crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2,4-Di­aryl­pyrroles: synthesis, characterization and crystallographic insights

crossmark logo

aDepartamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Apartado Postal 14-740, CDMX, Mexico
*Correspondence e-mail: monica.farfan@cinvestav.mx

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 8 June 2024; accepted 22 July 2024; online 8 August 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

Three 2,4-di­aryl­pyrroles were synthesized starting from 4-nitro­butano­nes and the crystal structures of two derivatives were analysed. These are 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without sub­stituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group P[\overline{1}] with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Inter­estingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with inter­stitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.

1. Introduction

Pyrrole, a five-membered aromatic heterocyclic ring, serves as a pivotal building block for numerous biologically active com­pounds (Sajesh et al., 2013[Sajesh, K. M., Jayakumar, R., Nair, S. V. & Chennazhi, K. P. (2013). Int. J. Biol. Macromol. 62, 465-471.]). While it oxidizes readily to a black colour when exposed to air, pyrrole exhibits lower basicity com­pared to aliphatic amines and other aromatic com­pounds. Pyrrole analogues are found in various natural products and co-factors, including vitamin B12, bile pigments and porphyrins (Carcel et al., 2004[Carcel, C. M., Laha, J. K., Loewe, R. S., Thamyongkit, P., Schweikart, K., Misra, V., Bocian, D. F. & Lindsey, J. S. (2004). J. Org. Chem. 69, 6739-6750.]; Osman et al., 2021[Osman, D., Cooke, A., Young, T. R., Deery, E., Robinson, N. J. & Warren, M. J. (2021). Biochim. Biophys. Acta, 1868, 118896.]; Senge et al., 2010[Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. 2010, 237-258.]). Pyrrole derivatives exhibit a wide array of pharmacological activities, including anti­cancer, anti­malarial, anti­tuberculosis, anti­viral, anti­bacterial, anti-Parkinsonian and anti-Alzheimer's effects (Domagala et al., 2015[Domagala, A., Jarosz, T. & Lapkowski, M. (2015). Eur. J. Med. Chem. 100, 176-187.]). Their diverse biological functions make pyrrole an essential target in drug discovery and development (Ganesh et al., 2024[Ganesh, B. H., Raj, A. G., Aruchamy, B., Nanjan, P., Drago, C. & Ramani, P. (2024). ChemMedChem, 19, e202300447.]).

Incorporating heterocyclic moieties into pyrrole scaffolds results in synergistic effects and increased bioactivity, leading to the development of diverse pyrrole analogues. Nitro­gen heterocycles are of considerable importance due to their ability to act as ligands in coordination chemistry; in addition, the pyrrolic N—H group can act as a hydrogen donor in supra­molecular inter­actions with different heteroatoms (Guo et al., 2016[Guo, Z., Li, P., Feng, P., Liu, K. & Wei, X. (2016). IUCrData, 1, x161617.]). We have recently explored the synthesis and characterization of 2,4-disubstituted pyrroles, which have become essential building blocks to obtain dipyrro­methanes and aza­dipyrromethenes for a wide variety of optical applications (Rogers, 1943[Rogers, M. T. (1943). J. Chem. Soc. pp. 590-596.]; Poirel et al., 2012[Poirel, A., De Nicola, A., Retailleau, P. & Ziessel, R. (2012). J. Org. Chem. 77, 7512-7525.]). One of the pyrroles was converted to the corresponding 2-nitroso-3,5-diaryl derivatives by reaction with sodium nitrite. All new com­pounds were characterized by spectroscopic techniques and X-ray diffraction analysis. To our knowledge, few X-ray crystal structures of these pyrrole derivatives (Chang et al., 2021[Chang, D., Chen, J., Liu, Y., Huang, H., Qin, A. & Deng, G. J. (2021). J. Org. Chem. 86, 110-127.]; Chen et al., 2012[Chen, F., Shen, T., Cui, Y. & Jiao, N. (2012). Org. Lett. 14, 4926-4929.]; Chethan et al., 2020[Chethan Prathap, K., Shalini, P. & Lokanath, N. (2020). J. Mol. Struct. 1199, 127033.])) have been reported. The crystal structure of a stable nitrosyl pyrrole is reported for the first-time [3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyr­role, 4], evidencing that the introduction of the NO group increases the hydrogen-bond inter­actions, leading to a trimeric structure with an inter­esting 2D arrangement. The crystal structure of the inter­mediate 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, 3a, is also reported (Fig. 1[link]).

[Figure 1]
Figure 1
Synthetic methodology for the preparation of 2,4-di­aryl­pyrroles 3a/3b and nitrosyl pyrrole 4.

2. Experimental

The chemicals used for the synthesis were of reagent grade and were used without further purification. Solvents were distilled using standard procedures. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL 500 spectrometer. Chemical shifts (δ) for 1H and 13C NMR spectra are referenced relative to the residual protonated solvent and are given in parts per million (ppm) and the coupling constants (J) are given in Hertz (Hz). IR spectra were recorded on a VARIAN 640-IR FT–IR spectrometer. High-resolution mass spectra were acquired on a Thermo Fisher Scientific Omnitrap LC–MS instrument. Thermogravimetric analysis was per­for­med with an SDT instrument Q600 in the temperature range 25–200 °C, with a heating rate of 2 °C min−1 under a nitro­gen atmos­phere.

2.1. Synthesis and crystallization

α,β-Unsaturated ketones, also known as chalcones 1a/1b and di­aryl­nitro­butano­nes 2a/2b, were synthesized following the methodology reported by O'Shea (Hall et al., 2005[Hall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571-5578.]); the spectroscopic data are in accordance with the literature [Jeong & Lee (2019[Jeong, E. & Lee, I. (2019). Bull. Korean Chem. Soc. 40, 668-673.]) for 1a, Li et al. (2019[Li, Z., Lu, H., Liu, Z. & Ma, X. (2019). J. Chem. Sci. 131, 26.]) for 2a and Hall et al. (2005[Hall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571-5578.]) for 1b and 2b]. Fig. 1[link] shows the synthetic procedure for the pyrroles starting from the corresponding chalcones. To synthesize pyrrole 3a, the corresponding di­aryl­nitro­butanone 2a was deprotonated with potassium hydroxide in methanol/tetra­hydro­furan (MeOH/THF), then hydrolysis with sulfuric acid gave the 1-keto-4-di­methyl acetal, and deprotection and con­densation with ammonium acetate in acetic acid provided the 2,4-di­aryl­pyrrole 3a in 20% yield after purification. The same procedure was used to obtain pyrrole 3b, starting from the disubstituted nitro­butanone 2b, with a 60% yield, and the spectra agree with the literature (Hall et al., 2005[Hall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571-5578.]). Nitro­syl pyrrole 4 was synthesized starting from 3b, following a de­scribed synthetic procedure using NaNO2 in the presence of HCl (Hall et al., 2005[Hall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571-5578.]). After chromatographic purification over silica gel, nitro­syl pyrrole 4 was isolated as a green solid in 83% yield.

Pyrrole 3a was crystallized from hexa­ne/ethyl acetate and nitro­syl pyrrole 4 was crystallized from hexa­ne/acetone/di­chloro­methane. Crystals of 3a are air sensitive and become green after 2 d, so the sample must be collected immediately after crystallization because the green colour is indicative of decom­position, as evidenced by NMR spectroscopy. In the case of 4, the crystals were stable and an adequate single crystal of the sample was obtained by slow evaporation of the solvent.

2.1.1. Preparation of 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole (3a)

A stirred solution of di­aryl nitro ketone 2a (2 mmol) in MeOH/THF (1:2 v/v) at room temperature was treated with KOH (10 mmol). After 1 h, the mixture was added dropwise to a solution of H2SO4 (4 ml) in MeOH (10 ml) at 0 °C, the solution was allowed to warm to room temperature and was stirred for a further 1 h. Water and ice were added, and the mixture was neutralized with aqueous 4 M NaOH and extracted with di­chloro­methane. The organic phase was dried over Na2SO4 and evaporated to provide the dimethyl acetal inter­mediate, which was carried forward to the next stage without further purification. The acetal was treated with acetic acid (5 ml) and NH4OAc (10 mmol), and the resulting mixture was heated at 100 °C for 1 h. The reaction was cooled to room temperature, ice was added and the mixture was carefully neutralized with aqueous 4 M NaOH and extracted with di­chloro­methane. The combined extracts were washed with water, dried over Na2SO4 and evaporated. The product was purified by column chromatography on silica gel (previously deactivated) using hexa­ne/ethyl acetate (9:1 v/v), affording the pyrrole as yellow crystals (20% yield; m.p. 169 °C). 1H NMR (500 MHz, DMSO-d6): δ (ppm) 11.39 (s, 1H, NH), 7.50 (d, J = 8.6 Hz, 2H, H-9), 7.33 (d, J = 4.6 Hz, 1H, H-1), 7.25 (d, J = 3.4 Hz, 1H, H-3), 7.19 (bs, 1H, H-13), 7.04 (dd, J = 4.6, 3.4 Hz, 1H, H-2), 6.89 (d, J = 8.6 Hz, 2H, H-10), 6.62 (bs, 1H, H-6), 3.74 (s, 3H, H-12). 13C NMR (125 MHz, DMSO-d6): δ (ppm) 157.20, 136.28, 128.14, 127.81, 126.97, 125.63, 124.47, 122.65, 120.80, 115.36, 114.04, 103.29, 55.03. FT–IR (cm−1): 3401 ν(N—H), 3101 ν(C—H) (thio­phene); 2832 (sp3-C—H), 1583 ν(C=C). ESI–HRMS: m/z calculated for C15H14NOS [M + H]+: 256.0796; found: 256.0782, error: 5 ppm.

2.1.2. Preparation of 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole (4)

To a stirred solution of pyrrole 3b (1 mmol) in EtOH (15 ml) was added concentrated HCl (0.2 ml), followed by the addition of aqueous NaNO2 (1.2 mmol in 2 ml of H2O). The reaction mixture was stirred for 30 min and cooled to 0 °C, and another portion of con­cen­trated HCl (1 ml) was added. The solution was stirred for 1 h. The product was extracted with dichloromethane (DCM), washed with water, and the organic layer was dried over Na2SO4 and evaporated. The solid was dissolved in a mini­mum qu­antity of EtOH, an excess of aqueous NaOAc and ice was added, and the solution was stirred for 1 h. The resulting solid was collected by filtration and purified by column chromatography on silica gel using hexa­ne/acetone (85:15 v/v), affording the pyrrole as green crystals (83% yield; m.p. 159–161 °C). 1H NMR (500 MHz, CDCl3): δ (ppm) 8.04 (d, J = 8.0 Hz, 2H, H-10), 7.81 (d, J = 7.9 Hz, 2H, H-3), 7.60 (d, J = 8.0 Hz, 2H, H-9), 7.50 (m, 3H, H-1, H-2), 7.10 (s, 1H, H-6). 13C NMR (101 MHz, CDCl3): δ (ppm) 162.54, 147.59, 140.19, 132.12, 131.46, 131.15, 130.95, 129.51, 129.00, 127.04, 124.40, 112.38. FT–IR (cm−1): 3438 ν(N—H), 1587 ν(N=O), 1454 ν(C—NO). ESI–HRMS: m/z calculated for C16H12BrN2O [M + H]+: 327.0133; found: 327.0143, error: 3 ppm.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were set geometrically and constrained to ride on their associated atoms. For nitro­syl pyrrole 4, the crystal structure data were analysed with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and treated using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker APEXII diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement.

  3a 4
Crystal data
Chemical formula C15H13NOS C16H11BrN2O + [solvent]
Mr 255.32 327.18
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 296 297
a, b, c (Å) 7.4695 (11), 5.7626 (7), 28.907 (4) 10.2533 (19), 14.689 (3), 17.003 (3)
α, β, γ (°) 90, 93.662 (5), 90 104.713 (6), 91.812 (6), 101.544 (6)
V3) 1241.7 (3) 2417.5 (8)
Z 4 6
μ (mm−1) 0.25 2.55
Crystal size (mm) 0.29 × 0.15 × 0.06 0.23 × 0.19 × 0.14
 
Data collection
Tmin, Tmax 0.702, 0.746 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52264, 2985, 1981 134671, 11584, 6774
Rint 0.075 0.082
(sin θ/λ)max−1) 0.690 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.208, 1.04 0.056, 0.175, 1.03
No. of reflections 2985 11584
No. of parameters 195 547
No. of restraints 177 0
Δρmax, Δρmin (e Å−3) 0.58, −0.60 0.59, −0.69
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

Despite the sensitivity of pyrrole 3a, it was possible to obtain an adequate crystal for X-ray diffraction analysis. The com­pound crystallized in the monoclinic space group P21/c with Z = 4. The mol­ecule is nearly planar, with dihedral angles between the pyrrole and thio­phene planes of 1.30° (N1—C1—C12—C13), and between the pyrrole and arene planes of 6.69° (C4—C3—C5—C10). The mol­ecular structure with the corresponding numbering of atoms is shown in Fig. 2[link].

[Figure 2]
Figure 2
The mol­ecular structure of pyrrole 3a, with displacement ellipsoids drawn at the 30% probability level.

Compound 3a showed disorder in the thio­phene unit which was treated over two sites. Appropriate restraints and con­straints on the displacement parameters were added to ensure that the structure approximated normal behaviour. The crystal packing shows hydrogen bonding between the thienyl moiety and the O atom of the meth­oxy group (C14—H⋯O1, with H14⋯O2 = 2.64 Å and C14—H14⋯O2 = 163°) that maintains a linear arrangement along the c axis, and C13—H⋯π inter­actions that maintain the packing along the crystallographic a axis, with the mol­ecules in an anti­parallel disposition (Fig. 3[link]). The anti­parallel arrangement of the mol­ecules generates zigzag layers, as shown in Fig. 4[link].

[Figure 3]
Figure 3
The crystal packing of pyrrole 3a, with a linear arrangement along the crystallographic c axis.
[Figure 4]
Figure 4
Zigzag layers observed in the crystal packing of pyrrole 3a.

Nitro­syl pyrrole 4 crystallized in the triclinic space group P[\overline{1}] with Z = 6. Three individual mol­ecules are found within the asymmetric unit (Fig. 5[link]). The dihedral angle between the planes of the pyrrole and phenyl rings is 11.45° (N1—C4—C5—C6), and between the pyrrole and 4-bromo­phenyl planes is 35.61° (C3—C2—C11—C16). The arrangement of nitro­syl pyrrole 4 is quite inter­esting because of the high number of inter­actions present in the crystal. The strongest hydrogen bond is N3—H3A⋯O1, with H⋯O = 2.10 Å and N—H⋯O = 171°, but there are also C—H⋯O (mean H⋯O = 2.68 Å and mean C—H⋯O = 155°) and C—H⋯N (mean H⋯N = 2.48 Å and mean C—H⋯N = 152°) hydrogen bonds that maintain the packing between three mol­ecules with the nitrosyl groups pointing towards the centre of the motif (Table 2[link]). The N and O atoms of the nitrosyl group participate as acceptors, and there are bifurcated hydrogen bonds. Additionally, bifurcated Br⋯Br halo­gen bonds, with a mean distance of 3.63 Å, maintain the motifs in a 2D planar arrangement, as shown in Fig. 6[link]. The 2D layers are held together by ππ inter­actions in a slip-stacked geometry, with a distance of 3.34 Å between the planes (Fig. 7[link]). The expanded arrangement of the 2D layers forms voids in the shape of triangles where solvent mol­ecules can be embedded (Fig. 8[link]). Refinement of 4 proceeded smoothly to an R value of 12%. However, there was disordered solvent present in the lattice. Assessment of the structure and use of the SQUEEZE routine facilitated a final convergence with an R factor of 5.6%. The crystal structure contains solvent channels that are ∼18% of the unit-cell volume (441 Å3 of the unit-cell volume of 2417 Å3). The SQUEEZE results revealed 103 electrons in the solvent-accessible volume, the possible solvent trapped in the voids may be acetone.

Table 2
Hydrogen-bond geometry (Å, °) for 4

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.10 2.957 (5) 177
N3—H3A⋯O1 0.86 2.10 2.956 (5) 171
N5—H5⋯O2 0.86 2.16 3.009 (5) 169
C6—H6⋯N6 0.93 2.53 3.294 (6) 139
C26—H26⋯N2 0.93 2.43 3.338 (7) 165
C38—H38⋯N4 0.93 2.48 3.331 (6) 153
C6—H6⋯O3 0.93 2.69 3.505 (6) 146
C26—H26⋯O1 0.93 2.43 3.543 (6) 165
C38—H38⋯O2 0.93 2.72 3.564 (6) 151
[Figure 5]
Figure 5
The mol­ecular structure of pyrrole 4, with displacement ellipsoids drawn at the 30% probability level.
[Figure 6]
Figure 6
Hydrogen and halogen bonds leading to the 2D layer in com­pound 4.
[Figure 7]
Figure 7
The mol­ecules of pyrrole 4 forming ππ inter­actions with a slip-stacked geometry and a distance between the planes of 3.34 Å.
[Figure 8]
Figure 8
2D arrangement in (a) capped sticks and (b) space-filling representations, showing the voids in the lattice of pyrrole 4.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements of compound 4 indicated no significant solvent loss until the onset of melting at 159159 °C. The TGA and DSC diagrams are available in the supporting information.

In the literature, there is a report on a cyclo­[n]pyrrole that forms a macrocycle with all the pyrrole N—H groups pointing inwards towards the centre of the cavity. The largest radius r = 4.6 Å involves the N atoms and is larger than the previous congeners (Bui et al., 2013[Bui, T. T., Escande, A., Philouze, C., Cioci, G., Ghosh, S., Saint-Aman, E., Lim, J. M., Moutet, J. C., Sessler, J. L., Kim, D. & Bucher, C. (2013). J. Porphyrins Phthalocyanines, 17, 27-35.]). Generally, the size of the macrocyclic cavity is a key parameter that defines many of the properties of expanded porphyrins. In the nitro­syl pyrrole presented here, the 2D lattice has a cavity with similar radius (r = 5 Å) (Fig. 9[link]), but, in this case, there are only C—H groups instead of N—H groups as in pyrrolic macrocycles; thus, this cavity can accommodate mol­ecules through weak inter­actions.

[Figure 9]
Figure 9
Representation of the radii that define the cavity in the arrangement of 4.

4. Summary conclusions

In summary, we have provided crystallographic structural evidence of a 2,4-di­aryl­pyrrole and a nitro­syl pyrrole. The first showed a linear arrangement along the crystallographic c axis without involving the pyrrolic N—H group in the inter­molecular inter­actions, while the nitro­syl pyrrole showed multiple hydrogen bonds involving the pyrrolic N—H group in strong hydrogen bonds. The N and O atoms of the nitrosyl group participate as acceptors and these inter­molecular inter­actions maintain the nitrosyl groups pointing inwards towards the centre of three mol­ecules. This motif is extended by Br⋯Br halogen bonds which form a 2D structure with inter­stitial voids having a radius of 5 Å.

Supporting information


Computing details top

4-(4-Methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole (3a) top
Crystal data top
C15H13NOSF(000) = 536
Mr = 255.32Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9266 reflections
a = 7.4695 (11) Åθ = 2.7–24.9°
b = 5.7626 (7) ŵ = 0.25 mm1
c = 28.907 (4) ÅT = 296 K
β = 93.662 (5)°Plate, yellow
V = 1241.7 (3) Å30.29 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2985 independent reflections
Radiation source: sealed x-ray tube1981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
φ or ω oscillation scansθmax = 29.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.702, Tmax = 0.746k = 77
52264 measured reflectionsl = 3937
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.1237P)2 + 0.3542P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.208(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.57 e Å3
2985 reflectionsΔρmin = 0.59 e Å3
195 parametersExtinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
177 restraintsExtinction coefficient: 0.113 (13)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.8488 (3)0.4150 (3)0.44624 (6)0.0627 (5)
C10.7263 (3)0.2441 (4)0.17693 (9)0.0462 (6)
C20.6970 (3)0.3508 (4)0.21820 (8)0.0470 (6)
H20.6437010.4951680.2214740.056*
C30.7615 (3)0.2045 (4)0.25504 (8)0.0437 (5)
C40.8265 (4)0.0098 (4)0.23438 (9)0.0562 (7)
H40.8764830.1184330.2498630.067*
C50.7738 (3)0.2574 (4)0.30487 (8)0.0438 (6)
C60.6995 (3)0.4580 (4)0.32227 (9)0.0497 (6)
H60.633540.5555330.3020130.06*
C70.7205 (3)0.5179 (4)0.36887 (9)0.0520 (6)
H70.6683730.6526780.3795390.062*
C80.8194 (3)0.3754 (4)0.39915 (8)0.0478 (6)
C90.8950 (3)0.1751 (4)0.38279 (9)0.0532 (6)
H90.9612250.0783860.4031560.064*
C100.8730 (3)0.1179 (4)0.33661 (9)0.0502 (6)
H100.9255330.0171980.3262450.06*
C110.7810 (5)0.6229 (5)0.46406 (11)0.0725 (8)
H11A0.8297920.7528190.4483150.109*
H11B0.8145480.6332090.4966130.109*
H11C0.6526370.6240960.4593790.109*
N10.8057 (3)0.0353 (4)0.18772 (8)0.0575 (6)
H10.821 (5)0.058 (6)0.1711 (13)0.086*
C120.699 (4)0.341 (4)0.1314 (4)0.041 (3)0.5
C130.766 (3)0.207 (3)0.0898 (5)0.0593 (15)0.5
H130.8288940.0681140.0904370.071*0.5
C140.7077 (18)0.3477 (18)0.0486 (5)0.0593 (15)0.5
H140.7309660.3058490.0185250.071*0.5
C150.618 (2)0.541 (2)0.0589 (3)0.063 (2)0.5
H150.5767460.6507970.0371390.075*0.5
S10.5896 (8)0.5614 (8)0.11682 (18)0.0691 (7)0.5
C12A0.694 (5)0.306 (4)0.1276 (4)0.048 (4)0.5
C13A0.611 (3)0.543 (3)0.1195 (6)0.0593 (15)0.5
H13A0.5747460.6475170.1414950.071*0.5
C14A0.602 (2)0.569 (3)0.0685 (4)0.0593 (15)0.5
H14A0.541850.6915360.0535360.071*0.5
C15A0.6868 (17)0.4046 (15)0.0452 (4)0.0575 (18)0.5
H15A0.6982970.4046530.0133030.069*0.5
S1A0.7714 (6)0.1927 (7)0.08301 (10)0.0504 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0738 (13)0.0640 (11)0.0503 (10)0.0101 (10)0.0038 (9)0.0027 (8)
C10.0381 (11)0.0441 (12)0.0566 (14)0.0047 (9)0.0043 (10)0.0024 (10)
C20.0434 (12)0.0429 (11)0.0547 (14)0.0011 (9)0.0035 (10)0.0010 (10)
C30.0364 (11)0.0412 (11)0.0537 (13)0.0017 (9)0.0047 (9)0.0011 (9)
C40.0593 (15)0.0466 (13)0.0625 (16)0.0107 (11)0.0029 (12)0.0004 (11)
C50.0360 (11)0.0397 (11)0.0564 (14)0.0008 (9)0.0074 (9)0.0063 (10)
C60.0485 (13)0.0474 (13)0.0533 (14)0.0122 (10)0.0036 (10)0.0054 (10)
C70.0515 (14)0.0462 (12)0.0586 (15)0.0095 (10)0.0070 (11)0.0032 (10)
C80.0442 (12)0.0492 (12)0.0504 (13)0.0007 (10)0.0069 (10)0.0053 (10)
C90.0514 (14)0.0476 (13)0.0606 (15)0.0091 (10)0.0026 (11)0.0126 (11)
C100.0508 (13)0.0411 (11)0.0591 (15)0.0092 (10)0.0075 (11)0.0037 (10)
C110.087 (2)0.0721 (18)0.0593 (17)0.0114 (16)0.0148 (15)0.0067 (14)
N10.0662 (14)0.0498 (12)0.0567 (14)0.0092 (10)0.0053 (11)0.0085 (9)
C120.037 (5)0.036 (5)0.049 (4)0.008 (5)0.001 (3)0.015 (3)
C130.063 (3)0.060 (3)0.055 (3)0.004 (2)0.000 (2)0.010 (2)
C140.063 (3)0.060 (3)0.055 (3)0.004 (2)0.000 (2)0.010 (2)
C150.075 (5)0.065 (5)0.047 (4)0.004 (4)0.009 (4)0.011 (4)
S10.0677 (17)0.0677 (13)0.0712 (13)0.0068 (9)0.0013 (11)0.0083 (10)
C12A0.046 (5)0.048 (8)0.051 (4)0.018 (5)0.005 (5)0.007 (5)
C13A0.063 (3)0.060 (3)0.055 (3)0.004 (2)0.000 (2)0.010 (2)
C14A0.063 (3)0.060 (3)0.055 (3)0.004 (2)0.000 (2)0.010 (2)
C15A0.069 (4)0.049 (5)0.054 (3)0.005 (4)0.003 (3)0.001 (3)
S1A0.0583 (9)0.0494 (9)0.0439 (11)0.0004 (7)0.0058 (8)0.0096 (8)
Geometric parameters (Å, º) top
O2—C81.384 (3)C10—H100.93
O2—C111.411 (3)C11—H11A0.96
C1—N11.368 (3)C11—H11B0.96
C1—C21.372 (3)C11—H11C0.96
C1—C121.433 (8)N1—H10.73 (4)
C1—C12A1.474 (9)C12—C131.54 (2)
C2—C31.418 (3)C12—S11.554 (18)
C2—H20.93C13—C141.482 (17)
C3—C41.374 (3)C13—H130.93
C3—C51.469 (3)C14—C151.344 (8)
C4—N11.356 (4)C14—H140.93
C4—H40.93C15—S11.705 (8)
C5—C61.390 (3)C15—H150.93
C5—C101.396 (3)C12A—C13A1.51 (2)
C6—C71.390 (4)C12A—S1A1.59 (2)
C6—H60.93C13A—C14A1.481 (16)
C7—C81.380 (3)C13A—H13A0.93
C7—H70.93C14A—C15A1.344 (8)
C8—C91.381 (3)C14A—H14A0.93
C9—C101.375 (4)C15A—S1A1.732 (7)
C9—H90.93C15A—H15A0.93
C8—O2—C11117.5 (2)O2—C11—H11B109.5
N1—C1—C2106.7 (2)H11A—C11—H11B109.5
N1—C1—C12125.9 (9)O2—C11—H11C109.5
C2—C1—C12127.1 (9)H11A—C11—H11C109.5
N1—C1—C12A118.4 (10)H11B—C11—H11C109.5
C2—C1—C12A134.9 (10)C4—N1—C1110.0 (2)
C1—C2—C3108.7 (2)C4—N1—H1124 (3)
C1—C2—H2125.6C1—N1—H1125 (3)
C3—C2—H2125.6C1—C12—C13119.3 (15)
C4—C3—C2105.7 (2)C1—C12—S1127.5 (15)
C4—C3—C5126.4 (2)C13—C12—S1112.9 (7)
C2—C3—C5127.6 (2)C14—C13—C12105.2 (14)
N1—C4—C3108.8 (2)C14—C13—H13127.4
N1—C4—H4125.6C12—C13—H13127.4
C3—C4—H4125.6C15—C14—C13113.5 (15)
C6—C5—C10116.6 (2)C15—C14—H14123.2
C6—C5—C3121.7 (2)C13—C14—H14123.2
C10—C5—C3121.5 (2)C14—C15—S1111.6 (12)
C7—C6—C5122.3 (2)C14—C15—H15124.2
C7—C6—H6118.8S1—C15—H15124.2
C5—C6—H6118.8C12—S1—C1596.5 (8)
C8—C7—C6119.3 (2)C1—C12A—C13A114.2 (16)
C8—C7—H7120.4C1—C12A—S1A129.7 (17)
C6—C7—H7120.4C13A—C12A—S1A114.4 (7)
C7—C8—C9119.6 (2)C14A—C13A—C12A103.9 (14)
C7—C8—O2124.8 (2)C14A—C13A—H13A128.1
C9—C8—O2115.6 (2)C12A—C13A—H13A128.1
C10—C9—C8120.5 (2)C15A—C14A—C13A115.8 (15)
C10—C9—H9119.8C15A—C14A—H14A122.1
C8—C9—H9119.8C13A—C14A—H14A122.1
C9—C10—C5121.7 (2)C14A—C15A—S1A110.1 (13)
C9—C10—H10119.1C14A—C15A—H15A124.9
C5—C10—H10119.1S1A—C15A—H15A124.9
O2—C11—H11A109.5C12A—S1A—C15A94.9 (7)
N1—C1—C2—C30.5 (3)C12—C1—N1—C4173.4 (18)
C12—C1—C2—C3172.9 (18)C12A—C1—N1—C4179.3 (17)
C12A—C1—C2—C3179 (2)N1—C1—C12—C131 (3)
C1—C2—C3—C40.8 (3)C2—C1—C12—C13171.1 (16)
C1—C2—C3—C5173.6 (2)N1—C1—C12—S1171.8 (17)
C2—C3—C4—N10.8 (3)C2—C1—C12—S116 (4)
C5—C3—C4—N1173.7 (2)C1—C12—C13—C14177 (2)
C4—C3—C5—C6178.5 (2)S1—C12—C13—C143 (3)
C2—C3—C5—C68.2 (4)C12—C13—C14—C150 (2)
C4—C3—C5—C106.7 (4)C13—C14—C15—S12.6 (16)
C2—C3—C5—C10166.6 (2)C1—C12—S1—C15177 (3)
C10—C5—C6—C70.6 (4)C13—C12—S1—C154 (2)
C3—C5—C6—C7175.6 (2)C14—C15—S1—C124.0 (18)
C5—C6—C7—C80.5 (4)N1—C1—C12A—C13A178.1 (18)
C6—C7—C8—C90.4 (4)C2—C1—C12A—C13A1 (4)
C6—C7—C8—O2179.5 (2)N1—C1—C12A—S1A14 (4)
C11—O2—C8—C73.7 (4)C2—C1—C12A—S1A165.0 (15)
C11—O2—C8—C9177.2 (2)C1—C12A—C13A—C14A177 (2)
C7—C8—C9—C100.3 (4)S1A—C12A—C13A—C14A10 (3)
O2—C8—C9—C10179.5 (2)C12A—C13A—C14A—C15A9 (3)
C8—C9—C10—C50.4 (4)C13A—C14A—C15A—S1A4.2 (18)
C6—C5—C10—C90.5 (4)C1—C12A—S1A—C15A171 (3)
C3—C5—C10—C9175.5 (2)C13A—C12A—S1A—C15A8 (3)
C3—C4—N1—C10.5 (3)C14A—C15A—S1A—C12A2.1 (17)
C2—C1—N1—C40.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···S1Abi0.9333.821 (5)148
C14a—H14a···O2ii0.932.643.544 (14)163
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
3-(4-Bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole (4) top
Crystal data top
C16H11BrN2O+[solvent]Z = 6
Mr = 327.18F(000) = 984
Triclinic, P1Dx = 1.348 Mg m3
a = 10.2533 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.689 (3) ÅCell parameters from 9924 reflections
c = 17.003 (3) Åθ = 2.2–25.0°
α = 104.713 (6)°µ = 2.55 mm1
β = 91.812 (6)°T = 297 K
γ = 101.544 (6)°Prism, green
V = 2417.5 (8) Å30.23 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII
diffractometer
6774 reflections with I > 2σ(I)
Radiation source: sealed x-ray tubeRint = 0.082
φ or ω oscillation scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1313
Tmin = 0.666, Tmax = 0.746k = 1919
134671 measured reflectionsl = 2222
11584 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.083P)2 + 2.0664P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11584 reflectionsΔρmax = 0.59 e Å3
547 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray crystallographic data was obtained using a Bruker APEXII diffractometer with a CCD area detector (Mo Kα = 0.71073 Å, monochromator: graphite). Indexing, data integration and reduction were carried out using APEX5. All reflection data set were corrected for polarization effects. The structures were solved in the WinGX (Farrugia, 2012) suite of programs by intrinsic phasing using SHELXT (Sheldrick, 2015b) and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined using anisotropic displacement parameters. H atoms were set geometrically and constrained to ride on their associated atoms. Mercury (Macrae et al., 2020) and ORTEP-3 (Farrugia, 2012) programs were used to prepare artwork representations. For the nitrosylpyrrole 4, crystal structure data was analysed with PLATON (Spek, 2020) and treated using the SQUEEZE routine (Spek, 2015). Table 1 summarizes crystallographic data and structure refinement details. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under numbers 2361143 (3a) and 2361144 (4). Copies can be obtained on request, free of charge via www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336-033 or email: deposit@ccdc.cam.ac.uk).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.08774 (5)0.83243 (4)0.07627 (3)0.07290 (17)
O10.5893 (3)0.5229 (3)0.3902 (2)0.0746 (9)
N10.7207 (3)0.3801 (2)0.3834 (2)0.0524 (8)
H10.6759420.3702530.3372640.070 (14)*
O20.4417 (3)0.5365 (2)0.23024 (19)0.0694 (8)
N20.6565 (4)0.5269 (3)0.4560 (2)0.0599 (9)
O30.5655 (4)0.3533 (3)0.22658 (19)0.0781 (10)
N30.4408 (3)0.6705 (2)0.3723 (2)0.0535 (8)
H3A0.4914600.6329480.3801180.055 (12)*
N40.3655 (4)0.5943 (3)0.2278 (2)0.0586 (9)
C40.8035 (4)0.3256 (3)0.3998 (2)0.0509 (9)
N50.4513 (3)0.3696 (3)0.0866 (2)0.0551 (8)
H50.4367730.4145500.1267330.050 (12)*
C50.8339 (4)0.2431 (3)0.3414 (2)0.0517 (10)
N60.5761 (4)0.2899 (3)0.1613 (2)0.0615 (9)
C60.7506 (5)0.1935 (3)0.2713 (3)0.0657 (12)
H60.6726500.2132030.2606100.093 (18)*
C70.7825 (6)0.1156 (4)0.2174 (3)0.0752 (14)
H70.7260920.0827340.1705580.090*
C80.8970 (6)0.0867 (4)0.2326 (3)0.0835 (16)
H80.9166990.0328530.1967040.100*
C100.9503 (5)0.2133 (4)0.3546 (3)0.0790 (15)
H101.0080400.2457480.4009440.095*
C90.9815 (6)0.1348 (4)0.2987 (4)0.0933 (19)
H91.0608230.1157070.3072500.112*
C20.8050 (4)0.4434 (3)0.5154 (2)0.0503 (9)
C30.8561 (4)0.3645 (3)0.4816 (2)0.0537 (10)
H30.9162150.3404400.5084330.064*
Br30.78367 (6)0.10641 (4)0.10174 (3)0.07482 (18)
Br10.93593 (6)0.68790 (4)0.87090 (3)0.07679 (18)
C10.7187 (4)0.4539 (3)0.4515 (2)0.0514 (9)
C150.7772 (4)0.6114 (3)0.7204 (3)0.0594 (11)
H150.7172920.6463070.7464920.071*
C110.8340 (4)0.5039 (3)0.5999 (2)0.0488 (9)
C120.9543 (4)0.5076 (3)0.6431 (3)0.0570 (10)
H121.0146290.4727240.6174350.068*
C130.9854 (4)0.5626 (3)0.7240 (3)0.0607 (11)
H131.0656140.5647010.7522220.073*
C140.8958 (4)0.6132 (3)0.7608 (2)0.0549 (10)
C190.3331 (4)0.7910 (3)0.3921 (3)0.0597 (11)
H190.3041330.8463550.4177100.072*
C200.4206 (4)0.7480 (3)0.4276 (2)0.0533 (10)
C210.4867 (4)0.7827 (3)0.5110 (3)0.0559 (10)
C220.4693 (6)0.8697 (4)0.5629 (3)0.0826 (16)
H220.4120800.9032770.5447230.099*
C230.5339 (6)0.9066 (4)0.6393 (4)0.0945 (19)
H230.5221900.9650850.6719260.113*
C240.6159 (6)0.8569 (5)0.6675 (3)0.0867 (17)
H240.6589500.8811830.7197960.104*
C250.6346 (6)0.7728 (4)0.6197 (3)0.0921 (18)
H250.6913350.7398230.6391480.111*
C260.5697 (5)0.7348 (4)0.5414 (3)0.0771 (15)
H260.5827460.6763190.5094230.15 (3)*
C270.2070 (4)0.7571 (3)0.2526 (3)0.0541 (10)
C280.2025 (5)0.8520 (3)0.2565 (3)0.0725 (14)
H280.2590260.9012270.2957220.087*
C290.1170 (5)0.8762 (4)0.2042 (3)0.0729 (14)
H290.1160500.9402140.2074450.087*
C300.0336 (4)0.8020 (3)0.1474 (3)0.0576 (11)
C310.0339 (5)0.7077 (3)0.1418 (3)0.0670 (12)
H310.0241960.6588260.1032720.080*
C320.1211 (5)0.6856 (3)0.1940 (3)0.0658 (12)
H320.1220960.6213540.1896600.079*
C330.5197 (4)0.2997 (3)0.0929 (3)0.0528 (10)
C340.5222 (4)0.2399 (3)0.0133 (3)0.0522 (10)
C350.4521 (4)0.2754 (3)0.0387 (3)0.0554 (10)
H350.4351540.2498950.0948790.067*
C360.4108 (4)0.3565 (3)0.0079 (2)0.0522 (10)
C370.3393 (4)0.4196 (3)0.0220 (3)0.0552 (10)
C380.2857 (5)0.4895 (4)0.0295 (3)0.0737 (14)
H380.2931820.4974640.0855690.077 (15)*
C390.2206 (6)0.5477 (4)0.0036 (3)0.0815 (15)
H390.1864300.5952780.0313200.098*
C400.2056 (5)0.5370 (4)0.0848 (3)0.0744 (14)
H400.1578680.5746280.1053660.089*
C410.2612 (5)0.4703 (4)0.1367 (3)0.0763 (14)
H410.2543150.4644470.1924920.092*
C420.3272 (5)0.4121 (3)0.1060 (3)0.0664 (12)
H420.3644220.3669690.1416860.080*
C430.5850 (4)0.1570 (3)0.0115 (3)0.0534 (10)
C440.7070 (4)0.1543 (3)0.0248 (3)0.0586 (11)
H440.7496890.2058160.0678680.070*
C450.7657 (4)0.0771 (3)0.0016 (3)0.0623 (11)
H450.8473930.0762830.0233370.075*
C460.7029 (4)0.0009 (3)0.0651 (3)0.0547 (10)
C470.5820 (5)0.0005 (3)0.1032 (3)0.0633 (12)
H470.5402500.0514040.1462050.076*
C480.5247 (4)0.0782 (3)0.0763 (3)0.0593 (11)
H480.4433540.0785660.1018620.071*
C160.7475 (4)0.5568 (3)0.6398 (3)0.0573 (11)
H160.6673490.5559230.6122010.069*
C170.3660 (4)0.6610 (3)0.3003 (2)0.0519 (10)
C180.2973 (4)0.7374 (3)0.3129 (3)0.0553 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0766 (3)0.0829 (3)0.0596 (3)0.0334 (3)0.0150 (2)0.0098 (2)
O10.082 (2)0.082 (2)0.0625 (19)0.0403 (18)0.0196 (17)0.0095 (17)
N10.0536 (19)0.055 (2)0.0489 (19)0.0203 (16)0.0061 (15)0.0083 (15)
O20.083 (2)0.071 (2)0.0567 (18)0.0339 (18)0.0022 (16)0.0082 (15)
N20.064 (2)0.064 (2)0.053 (2)0.0251 (18)0.0076 (17)0.0105 (17)
O30.104 (3)0.085 (2)0.0485 (18)0.047 (2)0.0134 (17)0.0066 (17)
N30.060 (2)0.053 (2)0.0471 (19)0.0200 (17)0.0017 (16)0.0078 (16)
N40.067 (2)0.058 (2)0.051 (2)0.0208 (18)0.0032 (17)0.0089 (17)
C40.049 (2)0.054 (2)0.049 (2)0.0153 (18)0.0041 (18)0.0110 (18)
N50.062 (2)0.055 (2)0.0487 (19)0.0197 (17)0.0069 (16)0.0090 (16)
C50.060 (2)0.049 (2)0.047 (2)0.0187 (19)0.0019 (18)0.0111 (18)
N60.075 (2)0.061 (2)0.050 (2)0.0248 (19)0.0061 (18)0.0112 (18)
C60.083 (3)0.061 (3)0.054 (3)0.028 (2)0.012 (2)0.008 (2)
C70.097 (4)0.062 (3)0.060 (3)0.025 (3)0.014 (3)0.001 (2)
C80.096 (4)0.069 (3)0.079 (4)0.035 (3)0.003 (3)0.004 (3)
C100.072 (3)0.080 (3)0.077 (3)0.034 (3)0.015 (3)0.005 (3)
C90.086 (4)0.091 (4)0.091 (4)0.051 (3)0.018 (3)0.018 (3)
C20.052 (2)0.053 (2)0.045 (2)0.0133 (18)0.0031 (17)0.0102 (18)
C30.055 (2)0.062 (3)0.047 (2)0.021 (2)0.0056 (18)0.0142 (19)
Br30.0921 (4)0.0769 (3)0.0643 (3)0.0490 (3)0.0009 (2)0.0114 (2)
Br10.0966 (4)0.0837 (4)0.0482 (3)0.0407 (3)0.0121 (2)0.0000 (2)
C10.051 (2)0.054 (2)0.050 (2)0.0181 (19)0.0022 (18)0.0112 (18)
C150.062 (3)0.066 (3)0.055 (2)0.028 (2)0.004 (2)0.013 (2)
C110.053 (2)0.049 (2)0.046 (2)0.0148 (18)0.0004 (17)0.0118 (17)
C120.056 (2)0.066 (3)0.050 (2)0.026 (2)0.0034 (19)0.008 (2)
C130.057 (2)0.074 (3)0.052 (2)0.025 (2)0.008 (2)0.012 (2)
C140.068 (3)0.055 (2)0.043 (2)0.019 (2)0.0020 (19)0.0115 (18)
C190.065 (3)0.053 (2)0.060 (3)0.025 (2)0.002 (2)0.006 (2)
C200.056 (2)0.060 (3)0.043 (2)0.013 (2)0.0026 (18)0.0126 (19)
C210.064 (3)0.057 (2)0.047 (2)0.020 (2)0.0004 (19)0.0097 (19)
C220.090 (4)0.090 (4)0.062 (3)0.046 (3)0.017 (3)0.008 (3)
C230.100 (4)0.092 (4)0.076 (4)0.049 (3)0.016 (3)0.024 (3)
C240.097 (4)0.110 (4)0.047 (3)0.033 (3)0.019 (3)0.005 (3)
C250.119 (5)0.089 (4)0.070 (3)0.042 (4)0.032 (3)0.014 (3)
C260.100 (4)0.073 (3)0.058 (3)0.036 (3)0.017 (3)0.007 (2)
C270.056 (2)0.056 (2)0.051 (2)0.018 (2)0.0032 (19)0.0110 (19)
C280.080 (3)0.058 (3)0.070 (3)0.013 (2)0.028 (2)0.006 (2)
C290.086 (3)0.058 (3)0.073 (3)0.022 (2)0.021 (3)0.013 (2)
C300.058 (2)0.070 (3)0.046 (2)0.022 (2)0.0002 (19)0.012 (2)
C310.066 (3)0.061 (3)0.065 (3)0.017 (2)0.013 (2)0.001 (2)
C320.074 (3)0.052 (2)0.067 (3)0.020 (2)0.013 (2)0.003 (2)
C330.057 (2)0.052 (2)0.051 (2)0.0180 (19)0.0050 (19)0.0132 (18)
C340.052 (2)0.049 (2)0.050 (2)0.0103 (18)0.0075 (18)0.0061 (18)
C350.062 (3)0.052 (2)0.051 (2)0.019 (2)0.0100 (19)0.0072 (19)
C360.056 (2)0.049 (2)0.050 (2)0.0113 (18)0.0101 (18)0.0116 (18)
C370.056 (2)0.050 (2)0.057 (2)0.0151 (19)0.0117 (19)0.0085 (19)
C380.089 (3)0.074 (3)0.058 (3)0.037 (3)0.014 (2)0.004 (2)
C390.104 (4)0.077 (3)0.071 (3)0.052 (3)0.006 (3)0.010 (3)
C400.080 (3)0.071 (3)0.077 (3)0.029 (3)0.019 (3)0.021 (3)
C410.092 (4)0.080 (3)0.064 (3)0.030 (3)0.012 (3)0.025 (3)
C420.079 (3)0.066 (3)0.058 (3)0.030 (2)0.002 (2)0.012 (2)
C430.056 (2)0.050 (2)0.055 (2)0.0176 (19)0.0022 (19)0.0109 (19)
C440.056 (2)0.052 (2)0.062 (3)0.0136 (19)0.009 (2)0.005 (2)
C450.053 (2)0.077 (3)0.061 (3)0.027 (2)0.005 (2)0.015 (2)
C460.064 (3)0.055 (2)0.050 (2)0.027 (2)0.0024 (19)0.0118 (19)
C470.077 (3)0.058 (3)0.051 (2)0.027 (2)0.010 (2)0.001 (2)
C480.064 (3)0.060 (3)0.051 (2)0.023 (2)0.016 (2)0.005 (2)
C160.055 (2)0.064 (3)0.052 (2)0.020 (2)0.0079 (19)0.010 (2)
C170.055 (2)0.056 (2)0.044 (2)0.0142 (19)0.0029 (18)0.0118 (18)
C180.060 (2)0.051 (2)0.053 (2)0.0153 (19)0.0015 (19)0.0089 (19)
Geometric parameters (Å, º) top
Br2—C301.901 (4)C19—C201.397 (6)
O1—N21.277 (4)C20—C211.471 (6)
N1—C41.346 (5)C21—C261.372 (6)
N1—C11.374 (5)C21—C221.404 (6)
O2—N41.270 (5)C22—C231.365 (7)
N2—C11.341 (5)C23—C241.366 (8)
O3—N61.279 (5)C24—C251.348 (8)
N3—C201.337 (5)C25—C261.395 (7)
N3—C171.385 (5)C27—C321.384 (6)
N4—C171.365 (5)C27—C281.389 (6)
C4—C31.405 (5)C27—C181.480 (6)
C4—C51.453 (6)C28—C291.386 (6)
N5—C361.342 (5)C29—C301.376 (6)
N5—C331.378 (5)C30—C311.365 (6)
C5—C101.381 (6)C31—C321.380 (6)
C5—C61.388 (6)C33—C341.417 (6)
N6—C331.335 (5)C34—C351.383 (6)
C6—C71.376 (7)C34—C431.465 (6)
C7—C81.365 (7)C35—C361.403 (6)
C8—C91.343 (7)C36—C371.464 (6)
C10—C91.396 (7)C37—C381.386 (6)
C2—C31.368 (6)C37—C421.404 (6)
C2—C11.437 (5)C38—C391.393 (7)
C2—C111.470 (5)C39—C401.349 (7)
Br3—C461.901 (4)C40—C411.370 (7)
Br1—C141.898 (4)C41—C421.377 (6)
C15—C141.371 (6)C43—C441.391 (6)
C15—C161.389 (6)C43—C481.399 (6)
C11—C161.378 (6)C44—C451.372 (6)
C11—C121.400 (6)C45—C461.373 (6)
C12—C131.398 (6)C46—C471.379 (6)
C13—C141.365 (6)C47—C481.370 (6)
C19—C181.372 (6)C17—C181.415 (6)
C4—N1—C1109.6 (3)C32—C27—C28117.3 (4)
O1—N2—C1114.7 (4)C32—C27—C18123.6 (4)
C20—N3—C17108.3 (3)C28—C27—C18119.0 (4)
O2—N4—C17114.0 (3)C29—C28—C27122.5 (4)
N1—C4—C3107.8 (4)C30—C29—C28117.5 (4)
N1—C4—C5125.0 (4)C31—C30—C29122.0 (4)
C3—C4—C5127.2 (4)C31—C30—Br2119.3 (3)
C36—N5—C33109.1 (4)C29—C30—Br2118.7 (3)
C10—C5—C6118.3 (4)C30—C31—C32119.3 (4)
C10—C5—C4119.5 (4)C31—C32—C27121.3 (4)
C6—C5—C4122.1 (4)N6—C33—N5126.6 (4)
O3—N6—C33115.4 (4)N6—C33—C34125.4 (4)
C7—C6—C5120.5 (4)N5—C33—C34108.0 (3)
C8—C7—C6120.0 (5)C35—C34—C33106.1 (4)
C9—C8—C7120.9 (5)C35—C34—C43125.5 (4)
C5—C10—C9120.2 (5)C33—C34—C43128.4 (4)
C8—C9—C10120.0 (5)C34—C35—C36108.3 (4)
C3—C2—C1105.8 (3)N5—C36—C35108.4 (4)
C3—C2—C11126.3 (4)N5—C36—C37124.3 (4)
C1—C2—C11128.0 (4)C35—C36—C37127.3 (4)
C2—C3—C4109.3 (3)C38—C37—C42117.7 (4)
N2—C1—N1126.4 (4)C38—C37—C36122.8 (4)
N2—C1—C2125.8 (4)C42—C37—C36119.4 (4)
N1—C1—C2107.5 (3)C37—C38—C39119.4 (5)
C14—C15—C16119.2 (4)C40—C39—C38122.0 (5)
C16—C11—C12117.6 (4)C39—C40—C41119.7 (5)
C16—C11—C2123.3 (4)C40—C41—C42119.9 (5)
C12—C11—C2119.1 (4)C41—C42—C37121.3 (5)
C13—C12—C11121.2 (4)C44—C43—C48117.5 (4)
C14—C13—C12118.7 (4)C44—C43—C34122.5 (4)
C13—C14—C15121.6 (4)C48—C43—C34120.0 (4)
C13—C14—Br1119.3 (3)C45—C44—C43121.2 (4)
C15—C14—Br1119.0 (3)C44—C45—C46119.5 (4)
C18—C19—C20108.3 (4)C45—C46—C47121.4 (4)
N3—C20—C19109.2 (4)C45—C46—Br3119.7 (3)
N3—C20—C21123.9 (4)C47—C46—Br3119.0 (3)
C19—C20—C21126.9 (4)C48—C47—C46118.5 (4)
C26—C21—C22116.8 (4)C47—C48—C43122.0 (4)
C26—C21—C20122.9 (4)C11—C16—C15121.6 (4)
C22—C21—C20120.3 (4)N4—C17—N3126.3 (4)
C23—C22—C21122.0 (5)N4—C17—C18125.4 (4)
C22—C23—C24119.6 (5)N3—C17—C18108.1 (3)
C25—C24—C23120.2 (5)C19—C18—C17106.2 (4)
C24—C25—C26120.7 (5)C19—C18—C27126.6 (4)
C21—C26—C25120.7 (5)C17—C18—C27127.2 (4)
C1—N1—C4—C30.6 (5)C30—C31—C32—C270.9 (8)
C1—N1—C4—C5177.8 (4)C28—C27—C32—C310.4 (7)
N1—C4—C5—C10157.7 (5)C18—C27—C32—C31176.6 (4)
C3—C4—C5—C1020.4 (7)O3—N6—C33—N50.9 (7)
N1—C4—C5—C621.0 (7)O3—N6—C33—C34178.1 (4)
C3—C4—C5—C6160.8 (5)C36—N5—C33—N6179.3 (4)
C10—C5—C6—C71.3 (7)C36—N5—C33—C340.2 (5)
C4—C5—C6—C7179.9 (5)N6—C33—C34—C35179.9 (4)
C5—C6—C7—C80.2 (8)N5—C33—C34—C351.1 (5)
C6—C7—C8—C91.8 (9)N6—C33—C34—C430.2 (7)
C6—C5—C10—C90.6 (8)N5—C33—C34—C43178.9 (4)
C4—C5—C10—C9179.4 (5)C33—C34—C35—C361.5 (5)
C7—C8—C9—C102.5 (10)C43—C34—C35—C36178.4 (4)
C5—C10—C9—C81.3 (10)C33—N5—C36—C350.7 (5)
C1—C2—C3—C40.7 (5)C33—N5—C36—C37177.6 (4)
C11—C2—C3—C4179.4 (4)C34—C35—C36—N51.4 (5)
N1—C4—C3—C20.1 (5)C34—C35—C36—C37176.9 (4)
C5—C4—C3—C2178.5 (4)N5—C36—C37—C3811.7 (7)
O1—N2—C1—N13.0 (6)C35—C36—C37—C38170.3 (5)
O1—N2—C1—C2177.2 (4)N5—C36—C37—C42166.3 (4)
C4—N1—C1—N2174.1 (4)C35—C36—C37—C4211.8 (7)
C4—N1—C1—C21.0 (5)C42—C37—C38—C391.2 (7)
C3—C2—C1—N2174.1 (4)C36—C37—C38—C39179.1 (5)
C11—C2—C1—N25.9 (7)C37—C38—C39—C401.3 (9)
C3—C2—C1—N11.0 (5)C38—C39—C40—C413.2 (9)
C11—C2—C1—N1179.0 (4)C39—C40—C41—C422.6 (9)
C3—C2—C11—C16154.4 (4)C40—C41—C42—C370.2 (8)
C1—C2—C11—C1625.7 (7)C38—C37—C42—C411.7 (7)
C3—C2—C11—C1224.7 (7)C36—C37—C42—C41179.8 (5)
C1—C2—C11—C12155.3 (4)C35—C34—C43—C44142.3 (5)
C16—C11—C12—C130.3 (7)C33—C34—C43—C4437.6 (7)
C2—C11—C12—C13178.8 (4)C35—C34—C43—C4835.1 (7)
C11—C12—C13—C140.1 (7)C33—C34—C43—C48145.0 (5)
C12—C13—C14—C150.2 (7)C48—C43—C44—C450.3 (7)
C12—C13—C14—Br1179.7 (3)C34—C43—C44—C45177.7 (4)
C16—C15—C14—C130.1 (7)C43—C44—C45—C460.0 (7)
C16—C15—C14—Br1180.0 (3)C44—C45—C46—C470.2 (7)
C17—N3—C20—C190.6 (5)C44—C45—C46—Br3179.9 (4)
C17—N3—C20—C21178.1 (4)C45—C46—C47—C480.1 (7)
C18—C19—C20—N30.8 (5)Br3—C46—C47—C48180.0 (4)
C18—C19—C20—C21178.2 (4)C46—C47—C48—C430.3 (7)
N3—C20—C21—C264.1 (7)C44—C43—C48—C470.5 (7)
C19—C20—C21—C26178.8 (5)C34—C43—C48—C47177.9 (4)
N3—C20—C21—C22174.2 (5)C12—C11—C16—C150.6 (7)
C19—C20—C21—C222.9 (7)C2—C11—C16—C15178.5 (4)
C26—C21—C22—C231.5 (9)C14—C15—C16—C110.5 (7)
C20—C21—C22—C23176.9 (6)O2—N4—C17—N30.7 (6)
C21—C22—C23—C241.5 (10)O2—N4—C17—C18175.6 (4)
C22—C23—C24—C251.1 (11)C20—N3—C17—N4175.8 (4)
C23—C24—C25—C260.7 (10)C20—N3—C17—C180.2 (5)
C22—C21—C26—C251.1 (8)C20—C19—C18—C170.6 (5)
C20—C21—C26—C25177.2 (5)C20—C19—C18—C27179.5 (4)
C24—C25—C26—C210.8 (10)N4—C17—C18—C19175.4 (4)
C32—C27—C28—C290.4 (8)N3—C17—C18—C190.3 (5)
C18—C27—C28—C29177.6 (5)N4—C17—C18—C273.5 (7)
C27—C28—C29—C300.6 (8)N3—C17—C18—C27179.2 (4)
C28—C29—C30—C310.1 (8)C32—C27—C18—C19145.2 (5)
C28—C29—C30—Br2178.6 (4)C28—C27—C18—C1931.8 (7)
C29—C30—C31—C320.7 (8)C32—C27—C18—C1736.1 (7)
Br2—C30—C31—C32179.4 (4)C28—C27—C18—C17146.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.102.957 (5)177
N3—H3A···O10.862.102.956 (5)171
N5—H5···O20.862.163.009 (5)169
C6—H6···N60.932.533.294 (6)139
C26—H26···N20.932.433.338 (7)165
C38—H38···N40.932.483.331 (6)153
C6—H6···O30.932.693.505 (6)146
C26—H26···O10.932.433.543 (6)165
C38—H38···O20.932.723.564 (6)151
 

Acknowledgements

The authors thanks Marco Leyva for collecting the crystals and crystallographic support. MFP acknowledges CONAH­CYT for a postdoctoral fellowship.

Funding information

The following funding is acknowledged: Consejo Nacional de Ciencia y Tecnología (scholarship No. CVU 580380 to Mónica Farfán-Paredes).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBui, T. T., Escande, A., Philouze, C., Cioci, G., Ghosh, S., Saint-Aman, E., Lim, J. M., Moutet, J. C., Sessler, J. L., Kim, D. & Bucher, C. (2013). J. Porphyrins Phthalocyanines, 17, 27–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarcel, C. M., Laha, J. K., Loewe, R. S., Thamyongkit, P., Schweikart, K., Misra, V., Bocian, D. F. & Lindsey, J. S. (2004). J. Org. Chem. 69, 6739–6750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChang, D., Chen, J., Liu, Y., Huang, H., Qin, A. & Deng, G. J. (2021). J. Org. Chem. 86, 110–127.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, F., Shen, T., Cui, Y. & Jiao, N. (2012). Org. Lett. 14, 4926–4929.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChethan Prathap, K., Shalini, P. & Lokanath, N. (2020). J. Mol. Struct. 1199, 127033.  Web of Science CSD CrossRef Google Scholar
First citationDomagala, A., Jarosz, T. & Lapkowski, M. (2015). Eur. J. Med. Chem. 100, 176–187.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanesh, B. H., Raj, A. G., Aruchamy, B., Nanjan, P., Drago, C. & Ramani, P. (2024). ChemMedChem, 19, e202300447.  Web of Science CrossRef PubMed Google Scholar
First citationGuo, Z., Li, P., Feng, P., Liu, K. & Wei, X. (2016). IUCrData, 1, x161617.  Google Scholar
First citationHall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571–5578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJeong, E. & Lee, I. (2019). Bull. Korean Chem. Soc. 40, 668–673.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Lu, H., Liu, Z. & Ma, X. (2019). J. Chem. Sci. 131, 26.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOsman, D., Cooke, A., Young, T. R., Deery, E., Robinson, N. J. & Warren, M. J. (2021). Biochim. Biophys. Acta, 1868, 118896.  Web of Science CrossRef Google Scholar
First citationPoirel, A., De Nicola, A., Retailleau, P. & Ziessel, R. (2012). J. Org. Chem. 77, 7512–7525.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRogers, M. T. (1943). J. Chem. Soc. pp. 590–596.  CrossRef Google Scholar
First citationSajesh, K. M., Jayakumar, R., Nair, S. V. & Chennazhi, K. P. (2013). Int. J. Biol. Macromol. 62, 465–471.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSenge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. 2010, 237–258.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds