

research papers
A polymeric form of basic iron(III) acetate with an acetic acid ligand
aUniversity of Melbourne, School of Chemistry, Grattan Street, Parkville, 3052, Australia
*Correspondence e-mail: bfa@unimelb.edu.au
A new crystalline compound, catena-poly[hexa-μ-acetato-(acetic acid)-μ3-oxido-triangulo-triiron(III)]-μ-acetato], [Fe3(C2H3O2)7O(C2H4O2)]n, incorporating the basic ferric acetate unit, has been obtained from an acetic anhydride solution of hydrated iron(III) nitrate. The crystals have the composition Fe3O(OAc)7(HOAc) (HOAc is acetic acid) and include the well-known [Fe3O(OAc)6]+ unit, in which the FeIII centres are linked to a central coplanar μ3-oxido ligand. Acetate ions provide bridges between pairs of FeIII centres. These individual [Fe3O(OAc)6]+ units are linked by additional bridging acetate anions to form zigzag chains. The bridging acetate ions coordinate to a position trans to the oxido group on two of the FeIII centres. Remarkably, the trans site on the third FeIII centre is occupied by the carbonyl group of an acetic acid molecule. This is the first reported case of an acetic acid molecule coordinating to an FeIII centre. Not surprisingly, the acetic acid molecule is only weakly coordinating, resulting in a short Fe—O(oxido) bond trans to the carbonyl group. The trans influence apparent in this structure provides an interesting contrast with the structurally similar MnIII analogue, in which the corresponding pair of trans bonds are both elongated because of the Jahn–Teller effect.
Keywords: crystal structure; coordination polymer; Jahn–Teller effect; trans influence; coordinated acetic acid; oxo bridge; trinuclear; basic ferric acetate.
CCDC reference: 2395499
1. Introduction
In the field of coordination chemistry, carboxylate ions feature prominently in the formation of a wide variety of metal complexes. Although the carboxylate group is capable of II centres (van Niekerk & Schoening, 1953). A similar structure is adopted by molybdenum acetate, which features a remarkable quadruple bond between the MoII centres (Lawton & Mason, 1965
; Cotton et al., 2005
). In the case of basic zinc acetate, four ZnII centres, at the vertices of a tetrahedron, are bound to a central oxido anion (μ4), while six acetate anions bridge pairs of ZnII centres along the six edges of the tetrahedron (Wyart, 1926
). The six methyl groups are oriented outwards towards the vertices of an octahedron. Basic beryllium acetate adopts a similar structure (Pauling & Sherman, 1934
).
The basic ferric acetate cation contains the [Fe3O(OAc)6]+ unit and consists of a planar μ3-oxido group bound to a trio of FeIII centres at the vertices of what is essentially an equilateral triangle (e.g. Anson et al., 1987; Balić et al., 2021
; Abánades Lázaro et al., 2023
). Each pair of FeIII centres is bridged by a pair of acetate anions, one above and one below the plane of the Fe3O entity, to give a unit which has approximate D3h symmetry. The site trans to the oxido group on each metal is typically occupied by a monodentate ligand such as water. The methyl groups in this complex are directed towards the vertices of a trigonal prism. This type of unit may also be generated with trivalent Cr (Figgis & Robertson, 1965
), Mn (Hessel & Romers, 1969
) and Ru (Nikolaou et al., 2023
) centres, and can also exist for metals in mixed +2 and +3 oxidation states (Sato et al., 1996
; Wei et al., 2020
). Within the Cambridge Structural Database (CSD; Version 5.45, March 2024 release; Groom et al., 2016
), 83 structures have been reported which contain the [Fe3O(OAc)6L3] unit, where L may be a neutral or charged ligand. The net charge on the [Fe3O(OAc)6L3] complex is typically balanced by a non-coordinating ion, such as chloride or perchlorate.
In the current work, we report the serendipitous isolation of basic ferric acetate crystals which display a significant distortion from the symmetric oxido bridge that is commonly observed with basic ferric carboxylate structures and rationalize this reduced symmetry in terms of a significant trans influence.
2. Experimental
2.1. Synthesis and crystallization
In an attempt to prepare Fe-based coordination polymers incorporating the dianion of hydroxybenzoic acid (H2hba), three acetic anhydride (Ac2O) solutions were prepared. Fe(NO3)3·9H2O (202 mg) was dissolved in Ac2O (3 ml), H2hba (110 mg) was dissolved in Ac2O (2 ml) and LiOAc (255 mg) was dissolved in Ac2O (3 ml). The solutions were mixed and heated to boiling on a hotplate. Small red–brown crystals were obtained from the cooled solution.
2.2. Refinement
Crystal data, data collection and structure . The H atoms were placed in calculated positions and refined as riding atoms, with Uiso(H) = 1.5Ueq(C) and C—H = 0.99 Å for methyl groups, and Uiso(H) = 1.5Ueq(O) and O—H = 0.85 Å for the hydroxy H atom.
|
Whilst the coordinated acetic acid molecule was clearly defined in the solution and subsequent ), with the occupancies for the major and minor positions refining to 86 and 14%, respectively. The carbonyl O atom was common to both orientations. For each of the positions of the acetic acid molecule, the hydroxyl group forms a hydrogen-bonding interaction with a neighbouring O atom of a coordinated acetate group [O15⋯O1 = 2.598 (6) Å and O15A⋯O12 = 2.62 (3) Å]. A peak of electron density (0.35 e Å−3) was apparent between O15 and O1 (corresponding to the major orientation), and was consistent with the hydroxyl H atom. Hydroxyl H atoms were assigned, riding on O15 and O15A, with appropriate site occupancies. Details of the refinements can be found in the embedded instruction files in the CIF file.
![]() | Figure 1 The structure of 1, showing the disordered acetic acid group (top) with the atom-labelling scheme. The acetate group coordinated to Fe2 is also shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hydrogen-bonding interactions. |
3. Results and discussion
The combination of Fe(NO3)3, H2hba and LiOAc in acetic anhydride yielded crystals of composition Fe3O(OAc)7(HOAc) (1). The structure consists of the common basic ferric acetate core in which three crystallographically distinct FeIII centres bind to a central oxido dianion and six acetate ligands, each in a syn–syn conformation, spanning pairs of FeIII centres, as indicated in Fig. 1. Whilst the [Fe3O(O2CR)6]+ unit (R = alkyl or aryl group) is a common fragment, the structure reported here is unique because of the ligands that are trans to the oxido group on each Fe centre. The trans sites on two of the Fe centres are occupied by bridging acetate anions which adopt a syn–anti configuration. These two anions are symmetry related to each other and result in the formation of a zigzag chain which extends parallel to the a direction, as indicated in Fig. 2
. With the [Fe3O(OAc)6]+ units bridged by a pair of acetate anions to symmetry-related counterparts, charge balance is achieved for this 1D coordination polymer.
![]() | Figure 2 The polymeric structure of 1, showing the zigzag chain extending in the a direction. C—O and C—C bonds are indicated by orange connections, Fe—O bonds by green connections and hydrogen bonds between the acetic acid hydroxyl O atoms and neighbouring acetate O atoms by striped connections. H atoms have been omitted for clarity. |
Only a neutral ligand is required to complete the octahedral geometry on the remaining Fe centre. Ligands such as water could normally fulfil this role, but under anhydrous conditions, obtained using a solvent such as acetic anhydride, this is not possible. Remarkably, an acetic acid molecule coordinates to this Fe centre, as indicated in Figs. 1 and 2
. The neutral molecule coordinates through a carbonyl O atom, while the hydroxyl group forms a geometrically favourable hydrogen bond with a coordinated O atom of a neighbouring acetate anion. The carbonyl bond distance (C15—O16) of 1.207 (7) Å is significantly shorter than the C—OH bond [C15—O15 = 1.329 (8) Å]. Whilst the difference in C—O bond distances is expected for an acetic acid molecule, it contrasts with the acetate anions, in which the C—O bonds have an intermediate bond length (∼1.25 Å).
The [Fe3O(OAc)6(H2O)3]+ fragment which is present in numerous crystal structures possesses a μ3-oxido anion that forms Fe—O bonds of relatively similar length (see Table 2). In contrast, the three Fe—O(oxido) bond lengths in 1 show significant variation (Table 3
), with the Fe—O bond (Fe3—O17) trans to the coordinated acetic acid being significantly shorter [1.872 (3) Å] than the other Fe—O bonds which are trans to a bridging acetate anion [1.921 (3) and 1.940 (3) Å for Fe1—O17 and Fe2—O17, respectively]. This would appear to indicate a trans influence associated with the relatively weak coordination of the carbonyl O atom from the acetic acid molecule, which displays an Fe—O bond length of 2.144 (3) Å (Fe3—O16). In contrast, the bond lengths involving the acetate O atoms trans to O17 on Fe1 and Fe2 are 2.012 (3) and 2.014 (3) Å, respectively. Further distortion of the octahedral coordination geometry of Fe3 is apparent with the Fe centre lying 0.2585 (19) Å out of the plane of the acetate O atoms (O1, O10, O12 and O14) towards the μ3-oxido atom (O17). In contrast, Fe1 and Fe2 lie only 0.1352 (17) and 0.1202 (19) Å, respectively, out of the plane of the corresponding acetate O atoms.
|
|
To the best of our knowledge, this is the first recorded example of the coordination of an acetic acid molecule to an FeIII centre (CSD; Groom et al., 2016). This is perhaps not surprising given that in its acid form, the of acetic acid is expected to be very low. Its coordination in this present case may be attributed to the absence of solvent molecules that can serve as Lewis bases and the fact that the hydroxyl group of the acetic acid molecule is in an ideal position to form a relatively strong hydrogen bond with a neighbouring coordinated O atom [O15⋯O1 = 2.598 (6) Å and O15A⋯O12 = 2.62 (3) Å].
Although there are numerous potential O-atom acceptor sites for hydrogen bonding, the only O—H donor group, belonging to the acetic acid molecule, forms an intrachain hydrogen bond (O15⋯O1 or O15A⋯O12). As a result, there are only relatively weak intermolecular contacts between chains.
The structure of 1 is similar to that of Mn3O(OAc)7(HOAc), which contains MnIII centres, and adopts the same as Fe3O(OAc)7(HOAc) [Pbca, a = 15.8661 (3), b = 15.864 (3) and c = 19.5003 (5) Å] and Mn3O(OAc)7(HOAc) [Pbca, a = 16.07 (3), b = 19.84 (3) and c = 15.80 (2) Å] (Hessel & Romers, 1969). Despite the clear similarities in the general structure, there are some important differences associated with the high-spin d4 configuration of the MnIII centre which result in Jahn–Teller tetragonally distorted octahedral coordination environments for the three MnIII centres. For each Mn centre, there are four short bonds to O atoms that form an approximate square plane and two longer Mn—O bonds that are trans to each other. In the case of the MnIII centre coordinated by the acetic acid molecule, the two long bonds are the Mn—O(carbonyl) bond of the acetic acid molecule [2.33 (4) Å] and the Mn—μ3-O bond [2.11 (4) Å]. For the remaining two Mn centres, the Mn—μ3-O bonds are very short [1.85 (4) and 1.86 (4) Å], with the longer Mn—O bonds involving a pair of acetate O atoms that are trans to each other. The basicity of the oxido ligand would normally mean that it would form the shortest metal–oxygen bonds, but the poor basicity of the acetic acid ligand results in the Mn—O(carbonyl) bond and its trans-O atom (the μ3-oxido ligand) being the long bonds in the tetragonally distorted octahedral environment.
A remarkable contrast in the electronic effect of the poorly coordinating acetic acid molecule is apparent in the schematic representation of the Fe and Mn structures presented in Fig. 3. Whereas the acetic acid molecule exerts a trans influence in the Fe structure, leading to a shortening of the Fe—μ3-O bond, the effect of the acetic acid in the Mn structure is to cause the trans Mn—μ3-O bond to become elongated.
![]() | Figure 3 A schematic representation comparing selected metal–oxygen bond lengths in Fe3O(OAc)7(HOAc) and Mn3O(OAc)7(HOAc). |
4. Conclusion
Compound 1 provides another example of a classic basic metal carboxylate structure, but unlike previous examples, the absence of common coordinating solvent molecules or neutral co-ligands results in the rare coordination of an acetic acid molecule to an FeIII centre. Acetate ions provide a bridge between symmetry-related units, leading to the formation of a zigzag chain. A trans influence results in a short Fe—O bond opposite the acetic acid carbonyl O atom, which contrasts with the behaviour of the structurally similar compound, Mn3O(OAc)7(HOAc), where a Jahn–Teller distortion results in the opposite effect, i.e. a lengthening of the Mn—O bond trans to the acetic acid.
Supporting information
CCDC reference: 2395499
https://doi.org/10.1107/S2053229624010672/jx3089sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229624010672/jx3089Isup2.hkl
[Fe3(C2H3O2)7O(C2H4O2)] | Dx = 1.778 Mg m−3 |
Mr = 656.91 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 8086 reflections |
a = 15.8661 (3) Å | θ = 4.5–71.3° |
b = 15.8640 (3) Å | µ = 14.77 mm−1 |
c = 19.5003 (5) Å | T = 100 K |
V = 4908.22 (18) Å3 | Irregular, clear red |
Z = 8 | 0.17 × 0.06 × 0.03 mm |
F(000) = 2680 |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 5150 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3889 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.097 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 78.0°, θmin = 4.5° |
ω scans | h = −19→19 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2023) | k = −19→11 |
Tmin = 0.408, Tmax = 1.000 | l = −24→24 |
38581 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.056 | w = 1/[σ2(Fo2) + (0.0809P)2 + 9.0225P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.156 | (Δ/σ)max = 0.002 |
S = 1.06 | Δρmax = 0.88 e Å−3 |
5150 reflections | Δρmin = −0.77 e Å−3 |
365 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 restraints | Extinction coefficient: 0.00020 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe2 | 0.87313 (4) | 0.56380 (4) | 0.24593 (4) | 0.02289 (19) | |
Fe1 | 0.69003 (4) | 0.58646 (4) | 0.32908 (4) | 0.02231 (19) | |
Fe3 | 0.86841 (4) | 0.65690 (4) | 0.39570 (4) | 0.0246 (2) | |
O17 | 0.80980 (18) | 0.60338 (18) | 0.32468 (16) | 0.0224 (6) | |
O7 | 0.6692 (2) | 0.6388 (2) | 0.23676 (18) | 0.0292 (7) | |
O4 | 0.4361 (2) | 0.5158 (2) | 0.33477 (18) | 0.0292 (7) | |
O3 | 0.5648 (2) | 0.5676 (2) | 0.33395 (18) | 0.0288 (7) | |
O11 | 0.6673 (2) | 0.70114 (19) | 0.37278 (19) | 0.0314 (8) | |
O13 | 0.9305 (2) | 0.67555 (19) | 0.23243 (18) | 0.0298 (8) | |
O5 | 0.69210 (19) | 0.47004 (19) | 0.28768 (19) | 0.0295 (7) | |
O9 | 0.9673 (2) | 0.5171 (2) | 0.30472 (18) | 0.0307 (8) | |
O10 | 0.9534 (2) | 0.5655 (2) | 0.41216 (19) | 0.0322 (8) | |
O8 | 0.7843 (2) | 0.6014 (2) | 0.17790 (19) | 0.0352 (8) | |
O2 | 0.6976 (2) | 0.5356 (2) | 0.42557 (19) | 0.0339 (8) | |
O16 | 0.9358 (2) | 0.7203 (2) | 0.47589 (18) | 0.0348 (8) | |
O12 | 0.7907 (2) | 0.7583 (2) | 0.40255 (19) | 0.0317 (8) | |
O1 | 0.8000 (2) | 0.6079 (2) | 0.47643 (19) | 0.0344 (8) | |
O6 | 0.8212 (2) | 0.4476 (2) | 0.2477 (2) | 0.0346 (8) | |
O14 | 0.9501 (2) | 0.7225 (2) | 0.33875 (18) | 0.0323 (8) | |
C13 | 0.9627 (3) | 0.7250 (3) | 0.2750 (3) | 0.0253 (9) | |
O15 | 0.8500 (3) | 0.7198 (3) | 0.5652 (3) | 0.0495 (14) | 0.850 (8) |
H15 | 0.821447 | 0.688590 | 0.539268 | 0.074* | 0.850 (8) |
C5 | 0.7475 (3) | 0.4246 (3) | 0.2606 (3) | 0.0250 (9) | |
C7 | 0.7123 (3) | 0.6351 (3) | 0.1831 (3) | 0.0259 (10) | |
C9 | 0.9860 (3) | 0.5190 (3) | 0.3674 (3) | 0.0293 (10) | |
C1 | 0.7361 (3) | 0.5594 (3) | 0.4776 (3) | 0.0270 (10) | |
C3 | 0.5125 (3) | 0.5120 (3) | 0.3514 (3) | 0.0253 (9) | |
C11 | 0.7128 (3) | 0.7610 (3) | 0.3938 (2) | 0.0278 (10) | |
C6 | 0.7230 (3) | 0.3367 (3) | 0.2417 (3) | 0.0320 (11) | |
H6A | 0.682388 | 0.314990 | 0.275183 | 0.048* | |
H6B | 0.773259 | 0.300695 | 0.241520 | 0.048* | |
H6C | 0.697431 | 0.336593 | 0.195960 | 0.048* | |
C4 | 0.5384 (3) | 0.4397 (3) | 0.3960 (3) | 0.0336 (12) | |
H4A | 0.549084 | 0.460065 | 0.442612 | 0.050* | |
H4B | 0.589895 | 0.414139 | 0.377524 | 0.050* | |
H4C | 0.493312 | 0.397515 | 0.396934 | 0.050* | |
C14 | 1.0197 (3) | 0.7930 (3) | 0.2485 (3) | 0.0352 (12) | |
H14A | 1.053732 | 0.770803 | 0.210628 | 0.053* | |
H14B | 1.056951 | 0.812081 | 0.285465 | 0.053* | |
H14C | 0.985750 | 0.840483 | 0.232126 | 0.053* | |
C12 | 0.6682 (4) | 0.8427 (3) | 0.4106 (3) | 0.0382 (12) | |
H12A | 0.636010 | 0.861675 | 0.370641 | 0.057* | |
H12B | 0.710021 | 0.885706 | 0.422859 | 0.057* | |
H12C | 0.629890 | 0.833816 | 0.449360 | 0.057* | |
C8 | 0.6745 (4) | 0.6726 (4) | 0.1193 (3) | 0.0397 (13) | |
H8A | 0.657673 | 0.627291 | 0.088004 | 0.060* | |
H8B | 0.716247 | 0.708712 | 0.096733 | 0.060* | |
H8C | 0.624956 | 0.706268 | 0.131574 | 0.060* | |
C10 | 1.0550 (4) | 0.4610 (3) | 0.3906 (3) | 0.0423 (14) | |
H10A | 1.034602 | 0.402678 | 0.389846 | 0.063* | |
H10B | 1.072022 | 0.475906 | 0.437376 | 0.063* | |
H10C | 1.103467 | 0.466451 | 0.359779 | 0.063* | |
C15 | 0.9169 (5) | 0.7483 (4) | 0.5314 (4) | 0.0362 (19) | 0.850 (8) |
C2 | 0.7063 (4) | 0.5301 (5) | 0.5458 (3) | 0.0504 (16) | |
H2A | 0.653924 | 0.559370 | 0.557694 | 0.076* | |
H2B | 0.749346 | 0.542475 | 0.580460 | 0.076* | |
H2C | 0.696120 | 0.469244 | 0.544262 | 0.076* | |
C16 | 0.9628 (6) | 0.8159 (5) | 0.5663 (5) | 0.041 (2) | 0.850 (8) |
H16A | 1.012794 | 0.831020 | 0.539496 | 0.062* | 0.850 (8) |
H16B | 0.980186 | 0.796539 | 0.611914 | 0.062* | 0.850 (8) |
H16C | 0.926183 | 0.865299 | 0.570982 | 0.062* | 0.850 (8) |
C15A | 0.926 (3) | 0.771 (2) | 0.5208 (16) | 0.038 (6) | 0.150 (8) |
O15A | 0.8598 (19) | 0.821 (2) | 0.5135 (18) | 0.065 (5) | 0.150 (8) |
H15A | 0.843372 | 0.819542 | 0.472593 | 0.097* | 0.150 (8) |
C16A | 0.990 (3) | 0.794 (3) | 0.570 (3) | 0.043 (9) | 0.150 (8) |
H16D | 0.996531 | 0.748040 | 0.603652 | 0.064* | 0.150 (8) |
H16E | 0.972879 | 0.845437 | 0.594350 | 0.064* | 0.150 (8) |
H16F | 1.043516 | 0.803482 | 0.546737 | 0.064* | 0.150 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe2 | 0.0191 (3) | 0.0204 (3) | 0.0292 (4) | −0.0017 (3) | 0.0015 (3) | −0.0018 (3) |
Fe1 | 0.0189 (3) | 0.0191 (3) | 0.0290 (4) | 0.0005 (3) | 0.0002 (3) | −0.0002 (3) |
Fe3 | 0.0220 (4) | 0.0230 (4) | 0.0288 (4) | −0.0008 (3) | −0.0007 (3) | −0.0013 (3) |
O17 | 0.0196 (15) | 0.0203 (14) | 0.0272 (17) | 0.0004 (12) | 0.0008 (13) | −0.0011 (12) |
O7 | 0.0255 (17) | 0.0307 (17) | 0.0315 (19) | −0.0002 (13) | −0.0009 (14) | 0.0059 (14) |
O4 | 0.0201 (16) | 0.0346 (17) | 0.0328 (19) | −0.0019 (13) | −0.0035 (14) | 0.0079 (14) |
O3 | 0.0226 (16) | 0.0248 (15) | 0.039 (2) | 0.0024 (13) | −0.0004 (14) | 0.0030 (14) |
O11 | 0.0258 (17) | 0.0249 (16) | 0.043 (2) | −0.0016 (13) | 0.0060 (15) | −0.0087 (15) |
O13 | 0.0314 (18) | 0.0217 (15) | 0.036 (2) | −0.0021 (13) | 0.0059 (15) | −0.0027 (13) |
O5 | 0.0227 (16) | 0.0236 (15) | 0.042 (2) | −0.0023 (13) | 0.0002 (15) | −0.0112 (14) |
O9 | 0.0257 (17) | 0.0348 (18) | 0.0317 (19) | 0.0055 (14) | 0.0016 (14) | 0.0003 (15) |
O10 | 0.0289 (18) | 0.0302 (17) | 0.038 (2) | 0.0060 (14) | −0.0074 (15) | −0.0021 (15) |
O8 | 0.0291 (18) | 0.041 (2) | 0.035 (2) | 0.0066 (15) | −0.0031 (15) | −0.0037 (16) |
O2 | 0.0312 (19) | 0.0387 (19) | 0.0319 (19) | −0.0089 (15) | −0.0003 (15) | 0.0091 (15) |
O16 | 0.037 (2) | 0.0362 (19) | 0.0316 (19) | −0.0045 (15) | −0.0047 (16) | −0.0113 (16) |
O12 | 0.0285 (18) | 0.0244 (16) | 0.042 (2) | 0.0044 (13) | −0.0041 (15) | −0.0062 (14) |
O1 | 0.0339 (19) | 0.0403 (19) | 0.0289 (18) | −0.0093 (15) | 0.0007 (15) | 0.0015 (15) |
O6 | 0.0275 (18) | 0.0236 (16) | 0.053 (2) | −0.0048 (14) | 0.0095 (16) | −0.0080 (15) |
O14 | 0.0310 (18) | 0.0332 (17) | 0.0326 (19) | −0.0112 (14) | −0.0005 (15) | −0.0008 (15) |
C13 | 0.022 (2) | 0.022 (2) | 0.032 (3) | 0.0028 (17) | −0.0008 (19) | −0.0006 (18) |
O15 | 0.046 (3) | 0.055 (3) | 0.047 (3) | −0.011 (2) | 0.006 (2) | −0.009 (2) |
C5 | 0.020 (2) | 0.020 (2) | 0.035 (3) | −0.0013 (17) | 0.0028 (19) | 0.0008 (18) |
C7 | 0.029 (2) | 0.017 (2) | 0.031 (3) | 0.0007 (17) | −0.004 (2) | −0.0014 (17) |
C9 | 0.026 (2) | 0.018 (2) | 0.044 (3) | 0.0015 (17) | 0.000 (2) | 0.000 (2) |
C1 | 0.021 (2) | 0.029 (2) | 0.031 (3) | −0.0005 (18) | −0.003 (2) | 0.0018 (19) |
C3 | 0.020 (2) | 0.025 (2) | 0.031 (2) | −0.0039 (17) | −0.0010 (19) | −0.0004 (18) |
C11 | 0.035 (3) | 0.023 (2) | 0.025 (2) | −0.0001 (19) | 0.005 (2) | −0.0026 (18) |
C6 | 0.028 (2) | 0.021 (2) | 0.047 (3) | −0.0010 (19) | −0.001 (2) | −0.004 (2) |
C4 | 0.023 (2) | 0.031 (2) | 0.046 (3) | −0.0057 (19) | −0.004 (2) | 0.010 (2) |
C14 | 0.032 (3) | 0.028 (2) | 0.045 (3) | −0.005 (2) | −0.001 (2) | 0.000 (2) |
C12 | 0.043 (3) | 0.027 (2) | 0.045 (3) | 0.009 (2) | 0.000 (3) | −0.005 (2) |
C8 | 0.042 (3) | 0.040 (3) | 0.036 (3) | 0.003 (2) | −0.008 (2) | 0.004 (2) |
C10 | 0.036 (3) | 0.036 (3) | 0.055 (4) | 0.009 (2) | −0.015 (3) | −0.004 (2) |
C15 | 0.041 (4) | 0.024 (4) | 0.043 (4) | 0.003 (3) | 0.000 (3) | 0.002 (3) |
C2 | 0.040 (3) | 0.075 (4) | 0.035 (3) | −0.022 (3) | −0.005 (3) | 0.019 (3) |
C16 | 0.045 (5) | 0.039 (5) | 0.040 (4) | −0.008 (4) | −0.007 (4) | −0.008 (4) |
C15A | 0.049 (9) | 0.017 (11) | 0.047 (10) | −0.001 (9) | 0.004 (9) | −0.001 (10) |
O15A | 0.057 (9) | 0.069 (9) | 0.068 (10) | 0.003 (8) | −0.001 (9) | −0.015 (9) |
C16A | 0.058 (18) | 0.026 (17) | 0.046 (15) | 0.003 (15) | −0.006 (15) | 0.004 (14) |
Fe2—O17 | 1.940 (3) | C5—C6 | 1.494 (6) |
Fe2—O4i | 2.014 (3) | C7—C8 | 1.504 (7) |
Fe2—O13 | 2.010 (3) | C9—C10 | 1.500 (7) |
Fe2—O9 | 2.023 (3) | C1—C2 | 1.485 (7) |
Fe2—O8 | 2.026 (4) | C3—C4 | 1.496 (7) |
Fe2—O6 | 2.020 (3) | C11—C12 | 1.513 (7) |
Fe1—O17 | 1.921 (3) | C6—H6A | 0.9800 |
Fe1—O7 | 2.010 (3) | C6—H6B | 0.9800 |
Fe1—O3 | 2.012 (3) | C6—H6C | 0.9800 |
Fe1—O11 | 2.041 (3) | C4—H4A | 0.9800 |
Fe1—O5 | 2.016 (3) | C4—H4B | 0.9800 |
Fe1—O2 | 2.051 (4) | C4—H4C | 0.9800 |
Fe3—O17 | 1.872 (3) | C14—H14A | 0.9800 |
Fe3—O10 | 2.006 (3) | C14—H14B | 0.9800 |
Fe3—O16 | 2.144 (3) | C14—H14C | 0.9800 |
Fe3—O12 | 2.030 (3) | C12—H12A | 0.9800 |
Fe3—O1 | 2.064 (4) | C12—H12B | 0.9800 |
Fe3—O14 | 1.999 (3) | C12—H12C | 0.9800 |
O7—C7 | 1.252 (6) | C8—H8A | 0.9800 |
O4—C3 | 1.256 (6) | C8—H8B | 0.9800 |
O3—C3 | 1.258 (5) | C8—H8C | 0.9800 |
O11—C11 | 1.261 (6) | C10—H10A | 0.9800 |
O13—C13 | 1.250 (6) | C10—H10B | 0.9800 |
O5—C5 | 1.253 (5) | C10—H10C | 0.9800 |
O9—C9 | 1.259 (6) | C15—C16 | 1.464 (9) |
O10—C9 | 1.254 (6) | C2—H2A | 0.9800 |
O8—C7 | 1.265 (6) | C2—H2B | 0.9800 |
O2—C1 | 1.243 (6) | C2—H2C | 0.9800 |
O16—C15 | 1.207 (7) | C16—H16A | 0.9800 |
O16—C15A | 1.201 (12) | C16—H16B | 0.9800 |
O12—C11 | 1.250 (6) | C16—H16C | 0.9800 |
O1—C1 | 1.272 (6) | C15A—O15A | 1.320 (19) |
O6—C5 | 1.252 (5) | C15A—C16A | 1.45 (2) |
O14—C13 | 1.261 (6) | O15A—H15A | 0.8400 |
C13—C14 | 1.500 (7) | C16A—H16D | 0.9800 |
O15—H15 | 0.8400 | C16A—H16E | 0.9800 |
O15—C15 | 1.329 (8) | C16A—H16F | 0.9800 |
O17—Fe2—O4i | 176.57 (13) | O9—C9—C10 | 116.8 (5) |
O17—Fe2—O13 | 93.02 (13) | O10—C9—O9 | 126.3 (4) |
O17—Fe2—O9 | 93.01 (13) | O10—C9—C10 | 116.9 (5) |
O17—Fe2—O8 | 93.58 (14) | O2—C1—O1 | 124.0 (5) |
O17—Fe2—O6 | 94.07 (14) | O2—C1—C2 | 118.7 (4) |
O4i—Fe2—O9 | 86.44 (14) | O1—C1—C2 | 117.3 (5) |
O4i—Fe2—O8 | 86.85 (14) | O4—C3—O3 | 122.2 (4) |
O4i—Fe2—O6 | 82.53 (14) | O4—C3—C4 | 116.9 (4) |
O13—Fe2—O4i | 90.39 (14) | O3—C3—C4 | 120.9 (4) |
O13—Fe2—O9 | 93.62 (14) | O11—C11—C12 | 116.7 (5) |
O13—Fe2—O8 | 88.24 (15) | O12—C11—O11 | 125.8 (4) |
O13—Fe2—O6 | 172.74 (15) | O12—C11—C12 | 117.5 (4) |
O9—Fe2—O8 | 173.05 (15) | C5—C6—H6A | 109.5 |
O6—Fe2—O9 | 87.54 (15) | C5—C6—H6B | 109.5 |
O6—Fe2—O8 | 89.79 (15) | C5—C6—H6C | 109.5 |
O17—Fe1—O7 | 93.73 (14) | H6A—C6—H6B | 109.5 |
O17—Fe1—O3 | 179.44 (13) | H6A—C6—H6C | 109.5 |
O17—Fe1—O11 | 93.97 (13) | H6B—C6—H6C | 109.5 |
O17—Fe1—O5 | 95.39 (13) | C3—C4—H4A | 109.5 |
O17—Fe1—O2 | 92.17 (13) | C3—C4—H4B | 109.5 |
O7—Fe1—O3 | 86.63 (14) | C3—C4—H4C | 109.5 |
O7—Fe1—O11 | 88.66 (15) | H4A—C4—H4B | 109.5 |
O7—Fe1—O5 | 91.29 (14) | H4A—C4—H4C | 109.5 |
O7—Fe1—O2 | 173.71 (14) | H4B—C4—H4C | 109.5 |
O3—Fe1—O11 | 86.47 (13) | C13—C14—H14A | 109.5 |
O3—Fe1—O5 | 84.17 (13) | C13—C14—H14B | 109.5 |
O3—Fe1—O2 | 87.49 (14) | C13—C14—H14C | 109.5 |
O11—Fe1—O2 | 88.75 (15) | H14A—C14—H14B | 109.5 |
O5—Fe1—O11 | 170.63 (13) | H14A—C14—H14C | 109.5 |
O5—Fe1—O2 | 90.34 (15) | H14B—C14—H14C | 109.5 |
O17—Fe3—O10 | 97.15 (14) | C11—C12—H12A | 109.5 |
O17—Fe3—O16 | 178.92 (14) | C11—C12—H12B | 109.5 |
O17—Fe3—O12 | 96.11 (14) | C11—C12—H12C | 109.5 |
O17—Fe3—O1 | 97.59 (14) | H12A—C12—H12B | 109.5 |
O17—Fe3—O14 | 98.45 (14) | H12A—C12—H12C | 109.5 |
O10—Fe3—O16 | 83.53 (14) | H12B—C12—H12C | 109.5 |
O10—Fe3—O12 | 165.93 (15) | C7—C8—H8A | 109.5 |
O10—Fe3—O1 | 87.65 (15) | C7—C8—H8B | 109.5 |
O12—Fe3—O16 | 83.28 (14) | C7—C8—H8C | 109.5 |
O12—Fe3—O1 | 85.95 (15) | H8A—C8—H8B | 109.5 |
O1—Fe3—O16 | 83.27 (14) | H8A—C8—H8C | 109.5 |
O14—Fe3—O10 | 91.69 (15) | H8B—C8—H8C | 109.5 |
O14—Fe3—O16 | 80.68 (14) | C9—C10—H10A | 109.5 |
O14—Fe3—O12 | 91.01 (15) | C9—C10—H10B | 109.5 |
O14—Fe3—O1 | 163.90 (14) | C9—C10—H10C | 109.5 |
Fe1—O17—Fe2 | 120.18 (16) | H10A—C10—H10B | 109.5 |
Fe3—O17—Fe2 | 118.37 (15) | H10A—C10—H10C | 109.5 |
Fe3—O17—Fe1 | 121.44 (16) | H10B—C10—H10C | 109.5 |
C7—O7—Fe1 | 129.8 (3) | O16—C15—O15 | 121.1 (6) |
C3—O4—Fe2ii | 134.3 (3) | O16—C15—C16 | 124.3 (7) |
C3—O3—Fe1 | 140.3 (3) | O15—C15—C16 | 114.6 (6) |
C11—O11—Fe1 | 134.9 (3) | C1—C2—H2A | 109.5 |
C13—O13—Fe2 | 130.6 (3) | C1—C2—H2B | 109.5 |
C5—O5—Fe1 | 135.0 (3) | C1—C2—H2C | 109.5 |
C9—O9—Fe2 | 135.7 (3) | H2A—C2—H2B | 109.5 |
C9—O10—Fe3 | 126.2 (3) | H2A—C2—H2C | 109.5 |
C7—O8—Fe2 | 134.5 (3) | H2B—C2—H2C | 109.5 |
C1—O2—Fe1 | 131.2 (3) | C15—C16—H16A | 109.5 |
C15—O16—Fe3 | 134.6 (4) | C15—C16—H16B | 109.5 |
C15A—O16—Fe3 | 141.4 (18) | C15—C16—H16C | 109.5 |
C11—O12—Fe3 | 128.3 (3) | H16A—C16—H16B | 109.5 |
C1—O1—Fe3 | 131.3 (3) | H16A—C16—H16C | 109.5 |
C5—O6—Fe2 | 130.6 (3) | H16B—C16—H16C | 109.5 |
C13—O14—Fe3 | 131.9 (3) | O16—C15A—O15A | 115 (3) |
O13—C13—O14 | 124.8 (4) | O16—C15A—C16A | 124 (3) |
O13—C13—C14 | 118.0 (5) | O15A—C15A—C16A | 119 (2) |
O14—C13—C14 | 117.2 (4) | C15A—O15A—H15A | 109.5 |
C15—O15—H15 | 109.5 | C15A—C16A—H16D | 109.5 |
O5—C5—C6 | 117.4 (4) | C15A—C16A—H16E | 109.5 |
O6—C5—O5 | 125.0 (4) | C15A—C16A—H16F | 109.5 |
O6—C5—C6 | 117.7 (4) | H16D—C16A—H16E | 109.5 |
O7—C7—O8 | 125.5 (5) | H16D—C16A—H16F | 109.5 |
O7—C7—C8 | 117.1 (4) | H16E—C16A—H16F | 109.5 |
O8—C7—C8 | 117.4 (5) | ||
Fe2ii—O4—C3—O3 | 30.4 (7) | Fe3—O10—C9—O9 | −5.2 (7) |
Fe2ii—O4—C3—C4 | −152.1 (4) | Fe3—O10—C9—C10 | 173.7 (3) |
Fe2—O13—C13—O14 | −15.8 (7) | Fe3—O16—C15—O15 | 23.5 (11) |
Fe2—O13—C13—C14 | 164.9 (3) | Fe3—O16—C15—C16 | −155.5 (6) |
Fe2—O9—C9—O10 | −12.1 (8) | Fe3—O16—C15A—O15A | −21 (7) |
Fe2—O9—C9—C10 | 168.9 (4) | Fe3—O16—C15A—C16A | 175 (3) |
Fe2—O8—C7—O7 | −15.6 (7) | Fe3—O12—C11—O11 | −6.6 (8) |
Fe2—O8—C7—C8 | 165.4 (4) | Fe3—O12—C11—C12 | 172.5 (4) |
Fe2—O6—C5—O5 | −13.5 (8) | Fe3—O1—C1—O2 | −5.0 (7) |
Fe2—O6—C5—C6 | 165.7 (4) | Fe3—O1—C1—C2 | 175.0 (4) |
Fe1—O7—C7—O8 | −6.2 (7) | Fe3—O14—C13—O13 | −9.6 (7) |
Fe1—O7—C7—C8 | 172.7 (3) | Fe3—O14—C13—C14 | 169.7 (3) |
Fe1—O3—C3—O4 | −165.5 (4) | O10—Fe3—O17—Fe2 | −53.88 (19) |
Fe1—O3—C3—C4 | 17.1 (8) | O10—Fe3—O17—Fe1 | 125.52 (19) |
Fe1—O11—C11—O12 | −12.3 (8) | O12—Fe3—O17—Fe2 | 130.85 (18) |
Fe1—O11—C11—C12 | 168.5 (4) | O12—Fe3—O17—Fe1 | −49.8 (2) |
Fe1—O5—C5—O6 | −6.2 (8) | O1—Fe3—O17—Fe2 | −142.44 (17) |
Fe1—O5—C5—C6 | 174.6 (4) | O1—Fe3—O17—Fe1 | 37.0 (2) |
Fe1—O2—C1—O1 | −22.6 (7) | O14—Fe3—O17—Fe2 | 38.91 (19) |
Fe1—O2—C1—C2 | 157.4 (4) | O14—Fe3—O17—Fe1 | −141.69 (18) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2. |
Compound | Individual Fe—µ3-O(oxido) bond lengths | CSD refcode | Reference |
[Fe3O(OAc)6(H2O)3]NO3·2C6H12N4·5H2O | 1.9034 (8), 1.9034 (8), 1.9057 (16) | EMAVAS | Balić et al. (2021) |
[Fe3O(OAc)6(H2O)3]NO3·C2H4O2 | 1.8961 (12), 1.8983 (11), 1.9120 (11) | GIZSEO03 | Nieger (2016) |
[Fe3O(OAc)6(H2O)3]Cl·6H2O | 1.896 (4), 1.892 (4), 1.904 (4) | RIPLEH01 | Shova et al. (1998) |
[Fe3O(OAc)6(H2O)3]ClO4·3H2O | 1.8969 (12), 1.8965 (11), 1.9043 (13) | LINHEZ | Abánades Lázaro et al. (2023) |
Bonds | Bond lengths |
Fe(bonded to acetic acid)—O(µ3-oxido) | Fe3—O17 1.872 (3) |
Fe(bonded only to acetate)—O(µ3-oxido) | Fe1—O17 1.921 (3) |
Fe2—O17 1.940 (3) |
Conflict of interest
The authors declare that there are no conflicts of interest.
Data availability
The data supporting the findings of this study are available within the article and its supplementary materials, and from the CSD.
References
Abánades Lázaro, I., Mazarakioti, E. C., Andres-Garcia, E., Vieira, B. J. C., Waerenborgh, J. C., Vitórica-Yrezábal, I. J., Giménez-Marqués, M. & Mínguez Espallargas, G. (2023). J. Mater. Chem. A, 11, 5320–5327. Google Scholar
Anson, C. E., Bourke, J. P., Cannon, R. D., Jayasooriya, U. A., Molinier, M. & Powell, A. K. (1987). Inorg. Chem. 36, 1265–1267. CrossRef Google Scholar
Balić, T., Jagličić, Z., Sadrollah, E., Jochen Litterst, F., Počkaj, M., Baabe, D., Kovač-Andrić, E., Bijelić, J., Gašo-Sokač, D. & Djerdj, I. (2021). Inorg. Chim. Acta, 520, 120292. Google Scholar
Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). In Multiple Bonds Between Metal Atoms. Boston, MA: Springer. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Figgis, B. N. & Robertson, G. B. (1965). Nature, 205, 694–695. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hessel, L. W. & Romers, C. (1969). Recl Trav. Chim. Pays Bas, 88, 545–552. CrossRef CAS Google Scholar
Lawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921–922. CSD CrossRef CAS Web of Science Google Scholar
Nieger, M. (2016). CSD Communication (refcode GIZSEO01). CCDC, Cambridge, England. Google Scholar
Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232. CSD CrossRef IUCr Journals Web of Science Google Scholar
Nikolaou, S., do Nascimento, L. G. A. & Alexiou, A. D. P. (2023). Coord. Chem. Rev. 494, 215341. CrossRef Google Scholar
Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. Google Scholar
Pauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340–345. CrossRef PubMed CAS Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sato, T., Ambe, F., Endo, K., Katada, M., Maeda, H., Nakamoto, T. & Sano, H. (1996). J. Am. Chem. Soc. 118, 3450–3458. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shova, S. G., Cadelnik, I. G., Gdaniec, M., Simonov, Y. A., Jovmir, T. C., Meriacre, V. M., Filoti, G. & Turta, C. I. (1998). Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 39, 917. Google Scholar
Wei, Y.-S., Sun, L., Wang, M., Hong, J., Zou, L., Liu, H., Wang, Y., Zhang, M., Liu, Z., Li, Y., Horike, S., Suenaga, K. & Xu, Q. (2020). Angew. Chem. Int. Ed. 59, 16013–16022. CrossRef CAS Google Scholar
Wyart, M. J. (1926). Bull. Soc. Fr. Miner. 49, 148–159. CAS Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.