crystallography in latin america
2,4-Diarylpyrroles: synthesis, characterization and crystallographic insights
aDepartamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Apartado Postal 14-740, CDMX, Mexico
*Correspondence e-mail: monica.farfan@cinvestav.mx
This article is part of the collection Crystallography in Latin America: a vibrant community.
Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic P with Z = 6. Thus, herein we report the first of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.
Keywords: pyrrole; hydrogen bond; halogen bond; heterocycle; crystal structure; interstitial void.
1. Introduction
Pyrrole, a five-membered aromatic heterocyclic ring, serves as a pivotal building block for numerous biologically active compounds (Sajesh et al., 2013). While it oxidizes readily to a black colour when exposed to air, pyrrole exhibits lower basicity compared to aliphatic and other aromatic compounds. Pyrrole analogues are found in various natural products and co-factors, including vitamin B12, bile pigments and (Carcel et al., 2004; Osman et al., 2021; Senge et al., 2010). Pyrrole derivatives exhibit a wide array of pharmacological activities, including anticancer, antimalarial, antituberculosis, antiviral, antibacterial, anti-Parkinsonian and anti-Alzheimer's effects (Domagala et al., 2015). Their diverse biological functions make pyrrole an essential target in drug discovery and development (Ganesh et al., 2024).
Incorporating heterocyclic moieties into pyrrole scaffolds results in synergistic effects and increased bioactivity, leading to the development of diverse pyrrole analogues. Nitrogen heterocycles are of considerable importance due to their ability to act as ligands in coordination chemistry; in addition, the pyrrolic N—H group can act as a hydrogen donor in supramolecular interactions with different heteroatoms (Guo et al., 2016). We have recently explored the synthesis and characterization of 2,4-disubstituted pyrroles, which have become essential building blocks to obtain dipyrromethanes and azadipyrromethenes for a wide variety of optical applications (Rogers, 1943; Poirel et al., 2012). One of the pyrroles was converted to the corresponding 2-nitroso-3,5-diaryl derivatives by reaction with sodium nitrite. All new compounds were characterized by spectroscopic techniques and X-ray To our knowledge, few X-ray crystal structures of these pyrrole derivatives (Chang et al., 2021; Chen et al., 2012; Chethan et al., 2020)) have been reported. The of a stable nitrosyl pyrrole is reported for the first-time [3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, 4], evidencing that the introduction of the NO group increases the hydrogen-bond interactions, leading to a trimeric structure with an interesting 2D arrangement. The of the intermediate 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, 3a, is also reported (Fig. 1).
2. Experimental
The chemicals used for the synthesis were of reagent grade and were used without further purification. Solvents were distilled using standard procedures. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL 500 spectrometer. Chemical shifts (δ) for 1H and 13C NMR spectra are referenced relative to the residual protonated solvent and are given in parts per million (ppm) and the coupling constants (J) are given in Hertz (Hz). IR spectra were recorded on a VARIAN 640-IR FT–IR spectrometer. High-resolution mass spectra were acquired on a Thermo Fisher Scientific Omnitrap LC–MS instrument. Thermogravimetric analysis was performed with an SDT instrument Q600 in the temperature range 25–200 °C, with a heating rate of 2 °C min−1 under a nitrogen atmosphere.
2.1. Synthesis and crystallization
α,β-Unsaturated also known as 1a/1b and diarylnitrobutanones 2a/2b, were synthesized following the methodology reported by O'Shea (Hall et al., 2005); the spectroscopic data are in accordance with the literature [Jeong & Lee (2019) for 1a, Li et al. (2019) for 2a and Hall et al. (2005) for 1b and 2b]. Fig. 1 shows the synthetic procedure for the pyrroles starting from the corresponding To synthesize pyrrole 3a, the corresponding diarylnitrobutanone 2a was deprotonated with potassium hydroxide in methanol/tetrahydrofuran (MeOH/THF), then hydrolysis with sulfuric acid gave the 1-keto-4-dimethyl acetal, and deprotection and condensation with ammonium acetate in acetic acid provided the 2,4-diarylpyrrole 3a in 20% yield after purification. The same procedure was used to obtain pyrrole 3b, starting from the disubstituted nitrobutanone 2b, with a 60% yield, and the spectra agree with the literature (Hall et al., 2005). Nitrosyl pyrrole 4 was synthesized starting from 3b, following a described synthetic procedure using NaNO2 in the presence of HCl (Hall et al., 2005). After chromatographic purification over silica gel, nitrosyl pyrrole 4 was isolated as a green solid in 83% yield.
Pyrrole 3a was crystallized from hexane/ethyl acetate and nitrosyl pyrrole 4 was crystallized from hexane/acetone/dichloromethane. Crystals of 3a are air sensitive and become green after 2 d, so the sample must be collected immediately after crystallization because the green colour is indicative of decomposition, as evidenced by NMR spectroscopy. In the case of 4, the crystals were stable and an adequate single crystal of the sample was obtained by slow evaporation of the solvent.
2.1.1. Preparation of 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole (3a)
A stirred solution of diaryl nitro ketone 2a (2 mmol) in MeOH/THF (1:2 v/v) at room temperature was treated with KOH (10 mmol). After 1 h, the mixture was added dropwise to a solution of H2SO4 (4 ml) in MeOH (10 ml) at 0 °C, the solution was allowed to warm to room temperature and was stirred for a further 1 h. Water and ice were added, and the mixture was neutralized with aqueous 4 M NaOH and extracted with dichloromethane. The organic phase was dried over Na2SO4 and evaporated to provide the dimethyl acetal intermediate, which was carried forward to the next stage without further purification. The acetal was treated with acetic acid (5 ml) and NH4OAc (10 mmol), and the resulting mixture was heated at 100 °C for 1 h. The reaction was cooled to room temperature, ice was added and the mixture was carefully neutralized with aqueous 4 M NaOH and extracted with dichloromethane. The combined extracts were washed with water, dried over Na2SO4 and evaporated. The product was purified by on silica gel (previously deactivated) using hexane/ethyl acetate (9:1 v/v), affording the pyrrole as yellow crystals (20% yield; m.p. 169 °C). 1H NMR (500 MHz, DMSO-d6): δ (ppm) 11.39 (s, 1H, NH), 7.50 (d, J = 8.6 Hz, 2H, H-9), 7.33 (d, J = 4.6 Hz, 1H, H-1), 7.25 (d, J = 3.4 Hz, 1H, H-3), 7.19 (bs, 1H, H-13), 7.04 (dd, J = 4.6, 3.4 Hz, 1H, H-2), 6.89 (d, J = 8.6 Hz, 2H, H-10), 6.62 (bs, 1H, H-6), 3.74 (s, 3H, H-12). 13C NMR (125 MHz, DMSO-d6): δ (ppm) 157.20, 136.28, 128.14, 127.81, 126.97, 125.63, 124.47, 122.65, 120.80, 115.36, 114.04, 103.29, 55.03. FT–IR (cm−1): 3401 ν(N—H), 3101 ν(C—H) (thiophene); 2832 (sp3-C—H), 1583 ν(C=C). ESI–HRMS: m/z calculated for C15H14NOS [M + H]+: 256.0796; found: 256.0782, error: 5 ppm.
2.1.2. Preparation of 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole (4)
To a stirred solution of pyrrole 3b (1 mmol) in EtOH (15 ml) was added concentrated HCl (0.2 ml), followed by the addition of aqueous NaNO2 (1.2 mmol in 2 ml of H2O). The reaction mixture was stirred for 30 min and cooled to 0 °C, and another portion of concentrated HCl (1 ml) was added. The solution was stirred for 1 h. The product was extracted with dichloromethane (DCM), washed with water, and the organic layer was dried over Na2SO4 and evaporated. The solid was dissolved in a minimum quantity of EtOH, an excess of aqueous NaOAc and ice was added, and the solution was stirred for 1 h. The resulting solid was collected by filtration and purified by on silica gel using hexane/acetone (85:15 v/v), affording the pyrrole as green crystals (83% yield; m.p. 159–161 °C). 1H NMR (500 MHz, CDCl3): δ (ppm) 8.04 (d, J = 8.0 Hz, 2H, H-10), 7.81 (d, J = 7.9 Hz, 2H, H-3), 7.60 (d, J = 8.0 Hz, 2H, H-9), 7.50 (m, 3H, H-1, H-2), 7.10 (s, 1H, H-6). 13C NMR (101 MHz, CDCl3): δ (ppm) 162.54, 147.59, 140.19, 132.12, 131.46, 131.15, 130.95, 129.51, 129.00, 127.04, 124.40, 112.38. FT–IR (cm−1): 3438 ν(N—H), 1587 ν(N=O), 1454 ν(C—NO). ESI–HRMS: m/z calculated for C16H12BrN2O [M + H]+: 327.0133; found: 327.0143, error: 3 ppm.
2.2. Refinement
Crystal data, data collection and structure . H atoms were set geometrically and constrained to ride on their associated atoms. For nitrosyl pyrrole 4, the data were analysed with PLATON (Spek, 2020) and treated using the SQUEEZE routine (Spek, 2015).
details are summarized in Table 13. Results and discussion
Despite the sensitivity of pyrrole 3a, it was possible to obtain an adequate crystal for X-ray The compound crystallized in the monoclinic P21/c with Z = 4. The molecule is nearly planar, with dihedral angles between the pyrrole and thiophene planes of 1.30° (N1—C1—C12—C13), and between the pyrrole and arene planes of 6.69° (C4—C3—C5—C10). The molecular structure with the corresponding numbering of atoms is shown in Fig. 2.
Compound 3a showed disorder in the thiophene unit which was treated over two sites. Appropriate restraints and constraints on the displacement parameters were added to ensure that the structure approximated normal behaviour. The crystal packing shows hydrogen bonding between the thienyl moiety and the O atom of the methoxy group (C14—H⋯O1, with H14⋯O2 = 2.64 Å and C14—H14⋯O2 = 163°) that maintains a linear arrangement along the c axis, and C13—H⋯π interactions that maintain the packing along the crystallographic a axis, with the molecules in an antiparallel disposition (Fig. 3). The antiparallel arrangement of the molecules generates zigzag layers, as shown in Fig. 4.
Nitrosyl pyrrole 4 crystallized in the triclinic P with Z = 6. Three individual molecules are found within the (Fig. 5). The dihedral angle between the planes of the pyrrole and phenyl rings is 11.45° (N1—C4—C5—C6), and between the pyrrole and 4-bromophenyl planes is 35.61° (C3—C2—C11—C16). The arrangement of nitrosyl pyrrole 4 is quite interesting because of the high number of interactions present in the crystal. The strongest hydrogen bond is N3—H3A⋯O1, with H⋯O = 2.10 Å and N—H⋯O = 171°, but there are also C—H⋯O (mean H⋯O = 2.68 Å and mean C—H⋯O = 155°) and C—H⋯N (mean H⋯N = 2.48 Å and mean C—H⋯N = 152°) hydrogen bonds that maintain the packing between three molecules with the nitrosyl groups pointing towards the centre of the motif (Table 2). The N and O atoms of the nitrosyl group participate as acceptors, and there are bifurcated hydrogen bonds. Additionally, bifurcated Br⋯Br halogen bonds, with a mean distance of 3.63 Å, maintain the motifs in a 2D planar arrangement, as shown in Fig. 6. The 2D layers are held together by π–π interactions in a slip-stacked geometry, with a distance of 3.34 Å between the planes (Fig. 7). The expanded arrangement of the 2D layers forms voids in the shape of triangles where solvent molecules can be embedded (Fig. 8). of 4 proceeded smoothly to an R value of 12%. However, there was disordered solvent present in the lattice. Assessment of the structure and use of the SQUEEZE routine facilitated a final convergence with an R factor of 5.6%. The contains solvent channels that are ∼18% of the unit-cell volume (441 Å3 of the unit-cell volume of 2417 Å3). The SQUEEZE results revealed 103 electrons in the solvent-accessible volume, the possible solvent trapped in the voids may be acetone.
|
Thermogravimetric analysis (TGA) and 4 indicated no significant solvent loss until the onset of melting at 159159 °C. The TGA and DSC diagrams are available in the supporting information.
(DSC) measurements of compoundIn the literature, there is a report on a cyclo[n]pyrrole that forms a macrocycle with all the pyrrole N—H groups pointing inwards towards the centre of the cavity. The largest radius r = 4.6 Å involves the N atoms and is larger than the previous congeners (Bui et al., 2013). Generally, the size of the macrocyclic cavity is a key parameter that defines many of the properties of expanded In the nitrosyl pyrrole presented here, the 2D lattice has a cavity with similar radius (r = 5 Å) (Fig. 9), but, in this case, there are only C—H groups instead of N—H groups as in pyrrolic macrocycles; thus, this cavity can accommodate molecules through weak interactions.
4. Summary conclusions
In summary, we have provided crystallographic structural evidence of a 2,4-diarylpyrrole and a nitrosyl pyrrole. The first showed a linear arrangement along the crystallographic c axis without involving the pyrrolic N—H group in the intermolecular interactions, while the nitrosyl pyrrole showed multiple hydrogen bonds involving the pyrrolic N—H group in strong hydrogen bonds. The N and O atoms of the nitrosyl group participate as acceptors and these intermolecular interactions maintain the nitrosyl groups pointing inwards towards the centre of three molecules. This motif is extended by Br⋯Br halogen bonds which form a 2D structure with interstitial voids having a radius of 5 Å.
Supporting information
https://doi.org/10.1107/S2053229624007277/zo3053sup1.cif
contains datablocks 3a, 4, global. DOI:Structure factors: contains datablock 3a. DOI: https://doi.org/10.1107/S2053229624007277/zo30533asup2.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2053229624007277/zo30534sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229624007277/zo30533asup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229624007277/zo30534sup5.cml
NMR spectra, DSC curves and geometry information. DOI: https://doi.org/10.1107/S2053229624007277/zo3053sup6.pdf
C15H13NOS | F(000) = 536 |
Mr = 255.32 | Dx = 1.366 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9266 reflections |
a = 7.4695 (11) Å | θ = 2.7–24.9° |
b = 5.7626 (7) Å | µ = 0.25 mm−1 |
c = 28.907 (4) Å | T = 296 K |
β = 93.662 (5)° | Plate, yellow |
V = 1241.7 (3) Å3 | 0.29 × 0.15 × 0.06 mm |
Z = 4 |
Bruker APEXII diffractometer | 2985 independent reflections |
Radiation source: sealed x-ray tube | 1981 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.075 |
φ or ω oscillation scans | θmax = 29.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −9→9 |
Tmin = 0.702, Tmax = 0.746 | k = −7→7 |
52264 measured reflections | l = −39→37 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.1237P)2 + 0.3542P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.208 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.57 e Å−3 |
2985 reflections | Δρmin = −0.59 e Å−3 |
195 parameters | Extinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
177 restraints | Extinction coefficient: 0.113 (13) |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O2 | 0.8488 (3) | 0.4150 (3) | 0.44624 (6) | 0.0627 (5) | |
C1 | 0.7263 (3) | 0.2441 (4) | 0.17693 (9) | 0.0462 (6) | |
C2 | 0.6970 (3) | 0.3508 (4) | 0.21820 (8) | 0.0470 (6) | |
H2 | 0.643701 | 0.495168 | 0.221474 | 0.056* | |
C3 | 0.7615 (3) | 0.2045 (4) | 0.25504 (8) | 0.0437 (5) | |
C4 | 0.8265 (4) | 0.0098 (4) | 0.23438 (9) | 0.0562 (7) | |
H4 | 0.876483 | −0.118433 | 0.249863 | 0.067* | |
C5 | 0.7738 (3) | 0.2574 (4) | 0.30487 (8) | 0.0438 (6) | |
C6 | 0.6995 (3) | 0.4580 (4) | 0.32227 (9) | 0.0497 (6) | |
H6 | 0.63354 | 0.555533 | 0.302013 | 0.06* | |
C7 | 0.7205 (3) | 0.5179 (4) | 0.36887 (9) | 0.0520 (6) | |
H7 | 0.668373 | 0.652678 | 0.379539 | 0.062* | |
C8 | 0.8194 (3) | 0.3754 (4) | 0.39915 (8) | 0.0478 (6) | |
C9 | 0.8950 (3) | 0.1751 (4) | 0.38279 (9) | 0.0532 (6) | |
H9 | 0.961225 | 0.078386 | 0.403156 | 0.064* | |
C10 | 0.8730 (3) | 0.1179 (4) | 0.33661 (9) | 0.0502 (6) | |
H10 | 0.925533 | −0.017198 | 0.326245 | 0.06* | |
C11 | 0.7810 (5) | 0.6229 (5) | 0.46406 (11) | 0.0725 (8) | |
H11A | 0.829792 | 0.752819 | 0.448315 | 0.109* | |
H11B | 0.814548 | 0.633209 | 0.496613 | 0.109* | |
H11C | 0.652637 | 0.624096 | 0.459379 | 0.109* | |
N1 | 0.8057 (3) | 0.0353 (4) | 0.18772 (8) | 0.0575 (6) | |
H1 | 0.821 (5) | −0.058 (6) | 0.1711 (13) | 0.086* | |
C12 | 0.699 (4) | 0.341 (4) | 0.1314 (4) | 0.041 (3) | 0.5 |
C13 | 0.766 (3) | 0.207 (3) | 0.0898 (5) | 0.0593 (15) | 0.5 |
H13 | 0.828894 | 0.068114 | 0.090437 | 0.071* | 0.5 |
C14 | 0.7077 (18) | 0.3477 (18) | 0.0486 (5) | 0.0593 (15) | 0.5 |
H14 | 0.730966 | 0.305849 | 0.018525 | 0.071* | 0.5 |
C15 | 0.618 (2) | 0.541 (2) | 0.0589 (3) | 0.063 (2) | 0.5 |
H15 | 0.576746 | 0.650797 | 0.037139 | 0.075* | 0.5 |
S1 | 0.5896 (8) | 0.5614 (8) | 0.11682 (18) | 0.0691 (7) | 0.5 |
C12A | 0.694 (5) | 0.306 (4) | 0.1276 (4) | 0.048 (4) | 0.5 |
C13A | 0.611 (3) | 0.543 (3) | 0.1195 (6) | 0.0593 (15) | 0.5 |
H13A | 0.574746 | 0.647517 | 0.141495 | 0.071* | 0.5 |
C14A | 0.602 (2) | 0.569 (3) | 0.0685 (4) | 0.0593 (15) | 0.5 |
H14A | 0.54185 | 0.691536 | 0.053536 | 0.071* | 0.5 |
C15A | 0.6868 (17) | 0.4046 (15) | 0.0452 (4) | 0.0575 (18) | 0.5 |
H15A | 0.698297 | 0.404653 | 0.013303 | 0.069* | 0.5 |
S1A | 0.7714 (6) | 0.1927 (7) | 0.08301 (10) | 0.0504 (5) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0738 (13) | 0.0640 (11) | 0.0503 (10) | 0.0101 (10) | 0.0038 (9) | 0.0027 (8) |
C1 | 0.0381 (11) | 0.0441 (12) | 0.0566 (14) | −0.0047 (9) | 0.0043 (10) | −0.0024 (10) |
C2 | 0.0434 (12) | 0.0429 (11) | 0.0547 (14) | 0.0011 (9) | 0.0035 (10) | −0.0010 (10) |
C3 | 0.0364 (11) | 0.0412 (11) | 0.0537 (13) | −0.0017 (9) | 0.0047 (9) | 0.0011 (9) |
C4 | 0.0593 (15) | 0.0466 (13) | 0.0625 (16) | 0.0107 (11) | 0.0029 (12) | −0.0004 (11) |
C5 | 0.0360 (11) | 0.0397 (11) | 0.0564 (14) | −0.0008 (9) | 0.0074 (9) | 0.0063 (10) |
C6 | 0.0485 (13) | 0.0474 (13) | 0.0533 (14) | 0.0122 (10) | 0.0036 (10) | 0.0054 (10) |
C7 | 0.0515 (14) | 0.0462 (12) | 0.0586 (15) | 0.0095 (10) | 0.0070 (11) | 0.0032 (10) |
C8 | 0.0442 (12) | 0.0492 (12) | 0.0504 (13) | 0.0007 (10) | 0.0069 (10) | 0.0053 (10) |
C9 | 0.0514 (14) | 0.0476 (13) | 0.0606 (15) | 0.0091 (10) | 0.0026 (11) | 0.0126 (11) |
C10 | 0.0508 (13) | 0.0411 (11) | 0.0591 (15) | 0.0092 (10) | 0.0075 (11) | 0.0037 (10) |
C11 | 0.087 (2) | 0.0721 (18) | 0.0593 (17) | 0.0114 (16) | 0.0148 (15) | −0.0067 (14) |
N1 | 0.0662 (14) | 0.0498 (12) | 0.0567 (14) | 0.0092 (10) | 0.0053 (11) | −0.0085 (9) |
C12 | 0.037 (5) | 0.036 (5) | 0.049 (4) | −0.008 (5) | 0.001 (3) | −0.015 (3) |
C13 | 0.063 (3) | 0.060 (3) | 0.055 (3) | −0.004 (2) | 0.000 (2) | −0.010 (2) |
C14 | 0.063 (3) | 0.060 (3) | 0.055 (3) | −0.004 (2) | 0.000 (2) | −0.010 (2) |
C15 | 0.075 (5) | 0.065 (5) | 0.047 (4) | −0.004 (4) | −0.009 (4) | 0.011 (4) |
S1 | 0.0677 (17) | 0.0677 (13) | 0.0712 (13) | 0.0068 (9) | −0.0013 (11) | 0.0083 (10) |
C12A | 0.046 (5) | 0.048 (8) | 0.051 (4) | −0.018 (5) | 0.005 (5) | −0.007 (5) |
C13A | 0.063 (3) | 0.060 (3) | 0.055 (3) | −0.004 (2) | 0.000 (2) | −0.010 (2) |
C14A | 0.063 (3) | 0.060 (3) | 0.055 (3) | −0.004 (2) | 0.000 (2) | −0.010 (2) |
C15A | 0.069 (4) | 0.049 (5) | 0.054 (3) | 0.005 (4) | −0.003 (3) | 0.001 (3) |
S1A | 0.0583 (9) | 0.0494 (9) | 0.0439 (11) | 0.0004 (7) | 0.0058 (8) | −0.0096 (8) |
O2—C8 | 1.384 (3) | C10—H10 | 0.93 |
O2—C11 | 1.411 (3) | C11—H11A | 0.96 |
C1—N1 | 1.368 (3) | C11—H11B | 0.96 |
C1—C2 | 1.372 (3) | C11—H11C | 0.96 |
C1—C12 | 1.433 (8) | N1—H1 | 0.73 (4) |
C1—C12A | 1.474 (9) | C12—C13 | 1.54 (2) |
C2—C3 | 1.418 (3) | C12—S1 | 1.554 (18) |
C2—H2 | 0.93 | C13—C14 | 1.482 (17) |
C3—C4 | 1.374 (3) | C13—H13 | 0.93 |
C3—C5 | 1.469 (3) | C14—C15 | 1.344 (8) |
C4—N1 | 1.356 (4) | C14—H14 | 0.93 |
C4—H4 | 0.93 | C15—S1 | 1.705 (8) |
C5—C6 | 1.390 (3) | C15—H15 | 0.93 |
C5—C10 | 1.396 (3) | C12A—C13A | 1.51 (2) |
C6—C7 | 1.390 (4) | C12A—S1A | 1.59 (2) |
C6—H6 | 0.93 | C13A—C14A | 1.481 (16) |
C7—C8 | 1.380 (3) | C13A—H13A | 0.93 |
C7—H7 | 0.93 | C14A—C15A | 1.344 (8) |
C8—C9 | 1.381 (3) | C14A—H14A | 0.93 |
C9—C10 | 1.375 (4) | C15A—S1A | 1.732 (7) |
C9—H9 | 0.93 | C15A—H15A | 0.93 |
C8—O2—C11 | 117.5 (2) | O2—C11—H11B | 109.5 |
N1—C1—C2 | 106.7 (2) | H11A—C11—H11B | 109.5 |
N1—C1—C12 | 125.9 (9) | O2—C11—H11C | 109.5 |
C2—C1—C12 | 127.1 (9) | H11A—C11—H11C | 109.5 |
N1—C1—C12A | 118.4 (10) | H11B—C11—H11C | 109.5 |
C2—C1—C12A | 134.9 (10) | C4—N1—C1 | 110.0 (2) |
C1—C2—C3 | 108.7 (2) | C4—N1—H1 | 124 (3) |
C1—C2—H2 | 125.6 | C1—N1—H1 | 125 (3) |
C3—C2—H2 | 125.6 | C1—C12—C13 | 119.3 (15) |
C4—C3—C2 | 105.7 (2) | C1—C12—S1 | 127.5 (15) |
C4—C3—C5 | 126.4 (2) | C13—C12—S1 | 112.9 (7) |
C2—C3—C5 | 127.6 (2) | C14—C13—C12 | 105.2 (14) |
N1—C4—C3 | 108.8 (2) | C14—C13—H13 | 127.4 |
N1—C4—H4 | 125.6 | C12—C13—H13 | 127.4 |
C3—C4—H4 | 125.6 | C15—C14—C13 | 113.5 (15) |
C6—C5—C10 | 116.6 (2) | C15—C14—H14 | 123.2 |
C6—C5—C3 | 121.7 (2) | C13—C14—H14 | 123.2 |
C10—C5—C3 | 121.5 (2) | C14—C15—S1 | 111.6 (12) |
C7—C6—C5 | 122.3 (2) | C14—C15—H15 | 124.2 |
C7—C6—H6 | 118.8 | S1—C15—H15 | 124.2 |
C5—C6—H6 | 118.8 | C12—S1—C15 | 96.5 (8) |
C8—C7—C6 | 119.3 (2) | C1—C12A—C13A | 114.2 (16) |
C8—C7—H7 | 120.4 | C1—C12A—S1A | 129.7 (17) |
C6—C7—H7 | 120.4 | C13A—C12A—S1A | 114.4 (7) |
C7—C8—C9 | 119.6 (2) | C14A—C13A—C12A | 103.9 (14) |
C7—C8—O2 | 124.8 (2) | C14A—C13A—H13A | 128.1 |
C9—C8—O2 | 115.6 (2) | C12A—C13A—H13A | 128.1 |
C10—C9—C8 | 120.5 (2) | C15A—C14A—C13A | 115.8 (15) |
C10—C9—H9 | 119.8 | C15A—C14A—H14A | 122.1 |
C8—C9—H9 | 119.8 | C13A—C14A—H14A | 122.1 |
C9—C10—C5 | 121.7 (2) | C14A—C15A—S1A | 110.1 (13) |
C9—C10—H10 | 119.1 | C14A—C15A—H15A | 124.9 |
C5—C10—H10 | 119.1 | S1A—C15A—H15A | 124.9 |
O2—C11—H11A | 109.5 | C12A—S1A—C15A | 94.9 (7) |
N1—C1—C2—C3 | 0.5 (3) | C12—C1—N1—C4 | 173.4 (18) |
C12—C1—C2—C3 | −172.9 (18) | C12A—C1—N1—C4 | 179.3 (17) |
C12A—C1—C2—C3 | −179 (2) | N1—C1—C12—C13 | −1 (3) |
C1—C2—C3—C4 | −0.8 (3) | C2—C1—C12—C13 | 171.1 (16) |
C1—C2—C3—C5 | 173.6 (2) | N1—C1—C12—S1 | 171.8 (17) |
C2—C3—C4—N1 | 0.8 (3) | C2—C1—C12—S1 | −16 (4) |
C5—C3—C4—N1 | −173.7 (2) | C1—C12—C13—C14 | 177 (2) |
C4—C3—C5—C6 | −178.5 (2) | S1—C12—C13—C14 | 3 (3) |
C2—C3—C5—C6 | 8.2 (4) | C12—C13—C14—C15 | 0 (2) |
C4—C3—C5—C10 | 6.7 (4) | C13—C14—C15—S1 | −2.6 (16) |
C2—C3—C5—C10 | −166.6 (2) | C1—C12—S1—C15 | −177 (3) |
C10—C5—C6—C7 | −0.6 (4) | C13—C12—S1—C15 | −4 (2) |
C3—C5—C6—C7 | −175.6 (2) | C14—C15—S1—C12 | 4.0 (18) |
C5—C6—C7—C8 | 0.5 (4) | N1—C1—C12A—C13A | −178.1 (18) |
C6—C7—C8—C9 | −0.4 (4) | C2—C1—C12A—C13A | 1 (4) |
C6—C7—C8—O2 | −179.5 (2) | N1—C1—C12A—S1A | −14 (4) |
C11—O2—C8—C7 | −3.7 (4) | C2—C1—C12A—S1A | 165.0 (15) |
C11—O2—C8—C9 | 177.2 (2) | C1—C12A—C13A—C14A | 177 (2) |
C7—C8—C9—C10 | 0.3 (4) | S1A—C12A—C13A—C14A | 10 (3) |
O2—C8—C9—C10 | 179.5 (2) | C12A—C13A—C14A—C15A | −9 (3) |
C8—C9—C10—C5 | −0.4 (4) | C13A—C14A—C15A—S1A | 4.2 (18) |
C6—C5—C10—C9 | 0.5 (4) | C1—C12A—S1A—C15A | −171 (3) |
C3—C5—C10—C9 | 175.5 (2) | C13A—C12A—S1A—C15A | −8 (3) |
C3—C4—N1—C1 | −0.5 (3) | C14A—C15A—S1A—C12A | 2.1 (17) |
C2—C1—N1—C4 | 0.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···S1Abi | 0.93 | 3 | 3.821 (5) | 148 |
C14a—H14a···O2ii | 0.93 | 2.64 | 3.544 (14) | 163 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2. |
C16H11BrN2O+[solvent] | Z = 6 |
Mr = 327.18 | F(000) = 984 |
Triclinic, P1 | Dx = 1.348 Mg m−3 |
a = 10.2533 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.689 (3) Å | Cell parameters from 9924 reflections |
c = 17.003 (3) Å | θ = 2.2–25.0° |
α = 104.713 (6)° | µ = 2.55 mm−1 |
β = 91.812 (6)° | T = 297 K |
γ = 101.544 (6)° | Prism, green |
V = 2417.5 (8) Å3 | 0.23 × 0.19 × 0.14 mm |
Bruker APEXII diffractometer | 6774 reflections with I > 2σ(I) |
Radiation source: sealed x-ray tube | Rint = 0.082 |
φ or ω oscillation scans | θmax = 27.9°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −13→13 |
Tmin = 0.666, Tmax = 0.746 | k = −19→19 |
134671 measured reflections | l = −22→22 |
11584 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.083P)2 + 2.0664P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
11584 reflections | Δρmax = 0.59 e Å−3 |
547 parameters | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. X-ray crystallographic data was obtained using a Bruker APEXII diffractometer with a CCD area detector (Mo Kα = 0.71073 Å, monochromator: graphite). Indexing, data integration and reduction were carried out using APEX5. All reflection data set were corrected for polarization effects. The structures were solved in the WinGX (Farrugia, 2012) suite of programs by intrinsic phasing using SHELXT (Sheldrick, 2015b) and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined using anisotropic displacement parameters. H atoms were set geometrically and constrained to ride on their associated atoms. Mercury (Macrae et al., 2020) and ORTEP-3 (Farrugia, 2012) programs were used to prepare artwork representations. For the nitrosylpyrrole 4, crystal structure data was analysed with PLATON (Spek, 2020) and treated using the SQUEEZE routine (Spek, 2015). Table 1 summarizes crystallographic data and structure refinement details. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under numbers 2361143 (3a) and 2361144 (4). Copies can be obtained on request, free of charge via www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336-033 or email: deposit@ccdc.cam.ac.uk). |
x | y | z | Uiso*/Ueq | ||
Br2 | −0.08774 (5) | 0.83243 (4) | 0.07627 (3) | 0.07290 (17) | |
O1 | 0.5893 (3) | 0.5229 (3) | 0.3902 (2) | 0.0746 (9) | |
N1 | 0.7207 (3) | 0.3801 (2) | 0.3834 (2) | 0.0524 (8) | |
H1 | 0.675942 | 0.370253 | 0.337264 | 0.070 (14)* | |
O2 | 0.4417 (3) | 0.5365 (2) | 0.23024 (19) | 0.0694 (8) | |
N2 | 0.6565 (4) | 0.5269 (3) | 0.4560 (2) | 0.0599 (9) | |
O3 | 0.5655 (4) | 0.3533 (3) | 0.22658 (19) | 0.0781 (10) | |
N3 | 0.4408 (3) | 0.6705 (2) | 0.3723 (2) | 0.0535 (8) | |
H3A | 0.491460 | 0.632948 | 0.380118 | 0.055 (12)* | |
N4 | 0.3655 (4) | 0.5943 (3) | 0.2278 (2) | 0.0586 (9) | |
C4 | 0.8035 (4) | 0.3256 (3) | 0.3998 (2) | 0.0509 (9) | |
N5 | 0.4513 (3) | 0.3696 (3) | 0.0866 (2) | 0.0551 (8) | |
H5 | 0.436773 | 0.414550 | 0.126733 | 0.050 (12)* | |
C5 | 0.8339 (4) | 0.2431 (3) | 0.3414 (2) | 0.0517 (10) | |
N6 | 0.5761 (4) | 0.2899 (3) | 0.1613 (2) | 0.0615 (9) | |
C6 | 0.7506 (5) | 0.1935 (3) | 0.2713 (3) | 0.0657 (12) | |
H6 | 0.672650 | 0.213203 | 0.260610 | 0.093 (18)* | |
C7 | 0.7825 (6) | 0.1156 (4) | 0.2174 (3) | 0.0752 (14) | |
H7 | 0.726092 | 0.082734 | 0.170558 | 0.090* | |
C8 | 0.8970 (6) | 0.0867 (4) | 0.2326 (3) | 0.0835 (16) | |
H8 | 0.916699 | 0.032853 | 0.196704 | 0.100* | |
C10 | 0.9503 (5) | 0.2133 (4) | 0.3546 (3) | 0.0790 (15) | |
H10 | 1.008040 | 0.245748 | 0.400944 | 0.095* | |
C9 | 0.9815 (6) | 0.1348 (4) | 0.2987 (4) | 0.0933 (19) | |
H9 | 1.060823 | 0.115707 | 0.307250 | 0.112* | |
C2 | 0.8050 (4) | 0.4434 (3) | 0.5154 (2) | 0.0503 (9) | |
C3 | 0.8561 (4) | 0.3645 (3) | 0.4816 (2) | 0.0537 (10) | |
H3 | 0.916215 | 0.340440 | 0.508433 | 0.064* | |
Br3 | 0.78367 (6) | −0.10641 (4) | −0.10174 (3) | 0.07482 (18) | |
Br1 | 0.93593 (6) | 0.68790 (4) | 0.87090 (3) | 0.07679 (18) | |
C1 | 0.7187 (4) | 0.4539 (3) | 0.4515 (2) | 0.0514 (9) | |
C15 | 0.7772 (4) | 0.6114 (3) | 0.7204 (3) | 0.0594 (11) | |
H15 | 0.717292 | 0.646307 | 0.746492 | 0.071* | |
C11 | 0.8340 (4) | 0.5039 (3) | 0.5999 (2) | 0.0488 (9) | |
C12 | 0.9543 (4) | 0.5076 (3) | 0.6431 (3) | 0.0570 (10) | |
H12 | 1.014629 | 0.472724 | 0.617435 | 0.068* | |
C13 | 0.9854 (4) | 0.5626 (3) | 0.7240 (3) | 0.0607 (11) | |
H13 | 1.065614 | 0.564701 | 0.752222 | 0.073* | |
C14 | 0.8958 (4) | 0.6132 (3) | 0.7608 (2) | 0.0549 (10) | |
C19 | 0.3331 (4) | 0.7910 (3) | 0.3921 (3) | 0.0597 (11) | |
H19 | 0.304133 | 0.846355 | 0.417710 | 0.072* | |
C20 | 0.4206 (4) | 0.7480 (3) | 0.4276 (2) | 0.0533 (10) | |
C21 | 0.4867 (4) | 0.7827 (3) | 0.5110 (3) | 0.0559 (10) | |
C22 | 0.4693 (6) | 0.8697 (4) | 0.5629 (3) | 0.0826 (16) | |
H22 | 0.412080 | 0.903277 | 0.544723 | 0.099* | |
C23 | 0.5339 (6) | 0.9066 (4) | 0.6393 (4) | 0.0945 (19) | |
H23 | 0.522190 | 0.965085 | 0.671926 | 0.113* | |
C24 | 0.6159 (6) | 0.8569 (5) | 0.6675 (3) | 0.0867 (17) | |
H24 | 0.658950 | 0.881183 | 0.719796 | 0.104* | |
C25 | 0.6346 (6) | 0.7728 (4) | 0.6197 (3) | 0.0921 (18) | |
H25 | 0.691335 | 0.739823 | 0.639148 | 0.111* | |
C26 | 0.5697 (5) | 0.7348 (4) | 0.5414 (3) | 0.0771 (15) | |
H26 | 0.582746 | 0.676319 | 0.509423 | 0.15 (3)* | |
C27 | 0.2070 (4) | 0.7571 (3) | 0.2526 (3) | 0.0541 (10) | |
C28 | 0.2025 (5) | 0.8520 (3) | 0.2565 (3) | 0.0725 (14) | |
H28 | 0.259026 | 0.901227 | 0.295722 | 0.087* | |
C29 | 0.1170 (5) | 0.8762 (4) | 0.2042 (3) | 0.0729 (14) | |
H29 | 0.116050 | 0.940214 | 0.207445 | 0.087* | |
C30 | 0.0336 (4) | 0.8020 (3) | 0.1474 (3) | 0.0576 (11) | |
C31 | 0.0339 (5) | 0.7077 (3) | 0.1418 (3) | 0.0670 (12) | |
H31 | −0.024196 | 0.658826 | 0.103272 | 0.080* | |
C32 | 0.1211 (5) | 0.6856 (3) | 0.1940 (3) | 0.0658 (12) | |
H32 | 0.122096 | 0.621354 | 0.189660 | 0.079* | |
C33 | 0.5197 (4) | 0.2997 (3) | 0.0929 (3) | 0.0528 (10) | |
C34 | 0.5222 (4) | 0.2399 (3) | 0.0133 (3) | 0.0522 (10) | |
C35 | 0.4521 (4) | 0.2754 (3) | −0.0387 (3) | 0.0554 (10) | |
H35 | 0.435154 | 0.249895 | −0.094879 | 0.067* | |
C36 | 0.4108 (4) | 0.3565 (3) | 0.0079 (2) | 0.0522 (10) | |
C37 | 0.3393 (4) | 0.4196 (3) | −0.0220 (3) | 0.0552 (10) | |
C38 | 0.2857 (5) | 0.4895 (4) | 0.0295 (3) | 0.0737 (14) | |
H38 | 0.293182 | 0.497464 | 0.085569 | 0.077 (15)* | |
C39 | 0.2206 (6) | 0.5477 (4) | −0.0036 (3) | 0.0815 (15) | |
H39 | 0.186430 | 0.595278 | 0.031320 | 0.098* | |
C40 | 0.2056 (5) | 0.5370 (4) | −0.0848 (3) | 0.0744 (14) | |
H40 | 0.157868 | 0.574628 | −0.105366 | 0.089* | |
C41 | 0.2612 (5) | 0.4703 (4) | −0.1367 (3) | 0.0763 (14) | |
H41 | 0.254315 | 0.464447 | −0.192492 | 0.092* | |
C42 | 0.3272 (5) | 0.4121 (3) | −0.1060 (3) | 0.0664 (12) | |
H42 | 0.364422 | 0.366969 | −0.141686 | 0.080* | |
C43 | 0.5850 (4) | 0.1570 (3) | −0.0115 (3) | 0.0534 (10) | |
C44 | 0.7070 (4) | 0.1543 (3) | 0.0248 (3) | 0.0586 (11) | |
H44 | 0.749689 | 0.205816 | 0.067868 | 0.070* | |
C45 | 0.7657 (4) | 0.0771 (3) | −0.0016 (3) | 0.0623 (11) | |
H45 | 0.847393 | 0.076283 | 0.023337 | 0.075* | |
C46 | 0.7029 (4) | 0.0009 (3) | −0.0651 (3) | 0.0547 (10) | |
C47 | 0.5820 (5) | 0.0005 (3) | −0.1032 (3) | 0.0633 (12) | |
H47 | 0.540250 | −0.051404 | −0.146205 | 0.076* | |
C48 | 0.5247 (4) | 0.0782 (3) | −0.0763 (3) | 0.0593 (11) | |
H48 | 0.443354 | 0.078566 | −0.101862 | 0.071* | |
C16 | 0.7475 (4) | 0.5568 (3) | 0.6398 (3) | 0.0573 (11) | |
H16 | 0.667349 | 0.555923 | 0.612201 | 0.069* | |
C17 | 0.3660 (4) | 0.6610 (3) | 0.3003 (2) | 0.0519 (10) | |
C18 | 0.2973 (4) | 0.7374 (3) | 0.3129 (3) | 0.0553 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.0766 (3) | 0.0829 (3) | 0.0596 (3) | 0.0334 (3) | −0.0150 (2) | 0.0098 (2) |
O1 | 0.082 (2) | 0.082 (2) | 0.0625 (19) | 0.0403 (18) | −0.0196 (17) | 0.0095 (17) |
N1 | 0.0536 (19) | 0.055 (2) | 0.0489 (19) | 0.0203 (16) | −0.0061 (15) | 0.0083 (15) |
O2 | 0.083 (2) | 0.071 (2) | 0.0567 (18) | 0.0339 (18) | 0.0022 (16) | 0.0082 (15) |
N2 | 0.064 (2) | 0.064 (2) | 0.053 (2) | 0.0251 (18) | −0.0076 (17) | 0.0105 (17) |
O3 | 0.104 (3) | 0.085 (2) | 0.0485 (18) | 0.047 (2) | −0.0134 (17) | 0.0066 (17) |
N3 | 0.060 (2) | 0.053 (2) | 0.0471 (19) | 0.0200 (17) | −0.0017 (16) | 0.0078 (16) |
N4 | 0.067 (2) | 0.058 (2) | 0.051 (2) | 0.0208 (18) | 0.0032 (17) | 0.0089 (17) |
C4 | 0.049 (2) | 0.054 (2) | 0.049 (2) | 0.0153 (18) | −0.0041 (18) | 0.0110 (18) |
N5 | 0.062 (2) | 0.055 (2) | 0.0487 (19) | 0.0197 (17) | −0.0069 (16) | 0.0090 (16) |
C5 | 0.060 (2) | 0.049 (2) | 0.047 (2) | 0.0187 (19) | −0.0019 (18) | 0.0111 (18) |
N6 | 0.075 (2) | 0.061 (2) | 0.050 (2) | 0.0248 (19) | −0.0061 (18) | 0.0112 (18) |
C6 | 0.083 (3) | 0.061 (3) | 0.054 (3) | 0.028 (2) | −0.012 (2) | 0.008 (2) |
C7 | 0.097 (4) | 0.062 (3) | 0.060 (3) | 0.025 (3) | −0.014 (3) | 0.001 (2) |
C8 | 0.096 (4) | 0.069 (3) | 0.079 (4) | 0.035 (3) | 0.003 (3) | −0.004 (3) |
C10 | 0.072 (3) | 0.080 (3) | 0.077 (3) | 0.034 (3) | −0.015 (3) | −0.005 (3) |
C9 | 0.086 (4) | 0.091 (4) | 0.091 (4) | 0.051 (3) | −0.018 (3) | −0.018 (3) |
C2 | 0.052 (2) | 0.053 (2) | 0.045 (2) | 0.0133 (18) | −0.0031 (17) | 0.0102 (18) |
C3 | 0.055 (2) | 0.062 (3) | 0.047 (2) | 0.021 (2) | −0.0056 (18) | 0.0142 (19) |
Br3 | 0.0921 (4) | 0.0769 (3) | 0.0643 (3) | 0.0490 (3) | 0.0009 (2) | 0.0114 (2) |
Br1 | 0.0966 (4) | 0.0837 (4) | 0.0482 (3) | 0.0407 (3) | −0.0121 (2) | 0.0000 (2) |
C1 | 0.051 (2) | 0.054 (2) | 0.050 (2) | 0.0181 (19) | −0.0022 (18) | 0.0112 (18) |
C15 | 0.062 (3) | 0.066 (3) | 0.055 (2) | 0.028 (2) | 0.004 (2) | 0.013 (2) |
C11 | 0.053 (2) | 0.049 (2) | 0.046 (2) | 0.0148 (18) | 0.0004 (17) | 0.0118 (17) |
C12 | 0.056 (2) | 0.066 (3) | 0.050 (2) | 0.026 (2) | −0.0034 (19) | 0.008 (2) |
C13 | 0.057 (2) | 0.074 (3) | 0.052 (2) | 0.025 (2) | −0.008 (2) | 0.012 (2) |
C14 | 0.068 (3) | 0.055 (2) | 0.043 (2) | 0.019 (2) | −0.0020 (19) | 0.0115 (18) |
C19 | 0.065 (3) | 0.053 (2) | 0.060 (3) | 0.025 (2) | −0.002 (2) | 0.006 (2) |
C20 | 0.056 (2) | 0.060 (3) | 0.043 (2) | 0.013 (2) | −0.0026 (18) | 0.0126 (19) |
C21 | 0.064 (3) | 0.057 (2) | 0.047 (2) | 0.020 (2) | 0.0004 (19) | 0.0097 (19) |
C22 | 0.090 (4) | 0.090 (4) | 0.062 (3) | 0.046 (3) | −0.017 (3) | −0.008 (3) |
C23 | 0.100 (4) | 0.092 (4) | 0.076 (4) | 0.049 (3) | −0.016 (3) | −0.024 (3) |
C24 | 0.097 (4) | 0.110 (4) | 0.047 (3) | 0.033 (3) | −0.019 (3) | 0.005 (3) |
C25 | 0.119 (5) | 0.089 (4) | 0.070 (3) | 0.042 (4) | −0.032 (3) | 0.014 (3) |
C26 | 0.100 (4) | 0.073 (3) | 0.058 (3) | 0.036 (3) | −0.017 (3) | 0.007 (2) |
C27 | 0.056 (2) | 0.056 (2) | 0.051 (2) | 0.018 (2) | −0.0032 (19) | 0.0110 (19) |
C28 | 0.080 (3) | 0.058 (3) | 0.070 (3) | 0.013 (2) | −0.028 (2) | 0.006 (2) |
C29 | 0.086 (3) | 0.058 (3) | 0.073 (3) | 0.022 (2) | −0.021 (3) | 0.013 (2) |
C30 | 0.058 (2) | 0.070 (3) | 0.046 (2) | 0.022 (2) | 0.0002 (19) | 0.012 (2) |
C31 | 0.066 (3) | 0.061 (3) | 0.065 (3) | 0.017 (2) | −0.013 (2) | 0.001 (2) |
C32 | 0.074 (3) | 0.052 (2) | 0.067 (3) | 0.020 (2) | −0.013 (2) | 0.003 (2) |
C33 | 0.057 (2) | 0.052 (2) | 0.051 (2) | 0.0180 (19) | −0.0050 (19) | 0.0132 (18) |
C34 | 0.052 (2) | 0.049 (2) | 0.050 (2) | 0.0103 (18) | −0.0075 (18) | 0.0061 (18) |
C35 | 0.062 (3) | 0.052 (2) | 0.051 (2) | 0.019 (2) | −0.0100 (19) | 0.0072 (19) |
C36 | 0.056 (2) | 0.049 (2) | 0.050 (2) | 0.0113 (18) | −0.0101 (18) | 0.0116 (18) |
C37 | 0.056 (2) | 0.050 (2) | 0.057 (2) | 0.0151 (19) | −0.0117 (19) | 0.0085 (19) |
C38 | 0.089 (3) | 0.074 (3) | 0.058 (3) | 0.037 (3) | −0.014 (2) | 0.004 (2) |
C39 | 0.104 (4) | 0.077 (3) | 0.071 (3) | 0.052 (3) | −0.006 (3) | 0.010 (3) |
C40 | 0.080 (3) | 0.071 (3) | 0.077 (3) | 0.029 (3) | −0.019 (3) | 0.021 (3) |
C41 | 0.092 (4) | 0.080 (3) | 0.064 (3) | 0.030 (3) | −0.012 (3) | 0.025 (3) |
C42 | 0.079 (3) | 0.066 (3) | 0.058 (3) | 0.030 (2) | −0.002 (2) | 0.012 (2) |
C43 | 0.056 (2) | 0.050 (2) | 0.055 (2) | 0.0176 (19) | −0.0022 (19) | 0.0109 (19) |
C44 | 0.056 (2) | 0.052 (2) | 0.062 (3) | 0.0136 (19) | −0.009 (2) | 0.005 (2) |
C45 | 0.053 (2) | 0.077 (3) | 0.061 (3) | 0.027 (2) | −0.005 (2) | 0.015 (2) |
C46 | 0.064 (3) | 0.055 (2) | 0.050 (2) | 0.027 (2) | 0.0024 (19) | 0.0118 (19) |
C47 | 0.077 (3) | 0.058 (3) | 0.051 (2) | 0.027 (2) | −0.010 (2) | 0.001 (2) |
C48 | 0.064 (3) | 0.060 (3) | 0.051 (2) | 0.023 (2) | −0.016 (2) | 0.005 (2) |
C16 | 0.055 (2) | 0.064 (3) | 0.052 (2) | 0.020 (2) | −0.0079 (19) | 0.010 (2) |
C17 | 0.055 (2) | 0.056 (2) | 0.044 (2) | 0.0142 (19) | −0.0029 (18) | 0.0118 (18) |
C18 | 0.060 (2) | 0.051 (2) | 0.053 (2) | 0.0153 (19) | −0.0015 (19) | 0.0089 (19) |
Br2—C30 | 1.901 (4) | C19—C20 | 1.397 (6) |
O1—N2 | 1.277 (4) | C20—C21 | 1.471 (6) |
N1—C4 | 1.346 (5) | C21—C26 | 1.372 (6) |
N1—C1 | 1.374 (5) | C21—C22 | 1.404 (6) |
O2—N4 | 1.270 (5) | C22—C23 | 1.365 (7) |
N2—C1 | 1.341 (5) | C23—C24 | 1.366 (8) |
O3—N6 | 1.279 (5) | C24—C25 | 1.348 (8) |
N3—C20 | 1.337 (5) | C25—C26 | 1.395 (7) |
N3—C17 | 1.385 (5) | C27—C32 | 1.384 (6) |
N4—C17 | 1.365 (5) | C27—C28 | 1.389 (6) |
C4—C3 | 1.405 (5) | C27—C18 | 1.480 (6) |
C4—C5 | 1.453 (6) | C28—C29 | 1.386 (6) |
N5—C36 | 1.342 (5) | C29—C30 | 1.376 (6) |
N5—C33 | 1.378 (5) | C30—C31 | 1.365 (6) |
C5—C10 | 1.381 (6) | C31—C32 | 1.380 (6) |
C5—C6 | 1.388 (6) | C33—C34 | 1.417 (6) |
N6—C33 | 1.335 (5) | C34—C35 | 1.383 (6) |
C6—C7 | 1.376 (7) | C34—C43 | 1.465 (6) |
C7—C8 | 1.365 (7) | C35—C36 | 1.403 (6) |
C8—C9 | 1.343 (7) | C36—C37 | 1.464 (6) |
C10—C9 | 1.396 (7) | C37—C38 | 1.386 (6) |
C2—C3 | 1.368 (6) | C37—C42 | 1.404 (6) |
C2—C1 | 1.437 (5) | C38—C39 | 1.393 (7) |
C2—C11 | 1.470 (5) | C39—C40 | 1.349 (7) |
Br3—C46 | 1.901 (4) | C40—C41 | 1.370 (7) |
Br1—C14 | 1.898 (4) | C41—C42 | 1.377 (6) |
C15—C14 | 1.371 (6) | C43—C44 | 1.391 (6) |
C15—C16 | 1.389 (6) | C43—C48 | 1.399 (6) |
C11—C16 | 1.378 (6) | C44—C45 | 1.372 (6) |
C11—C12 | 1.400 (6) | C45—C46 | 1.373 (6) |
C12—C13 | 1.398 (6) | C46—C47 | 1.379 (6) |
C13—C14 | 1.365 (6) | C47—C48 | 1.370 (6) |
C19—C18 | 1.372 (6) | C17—C18 | 1.415 (6) |
C4—N1—C1 | 109.6 (3) | C32—C27—C28 | 117.3 (4) |
O1—N2—C1 | 114.7 (4) | C32—C27—C18 | 123.6 (4) |
C20—N3—C17 | 108.3 (3) | C28—C27—C18 | 119.0 (4) |
O2—N4—C17 | 114.0 (3) | C29—C28—C27 | 122.5 (4) |
N1—C4—C3 | 107.8 (4) | C30—C29—C28 | 117.5 (4) |
N1—C4—C5 | 125.0 (4) | C31—C30—C29 | 122.0 (4) |
C3—C4—C5 | 127.2 (4) | C31—C30—Br2 | 119.3 (3) |
C36—N5—C33 | 109.1 (4) | C29—C30—Br2 | 118.7 (3) |
C10—C5—C6 | 118.3 (4) | C30—C31—C32 | 119.3 (4) |
C10—C5—C4 | 119.5 (4) | C31—C32—C27 | 121.3 (4) |
C6—C5—C4 | 122.1 (4) | N6—C33—N5 | 126.6 (4) |
O3—N6—C33 | 115.4 (4) | N6—C33—C34 | 125.4 (4) |
C7—C6—C5 | 120.5 (4) | N5—C33—C34 | 108.0 (3) |
C8—C7—C6 | 120.0 (5) | C35—C34—C33 | 106.1 (4) |
C9—C8—C7 | 120.9 (5) | C35—C34—C43 | 125.5 (4) |
C5—C10—C9 | 120.2 (5) | C33—C34—C43 | 128.4 (4) |
C8—C9—C10 | 120.0 (5) | C34—C35—C36 | 108.3 (4) |
C3—C2—C1 | 105.8 (3) | N5—C36—C35 | 108.4 (4) |
C3—C2—C11 | 126.3 (4) | N5—C36—C37 | 124.3 (4) |
C1—C2—C11 | 128.0 (4) | C35—C36—C37 | 127.3 (4) |
C2—C3—C4 | 109.3 (3) | C38—C37—C42 | 117.7 (4) |
N2—C1—N1 | 126.4 (4) | C38—C37—C36 | 122.8 (4) |
N2—C1—C2 | 125.8 (4) | C42—C37—C36 | 119.4 (4) |
N1—C1—C2 | 107.5 (3) | C37—C38—C39 | 119.4 (5) |
C14—C15—C16 | 119.2 (4) | C40—C39—C38 | 122.0 (5) |
C16—C11—C12 | 117.6 (4) | C39—C40—C41 | 119.7 (5) |
C16—C11—C2 | 123.3 (4) | C40—C41—C42 | 119.9 (5) |
C12—C11—C2 | 119.1 (4) | C41—C42—C37 | 121.3 (5) |
C13—C12—C11 | 121.2 (4) | C44—C43—C48 | 117.5 (4) |
C14—C13—C12 | 118.7 (4) | C44—C43—C34 | 122.5 (4) |
C13—C14—C15 | 121.6 (4) | C48—C43—C34 | 120.0 (4) |
C13—C14—Br1 | 119.3 (3) | C45—C44—C43 | 121.2 (4) |
C15—C14—Br1 | 119.0 (3) | C44—C45—C46 | 119.5 (4) |
C18—C19—C20 | 108.3 (4) | C45—C46—C47 | 121.4 (4) |
N3—C20—C19 | 109.2 (4) | C45—C46—Br3 | 119.7 (3) |
N3—C20—C21 | 123.9 (4) | C47—C46—Br3 | 119.0 (3) |
C19—C20—C21 | 126.9 (4) | C48—C47—C46 | 118.5 (4) |
C26—C21—C22 | 116.8 (4) | C47—C48—C43 | 122.0 (4) |
C26—C21—C20 | 122.9 (4) | C11—C16—C15 | 121.6 (4) |
C22—C21—C20 | 120.3 (4) | N4—C17—N3 | 126.3 (4) |
C23—C22—C21 | 122.0 (5) | N4—C17—C18 | 125.4 (4) |
C22—C23—C24 | 119.6 (5) | N3—C17—C18 | 108.1 (3) |
C25—C24—C23 | 120.2 (5) | C19—C18—C17 | 106.2 (4) |
C24—C25—C26 | 120.7 (5) | C19—C18—C27 | 126.6 (4) |
C21—C26—C25 | 120.7 (5) | C17—C18—C27 | 127.2 (4) |
C1—N1—C4—C3 | 0.6 (5) | C30—C31—C32—C27 | 0.9 (8) |
C1—N1—C4—C5 | −177.8 (4) | C28—C27—C32—C31 | −0.4 (7) |
N1—C4—C5—C10 | 157.7 (5) | C18—C27—C32—C31 | 176.6 (4) |
C3—C4—C5—C10 | −20.4 (7) | O3—N6—C33—N5 | −0.9 (7) |
N1—C4—C5—C6 | −21.0 (7) | O3—N6—C33—C34 | 178.1 (4) |
C3—C4—C5—C6 | 160.8 (5) | C36—N5—C33—N6 | 179.3 (4) |
C10—C5—C6—C7 | 1.3 (7) | C36—N5—C33—C34 | 0.2 (5) |
C4—C5—C6—C7 | −179.9 (5) | N6—C33—C34—C35 | 179.9 (4) |
C5—C6—C7—C8 | −0.2 (8) | N5—C33—C34—C35 | −1.1 (5) |
C6—C7—C8—C9 | −1.8 (9) | N6—C33—C34—C43 | −0.2 (7) |
C6—C5—C10—C9 | −0.6 (8) | N5—C33—C34—C43 | 178.9 (4) |
C4—C5—C10—C9 | −179.4 (5) | C33—C34—C35—C36 | 1.5 (5) |
C7—C8—C9—C10 | 2.5 (10) | C43—C34—C35—C36 | −178.4 (4) |
C5—C10—C9—C8 | −1.3 (10) | C33—N5—C36—C35 | 0.7 (5) |
C1—C2—C3—C4 | −0.7 (5) | C33—N5—C36—C37 | −177.6 (4) |
C11—C2—C3—C4 | 179.4 (4) | C34—C35—C36—N5 | −1.4 (5) |
N1—C4—C3—C2 | 0.1 (5) | C34—C35—C36—C37 | 176.9 (4) |
C5—C4—C3—C2 | 178.5 (4) | N5—C36—C37—C38 | −11.7 (7) |
O1—N2—C1—N1 | 3.0 (6) | C35—C36—C37—C38 | 170.3 (5) |
O1—N2—C1—C2 | 177.2 (4) | N5—C36—C37—C42 | 166.3 (4) |
C4—N1—C1—N2 | 174.1 (4) | C35—C36—C37—C42 | −11.8 (7) |
C4—N1—C1—C2 | −1.0 (5) | C42—C37—C38—C39 | 1.2 (7) |
C3—C2—C1—N2 | −174.1 (4) | C36—C37—C38—C39 | 179.1 (5) |
C11—C2—C1—N2 | 5.9 (7) | C37—C38—C39—C40 | 1.3 (9) |
C3—C2—C1—N1 | 1.0 (5) | C38—C39—C40—C41 | −3.2 (9) |
C11—C2—C1—N1 | −179.0 (4) | C39—C40—C41—C42 | 2.6 (9) |
C3—C2—C11—C16 | −154.4 (4) | C40—C41—C42—C37 | −0.2 (8) |
C1—C2—C11—C16 | 25.7 (7) | C38—C37—C42—C41 | −1.7 (7) |
C3—C2—C11—C12 | 24.7 (7) | C36—C37—C42—C41 | −179.8 (5) |
C1—C2—C11—C12 | −155.3 (4) | C35—C34—C43—C44 | 142.3 (5) |
C16—C11—C12—C13 | 0.3 (7) | C33—C34—C43—C44 | −37.6 (7) |
C2—C11—C12—C13 | −178.8 (4) | C35—C34—C43—C48 | −35.1 (7) |
C11—C12—C13—C14 | 0.1 (7) | C33—C34—C43—C48 | 145.0 (5) |
C12—C13—C14—C15 | −0.2 (7) | C48—C43—C44—C45 | −0.3 (7) |
C12—C13—C14—Br1 | 179.7 (3) | C34—C43—C44—C45 | −177.7 (4) |
C16—C15—C14—C13 | −0.1 (7) | C43—C44—C45—C46 | 0.0 (7) |
C16—C15—C14—Br1 | 180.0 (3) | C44—C45—C46—C47 | 0.2 (7) |
C17—N3—C20—C19 | −0.6 (5) | C44—C45—C46—Br3 | −179.9 (4) |
C17—N3—C20—C21 | −178.1 (4) | C45—C46—C47—C48 | −0.1 (7) |
C18—C19—C20—N3 | 0.8 (5) | Br3—C46—C47—C48 | −180.0 (4) |
C18—C19—C20—C21 | 178.2 (4) | C46—C47—C48—C43 | −0.3 (7) |
N3—C20—C21—C26 | −4.1 (7) | C44—C43—C48—C47 | 0.5 (7) |
C19—C20—C21—C26 | 178.8 (5) | C34—C43—C48—C47 | 177.9 (4) |
N3—C20—C21—C22 | 174.2 (5) | C12—C11—C16—C15 | −0.6 (7) |
C19—C20—C21—C22 | −2.9 (7) | C2—C11—C16—C15 | 178.5 (4) |
C26—C21—C22—C23 | 1.5 (9) | C14—C15—C16—C11 | 0.5 (7) |
C20—C21—C22—C23 | −176.9 (6) | O2—N4—C17—N3 | 0.7 (6) |
C21—C22—C23—C24 | −1.5 (10) | O2—N4—C17—C18 | 175.6 (4) |
C22—C23—C24—C25 | 1.1 (11) | C20—N3—C17—N4 | 175.8 (4) |
C23—C24—C25—C26 | −0.7 (10) | C20—N3—C17—C18 | 0.2 (5) |
C22—C21—C26—C25 | −1.1 (8) | C20—C19—C18—C17 | −0.6 (5) |
C20—C21—C26—C25 | 177.2 (5) | C20—C19—C18—C27 | −179.5 (4) |
C24—C25—C26—C21 | 0.8 (10) | N4—C17—C18—C19 | −175.4 (4) |
C32—C27—C28—C29 | −0.4 (8) | N3—C17—C18—C19 | 0.3 (5) |
C18—C27—C28—C29 | −177.6 (5) | N4—C17—C18—C27 | 3.5 (7) |
C27—C28—C29—C30 | 0.6 (8) | N3—C17—C18—C27 | 179.2 (4) |
C28—C29—C30—C31 | −0.1 (8) | C32—C27—C18—C19 | −145.2 (5) |
C28—C29—C30—Br2 | 178.6 (4) | C28—C27—C18—C19 | 31.8 (7) |
C29—C30—C31—C32 | −0.7 (8) | C32—C27—C18—C17 | 36.1 (7) |
Br2—C30—C31—C32 | −179.4 (4) | C28—C27—C18—C17 | −146.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.86 | 2.10 | 2.957 (5) | 177 |
N3—H3A···O1 | 0.86 | 2.10 | 2.956 (5) | 171 |
N5—H5···O2 | 0.86 | 2.16 | 3.009 (5) | 169 |
C6—H6···N6 | 0.93 | 2.53 | 3.294 (6) | 139 |
C26—H26···N2 | 0.93 | 2.43 | 3.338 (7) | 165 |
C38—H38···N4 | 0.93 | 2.48 | 3.331 (6) | 153 |
C6—H6···O3 | 0.93 | 2.69 | 3.505 (6) | 146 |
C26—H26···O1 | 0.93 | 2.43 | 3.543 (6) | 165 |
C38—H38···O2 | 0.93 | 2.72 | 3.564 (6) | 151 |
Acknowledgements
The authors thanks Marco Leyva for collecting the crystals and crystallographic support. MFP acknowledges CONAHCYT for a postdoctoral fellowship.
Funding information
The following funding is acknowledged: Consejo Nacional de Ciencia y Tecnología (scholarship No. CVU 580380 to Mónica Farfán-Paredes).
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bui, T. T., Escande, A., Philouze, C., Cioci, G., Ghosh, S., Saint-Aman, E., Lim, J. M., Moutet, J. C., Sessler, J. L., Kim, D. & Bucher, C. (2013). J. Porphyrins Phthalocyanines, 17, 27–35. Web of Science CSD CrossRef CAS Google Scholar
Carcel, C. M., Laha, J. K., Loewe, R. S., Thamyongkit, P., Schweikart, K., Misra, V., Bocian, D. F. & Lindsey, J. S. (2004). J. Org. Chem. 69, 6739–6750. Web of Science CrossRef PubMed CAS Google Scholar
Chang, D., Chen, J., Liu, Y., Huang, H., Qin, A. & Deng, G. J. (2021). J. Org. Chem. 86, 110–127. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, F., Shen, T., Cui, Y. & Jiao, N. (2012). Org. Lett. 14, 4926–4929. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chethan Prathap, K., Shalini, P. & Lokanath, N. (2020). J. Mol. Struct. 1199, 127033. Web of Science CSD CrossRef Google Scholar
Domagala, A., Jarosz, T. & Lapkowski, M. (2015). Eur. J. Med. Chem. 100, 176–187. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ganesh, B. H., Raj, A. G., Aruchamy, B., Nanjan, P., Drago, C. & Ramani, P. (2024). ChemMedChem, 19, e202300447. Web of Science CrossRef PubMed Google Scholar
Guo, Z., Li, P., Feng, P., Liu, K. & Wei, X. (2016). IUCrData, 1, x161617. Google Scholar
Hall, M. J., McDonnell, S. O., Killoran, J. & O'Shea, D. F. (2005). J. Org. Chem. 70, 5571–5578. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jeong, E. & Lee, I. (2019). Bull. Korean Chem. Soc. 40, 668–673. Web of Science CrossRef CAS Google Scholar
Li, Z., Lu, H., Liu, Z. & Ma, X. (2019). J. Chem. Sci. 131, 26. Web of Science CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Osman, D., Cooke, A., Young, T. R., Deery, E., Robinson, N. J. & Warren, M. J. (2021). Biochim. Biophys. Acta, 1868, 118896. Web of Science CrossRef Google Scholar
Poirel, A., De Nicola, A., Retailleau, P. & Ziessel, R. (2012). J. Org. Chem. 77, 7512–7525. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rogers, M. T. (1943). J. Chem. Soc. pp. 590–596. CrossRef Google Scholar
Sajesh, K. M., Jayakumar, R., Nair, S. V. & Chennazhi, K. P. (2013). Int. J. Biol. Macromol. 62, 465–471. Web of Science CrossRef CAS PubMed Google Scholar
Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. 2010, 237–258. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.