crystallography in latin america
Multivalent hydrogen-bonded architectures directed by self-complementarity between [Cu(2,2′-biimidazole)] and malonate building blocks
aLaboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apto. 21827, Caracas 1020-A, Venezuela, and bDepartamento de Ciencias Químicas y Ambientales, Facultad de Ciencias Naturales y Matemáticas (FCNM), and Center of Nanotechnology Research and Development, CIDNA, Escuela Superior Politécnica del Litoral (ESPOL), 30.5 vía Perimetral, Guayaquil, Ecuador
*Correspondence e-mail: ratenciof@gmail.com
This article is part of the collection Crystallography in Latin America: a vibrant community.
The synthesis and structural characterization of four novel supramolecular hydrogen-bonded arrangements based on self-assembly from molecular `[Cu(2,2′-biimidazole)]' modules and malonate anions are presented, namely, tetrakis(2,2′-biimidazole)di-μ-chlorido-dimalonatotricopper(II) pentahydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua(2,2′-biimidazole)malonatocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis[aquabis(2,2′-biimidazole)copper(II)] dimalonatodiperchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis(2,2′-biimidazole)copper(II) bis[bis(2,2′-biimidazole)(2-carboxyacetato)malonatocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These assemblies are characterized by self-complementary donor–acceptor molecular interactions, demonstrating a recurrent and distinctive pattern of hydrogen-bonding preferences among the carboxylate, carboxylic acid and N—H groups of the coordinated 2,2′-biimidazole and malonate ligands. Additionally, coordination of the carboxylate group with the metallic centre helps sustain remarkable supramolecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal complexes, into a single structure.
1. Introduction
The construction of supramolecular assemblies sustained from hydrogen-bonded interactions has led to the development of many materials with attractive properties, finding applications in both academic and industrial settings (Lehn, 1990; Brammer et al., 2000; Mali et al., 2012; Ewen & Steinke, 2008; Burrows, 2003). A notable example is the family of inorganic–organic hybrid materials, which have garnered significant attention and hold immense potential (Gomez-Romero, 2001; Al Zoubi et al., 2020; Song et al., 2023). These materials can incorporate the functionality of both classes of components in a single solid, opening a world of possibilities for innovative applications (Sanchez et al., 2011; Mir et al., 2018; Gomez-Romero, 2001).
In this context, we have exploited the ability of multivalent metal–organic building blocks based on the harmonization of hydrogen bonds and metal coordination as a strategy to engineer novel functional metal assemblies bearing specific ligands with variable multivalent binding donor–acceptor sites (Briceño et al., 2006, 2009; Hill & Briceño, 2007; Briceño & Escalona, 2015). Rational control of the supramolecular domain introduces inherent structural malleability and diversity (different geometric coordination, multivalency capacity, switching from neutral to distinctive ionic metal complexes) for the potential design of novel multicomponent hydrogen-bonded supramolecular arrays (Hill & Briceño, 2007; Atencio et al., 1999; Brammer et al., 2000; Mulder et al., 2004). These structural features can also be explored to intercalate secondary molecules or mixed metal–organic building units through self-recognition directed by complementary hydrogen-bonded synthons between correctly oriented pendant functional groups in metal coordination building blocks (e.g. carboxyl, carboxylate, N—H and O—H groups; Fig. 1).
A particularly intriguing and versatile organic species for creating hybrid materials is the molecule 2,2′-biimidazole (H2biim) (Tadokoro et al., 1996, 2002; Barquín et al., 2003). As a neutral organic molecular entity, it can form hydrogen-bonded assemblies with carboxylic acid groups (Ia in Fig. 1). It can also coordinate with metal centres while acting as a donor in hydrogen-bonding interactions (Ib–If in Fig. 1). In our research group, these coordinated fragments are considered molecular modules that can be assembled through their N—H groups to a second module with electronically and geometrically complementary functional groups. Thus, `M(H2biim)2' combined with aromatic carboxylic acid groups (see Ib and Ic in Fig. 1) form planar supramolecular modules, which improves the possibility of generating one- (1D) or two-dimensional (2D) assemblies, as we have reported previously (Atencio et al., 2004). The carboxylate group (Id in Fig. 1), linked directly to arene or pyridine rings, has been used as a second module to design robust 1D or 2D supramolecular species capable of performing reversibly water sorption–desorption processes preserving the crystallinity of the solid (Atencio et al., 2004). In these cases, two molecules of H2biim occupy the equatorial plane of a Co2+ or Ni2+ complex with octahedral coordination geometry, with two coordination water molecules located at the remaining axial positions. The energy of these R22(9) hydrogen bonds were theoretically estimated to be 24.5 and 27.8 kcal mol−1 between carboxylic acid or carboxylate and coordinated biimidazole entities, respectively (Atencio et al., 2004). These values lie above the upper limit of the range invoked for a medium–strong hydrogen bond, with an energy range of 6–20 kcal mol−1 (Giacovazzo et al., 2011). This approach has also been achieved for building extended hydrogen-bonded systems with discrete anions like chloride (Ramírez et al., 2002; Atencio et al., 2005) (If in Fig. 1). Accordingly, we focused on using dicarboxylates with more considerable conformational flexibility (e.g. malonate) to increase the structural diversity. It has been observed (vide infra) that direct coordination of the carboxylate to the metal centre increases the likelihood of driving three-dimensional (3D) architectures (Delgado et al., 2012). These possibilities, included within the field of crystal engineering, are demonstrated with the synthesis and structural characterization of the four novel complexes [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, (1), [Cu(H2biim)(mal)(H2O)]·2H2O, (2), [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, (3), and [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O, (4), where H2biim is 2,2′-biimidazole, mal is malonate and Hmal is hydrogen malonate (or 2-carboxyacetate).
2. Experimental
All reagents were obtained from commercial sources and used without further purification, except for 2,2′-biimidazole, which was synthesized following the previously reported procedure of Ramírez et al. (2002). The elemental analyses (C, H and N) were performed on an EA1108 Fisons elemental analyzer. The FT–IR spectra were recorded from KBr discs using a Nicolet Magna-IR 560 spectrophotometer.
2.1. Synthesis and crystallization
The syntheses of 1–4 were carried out by dissolving 2,2′-biimidazole (0.3728 mmol) in 50 ml of an ethanol/water (1:1 v/v) mixture under reflux at boiling temperature. The corresponding salt [CuCl2 for 1, Cu(AcO)2·H2O for 2 and 4, and Cu(ClO4)2·6H2O for 3] was added with constant stirring. The solution turned light green, at which point malonic acid was added. The final molar ratio of Cu–biimidazole–H2mal was 1:2:1, except in the case of 4, where a final ratio of 1:2:2 was used. The resulting solutions were evaporated slowly over a period of three weeks. The products were separated by decantation, washed with a cold ethanol/water mixture and dried at room temperature, yielding dark-green crystals that were stable in air (yield: 70% for 1, 63% for 2, 60% for 3 and 35% for 4).
For 1: elemental analysis (%) calculated for C30H28Cl2Cu3N16O8·5H2O: C 32.83, H 3.55, N 20.42; found: C 33.12, H 3.43, N 19.98. FT–IR [KBr, ν(cm−1)]: 3395, 3119–3011, 2901, 1569, 1375.
For 2: elemental analysis calculated (%) for C9H10CuN4O5·2.2H2O: C 30.56, H 3.99, N 15.83; found: C 30.90, H 3.90, N 16.02. FT–IR [KBr, ν(cm−1)]: 3421, 3201, 2923, 1533, 1370, 1185–1130.
For 3: elemental analysis calculated (%) for C30H32Cl2Cu3N16O18·2.22H2O: C 29.87, H 3.05, N 18.58; found: C 29.98, H 2.99, N 19.00. FT–IR [KBr, ν(cm−1)]: 3549, 3136–3007, 2938, 1576, 1429, 1108, 621.
For 4: elemental analysis calculated (%) for C24H23Cu1.5N12O8·6.5H2O: C 35.08, H 4.44, N 20.46; found: C 35.42, H 4.31, N 20.73. FT–IR [KBr, ν(cm−1)]: 3427, 3127–3002, 2918, 1905, 1561, 1359, 1130.
2.2. Refinement
Crystal data, data collection and structure . H atoms on C, N and O atoms were placed at fixed positions. They were refined using the riding model, with isotropic displacement parameters set at 1.2Ueq(C,N) or 1.5Ueq(O). Most of the positions of the crystallization water molecules in all structures were disordered. Thus, a solvent mask was implemented and the corresponding calculated number of electrons was consistent with 2.5H2O (in 1), 2.2H2O (in 2) and 6.5H2O (in 4) per For 3, only one crystallization water molecule was found, and the position was refined freely. The remaining water molecules were estimated using a solvent-mask approach. The perchlorate group in 3 was found to be disordered over two positions and was modelled using a restricted Cl—O distance of ∼1.42 Å (Olmstead, 2020). The occupancies of both orientations was refined and converged to 0.83 and 0.17, respectively. Displacement ellipsoid plots for 2–4 are shown in Figs. S7–S9, respectively, of the supporting information.
details are summarized in Table 12.3. Computational calculations
The geometry optimization was performed using the GAUSSIAN09 package of ab initio programs for quantum chemical density functional theory (DFT) computations (Frisch et al., 2016). The calculations were conducted in the gas phase at the B3YLP/DGTZVP level of theory. The starting geometric coordinates were taken from the Cu11 complex of the of the of 2, based on crystallographic information files (CIFs) previously generated from the single-crystal XRD study. Using the optimized coordinates in the DFT study, no imaginary frequencies were obtained, confirming that the molecular structure corresponds to an energy minimum. GaussView was used as an interface to set up the GAUSSIAN09 input and visualize the results (Dennington et al., 2016).
3. Results and discussion
The 1 is built up from a trinuclear entity consisting of two `Cu(H2biim)2' and one `Cu(mal)2' module (Fig. 2). Two Cl ligands serve as bridging ligands from Cu2+ ions to form the final [Cu(H2biim)2(μ-Cl)Cu(mal)]2 complex. Thus, each Cu1 atom in `Cu(H2biim)2' displays a distorted square-pyramidal coordination environment, with two molecules of 2,2′-biimidazole coordinated in a chelating fashion through the two N atoms, forming the base of the coordination geometry [average Cu1—N = 2.025 (3) Å]. In contrast, the apical position is occupied by one Cl ligand [Cu1—Cl1 = 2.5062 (12) Å]. The Cu2 atom in `Cu(mal)2' sits on a twofold special position (Wykoff position 8h), showing a pseudo-octahedral geometry, with two malonate anions coordinated is trans and in a bidentate chelating manner through two O atoms in the equatorial plane [average Cu2—O = 1.962 (2) Å]. The remaining axial positions are occupied by the Cl ligands, with a Cu—Cl distance [Cu2—Cl1 = 2.7522 (11) Å] significantly longer than that found for Cu1—Cl1, which is characteristic of Jahn–Teller distortion (Halcrow, 2013). The packing appears to be dominated by R22(9)-Id hydrogen bonding between neighbouring complexes (Fig. 3). There are two of these intermolecular interactions, i.e. one involving N2—H2⋯O3 [N2⋯O3 = 2.871 (4) Å and N6—H6⋯O1 = 173°] and N4—H4⋯O4 [N4⋯O4 = 2.678 (5) Å and N4—H4⋯O4 = 167°], and the second comprising N6—H6⋯O2 [N6⋯O2 = 2.704 (5) Å and N6—H6⋯O2 = 175°] and N8—H8⋯O1 [N8⋯O1 = 2.822 (4) Å and N8—H8⋯O1 = 158°]. In addition, there also exist π–π intermolecular interactions between consecutive imidazole rings in the a direction [Cg1⋯Cg2 = 3.6742 (5) Å and Cg3⋯Cg3′ = 3.7019 (7) Å, where Cg1 is the centroid of the N2/C1/N1/C2/C3 ring, Cg2 is the centroid of N2/C4/N4/C6/C5, Cg3 is the centroid of N7/C10/N8/C12/C11 and Cg3′ is the centroid of N7′/C10′/N8′/C12′/C11′]. Thus, the hydrogen bonding and π–π interactions help to sustain an extended layer in the ac plane (see Fig. 3). The final 3D packing is achieved by stacking of the 2D arrays along the b axis, which leaves enough space between layers to accommodate the water molecules of crystallization (Fig. 4).
ofThe 2 contains two chemically equivalent [Cu(H2biim)(mal)(H2O)] complexes [Fig. 5(a)], which are crystallographically independent. In contrast to 1, the Cu2+ ions display a distorted square-pyramidal coordination geometry, with one 2,2′-biimidazole chelated via two N atoms [Cu11—N11 = 2.006 (4) Å and Cu11—N31 = 2.007 (4) Å; Cu12—N12 = 1.999 (4) Å and Cu12—N32 = 2.003 (4) Å] and one bidentate malonate ligand, which is coordinated in a slightly asymmetric manner [Cu11—O21 = 1.928 (3) Å and Cu11—O41 = 1.943 (3) Å; Cu12—O22 = 1.944 (3) Å and Cu12—O42 = 1.933 (3) Å] and is trans to biimidazole. In both cases, the apical position is occupied by a coordinated water molecule [Cu11—O11 = 2.282 (3) Å and Cu11—O12 = 2.287 (3) Å]. The biimidazole bidentate coordination generates a five-membered ring [Cu1x—N3x—C4x—C1x—N1x, with x = 1 or 2 for the complexes containing Cu11 and Cu12, respectively; see Fig. 5(a)], which is almost planar, with the most significant deviations from the best plane being only 0.054 (4) and 0.069 (4) Å for the Cu11 and Cu12 complexes, respectively. However, the six-membered ring (Cu1x—O4x—C9x—C8x—C7x—O2x, with x = 1 or 2) formed by the coordination of the malonate ligand enables deviations from the mean plane of up to 0.607 (5) and 0.637 (5) Å for the C81 and C82 atoms, respectively.
of the ofIt should be noted that both complexes are completely asymmetric in the solid state due to their distorted coordination geometry and the positions of the H atoms on the coordinated water molecules. The observed distortion might be associated with electronic effects, typically occurring in coordination compounds with specific electronic configurations. These effects lower the symmetry to stabilize the system (Halcrow, 2013; Deshpande et al., 2021). To discern whether this distortion is an intrinsic property of the complexes or if it arises due to crystal packing effects, we performed theoretical calculations at the density functional theory (B3LYP/DGDZVP) level. The calculations revealed a molecular geometry with minimal energy in the gas phase, resembling the distorted geometry observed in the crystalline state (see Table S10 in the supporting information). This result strongly suggests that the observed distortion and symmetry breaking are mainly inherent to the complex rather than induced by the crystal environment.
These [Cu(H2biim)(mal)(H2O)] complexes fit together via bifurcated asymmetric intermolecular O—H⋯O hydrogen bonds involving one coordinated water molecule as a donor group and two O atoms from a carboxylate group as acceptors [O11⋯O22 = 2.833 (4) Å and O11—H11B⋯O22 = 173.8 (2)°; O11⋯O32 = 3.187 (5) Å and O11—H11B⋯O32 = 129.1 (2)°]. The same kind of bifurcated hydrogen bonding enables stacking of this pair of complexes in columns along the a axis. A striking feature is that such columns are hosted in a site that facilitates the formation of helical-like columns of the complexes. Columns are interdigitated, one beside the other, in the ac plane (Fig. 6), assisted by two R21(7)-Ie hydrogen bonds [O32⋯N22 = 2.695 (5) Å and N22—H22⋯O32 = 147.4 (3)°; O32⋯N42 = 2.912 (5) Å and N42—H42⋯O32 = 139.6 (3)°; O51⋯N21 = 2.872 (5) Å and N21—H21⋯O51 = 141.0 (3)°; O51⋯N41 = 2.693 (5) Å and N41—H41⋯O51 = 147.8 (3)°]. The interdigitation also enables two π–π interactions between imidazole rings [Cg1⋯Cg2 = 3.688 (4) Å and Cg1⋯Cg2′ = 3.773 (5) Å, where Cg1 is the centroid of the N11/C21/C31/N21/C11 ring, Cg2 of the N32/C52/C62/N42/C42 ring and Cg2′ of the N32′/C52′/C62′/N42′/C42′ ring] that help to sustain this 2D array. The final 3D is defined by stacking of the 2D array along the b axis in a ABAB⋯AB sequence. Such packing leaves two distinctive channels parallel to the a axis where crystallization water molecules are hosted (see Fig. S1 in the supporting information).
The 3 contains one [Cu(H2biim)2(H2O)]2+ cation, one half of the [Cu(mal)2(ClO4)2]4− anion and water molecules of crystallization. The metal centre for the cation displays a pseudo-square-pyramidal coordination geometry, with two bidentate biimidazole [mean Cu1—N = 2.018 (6) Å] and one coordinated water molecule [Cu1—O1 = 2.194 (6) Å] [Fig. 7(a)]. On the other hand, the Cu2+ ion of the anion sits on a twofold special position (Wykoff position 4e), exhibiting a quite distorted octahedral environment involving two chelating malonate ligands coordinated in the equatorial plane [Cu2—O2 = 1.925 (4) Å and Cu2—O4 = 1.922 (5) Å] and with the axial positions occupied by two perchlorate groups [Cu2—O2A = 2.781 (15) Å] [Fig. 7(b)]. As anticipated, cation–anion interactions occur via R22(9)-Id hydrogen bonds, in which each carboxylate group is assembled into one cationic complex. Therefore, such a cation–anion interaction drives the formation of hydrogen-bonded columns along the b axis. According to the coordination geometry on each metal centre, there exist two crystallographically independent hydrogen bonds [Fig. 8(a)] [O2⋯N6 = 2.959 (8) Å and N6—H6⋯O2 = 159.4 (5)°; O3⋯N8 = 2.740 (8) Å and N8—H8⋯O3 = 175.7 (4)°; O4⋯N4 = 3.107 (9) Å and N4—H4⋯O4 = 156.8 (5)°; O5⋯N2 = 2.720 (8) Å and N2—H2⋯O5 = 171.6 (4)°]. Thus, the multivalence concert between the coordination environment and the R22(9)-Id hydrogen bonding facilitates the assembly of double helical columns, as displayed in Fig. 8(b). Columns are aligned parallel to each other, building up the final 3D architecture, which leaves intricate channels along the b axis where the crystallization water molecules are hosted (Fig. S2 in the supporting information).
of the ofThe 4 can be described as being composed of two different modules, namely, half of a square-planar cationic [Cu(H2biim)2]2+ unit (Cu2 hereafter) and one pseudo-octahedral anionic [Cu(H2biim)2(Hmal)(mal)]− complex (Cu1 hereafter) (Fig. 9). Two bidentate biimidazole ligands coordinate to the metal centre in the Cu2 complex [Cu2—N13 = 1.993 (6) Å and Cu2—N33 = 1.989 (6) Å] that sits on an inversion centre (Wykoff position 2a). Consequently, the mean plane involving the non-H atoms defines an almost perfect plane [maximum deviation at C13 = 0.055 (6) Å]. The Cu1 complex shows two H2biim ligands [Cu1—N11 = 1.991 (5) Å, Cu1—N31 = 2.025 (5) Å, Cu1—N12 = 2.032 (5) Å and Cu1—N32 = 2.007 (5) Å] occupying the equatorial positions, while the axial sites are engaged by two malonate ligands coordinated in a monodentate manner, of which one is monoprotonated (Hmal) and the other one is fully deprotonated (mal). The axial Cu1—O distances [Cu1—O7(mal) = 2.647 (5) Å and Cu1—O3(Hmal) = 2.867 (5) Å] and their orientation angles from equatorial ligands (average 92.2 and 87.8° for O7 and O3, respectively) suggest relatively weak interactions between these monodentate malonates and the metal centre. The Cu—O(carboxylate) bond lengths of ∼2.8 Å have been suggested previously to be involved in assembling a tetranuclear complex (Colacio et al., 2000). A closer compound, [Cu2(mal)2(dpp)(H2O)] [dpp = 2,3-bis(pyridyl)pyrazine], with long axial Cu—O bond distances of 2.751 (4) and 2.810 (5) Å, was also reported previously (Delgado et al., 2008). Unlike the Cu2 complex, the Cu1 ion sits on a general position with an equatorial mean plane, defined by all the non-H atoms, displaying a deviation of up to 0.407 (6) Å. An alternative description for the crystal packing of 4 results from separating the understanding of the supramolecular assembly concerning each modular ionic complex. The Cu1 complex forms two crystallographically independent R22(9)-Id hydrogen bonding, in one of which the complex acts as a donor through the biimidazole N—H groups [N22⋯O4′ = 2.678 (7) Å and N22—H22⋯O4′ = 176.9 (4)°; N42⋯O3′ = 2.673 (7) Å and N42—H42⋯O3′ = 172.6 (4)°]. In the other, a coordinated carboxylate group turns into the acceptor [N21′′⋯O7 = 2.744 (7) Å and N21—H21⋯O7= 170.7 (4)°; N41′′⋯O8 = 2.689 (7) Å and N41—H41⋯O8= 164.8 (4)°]. This hydrogen bonding enables the self-assembly of the Cu1 complex in an extended 2D array in the bc plane [Fig. 10(a)]. Two consecutive 2D arrays are sustained through the Cu2 complexes via R22(9)–Ic hydrogen bonds. In this case, the uncoordinated carboxylic acid group of the anionic Cu1 complexes acts as an acceptor [N23⋯O1 = 2.634 (8) Å and N23—H23⋯O1 = 170.2 (4)°; N42⋯O3 = 2.673 (7) Å and N42—H42⋯O3 = 172.6 (4)°] [Fig. 10(b)]. The interplay between the Cu1 and Cu2 complexes is also manifested by the axial weak interactions Cu2⋯O6 [2.926 (5) Å], suggesting the remaining uncoordinated carboxylate on the Cu1 complex (O6/C4/O5) [Fig. 11(a)]. The construction of the 3D architecture is also assisted by O—H⋯O hydrogen bonding involving the carboxylic acid groups [O2⋯O5 = 2.606 (7) Å and O2—H2⋯O5 = 116.4 (4) Å]. The final 3D network leaves channels along the a axis where crystallization water molecules are hosted [Fig. 11(b)].
of4. Conclusions
In summary, we demonstrated the potential of the Cu2+/H2biim/mal system as a versatile multivalent hydrogen-bonded metal–organic architecture to anticipate supramolecular assemblies. From a structural perspective, the supramolecular domains of these metal complexes can be fine-tuned by varying the hydrogen-bonded multivalency, compensating anion and dimensionality. This approach allowed various structural architectures, including a 1D helix, double helix columns, and 2D and 3D hydrogen-bonded networks. This structural versatility is associated with the metal coordination flexibility of the Cu2+ centres and the remarkable robustness of the hydrogen-bonded heterosynthons formed between carboxylate/carboxylic and N—H groups (types Ib–Ie).
These novel supramolecular architectures, with their potential applications in hybrid inorganic–organic materials, underscore the importance and impact of this approach and promise new tools for materials design and synthesis. In addition, the possibility of chemical coupling of mixtures of distinctive metal–organic building blocks in a single phase opens new perspectives in materials science toward the study of providing supramolecular assistance to materials engineering. To increase the level of sophistication, further studies are underway both on the preparation of novel mixed-metallic complexes and on molecular adsorption on solids exploiting such hydrogen-bonded synthons.
Supporting information
https://doi.org/10.1107/S2053229624007897/oj3021sup1.cif
contains datablocks 1, 2, 3, 4, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2053229624007897/oj30211sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2053229624007897/oj30212sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2053229624007897/oj30213sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2053229624007897/oj30214sup5.hkl
Additional figures, spectra and geometry. DOI: https://doi.org/10.1107/S2053229624007897/oj3021sup6.pdf
[Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O | Dx = 1.705 Mg m−3 |
Mr = 1092.28 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Ccce | Cell parameters from 17143 reflections |
a = 13.766 (3) Å | θ = 1.9–27.8° |
b = 20.162 (4) Å | µ = 1.69 mm−1 |
c = 30.654 (6) Å | T = 298 K |
V = 8508 (3) Å3 | Block, green |
Z = 8 | 0.3 × 0.2 × 0.2 mm |
F(000) = 4440 |
Rigaku AFC-7S/Mercury (2x2 bin mode) diffractometer | 4454 independent reflections |
Radiation source: sealed X-ray tube | 3252 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ω scans | θmax = 28.3°, θmin = 1.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | h = −16→16 |
Tmin = 0.600, Tmax = 0.710 | k = −23→23 |
44434 measured reflections | l = −29→36 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0728P)2 + 14.9339P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4454 reflections | Δρmax = 0.54 e Å−3 |
267 parameters | Δρmin = −0.61 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Intensity data for 1–4 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59208 (3) | −0.00504 (2) | 0.12719 (2) | 0.03589 (17) | |
Cu2 | 0.250000 | 0.000000 | 0.12246 (2) | 0.03365 (19) | |
Cl1 | 0.42931 (7) | −0.06037 (6) | 0.12314 (3) | 0.0502 (3) | |
O1 | 0.19974 (18) | −0.05900 (11) | 0.16807 (7) | 0.0371 (6) | |
O2 | 0.1631 (2) | −0.15618 (13) | 0.19633 (8) | 0.0571 (8) | |
O3 | 0.20776 (18) | −0.06096 (11) | 0.07631 (7) | 0.0365 (6) | |
O4 | 0.1863 (3) | −0.16109 (14) | 0.04916 (8) | 0.0848 (13) | |
N1 | 0.5927 (2) | 0.03016 (15) | 0.06557 (9) | 0.0378 (7) | |
N2 | 0.6265 (2) | 0.00945 (15) | −0.00354 (9) | 0.0400 (7) | |
H2 | 0.646510 | −0.010543 | −0.026639 | 0.048* | |
N3 | 0.6635 (2) | −0.08191 (15) | 0.09847 (9) | 0.0406 (7) | |
N4 | 0.6945 (3) | −0.13052 (16) | 0.03579 (9) | 0.0502 (8) | |
H4 | 0.699828 | −0.136831 | 0.008151 | 0.060* | |
N5 | 0.5862 (2) | 0.08437 (15) | 0.15783 (9) | 0.0412 (7) | |
N6 | 0.6134 (2) | 0.13775 (15) | 0.21918 (9) | 0.0446 (8) | |
H6 | 0.626632 | 0.145143 | 0.246165 | 0.053* | |
N7 | 0.6150 (2) | −0.03624 (15) | 0.18865 (9) | 0.0412 (7) | |
N8 | 0.6304 (2) | −0.00952 (16) | 0.25794 (9) | 0.0436 (7) | |
H8 | 0.635322 | 0.014053 | 0.281217 | 0.052* | |
C1 | 0.6293 (2) | −0.01403 (18) | 0.03760 (10) | 0.0358 (8) | |
C2 | 0.5651 (3) | 0.08357 (19) | 0.04054 (11) | 0.0431 (9) | |
H2A | 0.536588 | 0.122205 | 0.051079 | 0.052* | |
C3 | 0.5857 (3) | 0.07119 (19) | −0.00147 (12) | 0.0454 (9) | |
H3 | 0.574301 | 0.099455 | −0.024896 | 0.055* | |
C4 | 0.6633 (3) | −0.07564 (18) | 0.05516 (10) | 0.0374 (8) | |
C5 | 0.6964 (3) | −0.1451 (2) | 0.10619 (12) | 0.0511 (10) | |
H5 | 0.703769 | −0.164181 | 0.133595 | 0.061* | |
C6 | 0.7165 (4) | −0.1752 (2) | 0.06788 (13) | 0.0603 (12) | |
H6A | 0.740499 | −0.217896 | 0.064069 | 0.072* | |
C7 | 0.6070 (3) | 0.07867 (18) | 0.20007 (11) | 0.0375 (8) | |
C8 | 0.5772 (3) | 0.15121 (18) | 0.15031 (12) | 0.0448 (9) | |
H8A | 0.561293 | 0.170542 | 0.123707 | 0.054* | |
C9 | 0.5951 (3) | 0.18458 (19) | 0.18794 (12) | 0.0475 (9) | |
H9 | 0.595040 | 0.230345 | 0.191729 | 0.057* | |
C10 | 0.6200 (3) | 0.01301 (18) | 0.21724 (10) | 0.0360 (8) | |
C11 | 0.6218 (3) | −0.09369 (19) | 0.21274 (12) | 0.0487 (10) | |
H11 | 0.619856 | −0.136595 | 0.201634 | 0.058* | |
C12 | 0.6317 (3) | −0.0771 (2) | 0.25552 (12) | 0.0508 (10) | |
H12 | 0.638129 | −0.106340 | 0.278798 | 0.061* | |
C13 | 0.1897 (3) | −0.12118 (17) | 0.16521 (10) | 0.0356 (8) | |
C14 | 0.2160 (4) | −0.15692 (19) | 0.12365 (9) | 0.0469 (9) | |
H14A | 0.283939 | −0.169259 | 0.125766 | 0.056* | |
H14B | 0.178928 | −0.197823 | 0.123004 | 0.056* | |
C15 | 0.2021 (3) | −0.12340 (17) | 0.08030 (10) | 0.0406 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0465 (3) | 0.0383 (3) | 0.0229 (3) | 0.00165 (19) | −0.00055 (16) | −0.00320 (15) |
Cu2 | 0.0510 (4) | 0.0299 (4) | 0.0201 (3) | −0.0072 (3) | 0.000 | 0.000 |
Cl1 | 0.0391 (5) | 0.0562 (7) | 0.0552 (6) | 0.0002 (4) | −0.0007 (4) | −0.0003 (4) |
O1 | 0.0558 (16) | 0.0308 (14) | 0.0245 (11) | −0.0038 (11) | 0.0055 (10) | −0.0005 (9) |
O2 | 0.103 (2) | 0.0366 (15) | 0.0312 (13) | −0.0163 (15) | 0.0119 (13) | 0.0034 (10) |
O3 | 0.0538 (16) | 0.0307 (14) | 0.0249 (11) | −0.0016 (11) | −0.0046 (10) | −0.0004 (9) |
O4 | 0.188 (4) | 0.0342 (16) | 0.0317 (14) | −0.013 (2) | −0.0201 (18) | −0.0048 (11) |
N1 | 0.0450 (18) | 0.0387 (18) | 0.0295 (15) | 0.0020 (13) | 0.0013 (11) | −0.0022 (12) |
N2 | 0.0488 (19) | 0.0456 (18) | 0.0256 (14) | −0.0044 (14) | 0.0038 (12) | −0.0028 (12) |
N3 | 0.0412 (17) | 0.0477 (19) | 0.0328 (16) | 0.0027 (14) | 0.0025 (12) | −0.0024 (12) |
N4 | 0.072 (2) | 0.0454 (19) | 0.0334 (16) | 0.0116 (16) | 0.0082 (15) | −0.0007 (13) |
N5 | 0.0512 (19) | 0.0436 (18) | 0.0288 (15) | 0.0007 (14) | −0.0005 (12) | −0.0046 (12) |
N6 | 0.057 (2) | 0.0424 (18) | 0.0344 (16) | 0.0022 (15) | −0.0059 (13) | −0.0090 (13) |
N7 | 0.055 (2) | 0.0382 (18) | 0.0301 (15) | −0.0005 (14) | −0.0022 (13) | −0.0042 (12) |
N8 | 0.058 (2) | 0.0461 (19) | 0.0270 (15) | −0.0009 (15) | −0.0088 (13) | −0.0029 (12) |
C1 | 0.0342 (19) | 0.046 (2) | 0.0272 (17) | −0.0060 (16) | 0.0014 (13) | −0.0029 (14) |
C2 | 0.051 (2) | 0.040 (2) | 0.038 (2) | 0.0033 (17) | 0.0003 (15) | 0.0010 (15) |
C3 | 0.059 (2) | 0.044 (2) | 0.0331 (19) | −0.0042 (18) | −0.0058 (16) | 0.0055 (15) |
C4 | 0.040 (2) | 0.040 (2) | 0.0324 (18) | 0.0017 (16) | 0.0039 (14) | −0.0002 (14) |
C5 | 0.058 (3) | 0.057 (3) | 0.038 (2) | 0.016 (2) | 0.0035 (17) | 0.0067 (17) |
C6 | 0.084 (3) | 0.051 (3) | 0.046 (2) | 0.020 (2) | 0.011 (2) | 0.0057 (18) |
C7 | 0.0378 (19) | 0.041 (2) | 0.0338 (19) | −0.0011 (16) | 0.0002 (14) | −0.0054 (14) |
C8 | 0.055 (2) | 0.038 (2) | 0.042 (2) | 0.0007 (17) | −0.0008 (16) | 0.0031 (15) |
C9 | 0.063 (3) | 0.038 (2) | 0.041 (2) | 0.0057 (18) | 0.0000 (16) | −0.0034 (15) |
C10 | 0.040 (2) | 0.040 (2) | 0.0277 (17) | −0.0013 (16) | −0.0031 (14) | −0.0019 (14) |
C11 | 0.070 (3) | 0.037 (2) | 0.039 (2) | −0.0020 (19) | −0.0091 (17) | −0.0009 (15) |
C12 | 0.062 (3) | 0.053 (3) | 0.038 (2) | 0.001 (2) | −0.0077 (17) | 0.0094 (17) |
C13 | 0.047 (2) | 0.0291 (19) | 0.0303 (17) | −0.0038 (15) | 0.0013 (14) | 0.0004 (13) |
C14 | 0.081 (3) | 0.032 (2) | 0.0277 (19) | −0.001 (2) | 0.0052 (16) | −0.0024 (13) |
C15 | 0.063 (3) | 0.032 (2) | 0.0274 (17) | −0.0024 (17) | −0.0034 (15) | −0.0051 (13) |
Cu1—Cl1 | 2.5062 (12) | N6—H6 | 0.8600 |
Cu1—N1 | 2.018 (3) | N6—C7 | 1.330 (4) |
Cu1—N3 | 2.036 (3) | N6—C9 | 1.368 (5) |
Cu1—N5 | 2.034 (3) | N7—C10 | 1.326 (4) |
Cu1—N7 | 2.011 (3) | N7—C11 | 1.377 (5) |
Cu2—Cl1i | 2.7522 (11) | N8—H8 | 0.8600 |
Cu2—Cl1 | 2.7522 (11) | N8—C10 | 1.335 (4) |
Cu2—O1 | 1.962 (2) | N8—C12 | 1.364 (5) |
Cu2—O1i | 1.962 (2) | C1—C4 | 1.432 (5) |
Cu2—O3i | 1.962 (2) | C2—H2A | 0.9300 |
Cu2—O3 | 1.962 (2) | C2—C3 | 1.342 (5) |
O1—C13 | 1.264 (4) | C3—H3 | 0.9300 |
O2—C13 | 1.242 (4) | C5—H5 | 0.9300 |
O3—C15 | 1.267 (4) | C5—C6 | 1.351 (5) |
O4—C15 | 1.239 (4) | C6—H6A | 0.9300 |
N1—C1 | 1.335 (4) | C7—C10 | 1.436 (5) |
N1—C2 | 1.376 (5) | C8—H8A | 0.9300 |
N2—H2 | 0.8600 | C8—C9 | 1.358 (5) |
N2—C1 | 1.348 (4) | C9—H9 | 0.9300 |
N2—C3 | 1.367 (5) | C11—H11 | 0.9300 |
N3—C4 | 1.334 (4) | C11—C12 | 1.361 (5) |
N3—C5 | 1.372 (5) | C12—H12 | 0.9300 |
N4—H4 | 0.8600 | C13—C14 | 1.508 (4) |
N4—C4 | 1.327 (5) | C14—H14A | 0.9700 |
N4—C6 | 1.367 (5) | C14—H14B | 0.9700 |
N5—C7 | 1.331 (4) | C14—C15 | 1.503 (4) |
N5—C8 | 1.373 (5) | ||
N1—Cu1—Cl1 | 96.53 (9) | C10—N8—C12 | 106.9 (3) |
N1—Cu1—N3 | 82.01 (11) | C12—N8—H8 | 126.6 |
N1—Cu1—N5 | 96.93 (12) | N1—C1—N2 | 110.8 (3) |
N3—Cu1—Cl1 | 94.10 (9) | N1—C1—C4 | 117.4 (3) |
N5—Cu1—Cl1 | 112.46 (9) | N2—C1—C4 | 131.7 (3) |
N5—Cu1—N3 | 153.31 (12) | N1—C2—H2A | 125.3 |
N7—Cu1—Cl1 | 92.73 (9) | C3—C2—N1 | 109.3 (3) |
N7—Cu1—N1 | 170.49 (13) | C3—C2—H2A | 125.3 |
N7—Cu1—N3 | 95.22 (12) | N2—C3—H3 | 126.2 |
N7—Cu1—N5 | 81.43 (12) | C2—C3—N2 | 107.5 (3) |
Cl1i—Cu2—Cl1 | 179.13 (4) | C2—C3—H3 | 126.2 |
O1i—Cu2—Cl1i | 92.45 (8) | N3—C4—C1 | 117.2 (3) |
O1—Cu2—Cl1 | 92.45 (8) | N4—C4—N3 | 111.4 (3) |
O1—Cu2—Cl1i | 86.93 (8) | N4—C4—C1 | 131.3 (3) |
O1i—Cu2—Cl1 | 86.93 (8) | N3—C5—H5 | 125.2 |
O1i—Cu2—O1 | 89.08 (13) | C6—C5—N3 | 109.6 (3) |
O1i—Cu2—O3 | 176.55 (10) | C6—C5—H5 | 125.2 |
O1i—Cu2—O3i | 91.69 (10) | N4—C6—H6A | 126.8 |
O1—Cu2—O3i | 176.54 (10) | C5—C6—N4 | 106.5 (4) |
O1—Cu2—O3 | 91.69 (10) | C5—C6—H6A | 126.8 |
O3i—Cu2—Cl1i | 89.67 (8) | N5—C7—C10 | 117.6 (3) |
O3—Cu2—Cl1 | 89.67 (8) | N6—C7—N5 | 111.4 (3) |
O3—Cu2—Cl1i | 90.96 (8) | N6—C7—C10 | 131.0 (3) |
O3i—Cu2—Cl1 | 90.96 (8) | N5—C8—H8A | 125.4 |
O3i—Cu2—O3 | 87.74 (13) | C9—C8—N5 | 109.1 (3) |
Cu1—Cl1—Cu2 | 127.26 (5) | C9—C8—H8A | 125.4 |
C13—O1—Cu2 | 126.2 (2) | N6—C9—H9 | 126.7 |
C15—O3—Cu2 | 124.8 (2) | C8—C9—N6 | 106.6 (3) |
C1—N1—Cu1 | 111.6 (2) | C8—C9—H9 | 126.7 |
C1—N1—C2 | 105.6 (3) | N7—C10—N8 | 111.6 (3) |
C2—N1—Cu1 | 142.8 (2) | N7—C10—C7 | 116.2 (3) |
C1—N2—H2 | 126.6 | N8—C10—C7 | 132.0 (3) |
C1—N2—C3 | 106.7 (3) | N7—C11—H11 | 125.8 |
C3—N2—H2 | 126.6 | C12—C11—N7 | 108.5 (3) |
C4—N3—Cu1 | 110.9 (2) | C12—C11—H11 | 125.8 |
C4—N3—C5 | 105.1 (3) | N8—C12—H12 | 126.4 |
C5—N3—Cu1 | 142.3 (2) | C11—C12—N8 | 107.3 (3) |
C4—N4—H4 | 126.3 | C11—C12—H12 | 126.4 |
C4—N4—C6 | 107.4 (3) | O1—C13—C14 | 120.4 (3) |
C6—N4—H4 | 126.3 | O2—C13—O1 | 122.8 (3) |
C7—N5—Cu1 | 111.4 (2) | O2—C13—C14 | 116.6 (3) |
C7—N5—C8 | 105.5 (3) | C13—C14—H14A | 107.3 |
C8—N5—Cu1 | 142.8 (2) | C13—C14—H14B | 107.3 |
C7—N6—H6 | 126.3 | H14A—C14—H14B | 106.9 |
C7—N6—C9 | 107.3 (3) | C15—C14—C13 | 120.1 (3) |
C9—N6—H6 | 126.3 | C15—C14—H14A | 107.3 |
C10—N7—Cu1 | 113.1 (2) | C15—C14—H14B | 107.3 |
C10—N7—C11 | 105.8 (3) | O3—C15—C14 | 121.6 (3) |
C11—N7—Cu1 | 140.9 (2) | O4—C15—O3 | 123.1 (3) |
C10—N8—H8 | 126.6 | O4—C15—C14 | 115.3 (3) |
Cu1—N1—C1—N2 | 178.2 (2) | N6—C7—C10—N8 | 9.5 (7) |
Cu1—N1—C1—C4 | −1.7 (4) | N7—C11—C12—N8 | 0.4 (5) |
Cu1—N1—C2—C3 | −176.9 (3) | C1—N1—C2—C3 | −0.4 (4) |
Cu1—N3—C4—N4 | −169.2 (3) | C1—N2—C3—C2 | 0.1 (4) |
Cu1—N3—C4—C1 | 9.7 (4) | C2—N1—C1—N2 | 0.5 (4) |
Cu1—N3—C5—C6 | 163.5 (3) | C2—N1—C1—C4 | −179.4 (3) |
Cu1—N5—C7—N6 | 173.3 (2) | C3—N2—C1—N1 | −0.4 (4) |
Cu1—N5—C7—C10 | −5.8 (4) | C3—N2—C1—C4 | 179.5 (4) |
Cu1—N5—C8—C9 | −170.1 (3) | C4—N3—C5—C6 | 0.8 (5) |
Cu1—N7—C10—N8 | 176.9 (2) | C4—N4—C6—C5 | 0.6 (5) |
Cu1—N7—C10—C7 | 0.9 (4) | C5—N3—C4—N4 | −0.4 (4) |
Cu1—N7—C11—C12 | −175.2 (3) | C5—N3—C4—C1 | 178.5 (3) |
Cu2—O1—C13—O2 | 175.4 (3) | C6—N4—C4—N3 | −0.1 (5) |
Cu2—O1—C13—C14 | −0.9 (5) | C6—N4—C4—C1 | −178.8 (4) |
Cu2—O3—C15—O4 | −171.1 (3) | C7—N5—C8—C9 | 1.5 (4) |
Cu2—O3—C15—C14 | 7.8 (5) | C7—N6—C9—C8 | 0.5 (4) |
O1—C13—C14—C15 | −33.1 (6) | C8—N5—C7—N6 | −1.2 (4) |
O2—C13—C14—C15 | 150.3 (4) | C8—N5—C7—C10 | 179.6 (3) |
N1—C1—C4—N3 | −5.6 (5) | C9—N6—C7—N5 | 0.5 (4) |
N1—C1—C4—N4 | 173.0 (4) | C9—N6—C7—C10 | 179.5 (4) |
N1—C2—C3—N2 | 0.2 (4) | C10—N7—C11—C12 | −0.6 (4) |
N2—C1—C4—N3 | 174.5 (4) | C10—N8—C12—C11 | −0.1 (5) |
N2—C1—C4—N4 | −6.8 (7) | C11—N7—C10—N8 | 0.6 (4) |
N3—C5—C6—N4 | −0.8 (5) | C11—N7—C10—C7 | −175.4 (3) |
N5—C7—C10—N7 | 3.5 (5) | C12—N8—C10—N7 | −0.3 (4) |
N5—C7—C10—N8 | −171.5 (4) | C12—N8—C10—C7 | 174.8 (4) |
N5—C8—C9—N6 | −1.3 (4) | C13—C14—C15—O3 | 29.5 (6) |
N6—C7—C10—N7 | −175.5 (4) | C13—C14—C15—O4 | −151.5 (4) |
Symmetry code: (i) −x+1/2, −y, z. |
[Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O | F(000) = 1448 |
Mr = 353.78 | Dx = 1.730 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0587 (4) Å | Cell parameters from 6782 reflections |
b = 20.3107 (12) Å | θ = 3.2–27.0° |
c = 18.9523 (10) Å | µ = 1.65 mm−1 |
β = 91.770 (4)° | T = 298 K |
V = 2715.8 (3) Å3 | Plate, green |
Z = 8 | 0.36 × 0.11 × 0.09 mm |
Rigaku AFC diffractometer | 4229 independent reflections |
Radiation source: sealed X-ray tube, Enhance (Mo) X-ray Source | 2925 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 24.8°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | h = −6→6 |
Tmin = 0.903, Tmax = 1.000 | k = −23→23 |
21646 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0411P)2 + 6.8869P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4229 reflections | Δρmax = 0.58 e Å−3 |
343 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Intensity data for 1–4 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. |
x | y | z | Uiso*/Ueq | ||
Cu11 | 0.42536 (8) | 0.82052 (3) | 0.18851 (3) | 0.02555 (17) | |
Cu12 | 0.92614 (8) | 0.68105 (3) | 0.31015 (3) | 0.02619 (17) | |
O11 | 0.1067 (4) | 0.83742 (16) | 0.17496 (17) | 0.0351 (8) | |
H11A | 0.023623 | 0.867206 | 0.190546 | 0.053* | |
H11B | 0.043803 | 0.800356 | 0.185467 | 0.053* | |
O12 | 0.6085 (4) | 0.66516 (16) | 0.32368 (17) | 0.0347 (8) | |
H12A | 0.555383 | 0.704161 | 0.312489 | 0.052* | |
H12B | 0.539873 | 0.630551 | 0.308019 | 0.052* | |
O21 | 0.5061 (5) | 0.90321 (16) | 0.22934 (16) | 0.0365 (8) | |
O22 | 0.9078 (4) | 0.72406 (16) | 0.21856 (15) | 0.0319 (8) | |
O31 | 0.5118 (6) | 0.97758 (19) | 0.31415 (19) | 0.0542 (11) | |
O32 | 0.8681 (5) | 0.72086 (17) | 0.10302 (16) | 0.0379 (8) | |
O41 | 0.4120 (4) | 0.77879 (15) | 0.28048 (15) | 0.0307 (8) | |
O42 | 0.9960 (5) | 0.59806 (16) | 0.26836 (16) | 0.0354 (8) | |
O51 | 0.3819 (5) | 0.78240 (17) | 0.39580 (16) | 0.0388 (9) | |
O52 | 0.9763 (6) | 0.52341 (18) | 0.18392 (18) | 0.0483 (10) | |
N11 | 0.4949 (5) | 0.85173 (19) | 0.09227 (19) | 0.0295 (9) | |
N12 | 0.8997 (5) | 0.76600 (19) | 0.36224 (19) | 0.0274 (9) | |
N21 | 0.5017 (6) | 0.8291 (2) | −0.02103 (19) | 0.0336 (10) | |
H21 | 0.491782 | 0.806685 | −0.061870 | 0.040* | |
N22 | 0.8726 (6) | 0.8133 (2) | 0.4657 (2) | 0.0348 (10) | |
H22 | 0.873093 | 0.818880 | 0.512802 | 0.042* | |
N31 | 0.3884 (5) | 0.73506 (18) | 0.13670 (18) | 0.0255 (9) | |
N32 | 0.9974 (5) | 0.64836 (19) | 0.4071 (2) | 0.0308 (9) | |
N41 | 0.3615 (6) | 0.6865 (2) | 0.0335 (2) | 0.0352 (10) | |
H41 | 0.363092 | 0.680094 | −0.013424 | 0.042* | |
N42 | 1.0034 (6) | 0.6685 (2) | 0.52080 (19) | 0.0348 (10) | |
H42 | 0.994689 | 0.690364 | 0.561843 | 0.042* | |
C11 | 0.4664 (6) | 0.8059 (2) | 0.0432 (2) | 0.0274 (11) | |
C12 | 0.9147 (6) | 0.7577 (2) | 0.4316 (2) | 0.0284 (11) | |
C21 | 0.5500 (7) | 0.9069 (3) | 0.0567 (3) | 0.0350 (12) | |
H21A | 0.578086 | 0.946011 | 0.076628 | 0.042* | |
C22 | 0.8458 (7) | 0.8305 (2) | 0.3522 (3) | 0.0328 (11) | |
H22A | 0.825031 | 0.849872 | 0.309989 | 0.039* | |
C31 | 0.5555 (7) | 0.8933 (3) | −0.0131 (3) | 0.0405 (13) | |
H31 | 0.588315 | 0.921123 | −0.047484 | 0.049* | |
C32 | 0.8287 (7) | 0.8603 (3) | 0.4159 (3) | 0.0378 (12) | |
H32 | 0.795376 | 0.902330 | 0.423785 | 0.045* | |
C41 | 0.4080 (6) | 0.7420 (2) | 0.0676 (2) | 0.0271 (11) | |
C42 | 0.9688 (6) | 0.6929 (2) | 0.4563 (2) | 0.0279 (11) | |
C51 | 0.3279 (7) | 0.6716 (2) | 0.1463 (3) | 0.0325 (11) | |
H51 | 0.303094 | 0.653035 | 0.188085 | 0.039* | |
C52 | 1.0499 (7) | 0.5913 (3) | 0.4426 (3) | 0.0360 (12) | |
H52 | 1.076370 | 0.552414 | 0.422532 | 0.043* | |
C61 | 0.3114 (7) | 0.6413 (2) | 0.0825 (3) | 0.0382 (12) | |
H61 | 0.274612 | 0.599514 | 0.074336 | 0.046* | |
C62 | 1.0544 (7) | 0.6044 (3) | 0.5127 (3) | 0.0413 (13) | |
H62 | 1.085312 | 0.575909 | 0.547534 | 0.050* | |
C71 | 0.4595 (7) | 0.9246 (2) | 0.2899 (3) | 0.0323 (11) | |
C72 | 0.8653 (6) | 0.6937 (2) | 0.1613 (2) | 0.0277 (11) | |
C81 | 0.3289 (7) | 0.8815 (2) | 0.3334 (2) | 0.0345 (12) | |
H81A | 0.328492 | 0.897521 | 0.377589 | 0.041* | |
H81B | 0.210354 | 0.885224 | 0.315109 | 0.041* | |
C82 | 0.8027 (7) | 0.6227 (2) | 0.1651 (2) | 0.0342 (12) | |
H82A | 0.790993 | 0.606745 | 0.120926 | 0.041* | |
H82B | 0.687436 | 0.621334 | 0.183962 | 0.041* | |
C91 | 0.3782 (6) | 0.8096 (2) | 0.3374 (2) | 0.0278 (11) | |
C92 | 0.9343 (7) | 0.5781 (2) | 0.2076 (2) | 0.0315 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu11 | 0.0366 (4) | 0.0268 (3) | 0.0133 (3) | −0.0022 (2) | 0.0012 (2) | −0.0010 (2) |
Cu12 | 0.0373 (4) | 0.0280 (3) | 0.0133 (3) | 0.0027 (2) | −0.0001 (2) | 0.0002 (2) |
O11 | 0.036 (2) | 0.0307 (19) | 0.038 (2) | 0.0037 (14) | 0.0036 (15) | 0.0009 (15) |
O12 | 0.039 (2) | 0.0272 (19) | 0.038 (2) | −0.0038 (14) | 0.0010 (15) | 0.0026 (15) |
O21 | 0.052 (2) | 0.036 (2) | 0.0213 (18) | −0.0115 (16) | 0.0045 (15) | −0.0037 (15) |
O22 | 0.046 (2) | 0.032 (2) | 0.0171 (17) | −0.0025 (15) | 0.0007 (14) | 0.0000 (14) |
O31 | 0.085 (3) | 0.039 (2) | 0.040 (2) | −0.020 (2) | 0.0131 (19) | −0.0156 (18) |
O32 | 0.058 (2) | 0.042 (2) | 0.0135 (18) | −0.0001 (17) | −0.0006 (15) | 0.0021 (15) |
O41 | 0.049 (2) | 0.0278 (19) | 0.0149 (17) | 0.0024 (14) | −0.0008 (13) | 0.0008 (14) |
O42 | 0.051 (2) | 0.036 (2) | 0.0190 (18) | 0.0114 (15) | −0.0057 (14) | −0.0023 (15) |
O51 | 0.063 (2) | 0.039 (2) | 0.0148 (18) | 0.0030 (17) | 0.0038 (15) | 0.0059 (15) |
O52 | 0.072 (3) | 0.035 (2) | 0.037 (2) | 0.0136 (18) | −0.0130 (18) | −0.0087 (17) |
N11 | 0.038 (3) | 0.032 (2) | 0.019 (2) | −0.0023 (17) | 0.0051 (16) | 0.0005 (18) |
N12 | 0.035 (2) | 0.031 (2) | 0.017 (2) | −0.0024 (17) | 0.0002 (15) | 0.0024 (17) |
N21 | 0.043 (3) | 0.044 (3) | 0.014 (2) | 0.0042 (19) | 0.0061 (16) | 0.0030 (18) |
N22 | 0.050 (3) | 0.037 (3) | 0.017 (2) | −0.0001 (19) | −0.0030 (17) | −0.0068 (19) |
N31 | 0.034 (2) | 0.026 (2) | 0.017 (2) | 0.0038 (16) | 0.0005 (15) | 0.0039 (16) |
N32 | 0.036 (3) | 0.032 (2) | 0.024 (2) | 0.0037 (17) | −0.0033 (16) | −0.0003 (18) |
N41 | 0.052 (3) | 0.037 (3) | 0.017 (2) | −0.002 (2) | 0.0019 (17) | −0.0063 (19) |
N42 | 0.046 (3) | 0.045 (3) | 0.013 (2) | −0.004 (2) | −0.0042 (17) | 0.0013 (18) |
C11 | 0.030 (3) | 0.036 (3) | 0.017 (2) | 0.004 (2) | 0.0047 (18) | 0.001 (2) |
C12 | 0.029 (3) | 0.038 (3) | 0.018 (3) | −0.005 (2) | 0.0001 (19) | −0.006 (2) |
C21 | 0.034 (3) | 0.036 (3) | 0.034 (3) | −0.007 (2) | 0.002 (2) | 0.003 (2) |
C22 | 0.040 (3) | 0.030 (3) | 0.028 (3) | −0.003 (2) | −0.001 (2) | 0.003 (2) |
C31 | 0.044 (3) | 0.048 (4) | 0.030 (3) | −0.001 (2) | 0.010 (2) | 0.015 (3) |
C32 | 0.048 (3) | 0.031 (3) | 0.033 (3) | 0.000 (2) | 0.003 (2) | −0.004 (2) |
C41 | 0.034 (3) | 0.034 (3) | 0.014 (2) | 0.007 (2) | 0.0008 (18) | −0.003 (2) |
C42 | 0.029 (3) | 0.039 (3) | 0.016 (2) | −0.003 (2) | −0.0045 (18) | 0.001 (2) |
C51 | 0.037 (3) | 0.032 (3) | 0.029 (3) | 0.004 (2) | 0.005 (2) | 0.002 (2) |
C52 | 0.039 (3) | 0.035 (3) | 0.033 (3) | 0.006 (2) | −0.002 (2) | 0.007 (2) |
C61 | 0.052 (4) | 0.027 (3) | 0.036 (3) | −0.002 (2) | 0.001 (2) | −0.005 (2) |
C62 | 0.045 (4) | 0.049 (4) | 0.029 (3) | −0.001 (2) | −0.008 (2) | 0.017 (3) |
C71 | 0.039 (3) | 0.030 (3) | 0.028 (3) | 0.002 (2) | −0.003 (2) | 0.000 (2) |
C72 | 0.031 (3) | 0.032 (3) | 0.020 (3) | 0.007 (2) | −0.0005 (19) | 0.002 (2) |
C81 | 0.049 (3) | 0.032 (3) | 0.023 (3) | 0.000 (2) | 0.009 (2) | −0.004 (2) |
C82 | 0.045 (3) | 0.035 (3) | 0.022 (3) | 0.001 (2) | −0.009 (2) | −0.001 (2) |
C91 | 0.031 (3) | 0.032 (3) | 0.020 (3) | −0.002 (2) | 0.0004 (19) | 0.000 (2) |
C92 | 0.034 (3) | 0.034 (3) | 0.027 (3) | 0.001 (2) | 0.002 (2) | 0.004 (2) |
Cu11—O11 | 2.282 (3) | N31—C41 | 1.329 (5) |
Cu11—O21 | 1.928 (3) | N31—C51 | 1.372 (6) |
Cu11—O41 | 1.943 (3) | N32—C42 | 1.319 (6) |
Cu11—N11 | 2.006 (4) | N32—C52 | 1.384 (6) |
Cu11—N31 | 2.007 (4) | N41—H41 | 0.8990 |
Cu12—O12 | 2.287 (3) | N41—C41 | 1.336 (6) |
Cu12—O22 | 1.944 (3) | N41—C61 | 1.361 (6) |
Cu12—O42 | 1.933 (3) | N42—H42 | 0.8990 |
Cu12—N12 | 1.999 (4) | N42—C42 | 1.335 (6) |
Cu12—N32 | 2.003 (4) | N42—C62 | 1.362 (6) |
O11—H11A | 0.8990 | C11—C41 | 1.442 (6) |
O11—H11B | 0.8995 | C12—C42 | 1.443 (6) |
O12—H12A | 0.8991 | C21—H21A | 0.8990 |
O12—H12B | 0.8991 | C21—C31 | 1.352 (7) |
O21—C71 | 1.281 (5) | C22—H22A | 0.8990 |
O22—C72 | 1.276 (5) | C22—C32 | 1.361 (7) |
O31—C71 | 1.222 (6) | C31—H31 | 0.8990 |
O32—C72 | 1.235 (5) | C32—H32 | 0.8990 |
O41—C91 | 1.275 (5) | C51—H51 | 0.8990 |
O42—C92 | 1.283 (6) | C51—C61 | 1.358 (7) |
O51—C91 | 1.237 (5) | C52—H52 | 0.8990 |
O52—C92 | 1.239 (6) | C52—C62 | 1.356 (7) |
N11—C11 | 1.327 (6) | C61—H61 | 0.8990 |
N11—C21 | 1.370 (6) | C62—H62 | 0.8990 |
N12—C12 | 1.327 (5) | C71—C81 | 1.531 (7) |
N12—C22 | 1.375 (6) | C72—C82 | 1.511 (6) |
N21—H21 | 0.8990 | C81—H81A | 0.8990 |
N21—C11 | 1.336 (6) | C81—H81B | 0.8990 |
N21—C31 | 1.365 (6) | C81—C91 | 1.502 (6) |
N22—H22 | 0.8990 | C82—H82A | 0.8990 |
N22—C12 | 1.340 (6) | C82—H82B | 0.8990 |
N22—C32 | 1.371 (6) | C82—C92 | 1.512 (6) |
O21—Cu11—O11 | 101.09 (13) | N12—C12—N22 | 111.0 (4) |
O21—Cu11—O41 | 92.40 (13) | N12—C12—C42 | 116.7 (4) |
O21—Cu11—N11 | 90.69 (15) | N22—C12—C42 | 132.3 (4) |
O21—Cu11—N31 | 169.11 (15) | N11—C21—H21A | 125.3 |
O41—Cu11—O11 | 95.25 (12) | C31—C21—N11 | 109.3 (4) |
O41—Cu11—N11 | 166.75 (15) | C31—C21—H21A | 125.3 |
O41—Cu11—N31 | 93.00 (14) | N12—C22—H22A | 125.3 |
N11—Cu11—O11 | 96.79 (14) | C32—C22—N12 | 109.4 (4) |
N11—Cu11—N31 | 81.97 (15) | C32—C22—H22A | 125.3 |
N31—Cu11—O11 | 87.83 (13) | N21—C31—H31 | 126.7 |
O22—Cu12—O12 | 97.18 (12) | C21—C31—N21 | 106.7 (4) |
O22—Cu12—N12 | 92.78 (14) | C21—C31—H31 | 126.7 |
O22—Cu12—N32 | 167.40 (15) | N22—C32—H32 | 127.0 |
O42—Cu12—O12 | 100.73 (13) | C22—C32—N22 | 106.1 (4) |
O42—Cu12—O22 | 92.11 (13) | C22—C32—H32 | 127.0 |
O42—Cu12—N12 | 169.67 (15) | N31—C41—N41 | 110.8 (4) |
O42—Cu12—N32 | 91.53 (14) | N31—C41—C11 | 116.8 (4) |
N12—Cu12—O12 | 87.68 (13) | N41—C41—C11 | 132.3 (4) |
N12—Cu12—N32 | 81.83 (15) | N32—C42—N42 | 111.4 (4) |
N32—Cu12—O12 | 93.99 (14) | N32—C42—C12 | 116.2 (4) |
Cu11—O11—H11A | 135.7 | N42—C42—C12 | 132.3 (4) |
Cu11—O11—H11B | 109.9 | N31—C51—H51 | 125.5 |
H11A—O11—H11B | 99.1 | C61—C51—N31 | 109.1 (4) |
Cu12—O12—H12A | 104.6 | C61—C51—H51 | 125.5 |
Cu12—O12—H12B | 126.4 | N32—C52—H52 | 125.9 |
H12A—O12—H12B | 113.2 | C62—C52—N32 | 108.1 (5) |
C71—O21—Cu11 | 125.1 (3) | C62—C52—H52 | 125.9 |
C72—O22—Cu12 | 123.4 (3) | N41—C61—H61 | 126.7 |
C91—O41—Cu11 | 124.0 (3) | C51—C61—N41 | 106.6 (4) |
C92—O42—Cu12 | 124.0 (3) | C51—C61—H61 | 126.7 |
C11—N11—Cu11 | 112.3 (3) | N42—C62—H62 | 126.3 |
C11—N11—C21 | 105.6 (4) | C52—C62—N42 | 107.4 (4) |
C21—N11—Cu11 | 141.9 (3) | C52—C62—H62 | 126.3 |
C12—N12—Cu12 | 111.9 (3) | O21—C71—C81 | 117.6 (4) |
C12—N12—C22 | 105.8 (4) | O31—C71—O21 | 123.6 (5) |
C22—N12—Cu12 | 141.5 (3) | O31—C71—C81 | 118.8 (4) |
C11—N21—H21 | 126.4 | O22—C72—C82 | 118.8 (4) |
C11—N21—C31 | 107.2 (4) | O32—C72—O22 | 122.4 (4) |
C31—N21—H21 | 126.4 | O32—C72—C82 | 118.8 (4) |
C12—N22—H22 | 126.2 | C71—C81—H81A | 108.2 |
C12—N22—C32 | 107.7 (4) | C71—C81—H81B | 108.2 |
C32—N22—H22 | 126.2 | H81A—C81—H81B | 107.4 |
C41—N31—Cu11 | 112.0 (3) | C91—C81—C71 | 116.2 (4) |
C41—N31—C51 | 105.8 (4) | C91—C81—H81A | 108.2 |
C51—N31—Cu11 | 141.6 (3) | C91—C81—H81B | 108.2 |
C42—N32—Cu12 | 112.4 (3) | C72—C82—H82A | 108.5 |
C42—N32—C52 | 106.0 (4) | C72—C82—H82B | 108.5 |
C52—N32—Cu12 | 141.2 (3) | C72—C82—C92 | 114.9 (4) |
C41—N41—H41 | 126.1 | H82A—C82—H82B | 107.5 |
C41—N41—C61 | 107.7 (4) | C92—C82—H82A | 108.5 |
C61—N41—H41 | 126.1 | C92—C82—H82B | 108.5 |
C42—N42—H42 | 126.5 | O41—C91—C81 | 118.9 (4) |
C42—N42—C62 | 107.1 (4) | O51—C91—O41 | 122.6 (4) |
C62—N42—H42 | 126.5 | O51—C91—C81 | 118.5 (4) |
N11—C11—N21 | 111.2 (4) | O42—C92—C82 | 118.4 (4) |
N11—C11—C41 | 116.4 (4) | O52—C92—O42 | 122.0 (4) |
N21—C11—C41 | 132.3 (4) | O52—C92—C82 | 119.6 (4) |
Cu11—O21—C71—O31 | −179.4 (4) | N22—C12—C42—N32 | 178.9 (5) |
Cu11—O21—C71—C81 | −0.2 (6) | N22—C12—C42—N42 | −3.8 (9) |
Cu11—O41—C91—O51 | −175.5 (3) | N31—C51—C61—N41 | −0.2 (5) |
Cu11—O41—C91—C81 | 5.5 (6) | N32—C52—C62—N42 | 0.6 (6) |
Cu11—N11—C11—N21 | 175.9 (3) | C11—N11—C21—C31 | −0.6 (5) |
Cu11—N11—C11—C41 | −5.0 (5) | C11—N21—C31—C21 | −0.3 (5) |
Cu11—N11—C21—C31 | −173.8 (4) | C12—N12—C22—C32 | −0.1 (5) |
Cu11—N31—C41—N41 | −172.9 (3) | C12—N22—C32—C22 | 0.2 (5) |
Cu11—N31—C41—C11 | 5.0 (5) | C21—N11—C11—N21 | 0.4 (5) |
Cu11—N31—C51—C61 | 169.9 (4) | C21—N11—C11—C41 | 179.5 (4) |
Cu12—O22—C72—O32 | −174.5 (3) | C22—N12—C12—N22 | 0.2 (5) |
Cu12—O22—C72—C82 | 7.7 (6) | C22—N12—C12—C42 | 179.5 (4) |
Cu12—O42—C92—O52 | −177.0 (4) | C31—N21—C11—N11 | −0.1 (5) |
Cu12—O42—C92—C82 | 1.5 (6) | C31—N21—C11—C41 | −179.0 (5) |
Cu12—N12—C12—N22 | −172.1 (3) | C32—N22—C12—N12 | −0.2 (5) |
Cu12—N12—C12—C42 | 7.2 (5) | C32—N22—C12—C42 | −179.4 (5) |
Cu12—N12—C22—C32 | 168.4 (4) | C41—N31—C51—C61 | −0.2 (5) |
Cu12—N32—C42—N42 | 175.2 (3) | C41—N41—C61—C51 | 0.5 (5) |
Cu12—N32—C42—C12 | −6.9 (5) | C42—N32—C52—C62 | −1.1 (5) |
Cu12—N32—C52—C62 | −172.2 (4) | C42—N42—C62—C52 | 0.2 (5) |
O21—C71—C81—C91 | 45.7 (6) | C51—N31—C41—N41 | 0.5 (5) |
O22—C72—C82—C92 | −51.8 (6) | C51—N31—C41—C11 | 178.4 (4) |
O31—C71—C81—C91 | −135.1 (5) | C52—N32—C42—N42 | 1.3 (5) |
O32—C72—C82—C92 | 130.4 (5) | C52—N32—C42—C12 | 179.1 (4) |
N11—C11—C41—N31 | 0.0 (6) | C61—N41—C41—N31 | −0.6 (5) |
N11—C11—C41—N41 | 177.3 (5) | C61—N41—C41—C11 | −178.1 (5) |
N11—C21—C31—N21 | 0.5 (5) | C62—N42—C42—N32 | −0.9 (5) |
N12—C12—C42—N32 | −0.2 (6) | C62—N42—C42—C12 | −178.3 (5) |
N12—C12—C42—N42 | 177.1 (5) | C71—C81—C91—O41 | −48.7 (6) |
N12—C22—C32—N22 | −0.1 (5) | C71—C81—C91—O51 | 132.3 (5) |
N21—C11—C41—N31 | 178.8 (5) | C72—C82—C92—O42 | 46.4 (6) |
N21—C11—C41—N41 | −3.8 (9) | C72—C82—C92—O52 | −135.0 (5) |
[Cu(C6H6N4)2(H2O)]2·[Cu(C3H2O4)2(ClO4)2]·2.2H2O | F(000) = 2428 |
Mr = 1201.84 | Dx = 1.756 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.9569 (11) Å | Cell parameters from 7335 reflections |
b = 15.2466 (6) Å | θ = 1.8–27.0° |
c = 16.6781 (10) Å | µ = 1.60 mm−1 |
β = 95.296 (5)° | T = 298 K |
V = 4546.7 (4) Å3 | Block, green |
Z = 4 | 0.38 × 0.36 × 0.33 mm |
Rigaku AFC diffractometer | 3848 independent reflections |
Radiation source: sealed X-ray tube, Enhance (Mo) X-ray Source | 2674 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | h = −20→20 |
Tmin = 0.681, Tmax = 1.000 | k = −18→18 |
17890 measured reflections | l = −17→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.204 | w = 1/[σ2(Fo2) + (0.085P)2 + 59.2856P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3848 reflections | Δρmax = 1.14 e Å−3 |
338 parameters | Δρmin = −0.79 e Å−3 |
50 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Intensity data for 1–4 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu2 | 0.000000 | 0.33157 (7) | 0.750000 | 0.0342 (4) | |
Cu1 | 0.41749 (5) | 0.33255 (5) | 0.65057 (6) | 0.0401 (3) | |
O2 | 0.0362 (3) | 0.2404 (3) | 0.6837 (3) | 0.0376 (12) | |
O4 | 0.0612 (3) | 0.4233 (3) | 0.7121 (3) | 0.0426 (13) | |
O1 | 0.3289 (3) | 0.3280 (4) | 0.5509 (3) | 0.0519 (14) | |
H1A | 0.346008 | 0.319169 | 0.496830 | 0.078* | |
H1B | 0.300468 | 0.382999 | 0.539461 | 0.078* | |
O5 | 0.1578 (3) | 0.4752 (3) | 0.6560 (4) | 0.0561 (16) | |
N5 | 0.3956 (4) | 0.4566 (4) | 0.6827 (4) | 0.0414 (15) | |
O3 | 0.0969 (4) | 0.1922 (3) | 0.5848 (4) | 0.0613 (18) | |
N1 | 0.3655 (4) | 0.2711 (4) | 0.7372 (4) | 0.0414 (15) | |
N3 | 0.4490 (4) | 0.2095 (4) | 0.6282 (4) | 0.0448 (16) | |
N7 | 0.5043 (4) | 0.3925 (4) | 0.6028 (4) | 0.0435 (16) | |
N8 | 0.5602 (4) | 0.5178 (4) | 0.5849 (4) | 0.0464 (17) | |
H8 | 0.570562 | 0.572891 | 0.587101 | 0.056* | |
N2 | 0.3469 (4) | 0.1458 (4) | 0.7971 (4) | 0.0502 (18) | |
H2 | 0.348680 | 0.090807 | 0.808472 | 0.060* | |
N6 | 0.4273 (4) | 0.5945 (4) | 0.6784 (4) | 0.0494 (18) | |
H6 | 0.452139 | 0.641120 | 0.669288 | 0.059* | |
C7 | 0.4448 (4) | 0.5130 (4) | 0.6594 (5) | 0.0375 (17) | |
N4 | 0.4446 (4) | 0.0711 (4) | 0.6604 (5) | 0.0545 (19) | |
H4 | 0.433899 | 0.023767 | 0.684918 | 0.065* | |
C13 | 0.0859 (4) | 0.2482 (4) | 0.6352 (5) | 0.0384 (18) | |
C15 | 0.1165 (4) | 0.4134 (4) | 0.6712 (5) | 0.0382 (18) | |
C10 | 0.5043 (4) | 0.4789 (4) | 0.6163 (5) | 0.0398 (18) | |
C1 | 0.3805 (5) | 0.1855 (4) | 0.7389 (5) | 0.0421 (19) | |
C4 | 0.4245 (5) | 0.1521 (4) | 0.6790 (5) | 0.046 (2) | |
C8 | 0.3427 (5) | 0.5048 (5) | 0.7174 (5) | 0.050 (2) | |
H8A | 0.300475 | 0.482557 | 0.738765 | 0.060* | |
C5 | 0.4875 (5) | 0.1624 (5) | 0.5751 (6) | 0.052 (2) | |
H5 | 0.511050 | 0.185352 | 0.532367 | 0.062* | |
C9 | 0.3626 (5) | 0.5906 (5) | 0.7152 (5) | 0.051 (2) | |
H9 | 0.337006 | 0.637804 | 0.734959 | 0.061* | |
C12 | 0.5989 (5) | 0.4543 (5) | 0.5481 (5) | 0.052 (2) | |
H12 | 0.641042 | 0.462491 | 0.520449 | 0.062* | |
C11 | 0.5644 (5) | 0.3781 (5) | 0.5598 (6) | 0.052 (2) | |
H11 | 0.579055 | 0.323686 | 0.541505 | 0.062* | |
C14 | 0.1383 (6) | 0.3256 (5) | 0.6396 (7) | 0.068 (3) | |
C6 | 0.4849 (5) | 0.0769 (5) | 0.5958 (6) | 0.057 (2) | |
H6A | 0.506764 | 0.030473 | 0.570471 | 0.068* | |
C2 | 0.3207 (5) | 0.2855 (5) | 0.7980 (5) | 0.0462 (19) | |
H2A | 0.301217 | 0.339513 | 0.811552 | 0.055* | |
C3 | 0.3093 (5) | 0.2084 (5) | 0.8351 (5) | 0.049 (2) | |
H3 | 0.281123 | 0.199831 | 0.878462 | 0.058* | |
O1W | 0.2382 (5) | 0.4718 (6) | 0.5226 (5) | 0.097 (3) | |
H1WA | 0.219063 | 0.479480 | 0.566669 | 0.146* | |
H1WB | 0.222928 | 0.515145 | 0.493478 | 0.146* | |
Cl1B | 0.1417 (8) | 0.3378 (14) | 0.9124 (16) | 0.0579 (10) | 0.229 (11) |
O2B | 0.138 (3) | 0.312 (3) | 0.8300 (18) | 0.088 (4) | 0.229 (11) |
O1A | 0.0732 (4) | 0.3842 (6) | 0.9155 (6) | 0.115 (3) | |
O4B | 0.2149 (12) | 0.370 (2) | 0.933 (2) | 0.088 (3) | 0.229 (11) |
O3B | 0.134 (2) | 0.258 (2) | 0.955 (3) | 0.148 (5) | 0.229 (11) |
O4A | 0.1899 (6) | 0.4188 (6) | 0.8769 (7) | 0.088 (3) | 0.771 (11) |
Cl1A | 0.1447 (2) | 0.3502 (4) | 0.9040 (4) | 0.0579 (10) | 0.771 (11) |
O3A | 0.1746 (9) | 0.3107 (11) | 0.9750 (7) | 0.148 (5) | 0.771 (11) |
O2A | 0.1314 (8) | 0.2861 (6) | 0.8419 (7) | 0.088 (4) | 0.771 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu2 | 0.0437 (7) | 0.0085 (5) | 0.0535 (8) | 0.000 | 0.0204 (6) | 0.000 |
Cu1 | 0.0521 (6) | 0.0097 (4) | 0.0601 (7) | −0.0008 (4) | 0.0132 (4) | 0.0037 (4) |
O2 | 0.048 (3) | 0.011 (2) | 0.057 (3) | −0.001 (2) | 0.021 (2) | −0.003 (2) |
O4 | 0.055 (3) | 0.011 (2) | 0.065 (3) | −0.001 (2) | 0.026 (3) | −0.003 (2) |
O1 | 0.061 (4) | 0.048 (3) | 0.047 (3) | 0.007 (3) | 0.005 (3) | −0.002 (3) |
O5 | 0.069 (4) | 0.017 (3) | 0.088 (4) | −0.018 (3) | 0.042 (3) | −0.010 (3) |
N5 | 0.048 (4) | 0.014 (3) | 0.062 (4) | −0.004 (3) | 0.004 (3) | 0.001 (3) |
O3 | 0.087 (5) | 0.026 (3) | 0.078 (4) | −0.017 (3) | 0.045 (4) | −0.021 (3) |
N1 | 0.052 (4) | 0.015 (3) | 0.059 (4) | −0.005 (3) | 0.010 (3) | 0.003 (3) |
N3 | 0.058 (4) | 0.017 (3) | 0.062 (4) | 0.000 (3) | 0.019 (3) | 0.003 (3) |
N7 | 0.047 (4) | 0.019 (3) | 0.064 (4) | 0.000 (3) | 0.005 (3) | 0.010 (3) |
N8 | 0.053 (4) | 0.023 (3) | 0.062 (4) | −0.012 (3) | 0.001 (3) | 0.005 (3) |
N2 | 0.060 (4) | 0.021 (3) | 0.071 (5) | 0.001 (3) | 0.019 (4) | 0.015 (3) |
N6 | 0.070 (5) | 0.013 (3) | 0.064 (4) | −0.007 (3) | 0.001 (4) | 0.001 (3) |
C7 | 0.043 (4) | 0.015 (3) | 0.053 (5) | −0.002 (3) | −0.004 (3) | 0.004 (3) |
N4 | 0.075 (5) | 0.011 (3) | 0.081 (5) | 0.007 (3) | 0.021 (4) | 0.006 (3) |
C13 | 0.054 (5) | 0.015 (3) | 0.048 (5) | 0.001 (3) | 0.015 (4) | −0.003 (3) |
C15 | 0.044 (4) | 0.017 (3) | 0.054 (5) | −0.003 (3) | 0.013 (4) | −0.003 (3) |
C10 | 0.047 (5) | 0.018 (3) | 0.053 (5) | −0.006 (3) | 0.000 (4) | 0.003 (3) |
C1 | 0.055 (5) | 0.019 (3) | 0.055 (5) | −0.003 (3) | 0.014 (4) | 0.007 (3) |
C4 | 0.058 (5) | 0.013 (3) | 0.067 (5) | 0.003 (3) | 0.008 (4) | 0.009 (3) |
C8 | 0.049 (5) | 0.027 (4) | 0.075 (6) | 0.000 (4) | 0.010 (4) | −0.004 (4) |
C5 | 0.060 (5) | 0.030 (4) | 0.069 (6) | 0.008 (4) | 0.020 (4) | 0.007 (4) |
C9 | 0.063 (6) | 0.019 (4) | 0.071 (6) | 0.007 (4) | 0.004 (5) | −0.005 (4) |
C12 | 0.053 (5) | 0.037 (5) | 0.065 (6) | −0.009 (4) | 0.005 (4) | 0.007 (4) |
C11 | 0.048 (5) | 0.032 (4) | 0.077 (6) | 0.008 (4) | 0.012 (4) | 0.008 (4) |
C14 | 0.075 (6) | 0.020 (4) | 0.119 (8) | −0.019 (4) | 0.052 (6) | −0.028 (5) |
C6 | 0.079 (7) | 0.019 (4) | 0.075 (6) | 0.007 (4) | 0.018 (5) | −0.006 (4) |
C2 | 0.060 (5) | 0.029 (4) | 0.052 (5) | 0.007 (4) | 0.015 (4) | 0.002 (3) |
C3 | 0.049 (5) | 0.041 (5) | 0.058 (5) | −0.002 (4) | 0.018 (4) | 0.006 (4) |
O1W | 0.105 (6) | 0.090 (6) | 0.106 (6) | 0.054 (5) | 0.054 (5) | 0.045 (5) |
Cl1B | 0.0674 (16) | 0.045 (2) | 0.062 (2) | 0.0058 (14) | 0.0106 (12) | −0.0048 (16) |
O2B | 0.108 (7) | 0.045 (8) | 0.111 (7) | −0.019 (6) | 0.018 (5) | −0.027 (6) |
O1A | 0.119 (6) | 0.087 (5) | 0.147 (6) | 0.017 (5) | 0.050 (5) | −0.002 (5) |
O4B | 0.083 (6) | 0.078 (6) | 0.106 (7) | −0.023 (5) | 0.027 (5) | −0.021 (5) |
O3B | 0.158 (10) | 0.157 (10) | 0.120 (8) | 0.000 (8) | −0.040 (7) | 0.017 (8) |
O4A | 0.083 (6) | 0.078 (6) | 0.106 (7) | −0.023 (5) | 0.027 (5) | −0.021 (5) |
Cl1A | 0.0674 (16) | 0.045 (2) | 0.062 (2) | 0.0058 (14) | 0.0106 (12) | −0.0048 (16) |
O3A | 0.158 (10) | 0.157 (10) | 0.120 (8) | 0.000 (8) | −0.040 (7) | 0.017 (8) |
O2A | 0.108 (7) | 0.045 (8) | 0.111 (7) | −0.019 (6) | 0.018 (5) | −0.027 (6) |
Cu2—O2 | 1.925 (4) | N6—C7 | 1.327 (9) |
Cu2—O2i | 1.925 (4) | N6—C9 | 1.364 (11) |
Cu2—O4i | 1.922 (5) | C7—C10 | 1.439 (11) |
Cu2—O4 | 1.922 (5) | N4—H4 | 0.8600 |
Cu2—O2B | 2.72 (5) | N4—C4 | 1.332 (9) |
Cu2—O2A | 2.781 (15) | N4—C6 | 1.355 (11) |
Cu1—O1 | 2.194 (6) | C13—C14 | 1.507 (10) |
Cu1—N5 | 2.015 (6) | C15—C14 | 1.503 (10) |
Cu1—N1 | 2.021 (6) | C1—C4 | 1.423 (11) |
Cu1—N3 | 2.005 (6) | C8—H8A | 0.9300 |
Cu1—N7 | 2.032 (6) | C8—C9 | 1.359 (11) |
O2—C13 | 1.265 (8) | C5—H5 | 0.9300 |
O4—C15 | 1.265 (9) | C5—C6 | 1.351 (11) |
O1—H1A | 0.9889 | C9—H9 | 0.9300 |
O1—H1B | 0.9906 | C12—H12 | 0.9300 |
O5—C15 | 1.238 (8) | C12—C11 | 1.340 (11) |
N5—C7 | 1.316 (9) | C11—H11 | 0.9300 |
N5—C8 | 1.371 (10) | C6—H6A | 0.9300 |
O3—C13 | 1.226 (8) | C2—H2A | 0.9300 |
N1—C1 | 1.333 (9) | C2—C3 | 1.353 (11) |
N1—C2 | 1.369 (10) | C3—H3 | 0.9300 |
N3—C4 | 1.321 (10) | O1W—H1WA | 0.8483 |
N3—C5 | 1.376 (10) | O1W—H1WB | 0.8499 |
N7—C10 | 1.336 (9) | Cl1B—O2B | 1.426 (8) |
N7—C11 | 1.368 (10) | Cl1B—O1A | 1.423 (8) |
N8—H8 | 0.8600 | Cl1B—O4B | 1.417 (8) |
N8—C10 | 1.316 (10) | Cl1B—O3B | 1.421 (8) |
N8—C12 | 1.370 (11) | O1A—Cl1A | 1.414 (7) |
N2—H2 | 0.8600 | O4A—Cl1A | 1.422 (7) |
N2—C1 | 1.334 (10) | Cl1A—O3A | 1.391 (7) |
N2—C3 | 1.358 (10) | Cl1A—O2A | 1.427 (7) |
N6—H6 | 0.8600 | ||
O2—Cu2—O2i | 87.6 (3) | O2—C13—C14 | 121.0 (6) |
O2—Cu2—O2B | 82.0 (6) | O3—C13—O2 | 122.7 (7) |
O2i—Cu2—O2B | 88.7 (10) | O3—C13—C14 | 116.1 (7) |
O2i—Cu2—O2A | 79.5 (3) | O4—C15—C14 | 122.4 (6) |
O2—Cu2—O2A | 79.8 (2) | O5—C15—O4 | 122.3 (6) |
O4i—Cu2—O2 | 161.4 (2) | O5—C15—C14 | 115.3 (7) |
O4i—Cu2—O2i | 95.9 (2) | N7—C10—C7 | 116.9 (7) |
O4—Cu2—O2 | 95.89 (19) | N8—C10—N7 | 111.4 (7) |
O4—Cu2—O2i | 161.4 (2) | N8—C10—C7 | 131.7 (6) |
O4i—Cu2—O4 | 86.6 (3) | N1—C1—N2 | 110.8 (7) |
O4—Cu2—O2B | 73.7 (10) | N1—C1—C4 | 117.3 (6) |
O4i—Cu2—O2B | 116.3 (7) | N2—C1—C4 | 131.8 (7) |
O4i—Cu2—O2A | 118.8 (2) | N3—C4—N4 | 110.5 (7) |
O4—Cu2—O2A | 83.2 (3) | N3—C4—C1 | 116.9 (6) |
N5—Cu1—O1 | 94.9 (2) | N4—C4—C1 | 132.5 (7) |
N5—Cu1—N1 | 97.5 (2) | N5—C8—H8A | 126.0 |
N5—Cu1—N7 | 81.8 (3) | C9—C8—N5 | 108.0 (7) |
N1—Cu1—O1 | 100.2 (2) | C9—C8—H8A | 126.0 |
N1—Cu1—N7 | 155.6 (3) | N3—C5—H5 | 126.1 |
N3—Cu1—O1 | 91.6 (3) | C6—C5—N3 | 107.9 (7) |
N3—Cu1—N5 | 173.5 (3) | C6—C5—H5 | 126.1 |
N3—Cu1—N1 | 81.7 (2) | N6—C9—H9 | 126.5 |
N3—Cu1—N7 | 96.2 (3) | C8—C9—N6 | 107.0 (7) |
N7—Cu1—O1 | 104.2 (2) | C8—C9—H9 | 126.5 |
C13—O2—Cu2 | 126.5 (4) | N8—C12—H12 | 126.7 |
C15—O4—Cu2 | 126.4 (4) | C11—C12—N8 | 106.7 (8) |
Cu1—O1—H1A | 115.5 | C11—C12—H12 | 126.7 |
Cu1—O1—H1B | 116.4 | N7—C11—H11 | 125.2 |
H1A—O1—H1B | 97.9 | C12—C11—N7 | 109.6 (8) |
C7—N5—Cu1 | 112.5 (5) | C12—C11—H11 | 125.2 |
C7—N5—C8 | 106.6 (6) | C15—C14—C13 | 122.3 (7) |
C8—N5—Cu1 | 140.8 (5) | N4—C6—H6A | 126.3 |
C1—N1—Cu1 | 111.3 (5) | C5—C6—N4 | 107.5 (7) |
C1—N1—C2 | 105.8 (6) | C5—C6—H6A | 126.3 |
C2—N1—Cu1 | 142.8 (5) | N1—C2—H2A | 125.6 |
C4—N3—Cu1 | 112.6 (5) | C3—C2—N1 | 108.8 (7) |
C4—N3—C5 | 106.6 (6) | C3—C2—H2A | 125.6 |
C5—N3—Cu1 | 140.8 (5) | N2—C3—H3 | 126.4 |
C10—N7—Cu1 | 111.4 (5) | C2—C3—N2 | 107.2 (7) |
C10—N7—C11 | 105.0 (6) | C2—C3—H3 | 126.4 |
C11—N7—Cu1 | 143.5 (5) | H1WA—O1W—H1WB | 104.6 |
C10—N8—H8 | 126.4 | O1A—Cl1B—O2B | 102 (2) |
C10—N8—C12 | 107.3 (6) | O4B—Cl1B—O2B | 107 (2) |
C12—N8—H8 | 126.4 | O4B—Cl1B—O1A | 127 (2) |
C1—N2—H2 | 126.3 | O4B—Cl1B—O3B | 108 (2) |
C1—N2—C3 | 107.3 (6) | O3B—Cl1B—O2B | 104 (2) |
C3—N2—H2 | 126.3 | O3B—Cl1B—O1A | 106.4 (19) |
C7—N6—H6 | 126.4 | Cl1B—O2B—Cu2 | 114 (2) |
C7—N6—C9 | 107.3 (6) | O1A—Cl1A—O4A | 108.9 (7) |
C9—N6—H6 | 126.4 | O1A—Cl1A—O2A | 104.8 (8) |
N5—C7—N6 | 111.2 (7) | O4A—Cl1A—O2A | 109.6 (7) |
N5—C7—C10 | 117.4 (6) | O3A—Cl1A—O1A | 109.1 (9) |
N6—C7—C10 | 131.4 (7) | O3A—Cl1A—O4A | 113.7 (10) |
C4—N4—H4 | 126.2 | O3A—Cl1A—O2A | 110.3 (10) |
C4—N4—C6 | 107.5 (7) | Cl1A—O2A—Cu2 | 107.8 (7) |
C6—N4—H4 | 126.2 | ||
Cu2—O2—C13—O3 | −166.7 (6) | N6—C7—C10—N8 | 2.2 (15) |
Cu2—O2—C13—C14 | 16.8 (11) | C7—N5—C8—C9 | −1.0 (9) |
Cu2—O4—C15—O5 | −172.5 (6) | C7—N6—C9—C8 | 0.1 (9) |
Cu2—O4—C15—C14 | 5.7 (12) | C10—N7—C11—C12 | −0.2 (10) |
Cu1—N5—C7—N6 | 177.4 (5) | C10—N8—C12—C11 | −0.6 (9) |
Cu1—N5—C7—C10 | 0.0 (8) | C1—N1—C2—C3 | −0.1 (10) |
Cu1—N5—C8—C9 | −175.6 (7) | C1—N2—C3—C2 | 0.5 (10) |
Cu1—N1—C1—N2 | 179.0 (5) | C4—N3—C5—C6 | 0.0 (10) |
Cu1—N1—C1—C4 | −3.8 (9) | C4—N4—C6—C5 | −1.1 (11) |
Cu1—N1—C2—C3 | −177.9 (7) | C8—N5—C7—N6 | 1.1 (9) |
Cu1—N3—C4—N4 | 178.0 (6) | C8—N5—C7—C10 | −176.3 (7) |
Cu1—N3—C4—C1 | 0.6 (10) | C5—N3—C4—N4 | −0.7 (10) |
Cu1—N3—C5—C6 | −178.1 (7) | C5—N3—C4—C1 | −178.1 (8) |
Cu1—N7—C10—N8 | −179.6 (5) | C9—N6—C7—N5 | −0.8 (9) |
Cu1—N7—C10—C7 | −0.9 (9) | C9—N6—C7—C10 | 176.2 (8) |
Cu1—N7—C11—C12 | 178.9 (7) | C12—N8—C10—N7 | 0.5 (9) |
O2—C13—C14—C15 | −28.3 (14) | C12—N8—C10—C7 | −177.9 (8) |
O4—C15—C14—C13 | 16.3 (15) | C11—N7—C10—N8 | −0.2 (9) |
O5—C15—C14—C13 | −165.4 (9) | C11—N7—C10—C7 | 178.5 (7) |
N5—C7—C10—N7 | 0.6 (10) | C6—N4—C4—N3 | 1.2 (10) |
N5—C7—C10—N8 | 179.0 (8) | C6—N4—C4—C1 | 178.0 (9) |
N5—C8—C9—N6 | 0.5 (10) | C2—N1—C1—N2 | 0.4 (9) |
O3—C13—C14—C15 | 155.0 (9) | C2—N1—C1—C4 | 177.7 (7) |
N1—C1—C4—N3 | 2.2 (12) | C3—N2—C1—N1 | −0.6 (10) |
N1—C1—C4—N4 | −174.5 (9) | C3—N2—C1—C4 | −177.3 (9) |
N1—C2—C3—N2 | −0.3 (10) | O1A—Cl1B—O2B—Cu2 | −13 (2) |
N3—C5—C6—N4 | 0.7 (11) | O1A—Cl1A—O2A—Cu2 | 25.6 (7) |
N8—C12—C11—N7 | 0.5 (10) | O4B—Cl1B—O2B—Cu2 | −148 (2) |
N2—C1—C4—N3 | 178.7 (9) | O3B—Cl1B—O2B—Cu2 | 98 (3) |
N2—C1—C4—N4 | 2.1 (17) | O4A—Cl1A—O2A—Cu2 | −91.2 (7) |
N6—C7—C10—N7 | −176.2 (8) | O3A—Cl1A—O2A—Cu2 | 142.9 (9) |
Symmetry code: (i) −x, y, −z+3/2. |
[Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O | F(000) = 1694 |
Mr = 1639.91 | Dx = 1.721 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
a = 7.7912 (6) Å | Cell parameters from 12816 reflections |
b = 12.5972 (10) Å | θ = 1.7–27.9° |
c = 32.481 (3) Å | µ = 1.11 mm−1 |
β = 96.802 (2)° | T = 298 K |
V = 3165.5 (4) Å3 | Block, green |
Z = 2 | 0.14 × 0.11 × 0.09 mm |
4-circle diffractometer | 2735 reflections with I > 2σ(I) |
ω scans | Rint = 0.153 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | θmax = 25.0°, θmin = 2.1° |
Tmin = 0.557, Tmax = 1.000 | h = −9→7 |
33363 measured reflections | k = −14→14 |
5454 independent reflections | l = −37→37 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.179 | w = 1/[σ2(Fo2) + (0.0623P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
5454 reflections | Δρmax = 0.46 e Å−3 |
413 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Intensity data for 1–4 were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a Mercury CCD bidimensional detector using monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction (multi-scan) was applied for all data using the package CrysAlis PRO (Agilent, 2014). All crystal structures were solved by direct methods using the SHELXT and refined using full-matrix least-squares methods with SHELXL (Sheldrick, 2015) included in the GUI OLEX2 (Dolomanov et al., 2009). All non-H atoms were refined anisotropically. Finally, DIAMOND (Brandenburg, 1996) was used for graphical representations. CCDC 2358575, 2358576, 2358577, and 2358578 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.77333 (10) | 0.13334 (6) | 0.24077 (3) | 0.0439 (3) | |
Cu2 | 1.000000 | 0.000000 | 0.000000 | 0.0532 (4) | |
O1 | 0.4231 (7) | 0.2137 (4) | 0.3880 (2) | 0.085 (2) | |
O2 | 0.6020 (6) | 0.3487 (4) | 0.39351 (17) | 0.0591 (14) | |
H2 | 0.707406 | 0.354219 | 0.395055 | 0.089* | |
O3 | 0.5425 (6) | 0.0973 (4) | 0.30181 (16) | 0.0491 (12) | |
O4 | 0.6185 (7) | 0.0128 (4) | 0.36139 (16) | 0.0635 (15) | |
O5 | 1.1145 (6) | −0.0666 (4) | 0.12665 (16) | 0.0620 (15) | |
O6 | 1.1400 (6) | 0.0668 (4) | 0.08355 (17) | 0.0589 (14) | |
O7 | 1.0180 (6) | 0.1638 (4) | 0.19198 (16) | 0.0516 (13) | |
O8 | 0.9569 (7) | 0.2617 (4) | 0.13543 (16) | 0.0709 (16) | |
N11 | 0.7413 (6) | −0.0229 (4) | 0.23463 (17) | 0.0393 (14) | |
N21 | 0.7972 (6) | −0.1807 (4) | 0.26323 (18) | 0.0404 (14) | |
H21 | 0.840359 | −0.228932 | 0.280138 | 0.048* | |
N31 | 0.9470 (6) | 0.0896 (4) | 0.28917 (17) | 0.0396 (14) | |
N41 | 1.0400 (7) | −0.0443 (4) | 0.32994 (17) | 0.0433 (14) | |
H41 | 1.051288 | −0.107575 | 0.339829 | 0.052* | |
N12 | 0.5954 (6) | 0.1774 (4) | 0.19301 (17) | 0.0424 (15) | |
C22 | 0.4080 (9) | 0.2237 (6) | 0.1383 (2) | 0.0491 (19) | |
H22 | 0.329656 | 0.220730 | 0.114395 | 0.059* | |
N32 | 0.7769 (6) | 0.2903 (4) | 0.25148 (17) | 0.0382 (14) | |
N42 | 0.6642 (6) | 0.4454 (4) | 0.23369 (17) | 0.0392 (14) | |
H42 | 0.602586 | 0.493598 | 0.220267 | 0.047* | |
N13 | 0.9649 (7) | −0.1431 (5) | 0.02380 (19) | 0.0558 (17) | |
N23 | 0.8059 (7) | −0.2409 (5) | 0.06113 (18) | 0.0550 (17) | |
H23 | 0.724183 | −0.258943 | 0.075337 | 0.066* | |
N33 | 0.7782 (7) | 0.0303 (5) | 0.02232 (18) | 0.0490 (16) | |
N43 | 0.5775 (7) | −0.0284 (5) | 0.05859 (17) | 0.0466 (15) | |
H43 | 0.521203 | −0.070728 | 0.072873 | 0.056* | |
C11 | 0.6513 (8) | −0.0999 (5) | 0.2108 (2) | 0.0406 (17) | |
H11 | 0.578360 | −0.087589 | 0.186441 | 0.049* | |
C21 | 0.6858 (8) | −0.1958 (6) | 0.2283 (2) | 0.0458 (19) | |
H21A | 0.641424 | −0.260554 | 0.218206 | 0.055* | |
C31 | 0.8266 (8) | −0.0755 (6) | 0.2662 (2) | 0.0385 (17) | |
C41 | 0.9376 (8) | −0.0131 (6) | 0.2960 (2) | 0.0368 (16) | |
C61 | 1.1226 (8) | 0.0453 (6) | 0.3456 (2) | 0.0442 (18) | |
H61 | 1.203023 | 0.049473 | 0.369117 | 0.053* | |
C51 | 1.0653 (8) | 0.1267 (6) | 0.3206 (2) | 0.0404 (17) | |
H51 | 1.100629 | 0.196929 | 0.324062 | 0.048* | |
C12 | 0.4895 (8) | 0.1407 (5) | 0.1590 (2) | 0.0442 (18) | |
H12 | 0.475909 | 0.069749 | 0.151272 | 0.053* | |
N22 | 0.4644 (7) | 0.3122 (4) | 0.15983 (17) | 0.0445 (15) | |
H22A | 0.434078 | 0.376377 | 0.153489 | 0.053* | |
C32 | 0.5755 (8) | 0.2826 (5) | 0.1927 (2) | 0.0383 (17) | |
C42 | 0.6698 (8) | 0.3430 (6) | 0.2243 (2) | 0.0387 (17) | |
C62 | 0.7769 (8) | 0.4587 (6) | 0.2692 (2) | 0.0412 (17) | |
H62 | 0.801630 | 0.522337 | 0.283175 | 0.049* | |
C52 | 0.8451 (8) | 0.3633 (5) | 0.2801 (2) | 0.0396 (17) | |
H52 | 0.924760 | 0.349321 | 0.303071 | 0.048* | |
C13 | 1.0359 (11) | −0.2444 (7) | 0.0294 (3) | 0.078 (3) | |
H13 | 1.135714 | −0.267092 | 0.018982 | 0.094* | |
C23 | 0.9401 (11) | −0.3045 (7) | 0.0521 (3) | 0.076 (3) | |
H23A | 0.960210 | −0.374784 | 0.060036 | 0.091* | |
C33 | 0.8254 (9) | −0.1453 (6) | 0.0438 (2) | 0.0484 (19) | |
C43 | 0.7236 (9) | −0.0503 (6) | 0.0430 (2) | 0.0456 (19) | |
C63 | 0.5335 (9) | 0.0720 (6) | 0.0479 (2) | 0.051 (2) | |
H63 | 0.437314 | 0.108917 | 0.054678 | 0.061* | |
C53 | 0.6563 (10) | 0.1089 (7) | 0.0256 (2) | 0.059 (2) | |
H53 | 0.658527 | 0.176452 | 0.014133 | 0.071* | |
C1 | 0.5572 (10) | 0.2552 (6) | 0.3816 (2) | 0.0484 (19) | |
C2 | 0.6811 (8) | 0.1960 (5) | 0.3577 (2) | 0.0480 (19) | |
H2A | 0.713005 | 0.241331 | 0.335642 | 0.058* | |
H2B | 0.785426 | 0.180283 | 0.376036 | 0.058* | |
C3 | 0.6074 (8) | 0.0941 (6) | 0.3390 (3) | 0.0460 (19) | |
C6 | 0.9692 (8) | 0.1753 (6) | 0.1540 (3) | 0.0444 (18) | |
C5 | 0.9172 (8) | 0.0752 (5) | 0.1285 (2) | 0.0492 (19) | |
H5A | 0.867439 | 0.024029 | 0.145962 | 0.059* | |
H5B | 0.829438 | 0.093666 | 0.105896 | 0.059* | |
C4 | 1.0685 (8) | 0.0253 (6) | 0.1110 (2) | 0.0415 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0486 (5) | 0.0299 (5) | 0.0510 (6) | 0.0020 (4) | −0.0029 (4) | −0.0024 (4) |
Cu2 | 0.0491 (8) | 0.0576 (10) | 0.0553 (9) | −0.0045 (6) | 0.0168 (6) | 0.0101 (7) |
O1 | 0.064 (4) | 0.071 (4) | 0.130 (5) | −0.031 (3) | 0.056 (4) | −0.055 (4) |
O2 | 0.056 (3) | 0.046 (4) | 0.080 (4) | −0.005 (3) | 0.028 (3) | −0.017 (3) |
O3 | 0.055 (3) | 0.040 (3) | 0.051 (4) | 0.005 (2) | 0.002 (2) | −0.003 (3) |
O4 | 0.096 (4) | 0.037 (3) | 0.055 (4) | −0.005 (3) | −0.002 (3) | 0.001 (3) |
O5 | 0.076 (4) | 0.055 (4) | 0.059 (4) | 0.022 (3) | 0.023 (3) | 0.021 (3) |
O6 | 0.058 (3) | 0.046 (3) | 0.077 (4) | −0.001 (2) | 0.021 (3) | 0.010 (3) |
O7 | 0.062 (3) | 0.042 (3) | 0.046 (3) | 0.001 (2) | −0.013 (2) | −0.006 (3) |
O8 | 0.129 (5) | 0.037 (4) | 0.042 (4) | 0.009 (3) | −0.008 (3) | −0.004 (3) |
N11 | 0.045 (3) | 0.031 (4) | 0.042 (4) | −0.005 (3) | 0.006 (3) | −0.004 (3) |
N21 | 0.046 (3) | 0.023 (4) | 0.054 (4) | 0.003 (2) | 0.010 (3) | 0.002 (3) |
N31 | 0.039 (3) | 0.032 (4) | 0.049 (4) | 0.001 (2) | 0.006 (3) | −0.004 (3) |
N41 | 0.048 (3) | 0.038 (4) | 0.044 (4) | 0.002 (3) | 0.004 (3) | 0.002 (3) |
N12 | 0.039 (3) | 0.035 (4) | 0.050 (4) | −0.002 (2) | −0.007 (3) | −0.003 (3) |
C22 | 0.061 (5) | 0.033 (5) | 0.048 (5) | 0.000 (4) | −0.013 (4) | −0.009 (4) |
N32 | 0.042 (3) | 0.025 (3) | 0.049 (4) | −0.003 (3) | 0.012 (3) | −0.008 (3) |
N42 | 0.040 (3) | 0.030 (4) | 0.047 (4) | 0.004 (2) | 0.003 (3) | −0.001 (3) |
N13 | 0.056 (4) | 0.056 (5) | 0.059 (4) | −0.003 (3) | 0.023 (3) | 0.009 (4) |
N23 | 0.064 (4) | 0.048 (4) | 0.057 (4) | −0.004 (3) | 0.028 (3) | 0.015 (3) |
N33 | 0.043 (4) | 0.053 (4) | 0.050 (4) | −0.009 (3) | 0.006 (3) | −0.004 (3) |
N43 | 0.047 (4) | 0.048 (4) | 0.045 (4) | −0.008 (3) | 0.005 (3) | 0.006 (3) |
C11 | 0.049 (4) | 0.024 (4) | 0.047 (5) | 0.003 (3) | 0.000 (3) | −0.002 (4) |
C21 | 0.038 (4) | 0.032 (5) | 0.067 (6) | −0.006 (3) | 0.005 (4) | −0.010 (4) |
C31 | 0.036 (4) | 0.033 (5) | 0.048 (5) | 0.001 (3) | 0.013 (3) | 0.004 (4) |
C41 | 0.031 (4) | 0.039 (5) | 0.040 (5) | −0.001 (3) | 0.003 (3) | −0.007 (4) |
C61 | 0.047 (4) | 0.041 (5) | 0.043 (5) | −0.003 (3) | 0.002 (3) | −0.002 (4) |
C51 | 0.041 (4) | 0.036 (5) | 0.043 (5) | −0.006 (3) | 0.000 (3) | −0.006 (4) |
C12 | 0.059 (4) | 0.026 (4) | 0.046 (5) | 0.003 (3) | −0.003 (3) | −0.015 (4) |
N22 | 0.049 (4) | 0.033 (4) | 0.051 (4) | 0.000 (3) | 0.005 (3) | −0.002 (3) |
C32 | 0.035 (4) | 0.027 (5) | 0.054 (5) | 0.002 (3) | 0.009 (3) | −0.001 (4) |
C42 | 0.043 (4) | 0.034 (5) | 0.040 (5) | −0.005 (3) | 0.008 (3) | −0.006 (4) |
C62 | 0.050 (4) | 0.040 (5) | 0.035 (4) | −0.014 (3) | 0.007 (3) | −0.007 (4) |
C52 | 0.039 (4) | 0.032 (4) | 0.050 (5) | 0.000 (3) | 0.013 (3) | 0.002 (4) |
C13 | 0.094 (7) | 0.055 (6) | 0.096 (8) | 0.005 (5) | 0.051 (6) | 0.014 (5) |
C23 | 0.086 (6) | 0.052 (6) | 0.098 (7) | 0.013 (5) | 0.043 (5) | 0.035 (5) |
C33 | 0.049 (5) | 0.051 (6) | 0.046 (5) | −0.009 (4) | 0.007 (4) | 0.008 (4) |
C43 | 0.045 (5) | 0.053 (5) | 0.040 (5) | −0.009 (4) | 0.010 (3) | 0.003 (4) |
C63 | 0.049 (5) | 0.048 (5) | 0.058 (5) | −0.006 (4) | 0.008 (4) | −0.002 (4) |
C53 | 0.059 (5) | 0.066 (6) | 0.053 (5) | −0.013 (4) | 0.013 (4) | 0.012 (4) |
C1 | 0.055 (5) | 0.041 (5) | 0.051 (5) | −0.007 (4) | 0.013 (4) | −0.012 (4) |
C2 | 0.044 (4) | 0.029 (4) | 0.075 (6) | −0.012 (3) | 0.022 (4) | −0.011 (4) |
C3 | 0.039 (4) | 0.042 (5) | 0.060 (6) | 0.008 (3) | 0.019 (4) | −0.003 (5) |
C6 | 0.039 (4) | 0.043 (5) | 0.050 (5) | 0.009 (3) | 0.001 (3) | 0.000 (4) |
C5 | 0.051 (5) | 0.045 (5) | 0.052 (5) | 0.001 (3) | 0.005 (3) | −0.021 (4) |
C4 | 0.044 (4) | 0.042 (5) | 0.039 (5) | −0.007 (3) | 0.004 (3) | −0.004 (4) |
Cu1—O3 | 2.867 (5) | N13—C13 | 1.394 (10) |
Cu1—O7 | 2.647 (5) | N13—C33 | 1.330 (8) |
Cu1—N11 | 1.991 (5) | N23—H23 | 0.8600 |
Cu1—N31 | 2.025 (5) | N23—C23 | 1.377 (9) |
Cu1—N12 | 2.032 (5) | N23—C33 | 1.345 (8) |
Cu1—N32 | 2.007 (5) | N33—C43 | 1.317 (8) |
Cu2—O6 | 2.926 (5) | N33—C53 | 1.384 (9) |
Cu2—N13i | 1.993 (6) | N43—H43 | 0.8600 |
Cu2—N13 | 1.993 (6) | N43—C43 | 1.328 (8) |
Cu2—N33 | 1.989 (6) | N43—C63 | 1.345 (8) |
Cu2—N33i | 1.989 (6) | C11—H11 | 0.9300 |
O1—C1 | 1.208 (8) | C11—C21 | 1.349 (9) |
O2—H2 | 0.8200 | C21—H21A | 0.9300 |
O2—C1 | 1.275 (8) | C31—C41 | 1.449 (9) |
O3—C3 | 1.255 (8) | C61—H61 | 0.9300 |
O4—C3 | 1.252 (8) | C61—C51 | 1.351 (9) |
O5—C4 | 1.298 (8) | C51—H51 | 0.9300 |
O6—C4 | 1.223 (8) | C12—H12 | 0.9300 |
O7—C6 | 1.256 (8) | N22—H22A | 0.8600 |
O8—C6 | 1.242 (8) | N22—C32 | 1.344 (8) |
N11—C11 | 1.380 (8) | C32—C42 | 1.413 (9) |
N11—C31 | 1.332 (8) | C62—H62 | 0.9300 |
N21—H21 | 0.8600 | C62—C52 | 1.344 (8) |
N21—C21 | 1.358 (8) | C52—H52 | 0.9300 |
N21—C31 | 1.347 (8) | C13—H13 | 0.9300 |
N31—C41 | 1.317 (8) | C13—C23 | 1.343 (10) |
N31—C51 | 1.373 (8) | C23—H23A | 0.9300 |
N41—H41 | 0.8600 | C33—C43 | 1.434 (10) |
N41—C41 | 1.342 (8) | C63—H63 | 0.9300 |
N41—C61 | 1.368 (8) | C63—C53 | 1.350 (9) |
N12—C12 | 1.379 (8) | C53—H53 | 0.9300 |
N12—C32 | 1.334 (8) | C1—C2 | 1.507 (9) |
C22—H22 | 0.9300 | C2—H2A | 0.9700 |
C22—C12 | 1.359 (9) | C2—H2B | 0.9700 |
C22—N22 | 1.361 (8) | C2—C3 | 1.504 (9) |
N32—C42 | 1.319 (8) | C6—C5 | 1.536 (9) |
N32—C52 | 1.369 (8) | C5—H5A | 0.9700 |
N42—H42 | 0.8600 | C5—H5B | 0.9700 |
N42—C42 | 1.328 (8) | C5—C4 | 1.505 (9) |
N42—C62 | 1.375 (8) | ||
O7—Cu1—O3 | 172.90 (14) | N11—C31—C41 | 116.6 (6) |
N11—Cu1—O3 | 80.28 (17) | N21—C31—C41 | 131.7 (7) |
N11—Cu1—O7 | 100.02 (18) | N31—C41—N41 | 112.7 (6) |
N11—Cu1—N31 | 82.7 (2) | N31—C41—C31 | 117.5 (6) |
N11—Cu1—N12 | 97.3 (2) | N41—C41—C31 | 129.7 (7) |
N11—Cu1—N32 | 172.0 (2) | N41—C61—H61 | 126.4 |
N31—Cu1—O3 | 80.58 (18) | C51—C61—N41 | 107.1 (6) |
N31—Cu1—O7 | 92.40 (18) | C51—C61—H61 | 126.4 |
N31—Cu1—N12 | 178.8 (2) | N31—C51—H51 | 125.2 |
N12—Cu1—O3 | 98.29 (18) | C61—C51—N31 | 109.5 (6) |
N12—Cu1—O7 | 88.72 (18) | C61—C51—H51 | 125.2 |
N32—Cu1—O3 | 91.91 (17) | N12—C12—H12 | 125.1 |
N32—Cu1—O7 | 87.97 (17) | C22—C12—N12 | 109.7 (6) |
N32—Cu1—N31 | 98.0 (2) | C22—C12—H12 | 125.1 |
N32—Cu1—N12 | 81.8 (2) | C22—N22—H22A | 125.7 |
N13i—Cu2—O6 | 92.7 (2) | C32—N22—C22 | 108.6 (6) |
N13—Cu2—O6 | 87.3 (2) | C32—N22—H22A | 125.7 |
N13i—Cu2—N13 | 180.0 | N12—C32—N22 | 110.2 (6) |
N33i—Cu2—O6 | 98.56 (18) | N12—C32—C42 | 118.6 (6) |
N33—Cu2—O6 | 81.44 (18) | N22—C32—C42 | 131.2 (6) |
N33—Cu2—N13i | 97.6 (2) | N32—C42—N42 | 111.8 (6) |
N33—Cu2—N13 | 82.4 (2) | N32—C42—C32 | 116.7 (6) |
N33i—Cu2—N13 | 97.6 (2) | N42—C42—C32 | 131.4 (7) |
N33i—Cu2—N13i | 82.4 (2) | N42—C62—H62 | 126.1 |
N33i—Cu2—N33 | 180.0 | C52—C62—N42 | 107.7 (6) |
C1—O2—H2 | 109.5 | C52—C62—H62 | 126.1 |
C3—O3—Cu1 | 117.2 (4) | N32—C52—H52 | 125.9 |
C4—O6—Cu2 | 113.7 (4) | C62—C52—N32 | 108.3 (6) |
C6—O7—Cu1 | 116.7 (4) | C62—C52—H52 | 125.9 |
C11—N11—Cu1 | 143.2 (5) | N13—C13—H13 | 124.7 |
C31—N11—Cu1 | 111.7 (4) | C23—C13—N13 | 110.5 (7) |
C31—N11—C11 | 104.9 (6) | C23—C13—H13 | 124.7 |
C21—N21—H21 | 126.7 | N23—C23—H23A | 127.1 |
C31—N21—H21 | 126.7 | C13—C23—N23 | 105.9 (7) |
C31—N21—C21 | 106.5 (6) | C13—C23—H23A | 127.1 |
C41—N31—Cu1 | 110.6 (4) | N13—C33—N23 | 111.3 (7) |
C41—N31—C51 | 104.8 (5) | N13—C33—C43 | 117.2 (7) |
C51—N31—Cu1 | 144.3 (5) | N23—C33—C43 | 131.6 (7) |
C41—N41—H41 | 127.1 | N33—C43—N43 | 112.2 (7) |
C41—N41—C61 | 105.8 (6) | N33—C43—C33 | 116.1 (7) |
C61—N41—H41 | 127.1 | N43—C43—C33 | 131.7 (7) |
C12—N12—Cu1 | 144.1 (5) | N43—C63—H63 | 126.7 |
C32—N12—Cu1 | 110.2 (4) | N43—C63—C53 | 106.7 (7) |
C32—N12—C12 | 105.6 (5) | C53—C63—H63 | 126.7 |
C12—C22—H22 | 127.1 | N33—C53—H53 | 125.3 |
C12—C22—N22 | 105.9 (6) | C63—C53—N33 | 109.4 (7) |
N22—C22—H22 | 127.1 | C63—C53—H53 | 125.3 |
C42—N32—Cu1 | 112.6 (4) | O1—C1—O2 | 124.0 (7) |
C42—N32—C52 | 106.2 (6) | O1—C1—C2 | 119.6 (7) |
C52—N32—Cu1 | 140.9 (5) | O2—C1—C2 | 116.4 (6) |
C42—N42—H42 | 127.0 | C1—C2—H2A | 109.0 |
C42—N42—C62 | 106.0 (6) | C1—C2—H2B | 109.0 |
C62—N42—H42 | 127.0 | H2A—C2—H2B | 107.8 |
C13—N13—Cu2 | 143.9 (5) | C3—C2—C1 | 113.1 (5) |
C33—N13—Cu2 | 111.5 (5) | C3—C2—H2A | 109.0 |
C33—N13—C13 | 104.5 (6) | C3—C2—H2B | 109.0 |
C23—N23—H23 | 126.1 | O3—C3—C2 | 116.8 (7) |
C33—N23—H23 | 126.1 | O4—C3—O3 | 125.2 (7) |
C33—N23—C23 | 107.8 (6) | O4—C3—C2 | 117.9 (8) |
C43—N33—Cu2 | 112.7 (5) | O7—C6—C5 | 117.7 (7) |
C43—N33—C53 | 104.3 (6) | O8—C6—O7 | 125.1 (7) |
C53—N33—Cu2 | 143.0 (5) | O8—C6—C5 | 117.2 (7) |
C43—N43—H43 | 126.2 | C6—C5—H5A | 109.2 |
C43—N43—C63 | 107.5 (6) | C6—C5—H5B | 109.2 |
C63—N43—H43 | 126.2 | H5A—C5—H5B | 107.9 |
N11—C11—H11 | 125.4 | C4—C5—C6 | 112.2 (5) |
C21—C11—N11 | 109.3 (6) | C4—C5—H5A | 109.2 |
C21—C11—H11 | 125.4 | C4—C5—H5B | 109.2 |
N21—C21—H21A | 126.2 | O5—C4—C5 | 114.7 (6) |
C11—C21—N21 | 107.6 (6) | O6—C4—O5 | 122.6 (6) |
C11—C21—H21A | 126.2 | O6—C4—C5 | 122.7 (7) |
N11—C31—N21 | 111.6 (6) | ||
Cu1—O3—C3—O4 | −111.0 (7) | N23—C33—C43—N43 | −1.5 (13) |
Cu1—O3—C3—C2 | 67.4 (6) | N43—C63—C53—N33 | −0.1 (8) |
Cu1—O7—C6—O8 | 101.0 (7) | C11—N11—C31—N21 | 0.9 (7) |
Cu1—O7—C6—C5 | −77.7 (6) | C11—N11—C31—C41 | 178.2 (5) |
Cu1—N11—C11—C21 | −173.9 (5) | C21—N21—C31—N11 | −0.8 (7) |
Cu1—N11—C31—N21 | 176.6 (4) | C21—N21—C31—C41 | −177.6 (7) |
Cu1—N11—C31—C41 | −6.1 (7) | C31—N11—C11—C21 | −0.6 (7) |
Cu1—N31—C41—N41 | −174.7 (4) | C31—N21—C21—C11 | 0.4 (7) |
Cu1—N31—C41—C31 | 7.1 (7) | C41—N31—C51—C61 | −0.6 (7) |
Cu1—N31—C51—C61 | 172.3 (5) | C41—N41—C61—C51 | 0.5 (7) |
Cu1—N12—C12—C22 | −175.8 (6) | C61—N41—C41—N31 | −0.9 (7) |
Cu1—N12—C32—N22 | 176.8 (4) | C61—N41—C41—C31 | 177.1 (6) |
Cu1—N12—C32—C42 | −2.2 (7) | C51—N31—C41—N41 | 0.9 (7) |
Cu1—N32—C42—N42 | 175.3 (4) | C51—N31—C41—C31 | −177.3 (5) |
Cu1—N32—C42—C32 | −1.1 (7) | C12—N12—C32—N22 | −0.8 (7) |
Cu1—N32—C52—C62 | −173.5 (5) | C12—N12—C32—C42 | −179.8 (6) |
Cu2—O6—C4—O5 | 86.0 (7) | C12—C22—N22—C32 | −0.6 (7) |
Cu2—O6—C4—C5 | −92.3 (7) | N22—C22—C12—N12 | 0.1 (8) |
Cu2—N13—C13—C23 | 176.2 (7) | N22—C32—C42—N32 | −176.5 (6) |
Cu2—N13—C33—N23 | −177.6 (5) | N22—C32—C42—N42 | 8.0 (12) |
Cu2—N13—C33—C43 | 2.9 (8) | C32—N12—C12—C22 | 0.4 (8) |
Cu2—N33—C43—N43 | 178.6 (4) | C42—N32—C52—C62 | −0.2 (7) |
Cu2—N33—C43—C33 | −3.5 (8) | C42—N42—C62—C52 | −0.6 (7) |
Cu2—N33—C53—C63 | −177.4 (6) | C62—N42—C42—N32 | 0.5 (7) |
O1—C1—C2—C3 | 8.1 (11) | C62—N42—C42—C32 | 176.2 (7) |
O2—C1—C2—C3 | −171.0 (7) | C52—N32—C42—N42 | −0.2 (7) |
O7—C6—C5—C4 | −89.2 (8) | C52—N32—C42—C32 | −176.6 (5) |
O8—C6—C5—C4 | 92.1 (8) | C13—N13—C33—N23 | −0.1 (8) |
N11—C11—C21—N21 | 0.1 (7) | C13—N13—C33—C43 | −179.6 (7) |
N11—C31—C41—N31 | −0.8 (9) | C23—N23—C33—N13 | 0.1 (9) |
N11—C31—C41—N41 | −178.7 (6) | C23—N23—C33—C43 | 179.4 (8) |
N21—C31—C41—N31 | 175.9 (6) | C33—N13—C13—C23 | 0.1 (10) |
N21—C31—C41—N41 | −2.0 (12) | C33—N23—C23—C13 | 0.0 (10) |
N41—C61—C51—N31 | 0.1 (7) | C43—N33—C53—C63 | −0.2 (8) |
N12—C32—C42—N32 | 2.3 (9) | C43—N43—C63—C53 | 0.3 (8) |
N12—C32—C42—N42 | −173.2 (6) | C63—N43—C43—N33 | −0.5 (8) |
C22—N22—C32—N12 | 0.9 (7) | C63—N43—C43—C33 | −178.0 (7) |
C22—N22—C32—C42 | 179.7 (7) | C53—N33—C43—N43 | 0.4 (8) |
N42—C62—C52—N32 | 0.5 (7) | C53—N33—C43—C33 | 178.4 (6) |
N13—C13—C23—N23 | −0.1 (11) | C1—C2—C3—O3 | 96.6 (8) |
N13—C33—C43—N33 | 0.4 (10) | C1—C2—C3—O4 | −84.8 (8) |
N13—C33—C43—N43 | 177.8 (7) | C6—C5—C4—O5 | 112.4 (7) |
N23—C33—C43—N33 | −178.9 (7) | C6—C5—C4—O6 | −69.2 (9) |
Symmetry code: (i) −x+2, −y, −z. |
Acknowledgements
This project has been partially funded by FONACIT. The Frank Allen International Research & Education Programme (FAIRE) of the Cambridge Crystallographic Data Centre (CCDC) made access to the Cambridge Structural Database (CSD) possible. The authors declare that there are no conflicts of interest.
Funding information
The following funding is acknowledged: Fondo Nacional de Ciencia Tecnología e Innovación (project No. Lab-97000821).
References
Al Zoubi, W., Kamil, M. P., Fatimah, S., Nashrah, N. & Ko, Y. G. (2020). Prog. Mater. Sci. 112, 100663. CrossRef Google Scholar
Atencio, R., Brammer, L., Fang, S. & Christopher Pigge, F. (1999). New J. Chem. 23, 461–463. CSD CrossRef CAS Google Scholar
Atencio, R., Chacón, M., González, T., Briceño, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505–513. Web of Science CSD CrossRef Google Scholar
Atencio, R., Ramírez, K., Reyes, J. A., González, T. & Silva, P. (2005). Inorg. Chim. Acta, 358, 520–526. Web of Science CSD CrossRef CAS Google Scholar
Barquín, M., Garmendia, M. J. G. & Bellido, V. (2003). Transition Met. Chem. 28, 356–360. Google Scholar
Brammer, L., Rivas, J. C. M., Atencio, R., Fang, S. & Pigge, F. C. (2000). J. Chem. Soc. Dalton Trans. pp. 3855–3867. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (1996). Acta Cryst. A52, C562. CrossRef IUCr Journals Google Scholar
Briceño, A. & Escalona, A. M. (2015). Photochemistry, Vol. 43, pp. 286–320. London: Royal Society of Chemistry. Google Scholar
Briceño, A., Hill, Y., González, T. & Díaz de Delgado, G. (2009). Dalton Trans. pp. 1602–1610. Google Scholar
Briceño, A., Leal, D., Atencio, R. & Díaz de Delgado, G. (2006). Chem. Commun. pp. 3534–3536. Google Scholar
Burrows, A. D. (2003). Struct. Bonding, 108, 55–96. CrossRef Google Scholar
Colacio, E., Ghazi, M., Kivekäs, R. & Moreno, J. M. (2000). Inorg. Chem. 39, 2882–2890. Web of Science CSD CrossRef PubMed CAS Google Scholar
Delgado, F. S., Jiménez, C. A., Lorenzo-Luis, P., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2012). Cryst. Growth Des. 12, 599–614. CSD CrossRef CAS Google Scholar
Delgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). Cryst. Growth Des. 8, 3219–3232. CSD CrossRef CAS Google Scholar
Dennington, R., Keith, T. A. & Millam, J. M. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/. Google Scholar
Deshpande, M. S., Morajkar, S. M., Ahirwar, M. B., Deshmukh, M. M. & Srinivasan, B. R. (2021). J. Chem. Sci. 133, 99. CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ewen, S. L. & Steinke, J. H. G. (2008). Struct. Bonding, 129, 207–248. CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Caricato, X. L. M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN09. Version B.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/. Google Scholar
Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Gilli, G., Gilli, P., Zanotti, G., Ferraris, G. & Catti, M. (2011). In Fundamentals of Crystallography. New York: Oxford University Press. Google Scholar
Gomez-Romero, P. (2001). Adv. Mater. 13, 163–174. CAS Google Scholar
Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795. Web of Science CrossRef CAS PubMed Google Scholar
Hill, Y. & Briceño, A. (2007). Chem. Commun. pp. 3930–3932. CSD CrossRef Google Scholar
Lehn, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1319. CrossRef Google Scholar
Mali, K. S., Adisoejoso, J., Ghijsens, E., De Cat, I. & De Feyter, S. (2012). Acc. Chem. Res. 45, 1309–1320. CrossRef CAS PubMed Google Scholar
Mir, S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H. & Khosla, A. (2018). J. Electrochem. Soc. 165, B3137–B3156. CrossRef CAS Google Scholar
Mulder, A., Huskens, J. & Reinhoudt, D. N. (2004). Org. Biomol. Chem. 2, 3409. CrossRef PubMed Google Scholar
Olmstead, M. M. (2020). Acta Cryst. C76, 159–163. CSD CrossRef IUCr Journals Google Scholar
Ramírez, K., Reyes, J. A., Briceño, A. & Atencio, R. (2002). CrystEngComm, 4, 208–212. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sanchez, C., Belleville, P., Popall, M. & Nicole, L. (2011). Chem. Soc. Rev. 40, 696. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, J., Vikulina, A. S., Parakhonskiy, B. V. & Skirtach, A. G. (2023). Front. Chem. 11, 1–23. Google Scholar
Tadokoro, M., Isobe, K., Miyazaki, A., Enoki, T. & Nakasuji, K. (1996). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 278, 199–207. CSD CrossRef CAS Google Scholar
Tadokoro, M., Kanno, H., Kitajima, T., Shimada-Umemoto, H., Nakanishi, N., Isobe, K. & Nakasuji, K. (2002). Proc. Natl Acad. Sci. USA, 99, 4950–4955. Web of Science CSD CrossRef PubMed CAS Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.