S. L. & Steinke, J. H. G. (2008). Struct. Bonding, 129, 207-248.]; Burrows, 2003[Burrows, A. D. (2003). Struct. Bonding, 108, 55-96.]). A notable example is the family of inorganic–organic hybrid materials, which have garnered significant attention and hold immense potential (Gomez-Romero, 2001[Gomez-Romero, P. (2001). Adv. Mater. 13, 163-174.]; Al Zoubi et al., 2020[Al Zoubi, W., Kamil, M. P., Fatimah, S., Nashrah, N. & Ko, Y. G. (2020). Prog. Mater. Sci. 112, 100663.]; Song et al., 2023[Song, J., Vikulina, A. S., Parakhonskiy, B. V. & Skirtach, A. G. (2023). Front. Chem. 11, 1-23.]). These materials can incorporate the functionality of both classes of com­ponents in a single solid, opening a world of possibilities for innovative applications (Sanchez et al., 2011[Sanchez, C., Belleville, P., Popall, M. & Nicole, L. (2011). Chem. Soc. Rev. 40, 696.]; Mir et al., 2018[Mir, S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H. & Khosla, A. (2018). J. Electrochem. Soc. 165, B3137-B3156.]; Gomez-Romero, 2001[Gomez-Romero, P. (2001). Adv. Mater. 13, 163-174.]).

In this context, we have exploited the ability of multivalent metal–organic building blocks based on the harmonization of hy­dro­gen bonds and metal coordination as a strategy to engineer novel functional metal assemblies bearing specific ligands with variable multivalent binding donor–acceptor sites (Briceño et al., 2006[Briceño, A., Leal, D., Atencio, R. & Díaz de Delgado, G. (2006). Chem. Commun. pp. 3534-3536.], 2009[Briceño, A., Hill, Y., González, T. & Díaz de Delgado, G. (2009). Dalton Trans. pp. 1602-1610.]; Hill & Briceño, 2007[Hill, Y. & Briceño, A. (2007). Chem. Commun. pp. 3930-3932.]; Briceño & Escalona, 2015[Briceño, A. & Escalona, A. M. (2015). Photochemistry, Vol. 43, pp. 286-320. London: Royal Society of Chemistry.]). Rational control of the supra­molecular domain introduces inherent structural malleability and diversity (different geometric coordination, multivalency capacity, switching from neutral to distinctive ionic metal com­plexes) for the potential design of novel multicom­ponent hy­dro­gen-bonded supra­molecular arrays (Hill & Briceño, 2007[Hill, Y. & Briceño, A. (2007). Chem. Commun. pp. 3930-3932.]; Atencio et al., 1999[Atencio, R., Brammer, L., Fang, S. & Christopher Pigge, F. (1999). New J. Chem. 23, 461-463.]; Brammer et al., 2000[Brammer, L., Rivas, J. C. M., Atencio, R., Fang, S. & Pigge, F. C. (2000). J. Chem. Soc. Dalton Trans. pp. 3855-3867.]; Mulder et al., 2004[Mulder, A., Huskens, J. & Reinhoudt, D. N. (2004). Org. Biomol. Chem. 2, 3409.]). These structural features can also be explored to inter­calate secondary mol­ecules or mixed metal–organic building units through self-recognition directed by com­plementary hy­dro­gen-bonded synthons between correctly oriented pendant functional groups in metal coordination building blocks (e.g. carboxyl, carboxyl­ate, N—H and O—H groups; Fig. 1[link]).

[Figure 1]
Figure 1
Representation of the hy­dro­gen-bonded heterosynthons formed between 2,2′-bi­imid­az­ole mol­ecules (free and coordinated) with the different com­plementary moieties (carb­oxy­lic acid, carboxyl­ate and halogen). An isographic R22(9) graph set can be designated for Ia, Ib, Ic and Id, while an R21(7) graph set is assigned for Ie and If (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

A particularly intriguing and versatile organic species for creating hybrid materials is the mol­ecule 2,2′-bi­imid­az­ole (H2biim) (Tadokoro et al., 1996[Tadokoro, M., Isobe, K., Miyazaki, A., Enoki, T. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 278, 199-207.], 2002[Tadokoro, M., Kanno, H., Kitajima, T., Shimada-Umemoto, H., Nakanishi, N., Isobe, K. & Nakasuji, K. (2002). Proc. Natl Acad. Sci. USA, 99, 4950-4955.]; Barquín et al., 2003[Barquín, M., Garmendia, M. J. G. & Bellido, V. (2003). Transition Met. Chem. 28, 356-360.]). As a neutral organic mol­ecular entity, it can form hy­dro­gen-bonded assemblies with carb­oxy­lic acid groups (Ia in Fig. 1[link]). It can also coordinate with metal centres while acting as a donor in hy­dro­gen-bonding inter­actions (IbIf in Fig. 1[link]). In our research group, these coordinated fragments are considered mol­ecular modules that can be assembled through their N—H groups to a second module with electronically and geometrically com­plementary functional groups. Thus, `M(H2biim)2' combined with aromatic carb­oxy­lic acid groups (see Ib and Ic in Fig. 1[link]) form planar supra­molecular modules, which im­proves the possibility of generating one- (1D) or two-dimensional (2D) assemblies, as we have reported previously (Atencio et al., 2004[Atencio, R., Chacón, M., González, T., Briceño, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505-513.]). The carboxyl­ate group (Id in Fig. 1[link]), linked directly to arene or pyridine rings, has been used as a second module to design robust 1D or 2D supra­molecular species capable of performing reversibly water sorption–desorption processes preserving the crystallinity of the solid (Atencio et al., 2004[Atencio, R., Chacón, M., González, T., Briceño, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505-513.]). In these cases, two mol­ecules of H2biim occupy the equatorial plane of a Co2+ or Ni2+ com­plex with octa­hedral coordination geometry, with two coordination water mol­ecules located at the remaining axial positions. The energy of these R22(9) hy­dro­gen bonds were theoretically estimated to be 24.5 and 27.8 kcal mol−1 between carb­oxy­lic acid or carboxyl­ate and coordinated bi­imid­az­ole entities, respectively (Atencio et al., 2004[Atencio, R., Chacón, M., González, T., Briceño, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505-513.]). These values lie above the upper limit of the range invoked for a medium–strong hy­dro­gen bond, with an energy range of 6–20 kcal mol−1 (Gia­covazzo et al., 2011[Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Gilli, G., Gilli, P., Zanotti, G., Ferraris, G. & Catti, M. (2011). In Fundamentals of Crystallography. New York: Oxford University Press.]). This approach has also been achieved for building extended hy­dro­gen-bonded systems with discrete anions like chloride (Ramírez et al., 2002[Ramírez, K., Reyes, J. A., Briceño, A. & Atencio, R. (2002). Cryst­EngComm, 4, 208-212.]; Atencio et al., 2005[Atencio, R., Ramírez, K., Reyes, J. A., González, T. & Silva, P. (2005). Inorg. Chim. Acta, 358, 520-526.]) (If in Fig. 1[link]). Accordingly, we focused on using di­carboxyl­ates with more considerable conformational flexibility (e.g. malonate) to increase the structural diversity. It has been observed (vide infra) that direct coordination of the carboxyl­ate to the metal centre increases the likelihood of driving three-dimensional (3D) architectures (Delgado et al., 2012[Delgado, F. S., Jiménez, C. A., Lorenzo-Luis, P., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2012). Cryst. Growth Des. 12, 599-614.]). These possibilities, included within the field of crystal engineering, are demonstrated with the synthesis and structural characterization of the four novel com­plexes [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, (1), [Cu(H2biim)(mal)(H2O)]·2H2O, (2), [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, (3), and [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O, (4), where H2biim is 2,2′-bi­imid­az­ole, mal is malonate and Hmal is hy­dro­gen malonate (or 2-carboxy­ace­tate).

2. Experimental

All reagents were obtained from commercial sources and used without further purification, except for 2,2′-bi­imid­az­ole, which was synthesized following the previously reported procedure of Ramírez et al. (2002[Ramírez, K., Reyes, J. A., Briceño, A. & Atencio, R. (2002). Cryst­EngComm, 4, 208-212.]). The elemental analyses (C, H and N) were performed on an EA1108 Fisons elemental analyzer. The FT–IR spectra were recorded from KBr discs using a Nicolet Magna-IR 560 spectrophotometer.

2.1. Synthesis and crystallization

The syntheses of 14 were carried out by dissolving 2,2′-bi­­imid­az­ole (0.3728 mmol) in 50 ml of an ethanol/water (1:1 v/v) mixture under reflux at boiling tem­per­a­ture. The corresponding salt [CuCl2 for 1, Cu(AcO)2·H2O for 2 and 4, and Cu(ClO4)2·6H2O for 3] was added with constant stirring. The solution turned light green, at which point malonic acid was added. The final molar ratio of Cu–bi­imid­az­ole–H2mal was 1:2:1, except in the case of 4, where a final ratio of 1:2:2 was used. The resulting solutions were evaporated slowly over a period of three weeks. The products were separated by deca­ntation, washed with a cold ethanol/water mixture and dried at room tem­per­a­ture, yielding dark-green crystals that were stable in air (yield: 70% for 1, 63% for 2, 60% for 3 and 35% for 4).

For 1: elemental analysis (%) calculated for C30H28Cl2Cu3N16O8·5H2O: C 32.83, H 3.55, N 20.42; found: C 33.12, H 3.43, N 19.98. FT–IR [KBr, ν(cm−1)]: 3395, 3119–3011, 2901, 1569, 1375.

For 2: elemental analysis calculated (%) for C9H10CuN4O5·2.2H2O: C 30.56, H 3.99, N 15.83; found: C 30.90, H 3.90, N 16.02. FT–IR [KBr, ν(cm−1)]: 3421, 3201, 2923, 1533, 1370, 1185–1130.

For 3: elemental analysis calculated (%) for C30H32Cl2Cu3N16O18·2.22H2O: C 29.87, H 3.05, N 18.58; found: C 29.98, H 2.99, N 19.00. FT–IR [KBr, ν(cm−1)]: 3549, 3136–3007, 2938, 1576, 1429, 1108, 621.

For 4: elemental analysis calculated (%) for C24H23Cu1.5N12O8·6.5H2O: C 35.08, H 4.44, N 20.46; found: C 35.42, H 4.31, N 20.73. FT–IR [KBr, ν(cm−1)]: 3427, 3127–3002, 2918, 1905, 1561, 1359, 1130.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms on C, N and O atoms were placed at fixed positions. They were refined using the riding model, with isotropic displacement parameters set at 1.2Ueq(C,N) or 1.5Ueq(O). Most of the positions of the crystallization water mol­ecules in all structures were disordered. Thus, a solvent mask was implemented and the corresponding calculated number of electrons was consistent with 2.5H2O (in 1), 2.2H2O (in 2) and 6.5H2O (in 4) per asymmetric unit. For 3, only one crystallization water mol­ecule was found, and the position was refined freely. The remaining water mol­ecules were estimated using a solvent-mask approach. The perchlorate group in 3 was found to be disordered over two positions and was modelled using a restricted Cl—O distance of ∼1.42 Å (Olmstead, 2020[Olmstead, M. M. (2020). Acta Cryst. C76, 159-163.]). The occupancies of both orien­tations was refined and converged to 0.83 and 0.17, respectively. Displacement ellipsoid plots for 24 are shown in Figs. S7–S9, respectively, of the supporting information.

Table 1
Experimental details

Experiments were carried out at 298 K with Mo Kα radiation on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H-atom parameters were constrained.

  1 2 3 4
Crystal data
Chemical formula [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O [Cu(C6H6N4)2(H2O)]2·[Cu(C3H2O4)(ClO4)2]·2.2H2O [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O
Mr 1092.28 353.78 1205.87 1639.91
Crystal system, space group Orthorhombic, Ccce Monoclinic, P21/c Monoclinic, C2/c Monoclinic, P21/c
a, b, c (Å) 13.766 (3), 20.162 (4), 30.654 (6) 7.0587 (4), 20.3107 (12), 18.9523 (10) 17.9569 (11), 15.2466 (6), 16.6781 (10) 7.7912 (6), 12.5972 (10), 32.481 (3)
α, β, γ (°) 90, 90, 90 90, 91.770 (4), 90 90, 95.296 (5), 90 90, 96.802 (2), 90
V3) 8508 (3) 2715.8 (3) 4546.7 (4) 3165.5 (4)
Z 8 8 4 2
μ (mm−1) 1.69 1.65 1.60 1.11
Crystal size (mm) 0.3 × 0.2 × 0.2 0.36 × 0.11 × 0.09 0.38 × 0.36 × 0.33 0.14 × 0.11 × 0.09
 
Data collection
Tmin, Tmax 0.600, 0.710 0.903, 1.000 0.681, 1.000 0.557, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 44434, 4454, 3252 21646, 4229, 2925 17890, 3848, 2674 33363, 5454, 2735
Rint 0.056 0.047 0.048 0.153
(sin θ/λ)max−1) 0.666 0.591 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.04 0.040, 0.108, 1.04 0.069, 0.199, 1.07 0.070, 0.179, 1.01
No. of reflections 4454 4229 3848 5454
No. of parameters 267 343 338 413
No. of restraints 0 0 50 0
Δρmax, Δρmin (e Å−3) 0.54, −0.61 0.58, −0.40 1.14, −0.79 0.46, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 1996[Brandenburg, K. (1996). Acta Cryst. A52, C562.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

2.3. Computational calculations

The geometry optimization was performed using the GAUSSIAN09 package of ab initio programs for quantum chemical density functional theory (DFT) com­putations (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Caricato, X. L. M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN09. Version B.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/.]). The calculations were conducted in the gas phase at the B3YLP/DGTZVP level of theory. The starting geometric coordinates were taken from the Cu11 com­plex of the asymmetric unit of the crystal structure of 2, based on crystallographic information files (CIFs) previously generated from the single-crystal XRD study. Using the optimized coordinates in the DFT study, no imaginary frequencies were obtained, confirming that the mol­ecular structure corresponds to an energy minimum. GaussView was used as an inter­face to set up the GAUSSIAN09 input and visualize the results (Dennington et al., 2016[Dennington, R., Keith, T. A. & Millam, J. M. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/.]).

3. Results and discussion

The crystal structure of 1 is built up from a trinuclear entity consisting of two `Cu(H2biim)2' and one `Cu(mal)2' module (Fig. 2[link]). Two Cl ligands serve as bridging ligands from Cu2+ ions to form the final [Cu(H2biim)2(μ-Cl)Cu(mal)]2 com­plex. Thus, each Cu1 atom in `Cu(H2biim)2' displays a distorted square-pyramidal coordination environment, with two mol­ecules of 2,2′-bi­imid­az­ole coordinated in a chelating fashion through the two N atoms, forming the base of the coordination geometry [average Cu1—N = 2.025 (3) Å]. In contrast, the apical position is occupied by one Cl ligand [Cu1—Cl1 = 2.5062 (12) Å]. The Cu2 atom in `Cu(mal)2' sits on a twofold special position (Wykoff position 8h), showing a pseudo-octa­hedral geometry, with two malonate anions coordinated is trans and in a bidentate chelating manner through two O atoms in the equatorial plane [average Cu2—O = 1.962 (2) Å]. The remaining axial positions are occupied by the Cl ligands, with a Cu—Cl distance [Cu2—Cl1 = 2.7522 (11) Å] significantly longer than that found for Cu1—Cl1, which is characteristic of Jahn–Teller distortion (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). The packing appears to be dominated by R22(9)-Id hydrogen bonding between neighbouring com­plexes (Fig. 3[link]). There are two of these inter­molecular inter­actions, i.e. one involving N2—H2⋯O3 [N2⋯O3 = 2.871 (4) Å and N6—H6⋯O1 = 173°] and N4—H4⋯O4 [N4⋯O4 = 2.678 (5) Å and N4—H4⋯O4 = 167°], and the second com­prising N6—H6⋯O2 [N6⋯O2 = 2.704 (5) Å and N6—H6⋯O2 = 175°] and N8—H8⋯O1 [N8⋯O1 = 2.822 (4) Å and N8—H8⋯O1 = 158°]. In addition, there also exist ππ inter­molecular inter­actions between consecutive imid­az­ole rings in the a direction [Cg1⋯Cg2 = 3.6742 (5) Å and Cg3⋯Cg3′ = 3.7019 (7) Å, where Cg1 is the centroid of the N2/C1/N1/C2/C3 ring, Cg2 is the centroid of N2/C4/N4/C6/C5, Cg3 is the centroid of N7/C10/N8/C12/C11 and Cg3′ is the centroid of N7′/C10′/N8′/C12′/C11′]. Thus, the hy­dro­gen bonding and ππ inter­actions help to sustain an extended layer in the ac plane (see Fig. 3[link]). The final 3D packing is achieved by stacking of the 2D arrays along the b axis, which leaves enough space between layers to accommodate the water mol­ecules of crystallization (Fig. 4[link]).

[Figure 2]
Figure 2
Representation of the trimetallic coordinated module found in the crystal structure of 1. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Representation of the 2D array in the crystal structure 1, displaying the observed R22(9)-Id hy­dro­gen bonds. H atoms on C atoms have been omitted for clarity.
[Figure 4]
Figure 4
Representation of the 2D array stacking along the b axis in the crystal structure of 1.

The asymmetric unit of the crystal structure of 2 contains two chemically equivalent [Cu(H2biim)(mal)(H2O)] com­plexes [Fig. 5[link](a)], which are crystallographically independent. In contrast to 1, the Cu2+ ions display a distorted square-pyramidal coordination geometry, with one 2,2′-bi­imid­az­ole chelated via two N atoms [Cu11—N11 = 2.006 (4) Å and Cu11—N31 = 2.007 (4) Å; Cu12—N12 = 1.999 (4) Å and Cu12—N32 = 2.003 (4) Å] and one bidentate malonate ligand, which is coordinated in a slightly asymmetric manner [Cu11—O21 = 1.928 (3) Å and Cu11—O41 = 1.943 (3) Å; Cu12—O22 = 1.944 (3) Å and Cu12—O42 = 1.933 (3) Å] and is trans to bi­imid­az­ole. In both cases, the apical position is occupied by a coordinated water mol­ecule [Cu11—O11 = 2.282 (3) Å and Cu11—O12 = 2.287 (3) Å]. The bi­imid­az­ole bidentate coordination generates a five-membered ring [Cu1x—N3x—C4x—C1x—N1x, with x = 1 or 2 for the com­plexes containing Cu11 and Cu12, respectively; see Fig. 5[link](a)], which is almost planar, with the most significant deviations from the best plane being only 0.054 (4) and 0.069 (4) Å for the Cu11 and Cu12 com­plexes, respectively. However, the six-membered ring (Cu1x—O4x—C9x—C8x—C7x—O2x, with x = 1 or 2) formed by the coordination of the malonate ligand enables deviations from the mean plane of up to 0.607 (5) and 0.637 (5) Å for the C81 and C82 atoms, respectively.

[Figure 5]
Figure 5
(a) Representation of the two crystallographically independent com­plexes found in the asymmetric unit of 2. (b) The helical-like columns of a pair of com­plexes along the a axis. The vertical dashed line corresponds to the helical axis.

It should be noted that both com­plexes are com­pletely asymmetric in the solid state due to their distorted coordination geometry and the positions of the H atoms on the coordinated water mol­ecules. The observed distortion might be associated with electronic effects, typically occurring in coordination com­pounds with specific electronic configurations. These effects lower the symmetry to stabilize the system (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]; Deshpande et al., 2021[Deshpande, M. S., Morajkar, S. M., Ahirwar, M. B., Deshmukh, M. M. & Srinivasan, B. R. (2021). J. Chem. Sci. 133, 99.]). To discern whether this distortion is an intrinsic property of the com­plexes or if it arises due to crystal packing effects, we performed theoretical calculations at the density functional theory (B3LYP/DGDZVP) level. The calculations revealed a mol­ecular geometry with minimal energy in the gas phase, resembling the distorted geometry observed in the crystalline state (see Table S10 in the supporting information). This result strongly suggests that the observed distortion and symmetry breaking are mainly inherent to the com­plex rather than induced by the crystal environment.

These [Cu(H2biim)(mal)(H2O)] com­plexes fit together via bifurcated asymmetric inter­molecular O—H⋯O hy­dro­gen bonds involving one coordinated water mol­ecule as a donor group and two O atoms from a carboxyl­ate group as acceptors [O11⋯O22 = 2.833 (4) Å and O11—H11B⋯O22 = 173.8 (2)°; O11⋯O32 = 3.187 (5) Å and O11—H11B⋯O32 = 129.1 (2)°]. The same kind of bifurcated hy­dro­gen bonding enables stacking of this pair of com­plexes in columns along the a axis. A striking feature is that such columns are hosted in a site that facilitates the formation of helical-like columns of the com­plexes. Columns are inter­digitated, one beside the other, in the ac plane (Fig. 6[link]), assisted by two R21(7)-Ie hy­dro­gen bonds [O32⋯N22 = 2.695 (5) Å and N22—H22⋯O32 = 147.4 (3)°; O32⋯N42 = 2.912 (5) Å and N42—H42⋯O32 = 139.6 (3)°; O51⋯N21 = 2.872 (5) Å and N21—H21⋯O51 = 141.0 (3)°; O51⋯N41 = 2.693 (5) Å and N41—H41⋯O51 = 147.8 (3)°]. The inter­digitation also enables two ππ inter­actions between imid­az­ole rings [Cg1⋯Cg2 = 3.688 (4) Å and Cg1⋯Cg2′ = 3.773 (5) Å, where Cg1 is the centroid of the N11/C21/C31/N21/C11 ring, Cg2 of the N32/C52/C62/N42/C42 ring and Cg2′ of the N32′/C52′/C62′/N42′/C42′ ring] that help to sustain this 2D array. The final 3D crystal structure is defined by stacking of the 2D array along the b axis in a ABABAB sequence. Such packing leaves two distinctive channels parallel to the a axis where crystallization water mol­ecules are hosted (see Fig. S1 in the supporting information).

[Figure 6]
Figure 6
(a) Representation displaying (a) the inter­digitation of columns in the ac plane assisted by ππ inter­actions and (b) the R22(9)-Id hy­dro­gen-bond type observed in the crystal structure of 2.

The asymmetric unit of the crystal structure of 3 contains one [Cu(H2biim)2(H2O)]2+ cation, one half of the [Cu(mal)2(ClO4)2]4− anion and water mol­ecules of crystallization. The metal centre for the cation displays a pseudo-square-pyramidal coordination geometry, with two bidentate bi­imid­az­ole [mean Cu1—N = 2.018 (6) Å] and one coordinated water mol­ecule [Cu1—O1 = 2.194 (6) Å] [Fig. 7[link](a)]. On the other hand, the Cu2+ ion of the anion sits on a twofold special position (Wykoff position 4e), exhibiting a quite distorted octa­hedral environment involving two chelating malonate ligands coordinated in the equatorial plane [Cu2—O2 = 1.925 (4) Å and Cu2—O4 = 1.922 (5) Å] and with the axial positions occupied by two perchlorate groups [Cu2—O2A = 2.781 (15) Å] [Fig. 7[link](b)]. As anti­cipated, cation–anion inter­actions occur via R22(9)-Id hy­dro­gen bonds, in which each carboxyl­ate group is assembled into one cationic com­plex. Therefore, such a cation–anion inter­action drives the formation of hy­dro­gen-bonded columns along the b axis. According to the coordination geometry on each metal centre, there exist two crystallographically independent hy­dro­gen bonds [Fig. 8[link](a)] [O2⋯N6 = 2.959 (8) Å and N6—H6⋯O2 = 159.4 (5)°; O3⋯N8 = 2.740 (8) Å and N8—H8⋯O3 = 175.7 (4)°; O4⋯N4 = 3.107 (9) Å and N4—H4⋯O4 = 156.8 (5)°; O5⋯N2 = 2.720 (8) Å and N2—H2⋯O5 = 171.6 (4)°]. Thus, the multivalence concert between the coordination environment and the R22(9)-Id hy­dro­gen bonding facilitates the assembly of double helical columns, as displayed in Fig. 8[link](b). Columns are aligned parallel to each other, building up the final 3D architecture, which leaves intricate channels along the b axis where the crystallization water mol­ecules are hosted (Fig. S2 in the supporting information).

[Figure 7]
Figure 7
Representation of (a) the cationic and (b) the anionic com­plexes found in the crystal structure of 3.
[Figure 8]
Figure 8
Representation of the multivalent modular assembly displaying the columnar double helix found in the crystal structure of 3. (a) Double helix hy­dro­gen-bonding column. (b) Zoom-up displaying the R22(9)-Id hy­dro­gen bonds. [Symmetry codes: (−x + 1, −y + 1, −z + 1) and (x, −y, z + [{1\over 2}])].

The asymmetric unit of 4 can be described as being com­posed of two different modules, namely, half of a square-planar cationic [Cu(H2biim)2]2+ unit (Cu2 hereafter) and one pseudo-octa­hedral anionic [Cu(H2biim)2(Hmal)(mal)] com­plex (Cu1 hereafter) (Fig. 9[link]). Two bidentate bi­imid­az­ole ligands coordinate to the metal centre in the Cu2 com­plex [Cu2—N13 = 1.993 (6) Å and Cu2—N33 = 1.989 (6) Å] that sits on an inversion centre (Wykoff position 2a). Consequently, the mean plane involving the non-H atoms defines an almost perfect plane [maximum deviation at C13 = 0.055 (6) Å]. The Cu1 com­plex shows two H2biim ligands [Cu1—N11 = 1.991 (5) Å, Cu1—N31 = 2.025 (5) Å, Cu1—N12 = 2.032 (5) Å and Cu1—N32 = 2.007 (5) Å] occupying the equatorial positions, while the axial sites are engaged by two malonate ligands coordinated in a monodentate manner, of which one is monoprotonated (Hmal) and the other one is fully deprotonated (mal). The axial Cu1—O distances [Cu1—O7(mal) = 2.647 (5) Å and Cu1—O3(Hmal) = 2.867 (5) Å] and their orientation angles from equatorial ligands (average 92.2 and 87.8° for O7 and O3, respectively) suggest relatively weak inter­actions between these monodentate malonates and the metal centre. The Cu—O(car­box­yl­ate) bond lengths of ∼2.8 Å have been suggested previously to be involved in assembling a tetra­nuclear com­plex (Colacio et al., 2000[Colacio, E., Ghazi, M., Kivekäs, R. & Moreno, J. M. (2000). Inorg. Chem. 39, 2882-2890.]). A closer com­pound, [Cu2(mal)2(dpp)(H2O)] [dpp = 2,3-bis­(pyrid­yl)pyrazine], with long axial Cu—O bond distances of 2.751 (4) and 2.810 (5) Å, was also reported previously (Delgado et al., 2008[Delgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). Cryst. Growth Des. 8, 3219-3232.]). Unlike the Cu2 com­plex, the Cu1 ion sits on a general position with an equatorial mean plane, defined by all the non-H atoms, displaying a deviation of up to 0.407 (6) Å. An alternative description for the crystal packing of 4 results from separating the understanding of the supra­molecular assembly concerning each modular ionic com­plex. The Cu1 com­plex forms two crystallographically independent R22(9)-Id hy­dro­gen bonding, in one of which the com­plex acts as a donor through the bi­imid­az­ole N—H groups [N22⋯O4′ = 2.678 (7) Å and N22—H22⋯O4′ = 176.9 (4)°; N42⋯O3′ = 2.673 (7) Å and N42—H42⋯O3′ = 172.6 (4)°]. In the other, a coordinated carboxyl­ate group turns into the acceptor [N21′′⋯O7 = 2.744 (7) Å and N21—H21⋯O7= 170.7 (4)°; N41′′⋯O8 = 2.689 (7) Å and N41—H41⋯O8= 164.8 (4)°]. This hy­dro­gen bonding enables the self-assembly of the Cu1 com­plex in an extended 2D array in the bc plane [Fig. 10[link](a)]. Two consecutive 2D arrays are sustained through the Cu2 com­plexes via R22(9)–Ic hy­dro­gen bonds. In this case, the uncoordinated carb­oxy­lic acid group of the anionic Cu1 com­plexes acts as an acceptor [N23⋯O1 = 2.634 (8) Å and N23—H23⋯O1 = 170.2 (4)°; N42⋯O3 = 2.673 (7) Å and N42—H42⋯O3 = 172.6 (4)°] [Fig. 10[link](b)]. The inter­play between the Cu1 and Cu2 com­plexes is also manifested by the axial weak inter­actions Cu2⋯O6 [2.926 (5) Å], suggesting the remaining uncoordinated car­box­yl­ate on the Cu1 com­plex (O6/C4/O5) [Fig. 11[link](a)]. The con­struction of the 3D architecture is also assisted by O—H⋯O hy­dro­gen bonding involving the carb­oxy­lic acid groups [O2⋯O5 = 2.606 (7) Å and O2—H2⋯O5 = 116.4 (4) Å]. The final 3D network leaves channels along the a axis where crystallization water mol­ecules are hosted [Fig. 11[link](b)].

[Figure 9]
Figure 9
Representation of the mol­ecular modules found in the crystal structure of 4. (a) The square-planar Cu2 com­plex, in which the metal centre sits on an inversion centre, is displayed. [Symmetry code: (′) −x, −y, −z]. (b) The Cu1 com­plex displaying the monoprotonated malonate entities coordinated in a monodentate mode.
[Figure 10]
Figure 10
Representation of the modular assembly involving hy­dro­gen bonds found in the crystal structure of 4. (a) Self-assembly through R21(7)-Ie hy­dro­gen bonding of the Cu1 com­plex forming a 2D array. Only coordinated carboxyl­ate groups and H atoms engaged in hy­dro­gen bonds are displayed for clarity. (b) One uncoordinated carb­oxy­lic acid group in the Cu1 com­plex linking to the Cu2 com­plex via R22(9)–Ic hy­dro­gen bonding. [Symmetry codes: (−x + 2, y − [{1\over 2}], −z + [{1\over 2}]); (−x + 1, y − [{1\over 2}], −z + [{1\over 2}]); (−x + 1, y + [{1\over 2}], −z + [{1\over 2}]).]
[Figure 11]
Figure 11
(a) View of the Cu2 com­plex module sustained by Cu⋯O inter­actions observed in the crystal structure of 4. (b) The final 3D packing representation of 4, displaying channels along the a axis where crystallization water molecules are hosted.

4. Conclusions

In summary, we demonstrated the potential of the Cu2+/H2biim/mal system as a versatile multivalent hy­dro­gen-bonded metal–organic architecture to anti­cipate supra­mole­cular assemblies. From a structural perspective, the supra­molecular domains of these metal com­plexes can be fine-tuned by varying the hy­dro­gen-bonded multivalency, com­pensating anion and dimensionality. This approach allowed various structural architectures, including a 1D helix, double helix columns, and 2D and 3D hy­dro­gen-bonded networks. This structural versatility is associated with the metal coordination flexibility of the Cu2+ centres and the remarkable robustness of the hy­dro­gen-bonded heterosynthons formed between carboxyl­ate/carb­oxy­lic and N—H groups (types IbIe).

These novel supra­molecular architectures, with their potential applications in hybrid inorganic–organic materials, underscore the importance and impact of this approach and promise new tools for materials design and synthesis. In addition, the possibility of chemical coupling of mixtures of distinctive metal–organic building blocks in a single phase opens new perspectives in materials science toward the study of providing supra­molecular assistance to materials engineering. To increase the level of sophistication, further studies are underway both on the preparation of novel mixed-metallic com­plexes and on mol­ecular adsorption on solids exploiting such hy­dro­gen-bonded synthons.

Supporting information


Computing details top

Tetrakis(2,2'-biimidazole)-1κ4N,N';3κ4N,N'-di-µ-chlorido-1:2κ2Cl:Cl;2:3κ2Cl:Cl-dimalonato-2κ4O,O'-tricopper(II) pentahydrate (1) top
Crystal data top
[Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2ODx = 1.705 Mg m3
Mr = 1092.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CcceCell parameters from 17143 reflections
a = 13.766 (3) Åθ = 1.9–27.8°
b = 20.162 (4) ŵ = 1.69 mm1
c = 30.654 (6) ÅT = 298 K
V = 8508 (3) Å3Block, green
Z = 80.3 × 0.2 × 0.2 mm
F(000) = 4440
Data collection top
Rigaku AFC-7S/Mercury (2x2 bin mode)
diffractometer
4454 independent reflections
Radiation source: sealed X-ray tube3252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 1616
Tmin = 0.600, Tmax = 0.710k = 2323
44434 measured reflectionsl = 2936
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0728P)2 + 14.9339P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4454 reflectionsΔρmax = 0.54 e Å3
267 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data for 14 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59208 (3)0.00504 (2)0.12719 (2)0.03589 (17)
Cu20.2500000.0000000.12246 (2)0.03365 (19)
Cl10.42931 (7)0.06037 (6)0.12314 (3)0.0502 (3)
O10.19974 (18)0.05900 (11)0.16807 (7)0.0371 (6)
O20.1631 (2)0.15618 (13)0.19633 (8)0.0571 (8)
O30.20776 (18)0.06096 (11)0.07631 (7)0.0365 (6)
O40.1863 (3)0.16109 (14)0.04916 (8)0.0848 (13)
N10.5927 (2)0.03016 (15)0.06557 (9)0.0378 (7)
N20.6265 (2)0.00945 (15)0.00354 (9)0.0400 (7)
H20.6465100.0105430.0266390.048*
N30.6635 (2)0.08191 (15)0.09847 (9)0.0406 (7)
N40.6945 (3)0.13052 (16)0.03579 (9)0.0502 (8)
H40.6998280.1368310.0081510.060*
N50.5862 (2)0.08437 (15)0.15783 (9)0.0412 (7)
N60.6134 (2)0.13775 (15)0.21918 (9)0.0446 (8)
H60.6266320.1451430.2461650.053*
N70.6150 (2)0.03624 (15)0.18865 (9)0.0412 (7)
N80.6304 (2)0.00952 (16)0.25794 (9)0.0436 (7)
H80.6353220.0140530.2812170.052*
C10.6293 (2)0.01403 (18)0.03760 (10)0.0358 (8)
C20.5651 (3)0.08357 (19)0.04054 (11)0.0431 (9)
H2A0.5365880.1222050.0510790.052*
C30.5857 (3)0.07119 (19)0.00147 (12)0.0454 (9)
H30.5743010.0994550.0248960.055*
C40.6633 (3)0.07564 (18)0.05516 (10)0.0374 (8)
C50.6964 (3)0.1451 (2)0.10619 (12)0.0511 (10)
H50.7037690.1641810.1335950.061*
C60.7165 (4)0.1752 (2)0.06788 (13)0.0603 (12)
H6A0.7404990.2178960.0640690.072*
C70.6070 (3)0.07867 (18)0.20007 (11)0.0375 (8)
C80.5772 (3)0.15121 (18)0.15031 (12)0.0448 (9)
H8A0.5612930.1705420.1237070.054*
C90.5951 (3)0.18458 (19)0.18794 (12)0.0475 (9)
H90.5950400.2303450.1917290.057*
C100.6200 (3)0.01301 (18)0.21724 (10)0.0360 (8)
C110.6218 (3)0.09369 (19)0.21274 (12)0.0487 (10)
H110.6198560.1365950.2016340.058*
C120.6317 (3)0.0771 (2)0.25552 (12)0.0508 (10)
H120.6381290.1063400.2787980.061*
C130.1897 (3)0.12118 (17)0.16521 (10)0.0356 (8)
C140.2160 (4)0.15692 (19)0.12365 (9)0.0469 (9)
H14A0.2839390.1692590.1257660.056*
H14B0.1789280.1978230.1230040.056*
C150.2021 (3)0.12340 (17)0.08030 (10)0.0406 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0465 (3)0.0383 (3)0.0229 (3)0.00165 (19)0.00055 (16)0.00320 (15)
Cu20.0510 (4)0.0299 (4)0.0201 (3)0.0072 (3)0.0000.000
Cl10.0391 (5)0.0562 (7)0.0552 (6)0.0002 (4)0.0007 (4)0.0003 (4)
O10.0558 (16)0.0308 (14)0.0245 (11)0.0038 (11)0.0055 (10)0.0005 (9)
O20.103 (2)0.0366 (15)0.0312 (13)0.0163 (15)0.0119 (13)0.0034 (10)
O30.0538 (16)0.0307 (14)0.0249 (11)0.0016 (11)0.0046 (10)0.0004 (9)
O40.188 (4)0.0342 (16)0.0317 (14)0.013 (2)0.0201 (18)0.0048 (11)
N10.0450 (18)0.0387 (18)0.0295 (15)0.0020 (13)0.0013 (11)0.0022 (12)
N20.0488 (19)0.0456 (18)0.0256 (14)0.0044 (14)0.0038 (12)0.0028 (12)
N30.0412 (17)0.0477 (19)0.0328 (16)0.0027 (14)0.0025 (12)0.0024 (12)
N40.072 (2)0.0454 (19)0.0334 (16)0.0116 (16)0.0082 (15)0.0007 (13)
N50.0512 (19)0.0436 (18)0.0288 (15)0.0007 (14)0.0005 (12)0.0046 (12)
N60.057 (2)0.0424 (18)0.0344 (16)0.0022 (15)0.0059 (13)0.0090 (13)
N70.055 (2)0.0382 (18)0.0301 (15)0.0005 (14)0.0022 (13)0.0042 (12)
N80.058 (2)0.0461 (19)0.0270 (15)0.0009 (15)0.0088 (13)0.0029 (12)
C10.0342 (19)0.046 (2)0.0272 (17)0.0060 (16)0.0014 (13)0.0029 (14)
C20.051 (2)0.040 (2)0.038 (2)0.0033 (17)0.0003 (15)0.0010 (15)
C30.059 (2)0.044 (2)0.0331 (19)0.0042 (18)0.0058 (16)0.0055 (15)
C40.040 (2)0.040 (2)0.0324 (18)0.0017 (16)0.0039 (14)0.0002 (14)
C50.058 (3)0.057 (3)0.038 (2)0.016 (2)0.0035 (17)0.0067 (17)
C60.084 (3)0.051 (3)0.046 (2)0.020 (2)0.011 (2)0.0057 (18)
C70.0378 (19)0.041 (2)0.0338 (19)0.0011 (16)0.0002 (14)0.0054 (14)
C80.055 (2)0.038 (2)0.042 (2)0.0007 (17)0.0008 (16)0.0031 (15)
C90.063 (3)0.038 (2)0.041 (2)0.0057 (18)0.0000 (16)0.0034 (15)
C100.040 (2)0.040 (2)0.0277 (17)0.0013 (16)0.0031 (14)0.0019 (14)
C110.070 (3)0.037 (2)0.039 (2)0.0020 (19)0.0091 (17)0.0009 (15)
C120.062 (3)0.053 (3)0.038 (2)0.001 (2)0.0077 (17)0.0094 (17)
C130.047 (2)0.0291 (19)0.0303 (17)0.0038 (15)0.0013 (14)0.0004 (13)
C140.081 (3)0.032 (2)0.0277 (19)0.001 (2)0.0052 (16)0.0024 (13)
C150.063 (3)0.032 (2)0.0274 (17)0.0024 (17)0.0034 (15)0.0051 (13)
Geometric parameters (Å, º) top
Cu1—Cl12.5062 (12)N6—H60.8600
Cu1—N12.018 (3)N6—C71.330 (4)
Cu1—N32.036 (3)N6—C91.368 (5)
Cu1—N52.034 (3)N7—C101.326 (4)
Cu1—N72.011 (3)N7—C111.377 (5)
Cu2—Cl1i2.7522 (11)N8—H80.8600
Cu2—Cl12.7522 (11)N8—C101.335 (4)
Cu2—O11.962 (2)N8—C121.364 (5)
Cu2—O1i1.962 (2)C1—C41.432 (5)
Cu2—O3i1.962 (2)C2—H2A0.9300
Cu2—O31.962 (2)C2—C31.342 (5)
O1—C131.264 (4)C3—H30.9300
O2—C131.242 (4)C5—H50.9300
O3—C151.267 (4)C5—C61.351 (5)
O4—C151.239 (4)C6—H6A0.9300
N1—C11.335 (4)C7—C101.436 (5)
N1—C21.376 (5)C8—H8A0.9300
N2—H20.8600C8—C91.358 (5)
N2—C11.348 (4)C9—H90.9300
N2—C31.367 (5)C11—H110.9300
N3—C41.334 (4)C11—C121.361 (5)
N3—C51.372 (5)C12—H120.9300
N4—H40.8600C13—C141.508 (4)
N4—C41.327 (5)C14—H14A0.9700
N4—C61.367 (5)C14—H14B0.9700
N5—C71.331 (4)C14—C151.503 (4)
N5—C81.373 (5)
N1—Cu1—Cl196.53 (9)C10—N8—C12106.9 (3)
N1—Cu1—N382.01 (11)C12—N8—H8126.6
N1—Cu1—N596.93 (12)N1—C1—N2110.8 (3)
N3—Cu1—Cl194.10 (9)N1—C1—C4117.4 (3)
N5—Cu1—Cl1112.46 (9)N2—C1—C4131.7 (3)
N5—Cu1—N3153.31 (12)N1—C2—H2A125.3
N7—Cu1—Cl192.73 (9)C3—C2—N1109.3 (3)
N7—Cu1—N1170.49 (13)C3—C2—H2A125.3
N7—Cu1—N395.22 (12)N2—C3—H3126.2
N7—Cu1—N581.43 (12)C2—C3—N2107.5 (3)
Cl1i—Cu2—Cl1179.13 (4)C2—C3—H3126.2
O1i—Cu2—Cl1i92.45 (8)N3—C4—C1117.2 (3)
O1—Cu2—Cl192.45 (8)N4—C4—N3111.4 (3)
O1—Cu2—Cl1i86.93 (8)N4—C4—C1131.3 (3)
O1i—Cu2—Cl186.93 (8)N3—C5—H5125.2
O1i—Cu2—O189.08 (13)C6—C5—N3109.6 (3)
O1i—Cu2—O3176.55 (10)C6—C5—H5125.2
O1i—Cu2—O3i91.69 (10)N4—C6—H6A126.8
O1—Cu2—O3i176.54 (10)C5—C6—N4106.5 (4)
O1—Cu2—O391.69 (10)C5—C6—H6A126.8
O3i—Cu2—Cl1i89.67 (8)N5—C7—C10117.6 (3)
O3—Cu2—Cl189.67 (8)N6—C7—N5111.4 (3)
O3—Cu2—Cl1i90.96 (8)N6—C7—C10131.0 (3)
O3i—Cu2—Cl190.96 (8)N5—C8—H8A125.4
O3i—Cu2—O387.74 (13)C9—C8—N5109.1 (3)
Cu1—Cl1—Cu2127.26 (5)C9—C8—H8A125.4
C13—O1—Cu2126.2 (2)N6—C9—H9126.7
C15—O3—Cu2124.8 (2)C8—C9—N6106.6 (3)
C1—N1—Cu1111.6 (2)C8—C9—H9126.7
C1—N1—C2105.6 (3)N7—C10—N8111.6 (3)
C2—N1—Cu1142.8 (2)N7—C10—C7116.2 (3)
C1—N2—H2126.6N8—C10—C7132.0 (3)
C1—N2—C3106.7 (3)N7—C11—H11125.8
C3—N2—H2126.6C12—C11—N7108.5 (3)
C4—N3—Cu1110.9 (2)C12—C11—H11125.8
C4—N3—C5105.1 (3)N8—C12—H12126.4
C5—N3—Cu1142.3 (2)C11—C12—N8107.3 (3)
C4—N4—H4126.3C11—C12—H12126.4
C4—N4—C6107.4 (3)O1—C13—C14120.4 (3)
C6—N4—H4126.3O2—C13—O1122.8 (3)
C7—N5—Cu1111.4 (2)O2—C13—C14116.6 (3)
C7—N5—C8105.5 (3)C13—C14—H14A107.3
C8—N5—Cu1142.8 (2)C13—C14—H14B107.3
C7—N6—H6126.3H14A—C14—H14B106.9
C7—N6—C9107.3 (3)C15—C14—C13120.1 (3)
C9—N6—H6126.3C15—C14—H14A107.3
C10—N7—Cu1113.1 (2)C15—C14—H14B107.3
C10—N7—C11105.8 (3)O3—C15—C14121.6 (3)
C11—N7—Cu1140.9 (2)O4—C15—O3123.1 (3)
C10—N8—H8126.6O4—C15—C14115.3 (3)
Cu1—N1—C1—N2178.2 (2)N6—C7—C10—N89.5 (7)
Cu1—N1—C1—C41.7 (4)N7—C11—C12—N80.4 (5)
Cu1—N1—C2—C3176.9 (3)C1—N1—C2—C30.4 (4)
Cu1—N3—C4—N4169.2 (3)C1—N2—C3—C20.1 (4)
Cu1—N3—C4—C19.7 (4)C2—N1—C1—N20.5 (4)
Cu1—N3—C5—C6163.5 (3)C2—N1—C1—C4179.4 (3)
Cu1—N5—C7—N6173.3 (2)C3—N2—C1—N10.4 (4)
Cu1—N5—C7—C105.8 (4)C3—N2—C1—C4179.5 (4)
Cu1—N5—C8—C9170.1 (3)C4—N3—C5—C60.8 (5)
Cu1—N7—C10—N8176.9 (2)C4—N4—C6—C50.6 (5)
Cu1—N7—C10—C70.9 (4)C5—N3—C4—N40.4 (4)
Cu1—N7—C11—C12175.2 (3)C5—N3—C4—C1178.5 (3)
Cu2—O1—C13—O2175.4 (3)C6—N4—C4—N30.1 (5)
Cu2—O1—C13—C140.9 (5)C6—N4—C4—C1178.8 (4)
Cu2—O3—C15—O4171.1 (3)C7—N5—C8—C91.5 (4)
Cu2—O3—C15—C147.8 (5)C7—N6—C9—C80.5 (4)
O1—C13—C14—C1533.1 (6)C8—N5—C7—N61.2 (4)
O2—C13—C14—C15150.3 (4)C8—N5—C7—C10179.6 (3)
N1—C1—C4—N35.6 (5)C9—N6—C7—N50.5 (4)
N1—C1—C4—N4173.0 (4)C9—N6—C7—C10179.5 (4)
N1—C2—C3—N20.2 (4)C10—N7—C11—C120.6 (4)
N2—C1—C4—N3174.5 (4)C10—N8—C12—C110.1 (5)
N2—C1—C4—N46.8 (7)C11—N7—C10—N80.6 (4)
N3—C5—C6—N40.8 (5)C11—N7—C10—C7175.4 (3)
N5—C7—C10—N73.5 (5)C12—N8—C10—N70.3 (4)
N5—C7—C10—N8171.5 (4)C12—N8—C10—C7174.8 (4)
N5—C8—C9—N61.3 (4)C13—C14—C15—O329.5 (6)
N6—C7—C10—N7175.5 (4)C13—C14—C15—O4151.5 (4)
Symmetry code: (i) x+1/2, y, z.
Aqua(2,2'-biimidazole-κ2N,N')(malonato-κ2O,O')copper(II) dihydrate (2) top
Crystal data top
[Cu(C3H2O4)(C6H6N4)(H2O)]·2H2OF(000) = 1448
Mr = 353.78Dx = 1.730 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0587 (4) ÅCell parameters from 6782 reflections
b = 20.3107 (12) Åθ = 3.2–27.0°
c = 18.9523 (10) ŵ = 1.65 mm1
β = 91.770 (4)°T = 298 K
V = 2715.8 (3) Å3Plate, green
Z = 80.36 × 0.11 × 0.09 mm
Data collection top
Rigaku AFC
diffractometer
4229 independent reflections
Radiation source: sealed X-ray tube, Enhance (Mo) X-ray Source2925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 24.8°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 66
Tmin = 0.903, Tmax = 1.000k = 2323
21646 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0411P)2 + 6.8869P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4229 reflectionsΔρmax = 0.58 e Å3
343 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data for 14 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu110.42536 (8)0.82052 (3)0.18851 (3)0.02555 (17)
Cu120.92614 (8)0.68105 (3)0.31015 (3)0.02619 (17)
O110.1067 (4)0.83742 (16)0.17496 (17)0.0351 (8)
H11A0.0236230.8672060.1905460.053*
H11B0.0438030.8003560.1854670.053*
O120.6085 (4)0.66516 (16)0.32368 (17)0.0347 (8)
H12A0.5553830.7041610.3124890.052*
H12B0.5398730.6305510.3080190.052*
O210.5061 (5)0.90321 (16)0.22934 (16)0.0365 (8)
O220.9078 (4)0.72406 (16)0.21856 (15)0.0319 (8)
O310.5118 (6)0.97758 (19)0.31415 (19)0.0542 (11)
O320.8681 (5)0.72086 (17)0.10302 (16)0.0379 (8)
O410.4120 (4)0.77879 (15)0.28048 (15)0.0307 (8)
O420.9960 (5)0.59806 (16)0.26836 (16)0.0354 (8)
O510.3819 (5)0.78240 (17)0.39580 (16)0.0388 (9)
O520.9763 (6)0.52341 (18)0.18392 (18)0.0483 (10)
N110.4949 (5)0.85173 (19)0.09227 (19)0.0295 (9)
N120.8997 (5)0.76600 (19)0.36224 (19)0.0274 (9)
N210.5017 (6)0.8291 (2)0.02103 (19)0.0336 (10)
H210.4917820.8066850.0618700.040*
N220.8726 (6)0.8133 (2)0.4657 (2)0.0348 (10)
H220.8730930.8188800.5128020.042*
N310.3884 (5)0.73506 (18)0.13670 (18)0.0255 (9)
N320.9974 (5)0.64836 (19)0.4071 (2)0.0308 (9)
N410.3615 (6)0.6865 (2)0.0335 (2)0.0352 (10)
H410.3630920.6800940.0134240.042*
N421.0034 (6)0.6685 (2)0.52080 (19)0.0348 (10)
H420.9946890.6903640.5618430.042*
C110.4664 (6)0.8059 (2)0.0432 (2)0.0274 (11)
C120.9147 (6)0.7577 (2)0.4316 (2)0.0284 (11)
C210.5500 (7)0.9069 (3)0.0567 (3)0.0350 (12)
H21A0.5780860.9460110.0766280.042*
C220.8458 (7)0.8305 (2)0.3522 (3)0.0328 (11)
H22A0.8250310.8498720.3099890.039*
C310.5555 (7)0.8933 (3)0.0131 (3)0.0405 (13)
H310.5883150.9211230.0474840.049*
C320.8287 (7)0.8603 (3)0.4159 (3)0.0378 (12)
H320.7953760.9023300.4237850.045*
C410.4080 (6)0.7420 (2)0.0676 (2)0.0271 (11)
C420.9688 (6)0.6929 (2)0.4563 (2)0.0279 (11)
C510.3279 (7)0.6716 (2)0.1463 (3)0.0325 (11)
H510.3030940.6530350.1880850.039*
C521.0499 (7)0.5913 (3)0.4426 (3)0.0360 (12)
H521.0763700.5524140.4225320.043*
C610.3114 (7)0.6413 (2)0.0825 (3)0.0382 (12)
H610.2746120.5995140.0743360.046*
C621.0544 (7)0.6044 (3)0.5127 (3)0.0413 (13)
H621.0853120.5759090.5475340.050*
C710.4595 (7)0.9246 (2)0.2899 (3)0.0323 (11)
C720.8653 (6)0.6937 (2)0.1613 (2)0.0277 (11)
C810.3289 (7)0.8815 (2)0.3334 (2)0.0345 (12)
H81A0.3284920.8975210.3775890.041*
H81B0.2103540.8852240.3151090.041*
C820.8027 (7)0.6227 (2)0.1651 (2)0.0342 (12)
H82A0.7909930.6067450.1209260.041*
H82B0.6874360.6213340.1839620.041*
C910.3782 (6)0.8096 (2)0.3374 (2)0.0278 (11)
C920.9343 (7)0.5781 (2)0.2076 (2)0.0315 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu110.0366 (4)0.0268 (3)0.0133 (3)0.0022 (2)0.0012 (2)0.0010 (2)
Cu120.0373 (4)0.0280 (3)0.0133 (3)0.0027 (2)0.0001 (2)0.0002 (2)
O110.036 (2)0.0307 (19)0.038 (2)0.0037 (14)0.0036 (15)0.0009 (15)
O120.039 (2)0.0272 (19)0.038 (2)0.0038 (14)0.0010 (15)0.0026 (15)
O210.052 (2)0.036 (2)0.0213 (18)0.0115 (16)0.0045 (15)0.0037 (15)
O220.046 (2)0.032 (2)0.0171 (17)0.0025 (15)0.0007 (14)0.0000 (14)
O310.085 (3)0.039 (2)0.040 (2)0.020 (2)0.0131 (19)0.0156 (18)
O320.058 (2)0.042 (2)0.0135 (18)0.0001 (17)0.0006 (15)0.0021 (15)
O410.049 (2)0.0278 (19)0.0149 (17)0.0024 (14)0.0008 (13)0.0008 (14)
O420.051 (2)0.036 (2)0.0190 (18)0.0114 (15)0.0057 (14)0.0023 (15)
O510.063 (2)0.039 (2)0.0148 (18)0.0030 (17)0.0038 (15)0.0059 (15)
O520.072 (3)0.035 (2)0.037 (2)0.0136 (18)0.0130 (18)0.0087 (17)
N110.038 (3)0.032 (2)0.019 (2)0.0023 (17)0.0051 (16)0.0005 (18)
N120.035 (2)0.031 (2)0.017 (2)0.0024 (17)0.0002 (15)0.0024 (17)
N210.043 (3)0.044 (3)0.014 (2)0.0042 (19)0.0061 (16)0.0030 (18)
N220.050 (3)0.037 (3)0.017 (2)0.0001 (19)0.0030 (17)0.0068 (19)
N310.034 (2)0.026 (2)0.017 (2)0.0038 (16)0.0005 (15)0.0039 (16)
N320.036 (3)0.032 (2)0.024 (2)0.0037 (17)0.0033 (16)0.0003 (18)
N410.052 (3)0.037 (3)0.017 (2)0.002 (2)0.0019 (17)0.0063 (19)
N420.046 (3)0.045 (3)0.013 (2)0.004 (2)0.0042 (17)0.0013 (18)
C110.030 (3)0.036 (3)0.017 (2)0.004 (2)0.0047 (18)0.001 (2)
C120.029 (3)0.038 (3)0.018 (3)0.005 (2)0.0001 (19)0.006 (2)
C210.034 (3)0.036 (3)0.034 (3)0.007 (2)0.002 (2)0.003 (2)
C220.040 (3)0.030 (3)0.028 (3)0.003 (2)0.001 (2)0.003 (2)
C310.044 (3)0.048 (4)0.030 (3)0.001 (2)0.010 (2)0.015 (3)
C320.048 (3)0.031 (3)0.033 (3)0.000 (2)0.003 (2)0.004 (2)
C410.034 (3)0.034 (3)0.014 (2)0.007 (2)0.0008 (18)0.003 (2)
C420.029 (3)0.039 (3)0.016 (2)0.003 (2)0.0045 (18)0.001 (2)
C510.037 (3)0.032 (3)0.029 (3)0.004 (2)0.005 (2)0.002 (2)
C520.039 (3)0.035 (3)0.033 (3)0.006 (2)0.002 (2)0.007 (2)
C610.052 (4)0.027 (3)0.036 (3)0.002 (2)0.001 (2)0.005 (2)
C620.045 (4)0.049 (4)0.029 (3)0.001 (2)0.008 (2)0.017 (3)
C710.039 (3)0.030 (3)0.028 (3)0.002 (2)0.003 (2)0.000 (2)
C720.031 (3)0.032 (3)0.020 (3)0.007 (2)0.0005 (19)0.002 (2)
C810.049 (3)0.032 (3)0.023 (3)0.000 (2)0.009 (2)0.004 (2)
C820.045 (3)0.035 (3)0.022 (3)0.001 (2)0.009 (2)0.001 (2)
C910.031 (3)0.032 (3)0.020 (3)0.002 (2)0.0004 (19)0.000 (2)
C920.034 (3)0.034 (3)0.027 (3)0.001 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
Cu11—O112.282 (3)N31—C411.329 (5)
Cu11—O211.928 (3)N31—C511.372 (6)
Cu11—O411.943 (3)N32—C421.319 (6)
Cu11—N112.006 (4)N32—C521.384 (6)
Cu11—N312.007 (4)N41—H410.8990
Cu12—O122.287 (3)N41—C411.336 (6)
Cu12—O221.944 (3)N41—C611.361 (6)
Cu12—O421.933 (3)N42—H420.8990
Cu12—N121.999 (4)N42—C421.335 (6)
Cu12—N322.003 (4)N42—C621.362 (6)
O11—H11A0.8990C11—C411.442 (6)
O11—H11B0.8995C12—C421.443 (6)
O12—H12A0.8991C21—H21A0.8990
O12—H12B0.8991C21—C311.352 (7)
O21—C711.281 (5)C22—H22A0.8990
O22—C721.276 (5)C22—C321.361 (7)
O31—C711.222 (6)C31—H310.8990
O32—C721.235 (5)C32—H320.8990
O41—C911.275 (5)C51—H510.8990
O42—C921.283 (6)C51—C611.358 (7)
O51—C911.237 (5)C52—H520.8990
O52—C921.239 (6)C52—C621.356 (7)
N11—C111.327 (6)C61—H610.8990
N11—C211.370 (6)C62—H620.8990
N12—C121.327 (5)C71—C811.531 (7)
N12—C221.375 (6)C72—C821.511 (6)
N21—H210.8990C81—H81A0.8990
N21—C111.336 (6)C81—H81B0.8990
N21—C311.365 (6)C81—C911.502 (6)
N22—H220.8990C82—H82A0.8990
N22—C121.340 (6)C82—H82B0.8990
N22—C321.371 (6)C82—C921.512 (6)
O21—Cu11—O11101.09 (13)N12—C12—N22111.0 (4)
O21—Cu11—O4192.40 (13)N12—C12—C42116.7 (4)
O21—Cu11—N1190.69 (15)N22—C12—C42132.3 (4)
O21—Cu11—N31169.11 (15)N11—C21—H21A125.3
O41—Cu11—O1195.25 (12)C31—C21—N11109.3 (4)
O41—Cu11—N11166.75 (15)C31—C21—H21A125.3
O41—Cu11—N3193.00 (14)N12—C22—H22A125.3
N11—Cu11—O1196.79 (14)C32—C22—N12109.4 (4)
N11—Cu11—N3181.97 (15)C32—C22—H22A125.3
N31—Cu11—O1187.83 (13)N21—C31—H31126.7
O22—Cu12—O1297.18 (12)C21—C31—N21106.7 (4)
O22—Cu12—N1292.78 (14)C21—C31—H31126.7
O22—Cu12—N32167.40 (15)N22—C32—H32127.0
O42—Cu12—O12100.73 (13)C22—C32—N22106.1 (4)
O42—Cu12—O2292.11 (13)C22—C32—H32127.0
O42—Cu12—N12169.67 (15)N31—C41—N41110.8 (4)
O42—Cu12—N3291.53 (14)N31—C41—C11116.8 (4)
N12—Cu12—O1287.68 (13)N41—C41—C11132.3 (4)
N12—Cu12—N3281.83 (15)N32—C42—N42111.4 (4)
N32—Cu12—O1293.99 (14)N32—C42—C12116.2 (4)
Cu11—O11—H11A135.7N42—C42—C12132.3 (4)
Cu11—O11—H11B109.9N31—C51—H51125.5
H11A—O11—H11B99.1C61—C51—N31109.1 (4)
Cu12—O12—H12A104.6C61—C51—H51125.5
Cu12—O12—H12B126.4N32—C52—H52125.9
H12A—O12—H12B113.2C62—C52—N32108.1 (5)
C71—O21—Cu11125.1 (3)C62—C52—H52125.9
C72—O22—Cu12123.4 (3)N41—C61—H61126.7
C91—O41—Cu11124.0 (3)C51—C61—N41106.6 (4)
C92—O42—Cu12124.0 (3)C51—C61—H61126.7
C11—N11—Cu11112.3 (3)N42—C62—H62126.3
C11—N11—C21105.6 (4)C52—C62—N42107.4 (4)
C21—N11—Cu11141.9 (3)C52—C62—H62126.3
C12—N12—Cu12111.9 (3)O21—C71—C81117.6 (4)
C12—N12—C22105.8 (4)O31—C71—O21123.6 (5)
C22—N12—Cu12141.5 (3)O31—C71—C81118.8 (4)
C11—N21—H21126.4O22—C72—C82118.8 (4)
C11—N21—C31107.2 (4)O32—C72—O22122.4 (4)
C31—N21—H21126.4O32—C72—C82118.8 (4)
C12—N22—H22126.2C71—C81—H81A108.2
C12—N22—C32107.7 (4)C71—C81—H81B108.2
C32—N22—H22126.2H81A—C81—H81B107.4
C41—N31—Cu11112.0 (3)C91—C81—C71116.2 (4)
C41—N31—C51105.8 (4)C91—C81—H81A108.2
C51—N31—Cu11141.6 (3)C91—C81—H81B108.2
C42—N32—Cu12112.4 (3)C72—C82—H82A108.5
C42—N32—C52106.0 (4)C72—C82—H82B108.5
C52—N32—Cu12141.2 (3)C72—C82—C92114.9 (4)
C41—N41—H41126.1H82A—C82—H82B107.5
C41—N41—C61107.7 (4)C92—C82—H82A108.5
C61—N41—H41126.1C92—C82—H82B108.5
C42—N42—H42126.5O41—C91—C81118.9 (4)
C42—N42—C62107.1 (4)O51—C91—O41122.6 (4)
C62—N42—H42126.5O51—C91—C81118.5 (4)
N11—C11—N21111.2 (4)O42—C92—C82118.4 (4)
N11—C11—C41116.4 (4)O52—C92—O42122.0 (4)
N21—C11—C41132.3 (4)O52—C92—C82119.6 (4)
Cu11—O21—C71—O31179.4 (4)N22—C12—C42—N32178.9 (5)
Cu11—O21—C71—C810.2 (6)N22—C12—C42—N423.8 (9)
Cu11—O41—C91—O51175.5 (3)N31—C51—C61—N410.2 (5)
Cu11—O41—C91—C815.5 (6)N32—C52—C62—N420.6 (6)
Cu11—N11—C11—N21175.9 (3)C11—N11—C21—C310.6 (5)
Cu11—N11—C11—C415.0 (5)C11—N21—C31—C210.3 (5)
Cu11—N11—C21—C31173.8 (4)C12—N12—C22—C320.1 (5)
Cu11—N31—C41—N41172.9 (3)C12—N22—C32—C220.2 (5)
Cu11—N31—C41—C115.0 (5)C21—N11—C11—N210.4 (5)
Cu11—N31—C51—C61169.9 (4)C21—N11—C11—C41179.5 (4)
Cu12—O22—C72—O32174.5 (3)C22—N12—C12—N220.2 (5)
Cu12—O22—C72—C827.7 (6)C22—N12—C12—C42179.5 (4)
Cu12—O42—C92—O52177.0 (4)C31—N21—C11—N110.1 (5)
Cu12—O42—C92—C821.5 (6)C31—N21—C11—C41179.0 (5)
Cu12—N12—C12—N22172.1 (3)C32—N22—C12—N120.2 (5)
Cu12—N12—C12—C427.2 (5)C32—N22—C12—C42179.4 (5)
Cu12—N12—C22—C32168.4 (4)C41—N31—C51—C610.2 (5)
Cu12—N32—C42—N42175.2 (3)C41—N41—C61—C510.5 (5)
Cu12—N32—C42—C126.9 (5)C42—N32—C52—C621.1 (5)
Cu12—N32—C52—C62172.2 (4)C42—N42—C62—C520.2 (5)
O21—C71—C81—C9145.7 (6)C51—N31—C41—N410.5 (5)
O22—C72—C82—C9251.8 (6)C51—N31—C41—C11178.4 (4)
O31—C71—C81—C91135.1 (5)C52—N32—C42—N421.3 (5)
O32—C72—C82—C92130.4 (5)C52—N32—C42—C12179.1 (4)
N11—C11—C41—N310.0 (6)C61—N41—C41—N310.6 (5)
N11—C11—C41—N41177.3 (5)C61—N41—C41—C11178.1 (5)
N11—C21—C31—N210.5 (5)C62—N42—C42—N320.9 (5)
N12—C12—C42—N320.2 (6)C62—N42—C42—C12178.3 (5)
N12—C12—C42—N42177.1 (5)C71—C81—C91—O4148.7 (6)
N12—C22—C32—N220.1 (5)C71—C81—C91—O51132.3 (5)
N21—C11—C41—N31178.8 (5)C72—C82—C92—O4246.4 (6)
N21—C11—C41—N413.8 (9)C72—C82—C92—O52135.0 (5)
Bis[aquabis(2,2'-biimidazole-κ2N,N')copper(II)] bis(malonato-κ2O,O')bis(perchlorato-κO)copper(II) 2.2-hydrate (3) top
Crystal data top
[Cu(C6H6N4)2(H2O)]2·[Cu(C3H2O4)2(ClO4)2]·2.2H2OF(000) = 2428
Mr = 1201.84Dx = 1.756 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.9569 (11) ÅCell parameters from 7335 reflections
b = 15.2466 (6) Åθ = 1.8–27.0°
c = 16.6781 (10) ŵ = 1.60 mm1
β = 95.296 (5)°T = 298 K
V = 4546.7 (4) Å3Block, green
Z = 40.38 × 0.36 × 0.33 mm
Data collection top
Rigaku AFC
diffractometer
3848 independent reflections
Radiation source: sealed X-ray tube, Enhance (Mo) X-ray Source2674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 2020
Tmin = 0.681, Tmax = 1.000k = 1818
17890 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.085P)2 + 59.2856P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3848 reflectionsΔρmax = 1.14 e Å3
338 parametersΔρmin = 0.79 e Å3
50 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data for 14 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu20.0000000.33157 (7)0.7500000.0342 (4)
Cu10.41749 (5)0.33255 (5)0.65057 (6)0.0401 (3)
O20.0362 (3)0.2404 (3)0.6837 (3)0.0376 (12)
O40.0612 (3)0.4233 (3)0.7121 (3)0.0426 (13)
O10.3289 (3)0.3280 (4)0.5509 (3)0.0519 (14)
H1A0.3460080.3191690.4968300.078*
H1B0.3004680.3829990.5394610.078*
O50.1578 (3)0.4752 (3)0.6560 (4)0.0561 (16)
N50.3956 (4)0.4566 (4)0.6827 (4)0.0414 (15)
O30.0969 (4)0.1922 (3)0.5848 (4)0.0613 (18)
N10.3655 (4)0.2711 (4)0.7372 (4)0.0414 (15)
N30.4490 (4)0.2095 (4)0.6282 (4)0.0448 (16)
N70.5043 (4)0.3925 (4)0.6028 (4)0.0435 (16)
N80.5602 (4)0.5178 (4)0.5849 (4)0.0464 (17)
H80.5705620.5728910.5871010.056*
N20.3469 (4)0.1458 (4)0.7971 (4)0.0502 (18)
H20.3486800.0908070.8084720.060*
N60.4273 (4)0.5945 (4)0.6784 (4)0.0494 (18)
H60.4521390.6411200.6692880.059*
C70.4448 (4)0.5130 (4)0.6594 (5)0.0375 (17)
N40.4446 (4)0.0711 (4)0.6604 (5)0.0545 (19)
H40.4338990.0237670.6849180.065*
C130.0859 (4)0.2482 (4)0.6352 (5)0.0384 (18)
C150.1165 (4)0.4134 (4)0.6712 (5)0.0382 (18)
C100.5043 (4)0.4789 (4)0.6163 (5)0.0398 (18)
C10.3805 (5)0.1855 (4)0.7389 (5)0.0421 (19)
C40.4245 (5)0.1521 (4)0.6790 (5)0.046 (2)
C80.3427 (5)0.5048 (5)0.7174 (5)0.050 (2)
H8A0.3004750.4825570.7387650.060*
C50.4875 (5)0.1624 (5)0.5751 (6)0.052 (2)
H50.5110500.1853520.5323670.062*
C90.3626 (5)0.5906 (5)0.7152 (5)0.051 (2)
H90.3370060.6378040.7349590.061*
C120.5989 (5)0.4543 (5)0.5481 (5)0.052 (2)
H120.6410420.4624910.5204490.062*
C110.5644 (5)0.3781 (5)0.5598 (6)0.052 (2)
H110.5790550.3236860.5415050.062*
C140.1383 (6)0.3256 (5)0.6396 (7)0.068 (3)
C60.4849 (5)0.0769 (5)0.5958 (6)0.057 (2)
H6A0.5067640.0304730.5704710.068*
C20.3207 (5)0.2855 (5)0.7980 (5)0.0462 (19)
H2A0.3012170.3395130.8115520.055*
C30.3093 (5)0.2084 (5)0.8351 (5)0.049 (2)
H30.2811230.1998310.8784620.058*
O1W0.2382 (5)0.4718 (6)0.5226 (5)0.097 (3)
H1WA0.2190630.4794800.5666690.146*
H1WB0.2229280.5151450.4934780.146*
Cl1B0.1417 (8)0.3378 (14)0.9124 (16)0.0579 (10)0.229 (11)
O2B0.138 (3)0.312 (3)0.8300 (18)0.088 (4)0.229 (11)
O1A0.0732 (4)0.3842 (6)0.9155 (6)0.115 (3)
O4B0.2149 (12)0.370 (2)0.933 (2)0.088 (3)0.229 (11)
O3B0.134 (2)0.258 (2)0.955 (3)0.148 (5)0.229 (11)
O4A0.1899 (6)0.4188 (6)0.8769 (7)0.088 (3)0.771 (11)
Cl1A0.1447 (2)0.3502 (4)0.9040 (4)0.0579 (10)0.771 (11)
O3A0.1746 (9)0.3107 (11)0.9750 (7)0.148 (5)0.771 (11)
O2A0.1314 (8)0.2861 (6)0.8419 (7)0.088 (4)0.771 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0437 (7)0.0085 (5)0.0535 (8)0.0000.0204 (6)0.000
Cu10.0521 (6)0.0097 (4)0.0601 (7)0.0008 (4)0.0132 (4)0.0037 (4)
O20.048 (3)0.011 (2)0.057 (3)0.001 (2)0.021 (2)0.003 (2)
O40.055 (3)0.011 (2)0.065 (3)0.001 (2)0.026 (3)0.003 (2)
O10.061 (4)0.048 (3)0.047 (3)0.007 (3)0.005 (3)0.002 (3)
O50.069 (4)0.017 (3)0.088 (4)0.018 (3)0.042 (3)0.010 (3)
N50.048 (4)0.014 (3)0.062 (4)0.004 (3)0.004 (3)0.001 (3)
O30.087 (5)0.026 (3)0.078 (4)0.017 (3)0.045 (4)0.021 (3)
N10.052 (4)0.015 (3)0.059 (4)0.005 (3)0.010 (3)0.003 (3)
N30.058 (4)0.017 (3)0.062 (4)0.000 (3)0.019 (3)0.003 (3)
N70.047 (4)0.019 (3)0.064 (4)0.000 (3)0.005 (3)0.010 (3)
N80.053 (4)0.023 (3)0.062 (4)0.012 (3)0.001 (3)0.005 (3)
N20.060 (4)0.021 (3)0.071 (5)0.001 (3)0.019 (4)0.015 (3)
N60.070 (5)0.013 (3)0.064 (4)0.007 (3)0.001 (4)0.001 (3)
C70.043 (4)0.015 (3)0.053 (5)0.002 (3)0.004 (3)0.004 (3)
N40.075 (5)0.011 (3)0.081 (5)0.007 (3)0.021 (4)0.006 (3)
C130.054 (5)0.015 (3)0.048 (5)0.001 (3)0.015 (4)0.003 (3)
C150.044 (4)0.017 (3)0.054 (5)0.003 (3)0.013 (4)0.003 (3)
C100.047 (5)0.018 (3)0.053 (5)0.006 (3)0.000 (4)0.003 (3)
C10.055 (5)0.019 (3)0.055 (5)0.003 (3)0.014 (4)0.007 (3)
C40.058 (5)0.013 (3)0.067 (5)0.003 (3)0.008 (4)0.009 (3)
C80.049 (5)0.027 (4)0.075 (6)0.000 (4)0.010 (4)0.004 (4)
C50.060 (5)0.030 (4)0.069 (6)0.008 (4)0.020 (4)0.007 (4)
C90.063 (6)0.019 (4)0.071 (6)0.007 (4)0.004 (5)0.005 (4)
C120.053 (5)0.037 (5)0.065 (6)0.009 (4)0.005 (4)0.007 (4)
C110.048 (5)0.032 (4)0.077 (6)0.008 (4)0.012 (4)0.008 (4)
C140.075 (6)0.020 (4)0.119 (8)0.019 (4)0.052 (6)0.028 (5)
C60.079 (7)0.019 (4)0.075 (6)0.007 (4)0.018 (5)0.006 (4)
C20.060 (5)0.029 (4)0.052 (5)0.007 (4)0.015 (4)0.002 (3)
C30.049 (5)0.041 (5)0.058 (5)0.002 (4)0.018 (4)0.006 (4)
O1W0.105 (6)0.090 (6)0.106 (6)0.054 (5)0.054 (5)0.045 (5)
Cl1B0.0674 (16)0.045 (2)0.062 (2)0.0058 (14)0.0106 (12)0.0048 (16)
O2B0.108 (7)0.045 (8)0.111 (7)0.019 (6)0.018 (5)0.027 (6)
O1A0.119 (6)0.087 (5)0.147 (6)0.017 (5)0.050 (5)0.002 (5)
O4B0.083 (6)0.078 (6)0.106 (7)0.023 (5)0.027 (5)0.021 (5)
O3B0.158 (10)0.157 (10)0.120 (8)0.000 (8)0.040 (7)0.017 (8)
O4A0.083 (6)0.078 (6)0.106 (7)0.023 (5)0.027 (5)0.021 (5)
Cl1A0.0674 (16)0.045 (2)0.062 (2)0.0058 (14)0.0106 (12)0.0048 (16)
O3A0.158 (10)0.157 (10)0.120 (8)0.000 (8)0.040 (7)0.017 (8)
O2A0.108 (7)0.045 (8)0.111 (7)0.019 (6)0.018 (5)0.027 (6)
Geometric parameters (Å, º) top
Cu2—O21.925 (4)N6—C71.327 (9)
Cu2—O2i1.925 (4)N6—C91.364 (11)
Cu2—O4i1.922 (5)C7—C101.439 (11)
Cu2—O41.922 (5)N4—H40.8600
Cu2—O2B2.72 (5)N4—C41.332 (9)
Cu2—O2A2.781 (15)N4—C61.355 (11)
Cu1—O12.194 (6)C13—C141.507 (10)
Cu1—N52.015 (6)C15—C141.503 (10)
Cu1—N12.021 (6)C1—C41.423 (11)
Cu1—N32.005 (6)C8—H8A0.9300
Cu1—N72.032 (6)C8—C91.359 (11)
O2—C131.265 (8)C5—H50.9300
O4—C151.265 (9)C5—C61.351 (11)
O1—H1A0.9889C9—H90.9300
O1—H1B0.9906C12—H120.9300
O5—C151.238 (8)C12—C111.340 (11)
N5—C71.316 (9)C11—H110.9300
N5—C81.371 (10)C6—H6A0.9300
O3—C131.226 (8)C2—H2A0.9300
N1—C11.333 (9)C2—C31.353 (11)
N1—C21.369 (10)C3—H30.9300
N3—C41.321 (10)O1W—H1WA0.8483
N3—C51.376 (10)O1W—H1WB0.8499
N7—C101.336 (9)Cl1B—O2B1.426 (8)
N7—C111.368 (10)Cl1B—O1A1.423 (8)
N8—H80.8600Cl1B—O4B1.417 (8)
N8—C101.316 (10)Cl1B—O3B1.421 (8)
N8—C121.370 (11)O1A—Cl1A1.414 (7)
N2—H20.8600O4A—Cl1A1.422 (7)
N2—C11.334 (10)Cl1A—O3A1.391 (7)
N2—C31.358 (10)Cl1A—O2A1.427 (7)
N6—H60.8600
O2—Cu2—O2i87.6 (3)O2—C13—C14121.0 (6)
O2—Cu2—O2B82.0 (6)O3—C13—O2122.7 (7)
O2i—Cu2—O2B88.7 (10)O3—C13—C14116.1 (7)
O2i—Cu2—O2A79.5 (3)O4—C15—C14122.4 (6)
O2—Cu2—O2A79.8 (2)O5—C15—O4122.3 (6)
O4i—Cu2—O2161.4 (2)O5—C15—C14115.3 (7)
O4i—Cu2—O2i95.9 (2)N7—C10—C7116.9 (7)
O4—Cu2—O295.89 (19)N8—C10—N7111.4 (7)
O4—Cu2—O2i161.4 (2)N8—C10—C7131.7 (6)
O4i—Cu2—O486.6 (3)N1—C1—N2110.8 (7)
O4—Cu2—O2B73.7 (10)N1—C1—C4117.3 (6)
O4i—Cu2—O2B116.3 (7)N2—C1—C4131.8 (7)
O4i—Cu2—O2A118.8 (2)N3—C4—N4110.5 (7)
O4—Cu2—O2A83.2 (3)N3—C4—C1116.9 (6)
N5—Cu1—O194.9 (2)N4—C4—C1132.5 (7)
N5—Cu1—N197.5 (2)N5—C8—H8A126.0
N5—Cu1—N781.8 (3)C9—C8—N5108.0 (7)
N1—Cu1—O1100.2 (2)C9—C8—H8A126.0
N1—Cu1—N7155.6 (3)N3—C5—H5126.1
N3—Cu1—O191.6 (3)C6—C5—N3107.9 (7)
N3—Cu1—N5173.5 (3)C6—C5—H5126.1
N3—Cu1—N181.7 (2)N6—C9—H9126.5
N3—Cu1—N796.2 (3)C8—C9—N6107.0 (7)
N7—Cu1—O1104.2 (2)C8—C9—H9126.5
C13—O2—Cu2126.5 (4)N8—C12—H12126.7
C15—O4—Cu2126.4 (4)C11—C12—N8106.7 (8)
Cu1—O1—H1A115.5C11—C12—H12126.7
Cu1—O1—H1B116.4N7—C11—H11125.2
H1A—O1—H1B97.9C12—C11—N7109.6 (8)
C7—N5—Cu1112.5 (5)C12—C11—H11125.2
C7—N5—C8106.6 (6)C15—C14—C13122.3 (7)
C8—N5—Cu1140.8 (5)N4—C6—H6A126.3
C1—N1—Cu1111.3 (5)C5—C6—N4107.5 (7)
C1—N1—C2105.8 (6)C5—C6—H6A126.3
C2—N1—Cu1142.8 (5)N1—C2—H2A125.6
C4—N3—Cu1112.6 (5)C3—C2—N1108.8 (7)
C4—N3—C5106.6 (6)C3—C2—H2A125.6
C5—N3—Cu1140.8 (5)N2—C3—H3126.4
C10—N7—Cu1111.4 (5)C2—C3—N2107.2 (7)
C10—N7—C11105.0 (6)C2—C3—H3126.4
C11—N7—Cu1143.5 (5)H1WA—O1W—H1WB104.6
C10—N8—H8126.4O1A—Cl1B—O2B102 (2)
C10—N8—C12107.3 (6)O4B—Cl1B—O2B107 (2)
C12—N8—H8126.4O4B—Cl1B—O1A127 (2)
C1—N2—H2126.3O4B—Cl1B—O3B108 (2)
C1—N2—C3107.3 (6)O3B—Cl1B—O2B104 (2)
C3—N2—H2126.3O3B—Cl1B—O1A106.4 (19)
C7—N6—H6126.4Cl1B—O2B—Cu2114 (2)
C7—N6—C9107.3 (6)O1A—Cl1A—O4A108.9 (7)
C9—N6—H6126.4O1A—Cl1A—O2A104.8 (8)
N5—C7—N6111.2 (7)O4A—Cl1A—O2A109.6 (7)
N5—C7—C10117.4 (6)O3A—Cl1A—O1A109.1 (9)
N6—C7—C10131.4 (7)O3A—Cl1A—O4A113.7 (10)
C4—N4—H4126.2O3A—Cl1A—O2A110.3 (10)
C4—N4—C6107.5 (7)Cl1A—O2A—Cu2107.8 (7)
C6—N4—H4126.2
Cu2—O2—C13—O3166.7 (6)N6—C7—C10—N82.2 (15)
Cu2—O2—C13—C1416.8 (11)C7—N5—C8—C91.0 (9)
Cu2—O4—C15—O5172.5 (6)C7—N6—C9—C80.1 (9)
Cu2—O4—C15—C145.7 (12)C10—N7—C11—C120.2 (10)
Cu1—N5—C7—N6177.4 (5)C10—N8—C12—C110.6 (9)
Cu1—N5—C7—C100.0 (8)C1—N1—C2—C30.1 (10)
Cu1—N5—C8—C9175.6 (7)C1—N2—C3—C20.5 (10)
Cu1—N1—C1—N2179.0 (5)C4—N3—C5—C60.0 (10)
Cu1—N1—C1—C43.8 (9)C4—N4—C6—C51.1 (11)
Cu1—N1—C2—C3177.9 (7)C8—N5—C7—N61.1 (9)
Cu1—N3—C4—N4178.0 (6)C8—N5—C7—C10176.3 (7)
Cu1—N3—C4—C10.6 (10)C5—N3—C4—N40.7 (10)
Cu1—N3—C5—C6178.1 (7)C5—N3—C4—C1178.1 (8)
Cu1—N7—C10—N8179.6 (5)C9—N6—C7—N50.8 (9)
Cu1—N7—C10—C70.9 (9)C9—N6—C7—C10176.2 (8)
Cu1—N7—C11—C12178.9 (7)C12—N8—C10—N70.5 (9)
O2—C13—C14—C1528.3 (14)C12—N8—C10—C7177.9 (8)
O4—C15—C14—C1316.3 (15)C11—N7—C10—N80.2 (9)
O5—C15—C14—C13165.4 (9)C11—N7—C10—C7178.5 (7)
N5—C7—C10—N70.6 (10)C6—N4—C4—N31.2 (10)
N5—C7—C10—N8179.0 (8)C6—N4—C4—C1178.0 (9)
N5—C8—C9—N60.5 (10)C2—N1—C1—N20.4 (9)
O3—C13—C14—C15155.0 (9)C2—N1—C1—C4177.7 (7)
N1—C1—C4—N32.2 (12)C3—N2—C1—N10.6 (10)
N1—C1—C4—N4174.5 (9)C3—N2—C1—C4177.3 (9)
N1—C2—C3—N20.3 (10)O1A—Cl1B—O2B—Cu213 (2)
N3—C5—C6—N40.7 (11)O1A—Cl1A—O2A—Cu225.6 (7)
N8—C12—C11—N70.5 (10)O4B—Cl1B—O2B—Cu2148 (2)
N2—C1—C4—N3178.7 (9)O3B—Cl1B—O2B—Cu298 (3)
N2—C1—C4—N42.1 (17)O4A—Cl1A—O2A—Cu291.2 (7)
N6—C7—C10—N7176.2 (8)O3A—Cl1A—O2A—Cu2142.9 (9)
Symmetry code: (i) x, y, z+3/2.
Bis(2,2'-biimidazole-κ2N,N')copper(II) bis[bis(2,2'-biimidazole-κ2N,N')(2-carboxyacetato-κO2)(malonato-κO)copper(II)] 13-hydrate (4) top
Crystal data top
[Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2OF(000) = 1694
Mr = 1639.91Dx = 1.721 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 7.7912 (6) ÅCell parameters from 12816 reflections
b = 12.5972 (10) Åθ = 1.7–27.9°
c = 32.481 (3) ŵ = 1.11 mm1
β = 96.802 (2)°T = 298 K
V = 3165.5 (4) Å3Block, green
Z = 20.14 × 0.11 × 0.09 mm
Data collection top
4-circle
diffractometer
2735 reflections with I > 2σ(I)
ω scansRint = 0.153
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.557, Tmax = 1.000h = 97
33363 measured reflectionsk = 1414
5454 independent reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5454 reflectionsΔρmax = 0.46 e Å3
413 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data for 14 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77333 (10)0.13334 (6)0.24077 (3)0.0439 (3)
Cu21.0000000.0000000.0000000.0532 (4)
O10.4231 (7)0.2137 (4)0.3880 (2)0.085 (2)
O20.6020 (6)0.3487 (4)0.39351 (17)0.0591 (14)
H20.7074060.3542190.3950550.089*
O30.5425 (6)0.0973 (4)0.30181 (16)0.0491 (12)
O40.6185 (7)0.0128 (4)0.36139 (16)0.0635 (15)
O51.1145 (6)0.0666 (4)0.12665 (16)0.0620 (15)
O61.1400 (6)0.0668 (4)0.08355 (17)0.0589 (14)
O71.0180 (6)0.1638 (4)0.19198 (16)0.0516 (13)
O80.9569 (7)0.2617 (4)0.13543 (16)0.0709 (16)
N110.7413 (6)0.0229 (4)0.23463 (17)0.0393 (14)
N210.7972 (6)0.1807 (4)0.26323 (18)0.0404 (14)
H210.8403590.2289320.2801380.048*
N310.9470 (6)0.0896 (4)0.28917 (17)0.0396 (14)
N411.0400 (7)0.0443 (4)0.32994 (17)0.0433 (14)
H411.0512880.1075750.3398290.052*
N120.5954 (6)0.1774 (4)0.19301 (17)0.0424 (15)
C220.4080 (9)0.2237 (6)0.1383 (2)0.0491 (19)
H220.3296560.2207300.1143950.059*
N320.7769 (6)0.2903 (4)0.25148 (17)0.0382 (14)
N420.6642 (6)0.4454 (4)0.23369 (17)0.0392 (14)
H420.6025860.4935980.2202670.047*
N130.9649 (7)0.1431 (5)0.02380 (19)0.0558 (17)
N230.8059 (7)0.2409 (5)0.06113 (18)0.0550 (17)
H230.7241830.2589430.0753370.066*
N330.7782 (7)0.0303 (5)0.02232 (18)0.0490 (16)
N430.5775 (7)0.0284 (5)0.05859 (17)0.0466 (15)
H430.5212030.0707280.0728730.056*
C110.6513 (8)0.0999 (5)0.2108 (2)0.0406 (17)
H110.5783600.0875890.1864410.049*
C210.6858 (8)0.1958 (6)0.2283 (2)0.0458 (19)
H21A0.6414240.2605540.2182060.055*
C310.8266 (8)0.0755 (6)0.2662 (2)0.0385 (17)
C410.9376 (8)0.0131 (6)0.2960 (2)0.0368 (16)
C611.1226 (8)0.0453 (6)0.3456 (2)0.0442 (18)
H611.2030230.0494730.3691170.053*
C511.0653 (8)0.1267 (6)0.3206 (2)0.0404 (17)
H511.1006290.1969290.3240620.048*
C120.4895 (8)0.1407 (5)0.1590 (2)0.0442 (18)
H120.4759090.0697490.1512720.053*
N220.4644 (7)0.3122 (4)0.15983 (17)0.0445 (15)
H22A0.4340780.3763770.1534890.053*
C320.5755 (8)0.2826 (5)0.1927 (2)0.0383 (17)
C420.6698 (8)0.3430 (6)0.2243 (2)0.0387 (17)
C620.7769 (8)0.4587 (6)0.2692 (2)0.0412 (17)
H620.8016300.5223370.2831750.049*
C520.8451 (8)0.3633 (5)0.2801 (2)0.0396 (17)
H520.9247600.3493210.3030710.048*
C131.0359 (11)0.2444 (7)0.0294 (3)0.078 (3)
H131.1357140.2670920.0189820.094*
C230.9401 (11)0.3045 (7)0.0521 (3)0.076 (3)
H23A0.9602100.3747840.0600360.091*
C330.8254 (9)0.1453 (6)0.0438 (2)0.0484 (19)
C430.7236 (9)0.0503 (6)0.0430 (2)0.0456 (19)
C630.5335 (9)0.0720 (6)0.0479 (2)0.051 (2)
H630.4373140.1089170.0546780.061*
C530.6563 (10)0.1089 (7)0.0256 (2)0.059 (2)
H530.6585270.1764520.0141330.071*
C10.5572 (10)0.2552 (6)0.3816 (2)0.0484 (19)
C20.6811 (8)0.1960 (5)0.3577 (2)0.0480 (19)
H2A0.7130050.2413310.3356420.058*
H2B0.7854260.1802830.3760360.058*
C30.6074 (8)0.0941 (6)0.3390 (3)0.0460 (19)
C60.9692 (8)0.1753 (6)0.1540 (3)0.0444 (18)
C50.9172 (8)0.0752 (5)0.1285 (2)0.0492 (19)
H5A0.8674390.0240290.1459620.059*
H5B0.8294380.0936660.1058960.059*
C41.0685 (8)0.0253 (6)0.1110 (2)0.0415 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0486 (5)0.0299 (5)0.0510 (6)0.0020 (4)0.0029 (4)0.0024 (4)
Cu20.0491 (8)0.0576 (10)0.0553 (9)0.0045 (6)0.0168 (6)0.0101 (7)
O10.064 (4)0.071 (4)0.130 (5)0.031 (3)0.056 (4)0.055 (4)
O20.056 (3)0.046 (4)0.080 (4)0.005 (3)0.028 (3)0.017 (3)
O30.055 (3)0.040 (3)0.051 (4)0.005 (2)0.002 (2)0.003 (3)
O40.096 (4)0.037 (3)0.055 (4)0.005 (3)0.002 (3)0.001 (3)
O50.076 (4)0.055 (4)0.059 (4)0.022 (3)0.023 (3)0.021 (3)
O60.058 (3)0.046 (3)0.077 (4)0.001 (2)0.021 (3)0.010 (3)
O70.062 (3)0.042 (3)0.046 (3)0.001 (2)0.013 (2)0.006 (3)
O80.129 (5)0.037 (4)0.042 (4)0.009 (3)0.008 (3)0.004 (3)
N110.045 (3)0.031 (4)0.042 (4)0.005 (3)0.006 (3)0.004 (3)
N210.046 (3)0.023 (4)0.054 (4)0.003 (2)0.010 (3)0.002 (3)
N310.039 (3)0.032 (4)0.049 (4)0.001 (2)0.006 (3)0.004 (3)
N410.048 (3)0.038 (4)0.044 (4)0.002 (3)0.004 (3)0.002 (3)
N120.039 (3)0.035 (4)0.050 (4)0.002 (2)0.007 (3)0.003 (3)
C220.061 (5)0.033 (5)0.048 (5)0.000 (4)0.013 (4)0.009 (4)
N320.042 (3)0.025 (3)0.049 (4)0.003 (3)0.012 (3)0.008 (3)
N420.040 (3)0.030 (4)0.047 (4)0.004 (2)0.003 (3)0.001 (3)
N130.056 (4)0.056 (5)0.059 (4)0.003 (3)0.023 (3)0.009 (4)
N230.064 (4)0.048 (4)0.057 (4)0.004 (3)0.028 (3)0.015 (3)
N330.043 (4)0.053 (4)0.050 (4)0.009 (3)0.006 (3)0.004 (3)
N430.047 (4)0.048 (4)0.045 (4)0.008 (3)0.005 (3)0.006 (3)
C110.049 (4)0.024 (4)0.047 (5)0.003 (3)0.000 (3)0.002 (4)
C210.038 (4)0.032 (5)0.067 (6)0.006 (3)0.005 (4)0.010 (4)
C310.036 (4)0.033 (5)0.048 (5)0.001 (3)0.013 (3)0.004 (4)
C410.031 (4)0.039 (5)0.040 (5)0.001 (3)0.003 (3)0.007 (4)
C610.047 (4)0.041 (5)0.043 (5)0.003 (3)0.002 (3)0.002 (4)
C510.041 (4)0.036 (5)0.043 (5)0.006 (3)0.000 (3)0.006 (4)
C120.059 (4)0.026 (4)0.046 (5)0.003 (3)0.003 (3)0.015 (4)
N220.049 (4)0.033 (4)0.051 (4)0.000 (3)0.005 (3)0.002 (3)
C320.035 (4)0.027 (5)0.054 (5)0.002 (3)0.009 (3)0.001 (4)
C420.043 (4)0.034 (5)0.040 (5)0.005 (3)0.008 (3)0.006 (4)
C620.050 (4)0.040 (5)0.035 (4)0.014 (3)0.007 (3)0.007 (4)
C520.039 (4)0.032 (4)0.050 (5)0.000 (3)0.013 (3)0.002 (4)
C130.094 (7)0.055 (6)0.096 (8)0.005 (5)0.051 (6)0.014 (5)
C230.086 (6)0.052 (6)0.098 (7)0.013 (5)0.043 (5)0.035 (5)
C330.049 (5)0.051 (6)0.046 (5)0.009 (4)0.007 (4)0.008 (4)
C430.045 (5)0.053 (5)0.040 (5)0.009 (4)0.010 (3)0.003 (4)
C630.049 (5)0.048 (5)0.058 (5)0.006 (4)0.008 (4)0.002 (4)
C530.059 (5)0.066 (6)0.053 (5)0.013 (4)0.013 (4)0.012 (4)
C10.055 (5)0.041 (5)0.051 (5)0.007 (4)0.013 (4)0.012 (4)
C20.044 (4)0.029 (4)0.075 (6)0.012 (3)0.022 (4)0.011 (4)
C30.039 (4)0.042 (5)0.060 (6)0.008 (3)0.019 (4)0.003 (5)
C60.039 (4)0.043 (5)0.050 (5)0.009 (3)0.001 (3)0.000 (4)
C50.051 (5)0.045 (5)0.052 (5)0.001 (3)0.005 (3)0.021 (4)
C40.044 (4)0.042 (5)0.039 (5)0.007 (3)0.004 (3)0.004 (4)
Geometric parameters (Å, º) top
Cu1—O32.867 (5)N13—C131.394 (10)
Cu1—O72.647 (5)N13—C331.330 (8)
Cu1—N111.991 (5)N23—H230.8600
Cu1—N312.025 (5)N23—C231.377 (9)
Cu1—N122.032 (5)N23—C331.345 (8)
Cu1—N322.007 (5)N33—C431.317 (8)
Cu2—O62.926 (5)N33—C531.384 (9)
Cu2—N13i1.993 (6)N43—H430.8600
Cu2—N131.993 (6)N43—C431.328 (8)
Cu2—N331.989 (6)N43—C631.345 (8)
Cu2—N33i1.989 (6)C11—H110.9300
O1—C11.208 (8)C11—C211.349 (9)
O2—H20.8200C21—H21A0.9300
O2—C11.275 (8)C31—C411.449 (9)
O3—C31.255 (8)C61—H610.9300
O4—C31.252 (8)C61—C511.351 (9)
O5—C41.298 (8)C51—H510.9300
O6—C41.223 (8)C12—H120.9300
O7—C61.256 (8)N22—H22A0.8600
O8—C61.242 (8)N22—C321.344 (8)
N11—C111.380 (8)C32—C421.413 (9)
N11—C311.332 (8)C62—H620.9300
N21—H210.8600C62—C521.344 (8)
N21—C211.358 (8)C52—H520.9300
N21—C311.347 (8)C13—H130.9300
N31—C411.317 (8)C13—C231.343 (10)
N31—C511.373 (8)C23—H23A0.9300
N41—H410.8600C33—C431.434 (10)
N41—C411.342 (8)C63—H630.9300
N41—C611.368 (8)C63—C531.350 (9)
N12—C121.379 (8)C53—H530.9300
N12—C321.334 (8)C1—C21.507 (9)
C22—H220.9300C2—H2A0.9700
C22—C121.359 (9)C2—H2B0.9700
C22—N221.361 (8)C2—C31.504 (9)
N32—C421.319 (8)C6—C51.536 (9)
N32—C521.369 (8)C5—H5A0.9700
N42—H420.8600C5—H5B0.9700
N42—C421.328 (8)C5—C41.505 (9)
N42—C621.375 (8)
O7—Cu1—O3172.90 (14)N11—C31—C41116.6 (6)
N11—Cu1—O380.28 (17)N21—C31—C41131.7 (7)
N11—Cu1—O7100.02 (18)N31—C41—N41112.7 (6)
N11—Cu1—N3182.7 (2)N31—C41—C31117.5 (6)
N11—Cu1—N1297.3 (2)N41—C41—C31129.7 (7)
N11—Cu1—N32172.0 (2)N41—C61—H61126.4
N31—Cu1—O380.58 (18)C51—C61—N41107.1 (6)
N31—Cu1—O792.40 (18)C51—C61—H61126.4
N31—Cu1—N12178.8 (2)N31—C51—H51125.2
N12—Cu1—O398.29 (18)C61—C51—N31109.5 (6)
N12—Cu1—O788.72 (18)C61—C51—H51125.2
N32—Cu1—O391.91 (17)N12—C12—H12125.1
N32—Cu1—O787.97 (17)C22—C12—N12109.7 (6)
N32—Cu1—N3198.0 (2)C22—C12—H12125.1
N32—Cu1—N1281.8 (2)C22—N22—H22A125.7
N13i—Cu2—O692.7 (2)C32—N22—C22108.6 (6)
N13—Cu2—O687.3 (2)C32—N22—H22A125.7
N13i—Cu2—N13180.0N12—C32—N22110.2 (6)
N33i—Cu2—O698.56 (18)N12—C32—C42118.6 (6)
N33—Cu2—O681.44 (18)N22—C32—C42131.2 (6)
N33—Cu2—N13i97.6 (2)N32—C42—N42111.8 (6)
N33—Cu2—N1382.4 (2)N32—C42—C32116.7 (6)
N33i—Cu2—N1397.6 (2)N42—C42—C32131.4 (7)
N33i—Cu2—N13i82.4 (2)N42—C62—H62126.1
N33i—Cu2—N33180.0C52—C62—N42107.7 (6)
C1—O2—H2109.5C52—C62—H62126.1
C3—O3—Cu1117.2 (4)N32—C52—H52125.9
C4—O6—Cu2113.7 (4)C62—C52—N32108.3 (6)
C6—O7—Cu1116.7 (4)C62—C52—H52125.9
C11—N11—Cu1143.2 (5)N13—C13—H13124.7
C31—N11—Cu1111.7 (4)C23—C13—N13110.5 (7)
C31—N11—C11104.9 (6)C23—C13—H13124.7
C21—N21—H21126.7N23—C23—H23A127.1
C31—N21—H21126.7C13—C23—N23105.9 (7)
C31—N21—C21106.5 (6)C13—C23—H23A127.1
C41—N31—Cu1110.6 (4)N13—C33—N23111.3 (7)
C41—N31—C51104.8 (5)N13—C33—C43117.2 (7)
C51—N31—Cu1144.3 (5)N23—C33—C43131.6 (7)
C41—N41—H41127.1N33—C43—N43112.2 (7)
C41—N41—C61105.8 (6)N33—C43—C33116.1 (7)
C61—N41—H41127.1N43—C43—C33131.7 (7)
C12—N12—Cu1144.1 (5)N43—C63—H63126.7
C32—N12—Cu1110.2 (4)N43—C63—C53106.7 (7)
C32—N12—C12105.6 (5)C53—C63—H63126.7
C12—C22—H22127.1N33—C53—H53125.3
C12—C22—N22105.9 (6)C63—C53—N33109.4 (7)
N22—C22—H22127.1C63—C53—H53125.3
C42—N32—Cu1112.6 (4)O1—C1—O2124.0 (7)
C42—N32—C52106.2 (6)O1—C1—C2119.6 (7)
C52—N32—Cu1140.9 (5)O2—C1—C2116.4 (6)
C42—N42—H42127.0C1—C2—H2A109.0
C42—N42—C62106.0 (6)C1—C2—H2B109.0
C62—N42—H42127.0H2A—C2—H2B107.8
C13—N13—Cu2143.9 (5)C3—C2—C1113.1 (5)
C33—N13—Cu2111.5 (5)C3—C2—H2A109.0
C33—N13—C13104.5 (6)C3—C2—H2B109.0
C23—N23—H23126.1O3—C3—C2116.8 (7)
C33—N23—H23126.1O4—C3—O3125.2 (7)
C33—N23—C23107.8 (6)O4—C3—C2117.9 (8)
C43—N33—Cu2112.7 (5)O7—C6—C5117.7 (7)
C43—N33—C53104.3 (6)O8—C6—O7125.1 (7)
C53—N33—Cu2143.0 (5)O8—C6—C5117.2 (7)
C43—N43—H43126.2C6—C5—H5A109.2
C43—N43—C63107.5 (6)C6—C5—H5B109.2
C63—N43—H43126.2H5A—C5—H5B107.9
N11—C11—H11125.4C4—C5—C6112.2 (5)
C21—C11—N11109.3 (6)C4—C5—H5A109.2
C21—C11—H11125.4C4—C5—H5B109.2
N21—C21—H21A126.2O5—C4—C5114.7 (6)
C11—C21—N21107.6 (6)O6—C4—O5122.6 (6)
C11—C21—H21A126.2O6—C4—C5122.7 (7)
N11—C31—N21111.6 (6)
Cu1—O3—C3—O4111.0 (7)N23—C33—C43—N431.5 (13)
Cu1—O3—C3—C267.4 (6)N43—C63—C53—N330.1 (8)
Cu1—O7—C6—O8101.0 (7)C11—N11—C31—N210.9 (7)
Cu1—O7—C6—C577.7 (6)C11—N11—C31—C41178.2 (5)
Cu1—N11—C11—C21173.9 (5)C21—N21—C31—N110.8 (7)
Cu1—N11—C31—N21176.6 (4)C21—N21—C31—C41177.6 (7)
Cu1—N11—C31—C416.1 (7)C31—N11—C11—C210.6 (7)
Cu1—N31—C41—N41174.7 (4)C31—N21—C21—C110.4 (7)
Cu1—N31—C41—C317.1 (7)C41—N31—C51—C610.6 (7)
Cu1—N31—C51—C61172.3 (5)C41—N41—C61—C510.5 (7)
Cu1—N12—C12—C22175.8 (6)C61—N41—C41—N310.9 (7)
Cu1—N12—C32—N22176.8 (4)C61—N41—C41—C31177.1 (6)
Cu1—N12—C32—C422.2 (7)C51—N31—C41—N410.9 (7)
Cu1—N32—C42—N42175.3 (4)C51—N31—C41—C31177.3 (5)
Cu1—N32—C42—C321.1 (7)C12—N12—C32—N220.8 (7)
Cu1—N32—C52—C62173.5 (5)C12—N12—C32—C42179.8 (6)
Cu2—O6—C4—O586.0 (7)C12—C22—N22—C320.6 (7)
Cu2—O6—C4—C592.3 (7)N22—C22—C12—N120.1 (8)
Cu2—N13—C13—C23176.2 (7)N22—C32—C42—N32176.5 (6)
Cu2—N13—C33—N23177.6 (5)N22—C32—C42—N428.0 (12)
Cu2—N13—C33—C432.9 (8)C32—N12—C12—C220.4 (8)
Cu2—N33—C43—N43178.6 (4)C42—N32—C52—C620.2 (7)
Cu2—N33—C43—C333.5 (8)C42—N42—C62—C520.6 (7)
Cu2—N33—C53—C63177.4 (6)C62—N42—C42—N320.5 (7)
O1—C1—C2—C38.1 (11)C62—N42—C42—C32176.2 (7)
O2—C1—C2—C3171.0 (7)C52—N32—C42—N420.2 (7)
O7—C6—C5—C489.2 (8)C52—N32—C42—C32176.6 (5)
O8—C6—C5—C492.1 (8)C13—N13—C33—N230.1 (8)
N11—C11—C21—N210.1 (7)C13—N13—C33—C43179.6 (7)
N11—C31—C41—N310.8 (9)C23—N23—C33—N130.1 (9)
N11—C31—C41—N41178.7 (6)C23—N23—C33—C43179.4 (8)
N21—C31—C41—N31175.9 (6)C33—N13—C13—C230.1 (10)
N21—C31—C41—N412.0 (12)C33—N23—C23—C130.0 (10)
N41—C61—C51—N310.1 (7)C43—N33—C53—C630.2 (8)
N12—C32—C42—N322.3 (9)C43—N43—C63—C530.3 (8)
N12—C32—C42—N42173.2 (6)C63—N43—C43—N330.5 (8)
C22—N22—C32—N120.9 (7)C63—N43—C43—C33178.0 (7)
C22—N22—C32—C42179.7 (7)C53—N33—C43—N430.4 (8)
N42—C62—C52—N320.5 (7)C53—N33—C43—C33178.4 (6)
N13—C13—C23—N230.1 (11)C1—C2—C3—O396.6 (8)
N13—C33—C43—N330.4 (10)C1—C2—C3—O484.8 (8)
N13—C33—C43—N43177.8 (7)C6—C5—C4—O5112.4 (7)
N23—C33—C43—N33178.9 (7)C6—C5—C4—O669.2 (9)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

This project has been partially funded by FONACIT. The Frank Allen Inter­national Research & Education Programme (FAIRE) of the Cambridge Crystallographic Data Centre (CCDC) made access to the Cambridge Structural Database (CSD) possible. The authors declare that there are no conflicts of inter­est.

Funding information

The following funding is acknowledged: Fondo Nacional de Ciencia Tecnología e Innovación (project No. Lab-97000821).

References

First citationAl Zoubi, W., Kamil, M. P., Fatimah, S., Nashrah, N. & Ko, Y. G. (2020). Prog. Mater. Sci. 112, 100663.  CrossRef Google Scholar
First citationAtencio, R., Brammer, L., Fang, S. & Christopher Pigge, F. (1999). New J. Chem. 23, 461–463.  CSD CrossRef CAS Google Scholar
First citationAtencio, R., Chacón, M., González, T., Briceño, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505–513.  Web of Science CSD CrossRef Google Scholar
First citationAtencio, R., Ramírez, K., Reyes, J. A., González, T. & Silva, P. (2005). Inorg. Chim. Acta, 358, 520–526.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarquín, M., Garmendia, M. J. G. & Bellido, V. (2003). Transition Met. Chem. 28, 356–360.  Google Scholar
First citationBrammer, L., Rivas, J. C. M., Atencio, R., Fang, S. & Pigge, F. C. (2000). J. Chem. Soc. Dalton Trans. pp. 3855–3867.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1996). Acta Cryst. A52, C562.  CrossRef IUCr Journals Google Scholar
First citationBriceño, A. & Escalona, A. M. (2015). Photochemistry, Vol. 43, pp. 286–320. London: Royal Society of Chemistry.  Google Scholar
First citationBriceño, A., Hill, Y., González, T. & Díaz de Delgado, G. (2009). Dalton Trans. pp. 1602–1610.  Google Scholar
First citationBriceño, A., Leal, D., Atencio, R. & Díaz de Delgado, G. (2006). Chem. Commun. pp. 3534–3536.  Google Scholar
First citationBurrows, A. D. (2003). Struct. Bonding, 108, 55–96.  CrossRef Google Scholar
First citationColacio, E., Ghazi, M., Kivekäs, R. & Moreno, J. M. (2000). Inorg. Chem. 39, 2882–2890.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDelgado, F. S., Jiménez, C. A., Lorenzo-Luis, P., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2012). Cryst. Growth Des. 12, 599–614.  CSD CrossRef CAS Google Scholar
First citationDelgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). Cryst. Growth Des. 8, 3219–3232.  CSD CrossRef CAS Google Scholar
First citationDennington, R., Keith, T. A. & Millam, J. M. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/Google Scholar
First citationDeshpande, M. S., Morajkar, S. M., Ahirwar, M. B., Deshmukh, M. M. & Srinivasan, B. R. (2021). J. Chem. Sci. 133, 99.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationEwen, S. L. & Steinke, J. H. G. (2008). Struct. Bonding, 129, 207–248.  CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Caricato, X. L. M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN09. Version B.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/Google Scholar
First citationGiacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Gilli, G., Gilli, P., Zanotti, G., Ferraris, G. & Catti, M. (2011). In Fundamentals of Crystallography. New York: Oxford University Press.  Google Scholar
First citationGomez-Romero, P. (2001). Adv. Mater. 13, 163–174.  CAS Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHill, Y. & Briceño, A. (2007). Chem. Commun. pp. 3930–3932.  CSD CrossRef Google Scholar
First citationLehn, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1319.  CrossRef Google Scholar
First citationMali, K. S., Adisoejoso, J., Ghijsens, E., De Cat, I. & De Feyter, S. (2012). Acc. Chem. Res. 45, 1309–1320.  CrossRef CAS PubMed Google Scholar
First citationMir, S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H. & Khosla, A. (2018). J. Electrochem. Soc. 165, B3137–B3156.  CrossRef CAS Google Scholar
First citationMulder, A., Huskens, J. & Reinhoudt, D. N. (2004). Org. Biomol. Chem. 2, 3409.  CrossRef PubMed Google Scholar
First citationOlmstead, M. M. (2020). Acta Cryst. C76, 159–163.  CSD CrossRef IUCr Journals Google Scholar
First citationRamírez, K., Reyes, J. A., Briceño, A. & Atencio, R. (2002). Cryst­EngComm, 4, 208–212.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSanchez, C., Belleville, P., Popall, M. & Nicole, L. (2011). Chem. Soc. Rev. 40, 696.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, J., Vikulina, A. S., Parakhonskiy, B. V. & Skirtach, A. G. (2023). Front. Chem. 11, 1–23.  Google Scholar
First citationTadokoro, M., Isobe, K., Miyazaki, A., Enoki, T. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 278, 199–207.  CSD CrossRef CAS Google Scholar
First citationTadokoro, M., Kanno, H., Kitajima, T., Shimada-Umemoto, H., Nakanishi, N., Isobe, K. & Nakasuji, K. (2002). Proc. Natl Acad. Sci. USA, 99, 4950–4955.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds