research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Diprotonation of taurine: 2-[dihy­dr­oxy(oxo)sul­fan­ylium­yl]ethanaminium bis­[hexa­fluoro­arsenate(V)]

crossmark logo

aDepartment Chemie, Ludwig Maximilian University of Munich, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany
*Correspondence e-mail: valentin.bockmair@cup.uni-muenchen.de

Edited by W. Lewis, University of Sydney, Australia (Received 21 August 2024; accepted 30 October 2024; online 20 November 2024)

Taurine is part of the cysteine cycle and is one of the few naturally occuring organosulfur-based mol­ecules in the human body. As implied by modern studies, protonated taurine is of biological impact. The first attempts to isolate its protonated species in the binary superacidic system HF/SbF5 were performed by Hopfinger, resulting in the isolation of monoprotonated taurine. Since the chosen conditions seemed rather harsh, investigations in less acidic systems were performed at room tem­per­a­ture to explore the involved protonated species. Herein, we present the structure of 2-[dihy­droxy(oxo)sulfanylium­yl]ethanaminium bis[hexa­fluorido­arsenate(V)], [H2O3SC2H4NH3][AsF6]2, the diprotonated form of 2-amino­ethane­sulfonic acid (taurine). It was synthesized in the binary superacidic system HF/AsF5 and crystallizes as colourless needles. Diprotonated taurine was structurally characterized by single-crystal X-ray diffraction analysis, low-tem­per­a­ture vibrational spectroscopy and NMR spectroscopy.

1. Introduction

Taurine represents the smallest naturally occuring amino­alkyl­sulfonic acid. It was discovered in 1827 by Gmelin and Tiedemann, and its crystal structure was investigated in 1963 for the first time (Sutherland & Young, 1963[Sutherland, H. H. & Young, D. W. (1963). Acta Cryst. 16, 897-901.]). Its existence in the form of a zwitterion was proven by Okaya (1966[Okaya, Y. (1966). Acta Cryst. 21, 726-735.]). Being a part of the cysteine metabolism cycle, taurine appears naturally in animal and human bodies as a product of enzymatic catalysis via oxidation, deca­rboxylation and further oxidation under energy consumption. Depending on physiology, it is mainly stored in muscle cells. New studies have revealed the biological impact of protonated taurine by inhibition of connexin 26-containing channels (Tao & Harris, 2004[Tao, L. & Harris, A. L. (2004). J. Biol. Chem. 279, 38544-38554.]). By spatial separation, strong acidic conditions can prevail in com­partments, which might lead to the protonation of taurine. Limited by the levelling effect, it might only exist as a short-lived species in enzymatic catalysis in such com­partments.

The first protonated structure of taurine was reported for 2-sulfo­ethyl­ammonium hexa­fluorido­anti­monate(V), [HO3SC2H4NH3][SbF6], together with its spectroscopic data (Hop­finger et al., 2011[Hopfinger, M., Lux, K., Schubert, F. & Kornath, A. (2011). Acta Cryst. C67, m400-m402.]; Hopfinger, 2012[Hopfinger, M. (2012). Dissertation, LMU München, Germany.]). Since this first protonation of taurine, which was achieved at −50 °C, the question arises whether physiological conditions, especially room tem­per­a­ture, could lead to higher states of protonation. Although sulfonic acid moieties (HO3S–R) are known to be strong acids, for example, chloro­sulfonic acid, which already belongs to the class superacids, they can be protonated with the formation of their corresponding sul­fo­nium cations. Furthermore, diprotonation of sulfonic acid moieties ([H3O3S–R]2+) has not been observed so far.

Regarding other known structures containing sul­fo­nium moieties ([H2O3S–R]+) with more acidic side chains (Soltner et al., 2011[Soltner, T., Goetz, N. R. & Kornath, A. J. (2011). Eur. J. Inorg. Chem. 2011, 3076-3081.]; Seelbinder et al., 2010[Seelbinder, R., Goetz, N. R., Weber, J., Minkwitz, R. & Kornath, A. J. (2010). Chem. Eur. J. 16, 1026-1032.]), it is also possible that a weaker acidic system might succeed in protonating taurine or even 2-sulfo­ethyl­ammonium. Therefore, we investigated the protonation of taurine in the binary superacidic system HF/AsF5 at room tem­per­a­ture.

2. Experimental

Caution! Note that any contact with the described com­pounds should be avoided. Hydrolysis of AsF5 and the synthesized salts forms HF which burns skin and causes irreparable damage. Safety precautions should be taken while handling these com­pounds. All reactions were carried out by employing standard Schlenk techniques on a stainless steel vacuum line. The syntheses of the salts were performed using FEP/PFA reactors with stainless steel valves.

2.1. Synthesis and crystallization

Anhydrous hy­dro­gen fluoride (80.04 mg, 4.0 mmol) and arsenic penta­fluoride (339.82 mg, 2.0 mmol) were condensed into a FEP reactor under liquid nitrogen cooling. The solution was warmed to −78 °C and thoroughly mixed for 5 min. Taurine (125.14 mg, 1.0 mmol) was added to the superacid after freezing it at liquid nitro­gen tem­per­a­ture and the solution was warmed to room tem­per­a­ture again and thoroughly mixed for 5 min. The volatile com­ponents were removed over 12 h in vacuo at −78 °C. The product, [H2O3SC2H4NH3][AsF6]2, (I) (Scheme 1[link]), was ob­tained in the form of colourless needles in qu­anti­tative yield.

[Scheme 1]

2.2. Crystal structure refinement

Basic crystallographic data, details on data collection, and structure refinement are summarized in Table 1[link]. The positions of the H atoms in the structure were localized in a difference Fourier map and refined without any restrictions. All atoms occupy the general position 4a since no special positions exist in P212121.

Table 1
Experimental details

Crystal data
Chemical formula (C2H9NO3S)[AsF6]2
Mr 505.00
Crystal system, space group Orthorhombic, P212121
Temperature (K) 112
a, b, c (Å) 9.7110 (5), 9.7629 (4), 13.5461 (6)
V3) 1284.27 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.52
Crystal size (mm) 0.45 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku OD Xcalibur with a Sapphire3 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.281, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13161, 3910, 3424
Rint 0.044
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.062, 1.01
No. of reflections 3910
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.76, −0.61
Absolute structure Flack x determined using 1283 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.005 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

2.3. Analysis

The product, (I), was characterized by single-crystal X-ray diffraction, low-tem­per­a­ture vibrational spectroscopy and NMR spectroscopy.

Low-tem­per­a­ture vibrational spectroscopy measurements were performed to confirm the conformation and protonation state of taurine. IR spectroscopic investigations were carried out with a Bruker VERTEX 80V FT–IR spectrometer using a cooled cell with a single-crystal CsBr plate on which small amounts of the sample were placed (Bayersdorfer et al., 1972[Bayersdorfer, L., Minkwitz, R. & Jander, J. (1972). Z. Anorg. Allg. Chem. 392, 137-142.]). For Raman measurements, a Bruker MultiRam FT–Raman spectrometer with Nd:YAG laser excitation (λ = 1064 nm) was used. The measurement was performed after transferring the sample into a cooled (−196 °C) glass cell under a nitro­gen atmosphere and subsequent evacuation of the glass cell. The low-tem­per­a­ture spectra are depicted in the supporting in­for­mation (Fig. S1).

Single crystals of [H2O3SC2H4NH3][AsF6]2, (I), suitable for single-crystal diffraction analysis were selected under a stereo microscope in a cooled nitro­gen stream. The single crystal was prepared on a stainless steel polyamide micromount and data collection was performed at 112 K on an Xcalibur diffrac­tom­eter system (Rigaku Oxford Diffraction). For the diffraction pattern of (I) and an image of the single crystal on the polyamide loop of the micromount, see Fig. S2 of the sup­porting information.

NMR measurements were performed on a Bruker AV400 TR spectrometer at various tem­per­a­tures. NMR samples were measured in FEP tubes inlaid with anhydrous HF as solvent, and acetone-d6 was used as an external reference. The NMR spectra are depicted in the supporting information (Figs. S3–S13).

2.4. Quantum chemical calculations

Quantum chemical calculation were based on the single-crystal structure of diprotonated taurine using the DFT (B3LYP) and MP2 methods at the cc-pVTZ-aug level of theory with Gaussview/GAUSSIAN16 software (Dennington et al., 2016[Dennington, R., Keith, T. A. & Millam, J. M. (2016). GaussView. Version 6.0. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/.]; Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Know, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O. A., Austin, J., Cammi, R., Pomelli, C., Ochterski, J. O., Martin, R. L., Morokuma, K., Zakrzweski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2016). GAUSSIAN16. Revision C.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/.]).

For calculations, the hy­dro­gen bonds were simulated by adding two additional HF mol­ecules to the cation in the gas phase (Fig. 1[link]), resulting in more suitable calculated vibrational frequencies, in particular with regard to the vibrations of the hy­droxy groups. This method is already established in the literature in order to simulate gas phase basicity (Soltner et al., 2011[Soltner, T., Goetz, N. R. & Kornath, A. J. (2011). Eur. J. Inorg. Chem. 2011, 3076-3081.]).

[Figure 1]
Figure 1
Calculated electrostatic potential mapped onto an electron-density isosurface value of 0.0004 bohr−3 with the colour scale ranging from 464.714 (red) to 905.798 kJ mol−1 (blue) of [H2O3SC2H4NH3][AsF6]2 for two different orientations.

The structure of the cation and simulated contacts was optimized with DFT methods and vibration frequencies were calculated as reported in Table 2[link]. For the calculation of more accurate energy values of the mapped electrostatic potential, MP2 methods were used based on the optimized structure.

Table 2
Vibration assignment (frequencies in cm−1) for diprotonated taurine [see Note 2]

Raman IRa Calculated IR/Ramanb Assignment
3325 (1) shoulder 3326 (121/24) ν(NH3)
3304 (2) shoulder 3320 (172/22) ν(NH3)
3251 (3) 3252 (vs, br) 3257 (57/96) ν(NH3)
3051 (6) 3068 (vs, br) 3038 (9/34) ν(C2H2)
3016 (11) shoulder 3005 (20/44) ν(C1H2)
3005 (12) shoulder 2987 (2/104) ν(C2H2)
2960 (18) shoulder 2957 (15/104) ν(C1H2)
2906 (2) 2852 2886 (2267/162) ν(O1H) + (O2H)
2789 (3) shoulder 2818 (2303/108) ν(O1H) + (O2H)
1611 (7) 1632 (w) 1611 (35/3) δ(NH3)
1585 (8) 1587 (w) 1607 (40/5) δ(NH3)
1509 (6) 1491 (w) 1490 (147/1) γ(NH3)
1461 (15) 1454 (w) 1446 (25/5) δ(C2H2)
1404 (6)   1392 (13/4) δ(C1H2)
1394 (11)   1389 (23/1) ω(C2H2)
1361 (9) shoulder 1351 (109/7) ν(S=O)
1342 (17) shoulder 1323 (55/5) τ(C2H2)
1304 (5) shoulder 1279 (26/5) ω(C1H2)
1236 (10) 1253 (m, br) 1225 (50/2) τ(C1H2)
1197 (3) 1213 (m) 1216 (50/1) δ(O1H)
1115 (6) 1118 (w) 1203 (25/2) δ(O2H)
1038 (8) 1090 (w) 1085 (31/1) τ(C1H2) + ρ(NH3)
1008 (4) 1041 (w) 1068 (21/1) τ(C2H2) + ρ(NH3)
975 (21) 968 (w) 976 (92/2) ν(C—C) + ν(C—N)
928 (8) 919 (w) 935 (173/2) ν(S—O)
877 (8) 867 (w) 889 (102/12) ν(S—O) + ρ(C1H2)
    877 (39/1) ρ(NH3) + ρ(C2H2) + ρ(C1H2)
832 (23) 825 (w) 829 (34/2) τ(NH3) + ρ(C2H2) + ω(C1H2)
    787 (42/2) ν(C2—N) + ρ(C2H2)
    777 (76/2) ρ(C1H2) + δ(O1H1) + δ(O2H2)
    752 (65/0) δ(O1H1)
671 (26) 675 (s) 637 (39/17) ν(C—S) + ρ(C2H2)
626 (12) 615 (s)    
610 (8)      
554 (11) 541 (w)    
523 (6) 519 (w) 514 (6/2) γ(SO3)
485 (18) 463 (w) 445 (23/2) δ(SO3)
473 (16)   430 (4/4) ω(SO3)
438 (9)      
403 (9) 390 (m) 404 (47/2) ρ(C1H2)
300 (9)   309 (16/1) ρ(C1H2) + ρ(C2H2) + ρ(NH3)
282 (6)   291 (32/3)  
267 (6)   244 (9/0)  
247 (6)   224 (2/0) τ(NH3)
    157 (8/0) ρ(C2H2) + ρ(NH3)
Notes: (a) abbreviations for IR intensities: v = very, s = strong, m = medium and w = weak. IR intensities in kJ mol−1 and Raman intensities in Å4 u−1. Experimental Raman activities are relative to a scale of 1 to 100. (b) Calculated at the B3LYP/aug-cc-pVTZ level of theory (scaling factor of 0.968), displaying the relative activity of IR and Ra vibrations.

As visualized by the mapped electrostatic potential of diprotonated taurine, the positive charge on the S atom is partially shifted along the carbon backbone. The positive potential of the ammonium group represents the maximum of the positive potential (blue), which is in good agreement with its cationic state. The minimum of the positive potential is located on the sulfuryl O atom (red).

3. Results and discussion

3.1. Vibrational spectroscopy

The observed experimental vibration frequencies for diprotonated taurine were assigned to the anion and cation (Tables 2[link] and 3[link]) in accordance with quantum chemical calculations (DFT-B3LYP/aug-cc-pVTZ) and com­pared to the vibrational spectroscopic data for the monoprotonated species (Hopfinger, 2012[Hopfinger, M. (2012). Dissertation, LMU München, Germany.]).

Table 3
Vibrational frequencies (cm−1) of the [AsF6] anion (C4v)

Raman IR Raman (literature) IR (literature)
726 (27)   730 (30)  
717 (27) 698 (s) 709 (10) 700
690 (100)   680 (100)  
589 (9)   587 (11)  
573 (17)   563 (10)  
403 (9)   400 (15) 400
  390 (m) 390 (20)  
373 (39) 374 (w) 381 (25)  
  365 (w) 363 (25)  

C1 symmetry was assigned to the diprotonated species of taurine with 42 fundamental vibrations, which are com­piled in Table 2[link].

While the vibrations along the ethyl­ammonium chain only differ weakly com­pared to monoprotonation, the vibrations of the sul­fo­nium moiety show a split of the SO3 vibrations and coupled C—S stretching vibrations.

For the [AsF6] anions, more vibrations were observed than expected, due to solid-state effects leading to a lowered symmetry com­pared to an ideal octa­hedral coordination (Table 3[link]).

3.2. Crystal structure

As implied by the two [AsF6] anions in the asymmetric unit (Fig. 2[link]), taurine forms a dication with protonation to the sulfonate moiety. The crystal structure of diprotonated taurine (Fig. 3[link]) is built up on a three-dimensonal network of many inter­actions, especially hy­dro­gen bonds (Table 4[link]).

Table 4
Hydrogen-bond inter­actions (distances are Å) in the crystal structure of [H2O3SC2H4NH3][AsF6]2

Contact Distance Contact Distance
O1—H1⋯F1 2.522 (5) C2—H2B⋯F4iv 3.075 (6)
O1—H1⋯F6v 2.776 (5) N1—H3B⋯F2iii 2.853 (5)
O1—H1⋯F12ii 2.904 (6) N1—H3A⋯F5ii 2.922 (5)
O2—H2⋯F7 2.607 (5) N1—H3C⋯F4iv 2.964 (5)
O2—H2⋯F5ii 2.847 (5) N1—H3C⋯F7viii 3.023 (6)
O3i⋯H1B—C1 2.972 (6) N1—H3C⋯F9vii 3.161 (6)
O3i⋯H3B—N1 3.240 (6) N1—H3B⋯F10vii 3.026 (6)
C1—H1A⋯F11ii 3.136 (5) N1—H3A⋯O2 2.998 (6)
Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + 1, z − [{1\over 2}]; (iii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (v) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (vi) x, y − 1, z; (vii) x, y − 1, z; (viii) −x + 2, y − [{1\over 2}], −z + [{1\over 2}].
[Figure 2]
Figure 2
The asymmetric unit of [H2O3SC2H4NH3][AsF6]2. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The crystal structure of [H2O3SC2H4NH3][AsF6]2, viewed along the a axis. Displacement ellipsoids are drawn at the 50% probability level.

In the diprotonated taurine species, the S1—C1—C2—N1 torsion angle of −79.7 (5)° is enlarged [Δ(torsion) = 6.2°] com­pared to the monoprotonated species, allowing more inter­actions with the isolated [AsF6] anions. This conformation leads to a weakening of the intra­molecular hy­dro­gen bond to 2.998 Å [Δ(N—H⋯O) = 0.091 Å], but increases the number of fluorine acceptors for the inter­molecular hy­dro­gen bonds.

The sul­fo­nium moiety shows two S—O bonds of similar length for the hy­droxy O atoms [S1—O1 = 1.511 (4) Å and S1—O2 = 1.513 (4) Å], which appear to be slightly shortened in com­parison with the monoprotonated species [Δ(S—O) = −0.036 Å]. The bond length in the sulfuryl group is significantly shortened [S1—O3 = 1.410 (4) Å] com­pared with monoprotonation [1.437 (2) Å] [Δ(S=O) = −0.027 Å]. The bond lengths of the sul­fo­nium moiety are nearly equal to the values reported by Soltner for the tri­fluoro­methane­sul­fo­nium ion (Soltner et al., 2011[Soltner, T., Goetz, N. R. & Kornath, A. J. (2011). Eur. J. Inorg. Chem. 2011, 3076-3081.]).

The C1—S1, C1—C2 and C1—N1 bond lengths differ only marginally considering the influence of protonation, which can be justified by the orbital situation as the S atom does not participate in hyperconjugation along the ammonium­alkyl chain. Therefore, substituent effects on the chain cause larger changes of the bond lengths in the chain (Soltner et al., 2011[Soltner, T., Goetz, N. R. & Kornath, A. J. (2011). Eur. J. Inorg. Chem. 2011, 3076-3081.]). For com­parison with calculated data and related structures, see Table 5[link].

Table 5
Bond-length (Å) com­parison of [H2O3SC2H4NH3]2+ (observed/calculated) with [HO3SC2H4NH3]+ and [H2O3SCF3]+

[H2O3SC2H4NH3]2+ Observed Calculated     [HO3SC2H4NH3]+ [H2O3SCF3]+    
S1—O1 1.511 (4) 1.562 S1—O1 1.437 (2) S1—O1 1.505 (2)
S1—O2 1.513 (4) 1.547 S1—O2 1.427 (2) S1—O2 1.483 (2)
S1—O3 1.410 (4) 1.423 S1—O3 1.548 (2) S1—O3 1.405 (2)
S1—C1 1.754 (5) 1.801 S1—C1 1.765 (3) S1—C1 1.855 (2)
C1—C2 1.516 (7) 1.526 C1—C2 1.511 (4)    
C2—N1 1.496 (6) 1.517 C2—N1 1.496 (4)    

In the crystal structure, the diprotonated taurine is surrounded by eight [AsF6] anions and two cations. The cations are arranged in anti­parallel zigzag chains along the b axis (Fig. 4[link]). Two very strong hy­dro­gen bonds are formed, i.e. O1—H1⋯F1 [2.522 (5) Å] and O2—H2⋯F7 [2.607 (5) Å]. Medium–strong hy­dro­gen bonds are found in the range 2.776 (5)–3.161 (6) Å (Table 4[link]). In accordance with the criteria given by Jeffrey, the assignment of weak/strong hy­dro­gen bonds shows short and directed contacts for strong hy­dro­gen bonds, and longer and nondirectional contacts for weaker hy­dro­gen bonds (Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding: Topics in Physical Chemistry. New York: Oxford University Press Inc.]).

[Figure 4]
Figure 4
Polyhedral illustration of the slicing in the crystal structure of [H2O3SC2H4NH3][AsF6]2, viewed along the a axis.

Atom As1 is sourrounded by atoms F1–F6 and As2 by F7–F12, with As—F bond lengths in the range 1.688 (3)–1.759 Å. The [AsF6] octa­hedra are slightly distorted com­pared with idealized Oh symmetry in [AsF6] (Biswal et al., 2012[Biswal, M., Body, M., Legein, C., Corbel, G., Sadoc, A. & Boucher, F. (2012). J. Phys. Chem. C, 116, 11682-11693.]), through elongation of the As—F bond along the strongest hy­dro­gen bonds in the crystal structure (Table 6[link]).

Table 6
Coordination environment (bond lengths in Å) of [AsF6] units in diprotonated taurine

[As1F6] [As2F6] Na[AsF6]
As1—F1 1.760 (3) As2—F7 1.750 (3) As1—F1 1.702
As1—F2 1.718 (3) As2—F8 1.710 (3)    
As1—F3 1.708 (3) As2—F9 1.704 (3)    
As1—F4 1.710 (3) As2—F10 1.688 (3)    
As1—F5 1.711 (3) As2—F11 1.708 (3)    
As1—F6 1.693 (3) As2—F12 1.711 (3)    

3.3. NMR spectroscopy

The 1H, 13C, 14N and 19F NMR spectra of taurine were measured in anhydrous hydrogen fluoride (aHF) and in the binary superacidic medium aHF/AsF5.

The 1H NMR spectrum (see Fig. S3 in the supporting in­for­mation) shows three visible signals, apart from the solvent HF (7.75 ppm) and the external reference acetone (2.05 ppm), i.e. a triplet at 5.97 ppm (t, C1H2, 2H) and two overlapping signals at about 3.42 (sextet, C2H2, 2H) and 3.35 ppm (t, NH3, 3H). Due to the fast proton exchange in HF, the sulfonic acid moiety might not be visible. In the 13C NMR spectrum (Fig. S4), C1 (47.81 ppm) and C2 (36.75 ppm) were detected. In the 14N NMR spectrum (Fig. S5), the NH3+ moiety was detected at −352.18 ppm (q, NH3+). In the 19F NMR spectrum (Fig. S6), the only observed signal was assigned to the solvent (HF) at −198.21 ppm, therefore no decom­position was ex­pec­ted.

In order to test whether the protonation reaction in the binary superacidic system is tem­per­a­ture dependent, a second sample was prepared with two equivalents of AsF5. Spectra were recorded at −50, −25 °C and room tem­per­a­ture. Because of the low solubility of the synthesized com­pound in HF at −50 °C and the fact that the spectra do not differ to that measured at −25 °C, only two sets of spectra are discussed.

Similar to the starting material, the 1H spectrum (Fig. S7) shows two singlets at 9.35 (s, H[AsF6], 1H) and 5.35 ppm (s, C1H2, 2H), as well as a triplet at 3.39 ppm (t, NH3, 2H) and a sextet at 3.42 ppm (m, C2H2, 2H). The data of the 1H spectra suffer from bad shimming. In the 13C NMR spectrum (Fig. S8), C1 (47.69 ppm) and C2 (34.86 ppm) were detected. No data were obtained from the 14N spectrum, which might be caused by a change of symmetry in the NH3 group. Besides the solvent at −142.85 ppm, unreacted H[AsF6] was detected at −167.67 ppm in the 19F NMR spectrum (Fig. S9).

In the 1H spectrum (Fig. S10), a smaller singlet of H[AsF6] occurs at 9.33 ppm, indicating a further protonation of taurine. In addition, a triplet at 5.43 ppm (t, C1H2, 2H) and two signals of the CH2 and NH3+ moieties at about 3.46 (t, NH3, 3H) and 3.10 ppm (sextet, C2H2, 2H), respectively, were observed. In the 13C NMR spectrum (Fig. S11), C1 (48.31 ppm) and C2 (35.13 ppm) were detected. The 14N NMR spectrum (Fig. S12) shows the NH3+ moiety at −354.94 ppm (q, NH3, 3H). In the 19F NMR spectrum (Fig. S13), the signals were assigned to the solvent at −144.72 ppm and to H[AsF6] at −167.95 ppm, due to residues of AsF5.

As monitored by NMR spectroscopy, we expect the pro­to­n­ation of taurine not to succeed in anhydrous hy­dro­gen fluoride at room tem­per­a­ture, as no shift can be detected com­pared to the already known spectra of taurine (Lin et al., 1988[Lin, Y. Y., Wright, C. E., Zagorski, M. & Nakanishi, K. (1988). Biochim. Biophys. Acta, 969, 242-248.]). In the binary superacidic system HF/AsF5, monoprotonation is observed at low tem­per­a­ture, with diprotonation observed in excess of Lewis acid at room tem­per­a­ture.

4. Conclusion

NMR spectroscopic investigations revealed that the protonation reaction in the binary superacidic systems HF/MF5 (M = As, Sb) is apparently tem­per­a­ture dependent. Thus, less acidic systems, such as HF/BF3 or HF/GeF4, might also be able to mono- or even diprotonate taurine at room tem­per­a­ture.

As diprotonation of taurine already occurs in less acidic systems, the question may be raised whether taurine can be triprotonated in the stronger acidic system HF/SbF5 at room tem­per­a­ture or at even higher tem­per­a­tures in excess SbF5, supported by the formation of polyanions (e.g. [Sb2F11], [Sb3F16], etc.). As no protonation of sul­fo­nium moieties has yet been observed, it is still unclear whether [H3O3S–R]2+ moieties might exist. Therefore, investigations of the protonation of alkyl­sulfonic acids, such as methane­sulfonic acid, might give hints, due to a better stabilizing substituent effect, as shown by the mapped electrostatic potential.

Supporting information


Computing details top

2-[Dihydroxy(oxo)sulfanyliumyl]ethanaminium bis[hexafluoridoarsenate(V)] top
Crystal data top
(C2H9NO3S)[AsF6]2Dx = 2.612 Mg m3
Mr = 505.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4191 reflections
a = 9.7110 (5) Åθ = 2.1–31.9°
b = 9.7629 (4) ŵ = 5.52 mm1
c = 13.5461 (6) ÅT = 112 K
V = 1284.27 (10) Å3Needle, colourless
Z = 40.45 × 0.10 × 0.06 mm
F(000) = 968
Data collection top
Rigaku OD Xcalibur with a Sapphire3
diffractometer
3910 independent reflections
Radiation source: Enhance (Mo) X-ray Source3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 15.9809 pixels mm-1θmax = 30.5°, θmin = 2.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1313
Tmin = 0.281, Tmax = 1.000l = 1919
13161 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0258P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3910 reflectionsΔρmax = 0.76 e Å3
199 parametersΔρmin = 0.61 e Å3
0 restraintsAbsolute structure: Flack x determined using 1283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64337 (14)0.39515 (11)0.29191 (9)0.0136 (2)
O30.5274 (4)0.4756 (3)0.2683 (3)0.0224 (8)
O10.7304 (4)0.4510 (4)0.3751 (3)0.0212 (8)
O20.7474 (4)0.3742 (4)0.2101 (3)0.0200 (8)
C10.5956 (5)0.2262 (5)0.3196 (3)0.0152 (9)
H1A0.5304880.2282410.3758360.018*
H1B0.5456740.1880790.2621360.018*
C20.7128 (5)0.1300 (5)0.3453 (4)0.0167 (10)
H2A0.7787790.1788590.3885550.020*
H2B0.6755420.0515100.3830220.020*
N10.7883 (5)0.0769 (4)0.2570 (3)0.0178 (9)
H3B0.7272030.0389150.2140660.027*
H3C0.8502700.0123870.2763980.027*
H3A0.8333250.1471350.2268450.027*
H10.687 (8)0.487 (7)0.412 (5)0.04 (2)*
H20.792 (7)0.435 (6)0.203 (5)0.03 (2)*
As10.46719 (5)0.71523 (4)0.50495 (3)0.01210 (10)
F10.5842 (3)0.5779 (3)0.4988 (2)0.0244 (6)
F50.5675 (3)0.7864 (3)0.5953 (2)0.0275 (7)
F20.3720 (4)0.6369 (3)0.4141 (2)0.0279 (8)
F40.3793 (3)0.6234 (3)0.5921 (2)0.0279 (8)
F60.3537 (4)0.8466 (3)0.5113 (2)0.0318 (7)
F30.5603 (4)0.7965 (3)0.4155 (2)0.0324 (8)
As20.85105 (6)0.73733 (5)0.13631 (4)0.01747 (12)
F110.9643 (4)0.7082 (3)0.0421 (2)0.0355 (8)
F80.7390 (3)0.7616 (4)0.2321 (2)0.0377 (9)
F120.7287 (4)0.6424 (4)0.0765 (3)0.0491 (11)
F70.9089 (4)0.5860 (3)0.1917 (2)0.0326 (9)
F90.9753 (4)0.8244 (4)0.1990 (2)0.0373 (9)
F100.7959 (5)0.8834 (4)0.0826 (3)0.0646 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0161 (6)0.0113 (5)0.0133 (5)0.0013 (5)0.0003 (5)0.0030 (4)
O30.027 (2)0.0173 (17)0.023 (2)0.0073 (16)0.0031 (17)0.0025 (14)
O10.020 (2)0.0207 (18)0.023 (2)0.0005 (14)0.0024 (17)0.0122 (16)
O20.024 (2)0.0165 (18)0.0191 (19)0.0024 (15)0.0088 (16)0.0014 (15)
C10.017 (2)0.014 (2)0.014 (2)0.0017 (19)0.0029 (17)0.0026 (18)
C20.024 (3)0.015 (2)0.011 (2)0.0018 (18)0.000 (2)0.0003 (18)
N10.019 (2)0.021 (2)0.014 (2)0.0076 (17)0.0015 (17)0.0015 (17)
As10.0119 (2)0.0149 (2)0.0096 (2)0.00187 (17)0.0004 (2)0.00084 (18)
F10.0233 (16)0.0247 (14)0.0252 (16)0.0107 (11)0.0039 (15)0.0016 (14)
F50.0281 (19)0.0299 (17)0.0245 (15)0.0018 (15)0.0129 (14)0.0070 (13)
F20.027 (2)0.0350 (18)0.0213 (16)0.0007 (15)0.0105 (14)0.0098 (14)
F40.028 (2)0.0369 (18)0.0192 (16)0.0047 (15)0.0092 (14)0.0056 (13)
F60.0302 (18)0.0285 (15)0.0368 (19)0.0189 (14)0.0024 (18)0.0072 (15)
F30.032 (2)0.0380 (19)0.0269 (16)0.0007 (16)0.0062 (15)0.0153 (15)
As20.0222 (3)0.0159 (2)0.0143 (2)0.00355 (19)0.0041 (2)0.00337 (19)
F110.051 (2)0.0346 (18)0.0203 (15)0.0067 (17)0.0128 (16)0.0026 (14)
F80.0229 (18)0.054 (2)0.0357 (19)0.0034 (17)0.0056 (15)0.0222 (17)
F120.028 (2)0.065 (3)0.054 (3)0.0035 (18)0.0118 (19)0.041 (2)
F70.038 (2)0.0279 (18)0.0317 (19)0.0101 (15)0.0021 (16)0.0100 (14)
F90.040 (2)0.044 (2)0.0282 (18)0.0186 (17)0.0010 (17)0.0112 (15)
F100.114 (4)0.037 (2)0.043 (2)0.040 (2)0.026 (3)0.0001 (19)
Geometric parameters (Å, º) top
S1—O31.410 (4)N1—H3A0.9100
S1—O11.511 (4)As1—F61.693 (3)
S1—O21.513 (4)As1—F31.708 (3)
S1—C11.754 (5)As1—F41.710 (3)
O1—H10.75 (6)As1—F51.711 (3)
O2—H20.74 (6)As1—F21.718 (3)
C1—C21.516 (7)As1—F11.760 (3)
C1—H1A0.9900As2—F101.688 (3)
C1—H1B0.9900As2—F91.704 (3)
C2—N11.496 (6)As2—F111.708 (3)
C2—H2A0.9900As2—F81.710 (3)
C2—H2B0.9900As2—F121.711 (3)
N1—H3B0.9100As2—F71.750 (3)
N1—H3C0.9100
O3—S1—O1114.5 (2)F3—As1—F4175.98 (16)
O3—S1—O2116.2 (2)F6—As1—F591.53 (16)
O1—S1—O2102.8 (2)F3—As1—F590.99 (15)
O3—S1—C1111.2 (2)F4—As1—F590.20 (16)
O1—S1—C1109.1 (2)F6—As1—F291.32 (15)
O2—S1—C1101.9 (2)F3—As1—F289.05 (17)
S1—O1—H1111 (6)F4—As1—F289.57 (15)
S1—O2—H2112 (5)F5—As1—F2177.14 (16)
C2—C1—S1115.6 (4)F6—As1—F1179.56 (16)
C2—C1—H1A108.4F3—As1—F188.74 (15)
S1—C1—H1A108.4F4—As1—F187.45 (15)
C2—C1—H1B108.4F5—As1—F188.61 (15)
S1—C1—H1B108.4F2—As1—F188.53 (15)
H1A—C1—H1B107.4F10—As2—F991.0 (2)
N1—C2—C1113.5 (4)F10—As2—F1191.31 (19)
N1—C2—H2A108.9F9—As2—F1189.97 (18)
C1—C2—H2A108.9F10—As2—F890.5 (2)
N1—C2—H2B108.9F9—As2—F890.17 (16)
C1—C2—H2B108.9F11—As2—F8178.22 (17)
H2A—C2—H2B107.7F10—As2—F1291.9 (2)
C2—N1—H3B109.5F9—As2—F12177.1 (2)
C2—N1—H3C109.5F11—As2—F1290.20 (17)
H3B—N1—H3C109.5F8—As2—F1289.56 (18)
C2—N1—H3A109.5F10—As2—F7179.7 (2)
H3B—N1—H3A109.5F9—As2—F788.86 (18)
H3C—N1—H3A109.5F11—As2—F788.46 (16)
F6—As1—F391.67 (16)F8—As2—F789.78 (17)
F6—As1—F492.14 (16)F12—As2—F788.21 (19)
O3—S1—C1—C2179.5 (3)O2—S1—C1—C255.0 (4)
O1—S1—C1—C253.3 (4)S1—C1—C2—N179.7 (5)
Vibration assignment (frequencies in cm-1) for diprotonated taurine top
RamanIRCalculated IR/RamanAssignment
3325 (1)shoulder3326 (121/24)ν(NH3)
3304 (2)shoulder3320 (172/22)ν(NH3)
3251 (3)3252 (vs, br)3257 (57/96)ν(NH3)
3051 (6)3068 (vs, br)3038 (9/34)ν(C2H2)
3016 (11)shoulder3005 (20/44)ν(C1H2)
3005 (12)shoulder2987 (2/104)ν(C2H2)
2960 (18)shoulder2957 (15/104)ν(C1H2)
2906 (2)28522886 (2267/162)ν(O1H)+(O2H)
2789 (3)shoulder2818 (2303/108)ν(O1H)+(O2H)
1611 (7)1632 (w)1611 (35/3)δ(NH3)
1585 (8)1587 (w)1607 (40/5)δ(NH3)
1509 (6)1491 (w)1490 (147/1)γ(NH3)
1461 (15)1454 (w)1446 (25/5)δ(C2H2)
1404 (6)1392 (13/4)δ(C1H2)
1394 (11)1389 (23/1)ω(C2H2)
1361 (9)shoulder1351 (109/7)ν(SO)
1342 (17)shoulder1323 (55/5)τ(C2H2)
1304 (5)shoulder1279 (26/5)ω(C1H2)
1236 (10)1253 (m, br)1225 (50/2)τ(C1H2)
1197 (3)1213 (m)1216 (50/1)δ(O1H)
1115 (6)1118 (w)1203 (25/2)δ(O2H)
1038 (8)1090 (w)1085 (31/1)τ(C1H2) + ρ(NH3)
1008 (4)1041 (w)1068 (21/1)τ(C2H2) + ρ(NH3)
975 (21)968 (w)976 (92/2)ν(C—C) + ν(C—N)
928 (8)919 (w)935 (173/2)ν(S—O)
877 (8)867 (w)889 (102/12)ν(S—O) + ρ(C1H2)
877 (39/1)ρ(NH3) + ρ(C2H2) + ρ(C1H2)
832 (23)825 (w)829 (34/2)τ(NH3) + ρ(C2H2) + ω(C1H2)
787 (42/2)ν(C2—N) + ρ(C2H2)
777 (76/2)ρ(C1H2) + δ(O1H1) + δ(O2H2)
752 (65/0)δ(O1H1)
671 (26)675 (s)637 (39/17)ν(C—S) + ρ(C2H2)
626 (12)615 (s)
610 (8)
554 (11)541 (w)
523 (6)519 (w)514 (6/2)γ(SO3)
485 (18)463 (w)445 (23/2)δ(SO3)
473 (16)430 (4/4)ω(SO3)
438 (9)
403 (9)390 (m)404 (47/2)ρ(C1H2)
300 (9)309 (16/1)ρ(C1H2) + ρ(C2H2) + ρ(NH3)
282 (6)291 (32/3)
267 (6)244 (9/0)
247 (6)224 (2/0)τ(NH3)
157 (8/0)ρ(C2H2) + ρ(NH3)
Notes: (a) abbreviations for IR intensities: v = very, s = strong, m = medium and w = weak. IR intensities km mol-1; Raman intensities in Å4 u-1. Experimental Raman activities are relative to a scale of 1 to 100. (b) Calculated on the B3LYP/aug-cc-pVTZ level of theory (scaling factor of 0.968).
Vibrational frequencies (cm-1) of the [AsF6]- anion (C4v) top
RamanIRRaman (literature)IR (literature
726 (27)730 (30)
717 (27)698 (s)709 (10)700
690 (100)680 (100)
589 (9)587 (11)
573 (17)563 (10)
403 (9)400 (15)400
390 (m)390 (20)
373 (39)374 (w)381 (25)
365 (w)363 (25)
Hydrogen-bond interactions (distances are Å) in the crystal structure of [H2O3SC2H4NH3][AsF6]2 top
ContactDistanceContactDistance
O1—H1···F12.522 (5)C2—H2B···F4iv3.075 (6)
O1—H1···F6v2.776 (5)N1—H3B···F2iii2.853 (5)
O1—H1···F12ii2.904 (6)N1—H3A···F5ii2.922 (5)
O2—H2···F72.607 (5)N1—H3C···F4iv2.964 (5)
O2—H2···F5ii2.847 (5)N1—H3C···F7viii3.023 (6)
O3i···H1B—C12.972 (6)N1—H3C···F9vii3.161 (6)
O3i···H3B—N13.240 (6)N1—H3B···F10vii3.026 (6)
C1—H1A···F11ii3.136 (5)N1—H3A···O22.998 (6)
Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+3/2, -y+1, z-1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x+1/2, -y+1/2, -z+1; (v) x+1/2, -y+3/2, -z+1; (vi) x, y-1, z; (vii) x, y-1, z; (viii) -x+2, y-1/2, -z+1/2.
Bond-length (Å) comparison of [H2O3SC2H4NH3]2+ (observed/valculated) with [HO3SC2H4NH3]+ and [H2O3SCF3]+ top
[H2O3SC2H4NH3]2+ObservedCalculated[HO3SC2H4NH3]+[H2O3SCF3]+
S1—O11.511 (4)1.562S1—O11.437 (2)S1—O11.505 (2)
S1—O21.513 (4)1.547S1—O21.427 (2)S1—O21.483 (2)
S1—O31.410 (4)1.423S1—O31.548 (2)S1—O31.405 (2)
S1—C11.754 (5)1.801S1—C11.765 (3)S1—C11.855 (2)
C1—C21.516 (7)1.526C1—C21.511 (4)
C2—N11.496 (6)1.517C2—N11.496 (4)
Coordination environment (bond lengths in Å) of [AsF6]- units in diptotonated taurine top
[As1F6]-[As2F6]-Na[AsF6]
As1—F11.760 (3)As2—F71.750 (3)As1—F11.702
As1—F21.718 (3)As2—F81.710 (3)
As1—F31.708 (3)As2—F91.704 (3)
As1—F41.710 (3)As2—F101.688 (3)
As1—F51.711 (3)As2—F111.708 (3)
As1—F61.693 (3)As2—F121.711 (3)
 

Footnotes

Deceased

Acknowledgements

We are grateful to the Ludwig Maximilian University of Munich, the Deutsche Forschungsgemeinschaft (DFG) and the F-Select GmbH for their support, as well as Professor Karaghiosoff and Dr Constantin Hoch for supervising this work. Open access funding enabled and organized by Projekt DEAL.

References

First citationBayersdorfer, L., Minkwitz, R. & Jander, J. (1972). Z. Anorg. Allg. Chem. 392, 137–142.  CrossRef CAS Google Scholar
First citationBiswal, M., Body, M., Legein, C., Corbel, G., Sadoc, A. & Boucher, F. (2012). J. Phys. Chem. C, 116, 11682–11693.  CrossRef CAS Google Scholar
First citationDennington, R., Keith, T. A. & Millam, J. M. (2016). GaussView. Version 6.0. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Know, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O. A., Austin, J., Cammi, R., Pomelli, C., Ochterski, J. O., Martin, R. L., Morokuma, K., Zakrzweski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2016). GAUSSIAN16. Revision C.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/Google Scholar
First citationHopfinger, M. (2012). Dissertation, LMU München, Germany.  Google Scholar
First citationHopfinger, M., Lux, K., Schubert, F. & Kornath, A. (2011). Acta Cryst. C67, m400–m402.  CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding: Topics in Physical Chemistry. New York: Oxford University Press Inc.  Google Scholar
First citationLin, Y. Y., Wright, C. E., Zagorski, M. & Nakanishi, K. (1988). Biochim. Biophys. Acta, 969, 242–248.  CrossRef CAS PubMed Google Scholar
First citationOkaya, Y. (1966). Acta Cryst. 21, 726–735.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSeelbinder, R., Goetz, N. R., Weber, J., Minkwitz, R. & Kornath, A. J. (2010). Chem. Eur. J. 16, 1026–1032.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoltner, T., Goetz, N. R. & Kornath, A. J. (2011). Eur. J. Inorg. Chem. 2011, 3076–3081.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutherland, H. H. & Young, D. W. (1963). Acta Cryst. 16, 897–901.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTao, L. & Harris, A. L. (2004). J. Biol. Chem. 279, 38544–38554.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds