research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A polymeric form of basic iron(III) acetate with an acetic acid ligand

crossmark logo

aUniversity of Melbourne, School of Chemistry, Grattan Street, Parkville, 3052, Australia
*Correspondence e-mail: bfa@unimelb.edu.au

Edited by D. R. Turner, University of Monash, Australia (Received 20 September 2024; accepted 4 November 2024; online 20 November 2024)

A new crystalline com­pound, catena-poly[hexa-μ-acetato-(acetic acid)-μ3-oxido-triangulo-triiron(III)]-μ-acetato], [Fe3(C2H3O2)7O(C2H4O2)]n, incorporating the basic ferric acetate unit, has been obtained from an acetic anhydride solution of hydrated iron(III) nitrate. The crystals have the com­position Fe3O(OAc)7(HOAc) (HOAc is acetic acid) and include the well-known [Fe3O(OAc)6]+ unit, in which the FeIII centres are linked to a central coplanar μ3-oxido ligand. Acetate ions provide bridges between pairs of FeIII centres. These individual [Fe3O(OAc)6]+ units are linked by additional bridging acetate anions to form zigzag chains. The bridging acetate ions coordinate to a position trans to the oxido group on two of the FeIII centres. Remarkably, the trans site on the third FeIII centre is occupied by the carbonyl group of an acetic acid mol­ecule. This is the first reported case of an acetic acid mol­ecule coordinating to an FeIII centre. Not surprisingly, the acetic acid mol­ecule is only weakly coordinating, resulting in a short Fe—O(oxido) bond trans to the carbonyl group. The trans influence apparent in this structure provides an inter­esting contrast with the structurally similar MnIII analogue, in which the corresponding pair of trans bonds are both elongated because of the Jahn–Teller effect.

1. Introduction

In the field of coordination chemistry, carboxyl­ate ions feature prominently in the formation of a wide variety of metal com­plexes. Although the carboxyl­ate group is capable of chelation, it is not a strongly favoured coordination mode because of the strain associated with the four-membered ring. It is far more common for the carboxyl­ate ion to span a pair of metal centres, as it does in com­plexes such as copper acetate, where four bridging acetate anions bridge a pair of CuII centres (van Niekerk & Schoening, 1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]). A similar structure is adopted by molybdenum acetate, which features a re­mark­able quadruple bond between the MoII centres (Lawton & Mason, 1965[Lawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921-922.]; Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). In Multiple Bonds Between Metal Atoms. Boston, MA: Springer.]). In the case of basic zinc acetate, four ZnII centres, at the vertices of a tetra­hedron, are bound to a central oxido anion (μ4), while six acetate anions bridge pairs of ZnII centres along the six edges of the tetra­hedron (Wyart, 1926[Wyart, M. J. (1926). Bull. Soc. Fr. Miner. 49, 148-159.]). The six methyl groups are oriented outwards towards the vertices of an octa­hedron. Basic beryllium acetate adopts a similar structure (Pauling & Sherman, 1934[Pauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340-345.]).

The basic ferric acetate cation contains the [Fe3O(OAc)6]+ unit and consists of a planar μ3-oxido group bound to a trio of FeIII centres at the vertices of what is essentially an equilateral triangle (e.g. Anson et al., 1987[Anson, C. E., Bourke, J. P., Cannon, R. D., Jayasooriya, U. A., Molinier, M. & Powell, A. K. (1987). Inorg. Chem. 36, 1265-1267.]; Balić et al., 2021[Balić, T., Jagličić, Z., Sadrollah, E., Jochen Litterst, F., Počkaj, M., Baabe, D., Kovač-Andrić, E., Bijelić, J., Gašo-Sokač, D. & Djerdj, I. (2021). Inorg. Chim. Acta, 520, 120292.]; Abánades Lázaro et al., 2023[Abánades Lázaro, I., Mazarakioti, E. C., Andres-Garcia, E., Vieira, B. J. C., Waerenborgh, J. C., Vitórica-Yrezábal, I. J., Giménez-Marqués, M. & Mínguez Espallargas, G. (2023). J. Mater. Chem. A, 11, 5320-5327.]). Each pair of FeIII centres is bridged by a pair of acetate anions, one above and one below the plane of the Fe3O entity, to give a unit which has approximate D3h symmetry. The site trans to the oxido group on each metal is typically occupied by a monodentate ligand such as water. The methyl groups in this com­plex are directed towards the ver­tices of a trigonal prism. This type of unit may also be gen­er­at­ed with trivalent Cr (Figgis & Robertson, 1965[Figgis, B. N. & Robertson, G. B. (1965). Nature, 205, 694-695.]), Mn (Hessel & Romers, 1969[Hessel, L. W. & Romers, C. (1969). Recl Trav. Chim. Pays Bas, 88, 545-552.]) and Ru (Nikolaou et al., 2023[Nikolaou, S., do Nascimento, L. G. A. & Alexiou, A. D. P. (2023). Coord. Chem. Rev. 494, 215341.]) centres, and can also exist for metals in mixed +2 and +3 oxidation states (Sato et al., 1996[Sato, T., Ambe, F., Endo, K., Katada, M., Maeda, H., Nakamoto, T. & Sano, H. (1996). J. Am. Chem. Soc. 118, 3450-3458.]; Wei et al., 2020[Wei, Y.-S., Sun, L., Wang, M., Hong, J., Zou, L., Liu, H., Wang, Y., Zhang, M., Liu, Z., Li, Y., Horike, S., Suenaga, K. & Xu, Q. (2020). Angew. Chem. Int. Ed. 59, 16013-16022.]). Within the Cambridge Structural Database (CSD; Version 5.45, March 2024 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 83 structures have been reported which contain the [Fe3O(OAc)6L3] unit, where L may be a neutral or charged ligand. The net charge on the [Fe3O(OAc)6L3] com­plex is typically balanced by a non-co­or­din­ating ion, such as chloride or perchlorate.

[Scheme 1]

In the current work, we report the serendipitous isolation of basic ferric acetate crystals which display a significant distortion from the symmetric oxido bridge that is commonly ob­ser­ved with basic ferric carboxyl­ate structures and rationalize this reduced symmetry in terms of a significant trans influence.

2. Experimental

2.1. Synthesis and crystallization

In an attempt to prepare Fe-based coordination polymers incorporating the dianion of hy­droxy­benzoic acid (H2hba), three acetic anhydride (Ac2O) solutions were prepared. Fe(NO3)3·9H2O (202 mg) was dissolved in Ac2O (3 ml), H2hba (110 mg) was dissolved in Ac2O (2 ml) and LiOAc (255 mg) was dissolved in Ac2O (3 ml). The solutions were mixed and heated to boiling on a hotplate. Small red–brown crystals were obtained from the cooled solution.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were placed in calculated positions and refined as riding atoms, with Uiso(H) = 1.5Ueq(C) and C—H = 0.99 Å for methyl groups, and Uiso(H) = 1.5Ueq(O) and O—H = 0.85 Å for the hydroxy H atom.

Table 1
Experimental details

Crystal data
Chemical formula [Fe3(C2H3O2)7O(C2H4O2)]
Mr 656.91
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 15.8661 (3), 15.8640 (3), 19.5003 (5)
V3) 4908.22 (18)
Z 8
Radiation type Cu Kα
μ (mm−1) 14.77
Crystal size (mm) 0.17 × 0.06 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.408, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38581, 5150, 3889
Rint 0.097
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 1.06
No. of reflections 5150
No. of parameters 365
No. of restraints 33
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.78
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Whilst the coordinated acetic acid mol­ecule was clearly defined in the solution and subsequent refinement, peaks of residual electron density in the Fourier difference map were consistent with a second overlapping location for the acetic acid mol­ecule. The peaks were assigned as acetic acid atoms and refined with com­plementary site occupancies. The result of the refinement showed two chemically similar positions for the coordinated acetic acid mol­ecule (Fig. 1[link]), with the occupancies for the major and minor positions refining to 86 and 14%, respectively. The carbonyl O atom was common to both orientations. For each of the positions of the acetic acid molecule, the hydroxyl group forms a hydrogen-bonding interaction with a neighbouring O atom of a coordinated acetate group [O15⋯O1 = 2.598 (6) Å and O15A⋯O12 = 2.62 (3) Å]. A peak of electron density (0.35 e Å−3) was apparent between O15 and O1 (corresponding to the major orientation), and was consistent with the hydroxyl H atom. Hydroxyl H atoms were assigned, riding on O15 and O15A, with appropriate site occupancies. Details of the refinements can be found in the embedded instruction files in the CIF file.

[Figure 1]
Figure 1
The structure of 1, showing the disordered acetic acid group (top) with the atom-labelling scheme. The acetate group coordinated to Fe2 is also shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hy­dro­gen-bonding inter­actions.

3. Results and discussion

The combination of Fe(NO3)3, H2hba and LiOAc in acetic an­hy­dride yielded crystals of com­position Fe3O(OAc)7(HOAc) (1). The structure consists of the common basic ferric acetate core in which three crystallographically distinct FeIII centres bind to a central oxido dianion and six acetate ligands, each in a syn–syn conformation, spanning pairs of FeIII centres, as indicated in Fig. 1[link]. Whilst the [Fe3O(O2CR)6]+ unit (R = alkyl or aryl group) is a common fragment, the structure reported here is unique because of the ligands that are trans to the oxido group on each Fe centre. The trans sites on two of the Fe centres are occupied by bridging acetate anions which adopt a syn–anti configuration. These two anions are symmetry related to each other and result in the formation of a zigzag chain which extends parallel to the a direction, as indicated in Fig. 2[link]. With the [Fe3O(OAc)6]+ units bridged by a pair of ace­tate anions to symmetry-related counterparts, charge balance is achieved for this 1D coordination polymer.

[Figure 2]
Figure 2
The polymeric structure of 1, showing the zigzag chain extending in the a direction. C—O and C—C bonds are indicated by orange connections, Fe—O bonds by green connections and hy­dro­gen bonds between the acetic acid hydroxyl O atoms and neighbouring acetate O atoms by striped connections. H atoms have been omitted for clarity.

Only a neutral ligand is required to com­plete the octa­hedral geometry on the remaining Fe centre. Ligands such as water could normally fulfil this role, but under anhydrous conditions, obtained using a solvent such as acetic anhydride, this is not possible. Remarkably, an acetic acid mol­ecule coordinates to this Fe centre, as indicated in Figs. 1[link] and 2[link]. The neutral mol­ecule coordinates through a carbonyl O atom, while the hy­droxyl group forms a geometrically favourable hy­dro­gen bond with a coordinated O atom of a neighbouring acetate anion. The carbonyl bond distance (C15—O16) of 1.207 (7) Å is significantly shorter than the C—OH bond [C15—O15 = 1.329 (8) Å]. Whilst the difference in C—O bond distances is expected for an acetic acid mol­ecule, it contrasts with the acetate anions, in which the C—O bonds have an inter­mediate bond length (∼1.25 Å).

The [Fe3O(OAc)6(H2O)3]+ fragment which is present in numerous crystal structures possesses a μ3-oxido anion that forms Fe—O bonds of relatively similar length (see Table 2[link]). In contrast, the three Fe—O(oxido) bond lengths in 1 show significant variation (Table 3[link]), with the Fe—O bond (Fe3—O17) trans to the coordinated acetic acid being significantly shorter [1.872 (3) Å] than the other Fe—O bonds which are trans to a bridging acetate anion [1.921 (3) and 1.940 (3) Å for Fe1—O17 and Fe2—O17, respectively]. This would appear to indicate a trans influence associated with the relatively weak coordination of the carbonyl O atom from the acetic acid mol­ecule, which displays an Fe—O bond length of 2.144 (3) Å (Fe3—O16). In contrast, the bond lengths involving the acetate O atoms trans to O17 on Fe1 and Fe2 are 2.012 (3) and 2.014 (3) Å, respectively. Further distortion of the octa­hedral coordination geometry of Fe3 is apparent with the Fe centre lying 0.2585 (19) Å out of the plane of the ace­tate O atoms (O1, O10, O12 and O14) towards the μ3-oxido atom (O17). In contrast, Fe1 and Fe2 lie only 0.1352 (17) and 0.1202 (19) Å, respectively, out of the plane of the cor­responding acetate O atoms.

Table 2
Fe—O bond lengths (Å) in typical com­pounds containing an [Fe3O(OAc)6(H2O)3]+ unit

Compound Individual Fe—μ3-O(oxido) bond lengths CSD refcode Reference
[Fe3O(OAc)6(H2O)3]NO3·2C6H12N4·5H2O 1.9034 (8), 1.9034 (8), 1.9057 (16) EMAVAS Balić et al. (2021[Balić, T., Jagličić, Z., Sadrollah, E., Jochen Litterst, F., Počkaj, M., Baabe, D., Kovač-Andrić, E., Bijelić, J., Gašo-Sokač, D. & Djerdj, I. (2021). Inorg. Chim. Acta, 520, 120292.])
[Fe3O(OAc)6(H2O)3]NO3·C2H4O2 1.8961 (12), 1.8983 (11), 1.9120 (11) GIZSEO03 Nieger (2016[Nieger, M. (2016). CSD Communication (refcode GIZSEO01). CCDC, Cambridge, England.])
[Fe3O(OAc)6(H2O)3]Cl·6H2O 1.896 (4), 1.892 (4), 1.904 (4) RIPLEH01 Shova et al. (1998[Shova, S. G., Cadelnik, I. G., Gdaniec, M., Simonov, Y. A., Jovmir, T. C., Meriacre, V. M., Filoti, G. & Turta, C. I. (1998). Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 39, 917.])
[Fe3O(OAc)6(H2O)3]ClO4·3H2O 1.8969 (12), 1.8965 (11), 1.9043 (13) LINHEZ Abánades Lázaro et al. (2023[Abánades Lázaro, I., Mazarakioti, E. C., Andres-Garcia, E., Vieira, B. J. C., Waerenborgh, J. C., Vitórica-Yrezábal, I. J., Giménez-Marqués, M. & Mínguez Espallargas, G. (2023). J. Mater. Chem. A, 11, 5320-5327.])

Table 3
Fe—O(μ3-oxido) bond lengths (Å) in 1

Bond Bond length
Fe(bonded to acetic acid)—O(μ3-oxido) Fe3—O17 1.872 (3)
Fe(bonded only to acetate)—O(μ3-oxido) Fe1—O17 1.921 (3)
  Fe2—O17 1.940 (3)

To the best of our knowledge, this is the first recorded example of the coordination of an acetic acid mol­ecule to an FeIII centre (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). This is perhaps not surprising given that in its acid form, the Lewis basicity of acetic acid is expected to be very low. Its coordination in this present case may be attributed to the absence of solvent mol­ecules that can serve as Lewis bases and the fact that the hydroxyl group of the acetic acid mol­ecule is in an ideal position to form a relatively strong hy­dro­gen bond with a neighbouring coordinated O atom [O15⋯O1 = 2.598 (6) Å and O15A⋯O12 = 2.62 (3) Å].

Although there are numerous potential O-atom acceptor sites for hy­dro­gen bonding, the only O—H donor group, belonging to the acetic acid mol­ecule, forms an intra­chain hy­dro­gen bond (O15⋯O1 or O15A⋯O12). As a result, there are only relatively weak inter­molecular contacts between chains.

The structure of 1 is similar to that of Mn3O(OAc)7(HOAc), which contains MnIII centres, and adopts the same space group as Fe3O(OAc)7(HOAc) [Pbca, a = 15.8661 (3), b = 15.864 (3) and c = 19.5003 (5) Å] and Mn3O(OAc)7(HOAc) [Pbca, a = 16.07 (3), b = 19.84 (3) and c = 15.80 (2) Å] (Hessel & Romers, 1969[Hessel, L. W. & Romers, C. (1969). Recl Trav. Chim. Pays Bas, 88, 545-552.]). Despite the clear similarities in the general structure, there are some important differences associated with the high-spin d4 configuration of the MnIII centre which result in Jahn–Teller tetra­gonally distorted octa­hedral coordination environments for the three MnIII centres. For each Mn centre, there are four short bonds to O atoms that form an approximate square plane and two longer Mn—O bonds that are trans to each other. In the case of the MnIII centre coordinated by the acetic acid mol­ecule, the two long bonds are the Mn—O(carbon­yl) bond of the acetic acid mol­ecule [2.33 (4) Å] and the Mn—μ3-O bond [2.11 (4) Å]. For the remaining two Mn centres, the Mn—μ3-O bonds are very short [1.85 (4) and 1.86 (4) Å], with the longer Mn—O bonds involving a pair of acetate O atoms that are trans to each other. The basicity of the oxido ligand would normally mean that it would form the shortest metal–oxygen bonds, but the poor basicity of the acetic acid ligand results in the Mn—O(carbon­yl) bond and its trans-O atom (the μ3-oxido ligand) being the long bonds in the tetra­gonally distorted octa­hedral environment.

A remarkable contrast in the electronic effect of the poorly coordinating acetic acid mol­ecule is apparent in the schematic representation of the Fe and Mn structures presented in Fig. 3[link]. Whereas the acetic acid mol­ecule exerts a trans influence in the Fe structure, leading to a shortening of the Fe—μ3-O bond, the effect of the acetic acid in the Mn structure is to cause the trans Mn—μ3-O bond to become elongated.

[Figure 3]
Figure 3
A schematic representation com­paring selected metal–oxygen bond lengths in Fe3O(OAc)7(HOAc) and Mn3O(OAc)7(HOAc).

4. Conclusion

Compound 1 provides another example of a classic basic metal carboxyl­ate structure, but unlike previous examples, the ab­sence of common coordinating solvent mol­ecules or neutral co-ligands results in the rare coordination of an acetic acid mol­ecule to an FeIII centre. Acetate ions provide a bridge between symmetry-related units, leading to the formation of a zigzag chain. A trans influence results in a short Fe—O bond opposite the acetic acid carbonyl O atom, which contrasts with the behaviour of the structurally similar com­pound, Mn3O(OAc)7(HOAc), where a Jahn–Teller distortion results in the opposite effect, i.e. a lengthening of the Mn—O bond trans to the acetic acid.

Supporting information


Computing details top

catena-Poly[hexa-µ-acetato-(acetic acid)-µ3-oxido-triangulo-triiron(III)]-µ-acatato] top
Crystal data top
[Fe3(C2H3O2)7O(C2H4O2)]Dx = 1.778 Mg m3
Mr = 656.91Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 8086 reflections
a = 15.8661 (3) Åθ = 4.5–71.3°
b = 15.8640 (3) ŵ = 14.77 mm1
c = 19.5003 (5) ÅT = 100 K
V = 4908.22 (18) Å3Irregular, clear red
Z = 80.17 × 0.06 × 0.03 mm
F(000) = 2680
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5150 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3889 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.097
Detector resolution: 10.0000 pixels mm-1θmax = 78.0°, θmin = 4.5°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 1911
Tmin = 0.408, Tmax = 1.000l = 2424
38581 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0809P)2 + 9.0225P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.88 e Å3
5150 reflectionsΔρmin = 0.77 e Å3
365 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 restraintsExtinction coefficient: 0.00020 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe20.87313 (4)0.56380 (4)0.24593 (4)0.02289 (19)
Fe10.69003 (4)0.58646 (4)0.32908 (4)0.02231 (19)
Fe30.86841 (4)0.65690 (4)0.39570 (4)0.0246 (2)
O170.80980 (18)0.60338 (18)0.32468 (16)0.0224 (6)
O70.6692 (2)0.6388 (2)0.23676 (18)0.0292 (7)
O40.4361 (2)0.5158 (2)0.33477 (18)0.0292 (7)
O30.5648 (2)0.5676 (2)0.33395 (18)0.0288 (7)
O110.6673 (2)0.70114 (19)0.37278 (19)0.0314 (8)
O130.9305 (2)0.67555 (19)0.23243 (18)0.0298 (8)
O50.69210 (19)0.47004 (19)0.28768 (19)0.0295 (7)
O90.9673 (2)0.5171 (2)0.30472 (18)0.0307 (8)
O100.9534 (2)0.5655 (2)0.41216 (19)0.0322 (8)
O80.7843 (2)0.6014 (2)0.17790 (19)0.0352 (8)
O20.6976 (2)0.5356 (2)0.42557 (19)0.0339 (8)
O160.9358 (2)0.7203 (2)0.47589 (18)0.0348 (8)
O120.7907 (2)0.7583 (2)0.40255 (19)0.0317 (8)
O10.8000 (2)0.6079 (2)0.47643 (19)0.0344 (8)
O60.8212 (2)0.4476 (2)0.2477 (2)0.0346 (8)
O140.9501 (2)0.7225 (2)0.33875 (18)0.0323 (8)
C130.9627 (3)0.7250 (3)0.2750 (3)0.0253 (9)
O150.8500 (3)0.7198 (3)0.5652 (3)0.0495 (14)0.850 (8)
H150.8214470.6885900.5392680.074*0.850 (8)
C50.7475 (3)0.4246 (3)0.2606 (3)0.0250 (9)
C70.7123 (3)0.6351 (3)0.1831 (3)0.0259 (10)
C90.9860 (3)0.5190 (3)0.3674 (3)0.0293 (10)
C10.7361 (3)0.5594 (3)0.4776 (3)0.0270 (10)
C30.5125 (3)0.5120 (3)0.3514 (3)0.0253 (9)
C110.7128 (3)0.7610 (3)0.3938 (2)0.0278 (10)
C60.7230 (3)0.3367 (3)0.2417 (3)0.0320 (11)
H6A0.6823880.3149900.2751830.048*
H6B0.7732590.3006950.2415200.048*
H6C0.6974310.3365930.1959600.048*
C40.5384 (3)0.4397 (3)0.3960 (3)0.0336 (12)
H4A0.5490840.4600650.4426120.050*
H4B0.5898950.4141390.3775240.050*
H4C0.4933120.3975150.3969340.050*
C141.0197 (3)0.7930 (3)0.2485 (3)0.0352 (12)
H14A1.0537320.7708030.2106280.053*
H14B1.0569510.8120810.2854650.053*
H14C0.9857500.8404830.2321260.053*
C120.6682 (4)0.8427 (3)0.4106 (3)0.0382 (12)
H12A0.6360100.8616750.3706410.057*
H12B0.7100210.8857060.4228590.057*
H12C0.6298900.8338160.4493600.057*
C80.6745 (4)0.6726 (4)0.1193 (3)0.0397 (13)
H8A0.6576730.6272910.0880040.060*
H8B0.7162470.7087120.0967330.060*
H8C0.6249560.7062680.1315740.060*
C101.0550 (4)0.4610 (3)0.3906 (3)0.0423 (14)
H10A1.0346020.4026780.3898460.063*
H10B1.0720220.4759060.4373760.063*
H10C1.1034670.4664510.3597790.063*
C150.9169 (5)0.7483 (4)0.5314 (4)0.0362 (19)0.850 (8)
C20.7063 (4)0.5301 (5)0.5458 (3)0.0504 (16)
H2A0.6539240.5593700.5576940.076*
H2B0.7493460.5424750.5804600.076*
H2C0.6961200.4692440.5442620.076*
C160.9628 (6)0.8159 (5)0.5663 (5)0.041 (2)0.850 (8)
H16A1.0127940.8310200.5394960.062*0.850 (8)
H16B0.9801860.7965390.6119140.062*0.850 (8)
H16C0.9261830.8652990.5709820.062*0.850 (8)
C15A0.926 (3)0.771 (2)0.5208 (16)0.038 (6)0.150 (8)
O15A0.8598 (19)0.821 (2)0.5135 (18)0.065 (5)0.150 (8)
H15A0.8433720.8195420.4725930.097*0.150 (8)
C16A0.990 (3)0.794 (3)0.570 (3)0.043 (9)0.150 (8)
H16D0.9965310.7480400.6036520.064*0.150 (8)
H16E0.9728790.8454370.5943500.064*0.150 (8)
H16F1.0435160.8034820.5467370.064*0.150 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0191 (3)0.0204 (3)0.0292 (4)0.0017 (3)0.0015 (3)0.0018 (3)
Fe10.0189 (3)0.0191 (3)0.0290 (4)0.0005 (3)0.0002 (3)0.0002 (3)
Fe30.0220 (4)0.0230 (4)0.0288 (4)0.0008 (3)0.0007 (3)0.0013 (3)
O170.0196 (15)0.0203 (14)0.0272 (17)0.0004 (12)0.0008 (13)0.0011 (12)
O70.0255 (17)0.0307 (17)0.0315 (19)0.0002 (13)0.0009 (14)0.0059 (14)
O40.0201 (16)0.0346 (17)0.0328 (19)0.0019 (13)0.0035 (14)0.0079 (14)
O30.0226 (16)0.0248 (15)0.039 (2)0.0024 (13)0.0004 (14)0.0030 (14)
O110.0258 (17)0.0249 (16)0.043 (2)0.0016 (13)0.0060 (15)0.0087 (15)
O130.0314 (18)0.0217 (15)0.036 (2)0.0021 (13)0.0059 (15)0.0027 (13)
O50.0227 (16)0.0236 (15)0.042 (2)0.0023 (13)0.0002 (15)0.0112 (14)
O90.0257 (17)0.0348 (18)0.0317 (19)0.0055 (14)0.0016 (14)0.0003 (15)
O100.0289 (18)0.0302 (17)0.038 (2)0.0060 (14)0.0074 (15)0.0021 (15)
O80.0291 (18)0.041 (2)0.035 (2)0.0066 (15)0.0031 (15)0.0037 (16)
O20.0312 (19)0.0387 (19)0.0319 (19)0.0089 (15)0.0003 (15)0.0091 (15)
O160.037 (2)0.0362 (19)0.0316 (19)0.0045 (15)0.0047 (16)0.0113 (16)
O120.0285 (18)0.0244 (16)0.042 (2)0.0044 (13)0.0041 (15)0.0062 (14)
O10.0339 (19)0.0403 (19)0.0289 (18)0.0093 (15)0.0007 (15)0.0015 (15)
O60.0275 (18)0.0236 (16)0.053 (2)0.0048 (14)0.0095 (16)0.0080 (15)
O140.0310 (18)0.0332 (17)0.0326 (19)0.0112 (14)0.0005 (15)0.0008 (15)
C130.022 (2)0.022 (2)0.032 (3)0.0028 (17)0.0008 (19)0.0006 (18)
O150.046 (3)0.055 (3)0.047 (3)0.011 (2)0.006 (2)0.009 (2)
C50.020 (2)0.020 (2)0.035 (3)0.0013 (17)0.0028 (19)0.0008 (18)
C70.029 (2)0.017 (2)0.031 (3)0.0007 (17)0.004 (2)0.0014 (17)
C90.026 (2)0.018 (2)0.044 (3)0.0015 (17)0.000 (2)0.000 (2)
C10.021 (2)0.029 (2)0.031 (3)0.0005 (18)0.003 (2)0.0018 (19)
C30.020 (2)0.025 (2)0.031 (2)0.0039 (17)0.0010 (19)0.0004 (18)
C110.035 (3)0.023 (2)0.025 (2)0.0001 (19)0.005 (2)0.0026 (18)
C60.028 (2)0.021 (2)0.047 (3)0.0010 (19)0.001 (2)0.004 (2)
C40.023 (2)0.031 (2)0.046 (3)0.0057 (19)0.004 (2)0.010 (2)
C140.032 (3)0.028 (2)0.045 (3)0.005 (2)0.001 (2)0.000 (2)
C120.043 (3)0.027 (2)0.045 (3)0.009 (2)0.000 (3)0.005 (2)
C80.042 (3)0.040 (3)0.036 (3)0.003 (2)0.008 (2)0.004 (2)
C100.036 (3)0.036 (3)0.055 (4)0.009 (2)0.015 (3)0.004 (2)
C150.041 (4)0.024 (4)0.043 (4)0.003 (3)0.000 (3)0.002 (3)
C20.040 (3)0.075 (4)0.035 (3)0.022 (3)0.005 (3)0.019 (3)
C160.045 (5)0.039 (5)0.040 (4)0.008 (4)0.007 (4)0.008 (4)
C15A0.049 (9)0.017 (11)0.047 (10)0.001 (9)0.004 (9)0.001 (10)
O15A0.057 (9)0.069 (9)0.068 (10)0.003 (8)0.001 (9)0.015 (9)
C16A0.058 (18)0.026 (17)0.046 (15)0.003 (15)0.006 (15)0.004 (14)
Geometric parameters (Å, º) top
Fe2—O171.940 (3)C5—C61.494 (6)
Fe2—O4i2.014 (3)C7—C81.504 (7)
Fe2—O132.010 (3)C9—C101.500 (7)
Fe2—O92.023 (3)C1—C21.485 (7)
Fe2—O82.026 (4)C3—C41.496 (7)
Fe2—O62.020 (3)C11—C121.513 (7)
Fe1—O171.921 (3)C6—H6A0.9800
Fe1—O72.010 (3)C6—H6B0.9800
Fe1—O32.012 (3)C6—H6C0.9800
Fe1—O112.041 (3)C4—H4A0.9800
Fe1—O52.016 (3)C4—H4B0.9800
Fe1—O22.051 (4)C4—H4C0.9800
Fe3—O171.872 (3)C14—H14A0.9800
Fe3—O102.006 (3)C14—H14B0.9800
Fe3—O162.144 (3)C14—H14C0.9800
Fe3—O122.030 (3)C12—H12A0.9800
Fe3—O12.064 (4)C12—H12B0.9800
Fe3—O141.999 (3)C12—H12C0.9800
O7—C71.252 (6)C8—H8A0.9800
O4—C31.256 (6)C8—H8B0.9800
O3—C31.258 (5)C8—H8C0.9800
O11—C111.261 (6)C10—H10A0.9800
O13—C131.250 (6)C10—H10B0.9800
O5—C51.253 (5)C10—H10C0.9800
O9—C91.259 (6)C15—C161.464 (9)
O10—C91.254 (6)C2—H2A0.9800
O8—C71.265 (6)C2—H2B0.9800
O2—C11.243 (6)C2—H2C0.9800
O16—C151.207 (7)C16—H16A0.9800
O16—C15A1.201 (12)C16—H16B0.9800
O12—C111.250 (6)C16—H16C0.9800
O1—C11.272 (6)C15A—O15A1.320 (19)
O6—C51.252 (5)C15A—C16A1.45 (2)
O14—C131.261 (6)O15A—H15A0.8400
C13—C141.500 (7)C16A—H16D0.9800
O15—H150.8400C16A—H16E0.9800
O15—C151.329 (8)C16A—H16F0.9800
O17—Fe2—O4i176.57 (13)O9—C9—C10116.8 (5)
O17—Fe2—O1393.02 (13)O10—C9—O9126.3 (4)
O17—Fe2—O993.01 (13)O10—C9—C10116.9 (5)
O17—Fe2—O893.58 (14)O2—C1—O1124.0 (5)
O17—Fe2—O694.07 (14)O2—C1—C2118.7 (4)
O4i—Fe2—O986.44 (14)O1—C1—C2117.3 (5)
O4i—Fe2—O886.85 (14)O4—C3—O3122.2 (4)
O4i—Fe2—O682.53 (14)O4—C3—C4116.9 (4)
O13—Fe2—O4i90.39 (14)O3—C3—C4120.9 (4)
O13—Fe2—O993.62 (14)O11—C11—C12116.7 (5)
O13—Fe2—O888.24 (15)O12—C11—O11125.8 (4)
O13—Fe2—O6172.74 (15)O12—C11—C12117.5 (4)
O9—Fe2—O8173.05 (15)C5—C6—H6A109.5
O6—Fe2—O987.54 (15)C5—C6—H6B109.5
O6—Fe2—O889.79 (15)C5—C6—H6C109.5
O17—Fe1—O793.73 (14)H6A—C6—H6B109.5
O17—Fe1—O3179.44 (13)H6A—C6—H6C109.5
O17—Fe1—O1193.97 (13)H6B—C6—H6C109.5
O17—Fe1—O595.39 (13)C3—C4—H4A109.5
O17—Fe1—O292.17 (13)C3—C4—H4B109.5
O7—Fe1—O386.63 (14)C3—C4—H4C109.5
O7—Fe1—O1188.66 (15)H4A—C4—H4B109.5
O7—Fe1—O591.29 (14)H4A—C4—H4C109.5
O7—Fe1—O2173.71 (14)H4B—C4—H4C109.5
O3—Fe1—O1186.47 (13)C13—C14—H14A109.5
O3—Fe1—O584.17 (13)C13—C14—H14B109.5
O3—Fe1—O287.49 (14)C13—C14—H14C109.5
O11—Fe1—O288.75 (15)H14A—C14—H14B109.5
O5—Fe1—O11170.63 (13)H14A—C14—H14C109.5
O5—Fe1—O290.34 (15)H14B—C14—H14C109.5
O17—Fe3—O1097.15 (14)C11—C12—H12A109.5
O17—Fe3—O16178.92 (14)C11—C12—H12B109.5
O17—Fe3—O1296.11 (14)C11—C12—H12C109.5
O17—Fe3—O197.59 (14)H12A—C12—H12B109.5
O17—Fe3—O1498.45 (14)H12A—C12—H12C109.5
O10—Fe3—O1683.53 (14)H12B—C12—H12C109.5
O10—Fe3—O12165.93 (15)C7—C8—H8A109.5
O10—Fe3—O187.65 (15)C7—C8—H8B109.5
O12—Fe3—O1683.28 (14)C7—C8—H8C109.5
O12—Fe3—O185.95 (15)H8A—C8—H8B109.5
O1—Fe3—O1683.27 (14)H8A—C8—H8C109.5
O14—Fe3—O1091.69 (15)H8B—C8—H8C109.5
O14—Fe3—O1680.68 (14)C9—C10—H10A109.5
O14—Fe3—O1291.01 (15)C9—C10—H10B109.5
O14—Fe3—O1163.90 (14)C9—C10—H10C109.5
Fe1—O17—Fe2120.18 (16)H10A—C10—H10B109.5
Fe3—O17—Fe2118.37 (15)H10A—C10—H10C109.5
Fe3—O17—Fe1121.44 (16)H10B—C10—H10C109.5
C7—O7—Fe1129.8 (3)O16—C15—O15121.1 (6)
C3—O4—Fe2ii134.3 (3)O16—C15—C16124.3 (7)
C3—O3—Fe1140.3 (3)O15—C15—C16114.6 (6)
C11—O11—Fe1134.9 (3)C1—C2—H2A109.5
C13—O13—Fe2130.6 (3)C1—C2—H2B109.5
C5—O5—Fe1135.0 (3)C1—C2—H2C109.5
C9—O9—Fe2135.7 (3)H2A—C2—H2B109.5
C9—O10—Fe3126.2 (3)H2A—C2—H2C109.5
C7—O8—Fe2134.5 (3)H2B—C2—H2C109.5
C1—O2—Fe1131.2 (3)C15—C16—H16A109.5
C15—O16—Fe3134.6 (4)C15—C16—H16B109.5
C15A—O16—Fe3141.4 (18)C15—C16—H16C109.5
C11—O12—Fe3128.3 (3)H16A—C16—H16B109.5
C1—O1—Fe3131.3 (3)H16A—C16—H16C109.5
C5—O6—Fe2130.6 (3)H16B—C16—H16C109.5
C13—O14—Fe3131.9 (3)O16—C15A—O15A115 (3)
O13—C13—O14124.8 (4)O16—C15A—C16A124 (3)
O13—C13—C14118.0 (5)O15A—C15A—C16A119 (2)
O14—C13—C14117.2 (4)C15A—O15A—H15A109.5
C15—O15—H15109.5C15A—C16A—H16D109.5
O5—C5—C6117.4 (4)C15A—C16A—H16E109.5
O6—C5—O5125.0 (4)C15A—C16A—H16F109.5
O6—C5—C6117.7 (4)H16D—C16A—H16E109.5
O7—C7—O8125.5 (5)H16D—C16A—H16F109.5
O7—C7—C8117.1 (4)H16E—C16A—H16F109.5
O8—C7—C8117.4 (5)
Fe2ii—O4—C3—O330.4 (7)Fe3—O10—C9—O95.2 (7)
Fe2ii—O4—C3—C4152.1 (4)Fe3—O10—C9—C10173.7 (3)
Fe2—O13—C13—O1415.8 (7)Fe3—O16—C15—O1523.5 (11)
Fe2—O13—C13—C14164.9 (3)Fe3—O16—C15—C16155.5 (6)
Fe2—O9—C9—O1012.1 (8)Fe3—O16—C15A—O15A21 (7)
Fe2—O9—C9—C10168.9 (4)Fe3—O16—C15A—C16A175 (3)
Fe2—O8—C7—O715.6 (7)Fe3—O12—C11—O116.6 (8)
Fe2—O8—C7—C8165.4 (4)Fe3—O12—C11—C12172.5 (4)
Fe2—O6—C5—O513.5 (8)Fe3—O1—C1—O25.0 (7)
Fe2—O6—C5—C6165.7 (4)Fe3—O1—C1—C2175.0 (4)
Fe1—O7—C7—O86.2 (7)Fe3—O14—C13—O139.6 (7)
Fe1—O7—C7—C8172.7 (3)Fe3—O14—C13—C14169.7 (3)
Fe1—O3—C3—O4165.5 (4)O10—Fe3—O17—Fe253.88 (19)
Fe1—O3—C3—C417.1 (8)O10—Fe3—O17—Fe1125.52 (19)
Fe1—O11—C11—O1212.3 (8)O12—Fe3—O17—Fe2130.85 (18)
Fe1—O11—C11—C12168.5 (4)O12—Fe3—O17—Fe149.8 (2)
Fe1—O5—C5—O66.2 (8)O1—Fe3—O17—Fe2142.44 (17)
Fe1—O5—C5—C6174.6 (4)O1—Fe3—O17—Fe137.0 (2)
Fe1—O2—C1—O122.6 (7)O14—Fe3—O17—Fe238.91 (19)
Fe1—O2—C1—C2157.4 (4)O14—Fe3—O17—Fe1141.69 (18)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
Fe—O bond lengths (Å) in typical compounds containing a [Fe3O(OAc)6(H2O)3]+ unit top
CompoundIndividual Fe—µ3-O(oxido) bond lengthsCSD refcodeReference
[Fe3O(OAc)6(H2O)3]NO3·2C6H12N4·5H2O1.9034 (8), 1.9034 (8), 1.9057 (16)EMAVASBalić et al. (2021)
[Fe3O(OAc)6(H2O)3]NO3·C2H4O21.8961 (12), 1.8983 (11), 1.9120 (11)GIZSEO03Nieger (2016)
[Fe3O(OAc)6(H2O)3]Cl·6H2O1.896 (4), 1.892 (4), 1.904 (4)RIPLEH01Shova et al. (1998)
[Fe3O(OAc)6(H2O)3]ClO4·3H2O1.8969 (12), 1.8965 (11), 1.9043 (13)LINHEZAbánades Lázaro et al. (2023)
Fe—O(µ3-oxido) bond lengths (Å) in 1 top
BondsBond lengths
Fe(bonded to acetic acid)—O(µ3-oxido)Fe3—O17 1.872 (3)
Fe(bonded only to acetate)—O(µ3-oxido)Fe1—O17 1.921 (3)
Fe2—O17 1.940 (3)
 

Conflict of interest

The authors declare that there are no conflicts of interest.

Data availability

The data supporting the findings of this study are available within the article and its supplementary materials, and from the CSD.

References

First citationAbánades Lázaro, I., Mazarakioti, E. C., Andres-Garcia, E., Vieira, B. J. C., Waerenborgh, J. C., Vitórica-Yrezábal, I. J., Giménez-Marqués, M. & Mínguez Espallargas, G. (2023). J. Mater. Chem. A, 11, 5320–5327.  Google Scholar
First citationAnson, C. E., Bourke, J. P., Cannon, R. D., Jayasooriya, U. A., Molinier, M. & Powell, A. K. (1987). Inorg. Chem. 36, 1265–1267.  CrossRef Google Scholar
First citationBalić, T., Jagličić, Z., Sadrollah, E., Jochen Litterst, F., Počkaj, M., Baabe, D., Kovač-Andrić, E., Bijelić, J., Gašo-Sokač, D. & Djerdj, I. (2021). Inorg. Chim. Acta, 520, 120292.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). In Multiple Bonds Between Metal Atoms. Boston, MA: Springer.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFiggis, B. N. & Robertson, G. B. (1965). Nature, 205, 694–695.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHessel, L. W. & Romers, C. (1969). Recl Trav. Chim. Pays Bas, 88, 545–552.  CrossRef CAS Google Scholar
First citationLawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921–922.  CSD CrossRef CAS Web of Science Google Scholar
First citationNieger, M. (2016). CSD Communication (refcode GIZSEO01). CCDC, Cambridge, England.  Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationNikolaou, S., do Nascimento, L. G. A. & Alexiou, A. D. P. (2023). Coord. Chem. Rev. 494, 215341.  CrossRef Google Scholar
First citationPalmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340–345.  CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSato, T., Ambe, F., Endo, K., Katada, M., Maeda, H., Nakamoto, T. & Sano, H. (1996). J. Am. Chem. Soc. 118, 3450–3458.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShova, S. G., Cadelnik, I. G., Gdaniec, M., Simonov, Y. A., Jovmir, T. C., Meriacre, V. M., Filoti, G. & Turta, C. I. (1998). Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 39, 917.  Google Scholar
First citationWei, Y.-S., Sun, L., Wang, M., Hong, J., Zou, L., Liu, H., Wang, Y., Zhang, M., Liu, Z., Li, Y., Horike, S., Suenaga, K. & Xu, Q. (2020). Angew. Chem. Int. Ed. 59, 16013–16022.  CrossRef CAS Google Scholar
First citationWyart, M. J. (1926). Bull. Soc. Fr. Miner. 49, 148–159.  CAS Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds