crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Bonding properties and crystal packing in β-(SeCl4)4 derived from Hirshfeld Atom Refinement

crossmark logo

aUniversidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico, and bCentro Conjunto de Investigación en Química Sustentable UAEM–UNAM, Carr. Toluca-Atlacomulco km 14.5, 50200 Toluca, Estado de México, Mexico
*Correspondence e-mail: vjancik@iquimica.unam.mx

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 29 July 2024; accepted 28 October 2024; online 11 November 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

Binary chalcogen halogen EX4 species represent intriguing systems in terms of chemical bonding theories, such as hypervalency and stereoactivity of lone electron pairs. Instead of a simple mol­ecular EX4 structure, selenium tetra­chloride forms an ionic pair, Cl3Se+Cl, that assembles into a tetra­meric (SeCl4)4 structure, namely, tetra-μ3-chlorido-dodeca­chlorido­tetra­selenium. This article describes the charge–density analysis of the tetra­meric mol­ecule of β-SeCl4 based on the aspherical model obtained from Hirshfeld Atom Refinement of the tetra­meric mol­ecule and of an explicit cluster of 15 tetra­mers that simulates the crystal packing. Deformation density, electron localization function (ELF) and Quantum Theory of Atoms in Mol­ecules (QTAIM) were used to evaluate the bonding situation, the electron-density distribution around the Se atom and the inter­action energy of the tetra­mer.

1. Introduction

Binary chalcogen halogen com­pounds are the cornerstone of chalcogen chemistry as they are easily obtainable and serve as primary reagents for further synthesis. Furthermore, they feature a rich structural chemistry, where the EX4 (E = chalcogen and X = halogen) species attracted much attention (Greenwood & Earnshaw, 1997[Greenwood, N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. London: Butterworth-Heinemann.]). According to VSEPR (valence shell electron-pair repulsion) theory, such species should have a seesaw geometry, with the lone electron pair located in the equatorial position. However, such a simple mol­ecular structure is known only for SF4, an extremely reactive gas used as a mild fluorinating agent that can cleanly convert carbonyl and carb­oxyl groups into CF2 and CF3 moieties, respectively (Wang, 2004[Wang, C.-L. J. (2004). Sulfur Tetrafluoride, in Encyclopedia of Reagents for Organic Synthesis, edited by L. Paquette. New York: John Wiley & Sons.]). This behaviour strongly contrasts with the exceptional stability of SF6, a very heavy gas with extensive industrial applications. Conversely, SCl4 is stable only below 243 K and is predicted to consist of a Cl3S+Cl ion pair (Greenwood & Earnshaw, 1997[Greenwood, N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. London: Butterworth-Heinemann.]). Such ion pairs have also been confirmed for SeCl4, SeBr4 and TeCl4 (Born et al., 1979[Born, P., Kniep, R. & Mootz, D. (1979). Z. Anorg. Allg. Chem. 451, 12-24.], 1981a[Born, P., Kniep, R. & Mootz, D. (1981a). Z. Naturforsch. B, 36, 1516-1519.],b[Born, P., Kniep, R. & Mootz, D. (1981b). Z. Naturforsch. B, 36, 1660-1662.]; Buss & Krebs, 1971[Buss, B. & Krebs, B. (1971). Inorg. Chem. 10, 2795-2800.]). However, they associate into (EX4)4 tetra­mers forming E4X4 heterocubane cores, where each chalcogen atom is decorated by three terminal halogen atoms, and these terminal EX bonds are far shorter than the EX inter­actions within the heterocubane core. Intriguingly, SeCl4 and SeBr4 form polymorphs due to different mutual orientations of these tetra­meric (SeX4)4 units within the crystal (Born et al., 1979[Born, P., Kniep, R. & Mootz, D. (1979). Z. Anorg. Allg. Chem. 451, 12-24.], 1981a[Born, P., Kniep, R. & Mootz, D. (1981a). Z. Naturforsch. B, 36, 1516-1519.],b[Born, P., Kniep, R. & Mootz, D. (1981b). Z. Naturforsch. B, 36, 1660-1662.]).

Furthermore, these (EX4)4 species are also prime examples of hypervalent com­pounds that do not adhere strictly to the Lewis octet rule and have thus garnered further attention. For example, in 1930, Simons published a synthesis of pure SeCl4 and noted the central atom `should be repre­sent­ed with a shell of ten electrons' (Simons, 1930[Simons, J. H. (1930). J. Am. Chem. Soc. 52, 3483-3487.]). Furthermore, in 2002, Silvi used electron localization function (ELF) analysis on the gas phase form of the monomeric com­pounds AXn (A = nonmetallic element of groups 13–17 and X = halogen) to prove that. in fact, the electronegativity of the ligands has a strong influence on the valence shell population of the central atom and that in these hypervalent com­pounds, the central atom usually has less than eight electrons in its valence shell (Noury et al., 2002[Noury, S., Silvi, B. & Gillespie, R. J. (2002). Inorg. Chem. 41, 2164-2172.]).

[Scheme 1]

In this sense, the concept of hypervalency attracted a lot of scrutiny and, recently, robust techniques for the determination of experimental charge densities and quantum crystallography were used to study the electronic nature of hypervalent com­pounds. Therefore, Stalke and co-workers used a multipolar refinement of K2SO4 to determine that, instead of double S=O bonds, the sulfate anion contains rather highly polarized single S—O bonds, discarding its hypervalent nature (Schmøkel et al., 2012[Schmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607-8616.]). Further studies by Grabowski and co-workers focused on extended wavefunction refinement of sulfate, phosphate and perchlorate species against high-resolution X-ray diffraction data, determining that, unlike sulfate and phosphate, that cannot be marked as hypervalent, hypervalency cannot be discarded for the perchlorate anion (Fugel et al., 2019[Fugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., Sugimoto, K. & Grabowsky, S. (2019). Chem. Eur. J. 25, 6523-6532.]).

In this article, we report the electron-density analysis within the tetra­meric solid-state structure of β-(SeCl4)4 (1) (Scheme 1[link]) using Hirshfeld Atom Refinement (HAR) (Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]) based on single-crystal X-ray diffraction data.

2. Experimental

2.1. Sample preparation and mounting

Single crystals of the β-SeCl4 phase were obtained directly from a commercial sample of SeCl4 (Sigma–Aldrich/Merck) and were rinsed with thoroughly dried di­chloro­methane (Sigma–Aldrich/Merck) under an inert N2 atmosphere. As SeCl4 reacts immediately with nonhalogenated organic samples (including hydro­carbon oil), the crystals were placed in a Fomblin perfluoro­polyether oil (Solvay) to avoid their decom­position, evidenced by the formation of red selenium on the surface. Attempts to mount the crystals on nylon loops failed due to the rapid disintegration of the nylon fiber in contact with SeCl4. Therefore, the crystal was mounted on a spine from the Nopal Cactus (Opuntia littoralis), which proved to be inert and created less background during the measurement than a glass fibre.

2.2. Data collection and processing

The mounted crystal was placed in a stream of cold nitro­gen gas at 100 K. The data were collected on a Bruker APEX DUO three-circle diffractometer equipped with an APEXII CCD detector and an Incoatec IµS microsource with Qu­azar mirrors using Mo Kα radiation (λ = 0.71073 Å). 31 ω scans were collected at three different 2θ positions using 0.3° slicing, yielding a total of 18600 frames. During the data collection, a 90 µm thick aluminium filter was placed on the wider end of the collimator to remove the 5 keV radiation (Krause et al., 2015b[Krause, L., Herbst-Irmer, R. & Stalke, D. (2015b). J. Appl. Cryst. 48, 1907-1913.]). The data were integrated with SAINT (Bruker, 2007[Bruker (2007). SAINT and APEX. Bruker AXS Inc., Madison, Wisconsin, USA.]). Corrections for absorption and oblique incidence, as well as scaling of the data, were performed using SADABS (Krause et al., 2015a[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3-10.]). This led to a data set with a maximum resolution of sin θ/λ = 0.833 Å−1 and average redundancy, I/σ, Rsym and Rσ of ∼26, 63.9, 0.0363 and 0.0105, respectively (see Table S1 in the supporting information). The structure was solved by direct methods (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined using the independent atom model (IAM) with full-matrix least-squares on F2 (SHELXL and ShelXle; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]; Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula Se4Cl16
Mr 883.04
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 16.31259 (16), 9.79402 (10), 14.76098 (14)
β (°) 116.9694 (4)
V3) 2101.83 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.00
Crystal size (mm) 0.44 × 0.23 × 0.23
 
Data collection
Diffractometer Bruker SMART APEX DUO with an APEXII detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015a[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.037, 0.119
No. of measured, independent and observed [I > 2σ(I)] reflections 136263, 5097, 5007
Rint 0.036
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.027, 1.28
No. of reflections 5097
No. of parameters 92
Δρmax, Δρmin (e Å−3) 0.45, −0.39
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). SAINT and APEX. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). SAINT and APEX. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

2.3. Hirshfeld Atom Refinement (HAR)

HAR (Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]) was performed with OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORCA (Version 5.0.3; Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]) and NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]) software, at the PBE/x2c-TZVPP (denoted HARP) and ωB97X /x2c-TZVPP (denoted HARω) levels of theory (Perdew et al., 1996[Perdew, P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]; Chai & Head-Gordon, 2008[Chai, D. & Head-Gordon, M. (2008). J. Chem. Phys. 128, 084106.]; Pollak & Weigend, 2017[Pollak, P. & Weigend, F. (2017). J. Chem. Theory Comput. 13, 3696-3705.]). The positions and anisotropic displacement parameters of all atoms were refined. The obtained sets of Kohn–Sham orbitals were used to analyse the electron densities (vide infra).

2.4. QTAIM analysis

The sets of Kohn–Sham orbitals from the HAR were used to determine the local properties of the electron densities in the different HARs of 1 according to the Quantum Theory of Atoms in Mol­ecules (Bader, 1990[Bader, R. F. W. (1990). In Atoms in Molecules: A Quantum Theory. Oxford University Press.]) using the AIMAll program package (Keith, 2019[Keith, T. A. (2019). AIMAll. TK Gristmill Software, Overland Park, KS, USA. https://aim.tkgristmill.com/.]). The mol­ecular graphs were plotted in VMD software from the atoms, bond critical points (BCPs), ring critical points (RCPs), cage critical points (CCPs) and bond path coordinates. The Espinosa–Mollins–Lecomte ap­proxi­mation was used to convert the potential energy at the BCP to inter­action energy (Espinosa et al., 1998[Espinosa, E., Molins, E. & Lecomte, C. (1998). Chem. Phys. Lett. 285, 170-173.]).

2.5. Electron Localization Function (ELF)

The set of Kohn–Sham orbitals was used to generate the respective wavefunctions. The wavefunctions were used to determine the topological properties according to the ELF using the Multiwfn software (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]). The ELF isosurface was plotted using ChimeraX software (Version 1.8; Meng et al., 2023[Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H. & Ferrin, T. E. (2023). Protein Sci. 32, e4792.]).

3. Results and discussion

3.1. Data collection and IAM refinement

As mentioned above, the synthesis of pure SeCl4 was reported in 1930 by Simons, and two decades later, Gerding & Houtgraaf (1954[Gerding, H. & Houtgraaf, H. (1954). Recl Trav. Chim. Pays Bas, 73, 737-747.]) used the Raman spectra of SeCl4 in the solid state to propose that it exists in the form of a SeCl3+Cl ionic pair. In 1981, Kniep and co-workers published two articles describing the crystal structures of the thermodynamically stable α-SeCl4 (P[\overline{4}]3m) and the metastable β-SeCl4 (C2/c) phases, establishing their tetra­meric (SeCl4)4 nature and a polymorphic relationship (Born et al., 1981a[Born, P., Kniep, R. & Mootz, D. (1981a). Z. Naturforsch. B, 36, 1516-1519.],b[Born, P., Kniep, R. & Mootz, D. (1981b). Z. Naturforsch. B, 36, 1660-1662.]). A low-tem­per­a­ture measurement (123 K) of the crystal structure of the β-SeCl4 phase was reported by Richtera et al. (2014[Richtera, L., Jancik, V., Martínez-Otero, D., Pokluda, A., Zak, Z., Taraba, J. & Touzin, J. (2014). Inorg. Chem. 53, 6569-6577.]), but none of these data sets had the quality or resolution required for HAR. Therefore, we collected new data for the metastable β phase at 100 K. However, our first attempt revealed that, after approximately 1 d of measurement at 100 K, the crystal starts to decom­pose, as evidenced by increasing Rsym values for subsequent runs and the development of an intense reddish hue for the originally off-white crystal. A similar coloration was observed by Schürmann et al. (2022[Schürmann, C. J., Teuteberg, T. L., Stückl, A. C., Ruth, P. N., Hecker, F., Herbst-Irmer, R., Mata, R. A. & Stalke, D. (2022). Angew. Chem. Int. Ed. 61, e202203665.]) during the measurement of Se2Bn2 (Bn = benz­yl), where it was traced to the rupture of Se—Se and Se—C bonds due to radiation damage. Therefore, the collection strategy was adjusted to obtain a high-quality and redundancy data set with a resolution of sin θ/λ = 0.833 Å−1 in only a few hours. The β-SeCl4 phase (1) crystallizes in the monoclinic space group C2/c with half of the tetra­meric species in the asymmetric unit, where the rest of the mol­ecule is generated by a twofold axis (−x + 1, y, −z + [{1\over 2}]). The crystal structure obtained from the Independent Atom Model (IAM) refinement can be seen in Fig. 1[link]. Data collection and refinement details are given in Table 1[link].

[Figure 1]
Figure 1
Crystal structure of β-SeCl4 obtained from the IAM, showing (a) the asymmetric unit and (b) the tetra­mer conformation, with displacement ellipsoids at the 50% probability level.

The eight symmetry-independent Cl atoms around the two Se atoms can be divided into two groups: the first contains atoms Cl1–Cl6 which form terminal Se—Cl bonds and will be referred to as ClT, and Cl7 and Cl8 which are located at the corners of the Se4Cl4 heterocubane core (1) and will be referred to as ClC. This different bonding situation greatly affects the Se—Cl bond length, where the Se—ClT bonds are significantly shorter [2.1608 (2)–2.1962 (2) Å] than the Se—ClC bonds [2.7445 (2)–2.8358 (2) Å]. This suggests that the terminal Cl atoms are covalently bonded to Se, while the Se⋯ClC inter­actions are electrostatic. This Se—Cl bond-length difference also demonstrates the distortion of the SeCl6 octa­hedron, which is further evident from the ClT—Se—ClT [94.900 (9)–96.953 (8)°], ClC—Se—ClC [88.605 (7)–89.657 (7)°] and ClT—Se—ClC [171.202 (7)–172.273 (7)°] bond angles. Table 2[link] contains the bond lengths and angles obtained from IAM, HARP and HARω (vide infra). As can be seen, the geometry of 1 is identical within the s.u. values between the three models and as confirmed also by root-mean-square deviation (RMSD) values of 0.0001–0.0002.

Table 2
Selected bond lengths and angles of β-(SeCl4)4 from the independent atom model (IAM) and HAR

Bond IAM HARP HARω Angle IAM HARP HARω
Se1—Cl1 2.1649 (2) 2.1646 (2) 2.1646 (2) Cl1—Se1—Cl2 96.452 (8) 96.455 (8) 96.456 (8)
Se1—Cl2 2.1835 (2) 2.1834 (2) 2.1833 (2) Cl1—Se1—Cl3 96.559 (8) 96.564 (7) 96.566 (7)
Se1—Cl3 2.1608 (2) 2.1606 (2) 2.1605 (2) Cl2—Se1—Cl3 96.731 (8) 96.733 (8) 96.733 (8)
Se1—Cl7 2.7534 (2) 2.7533 (2) 2.7534 (2) Cl4—Se2—Cl5 95.440 (9) 95.443 (8) 95.443 (8)
Se1—Cl8a 2.8030 (2) 2.8030 (2) 2.8030 (2) Cl4—Se2—Cl6 96.953 (8) 96.955 (8) 96.956 (8)
Se1—Cl8 2.8358 (2) 2.8358 (2) 2.8358 (2) Cl5—Se2—Cl6 94.900 (9) 94.907 (8) 94.908 (8)
Se2—Cl4 2.1744 (2) 2.1742 (2) 2.1742 (2) Cl1—Se1—Cl7 89.360 (7) 89.363 (6) 89.364 (6)
Se2—Cl5 2.1962 (2) 2.1960 (2) 2.1960 (2) Cl1—Se1—Cl8 88.791 (7) 88.790 (6) 88.790 (6)
Se2—Cl6 2.1819 (2) 2.1817 (2) 2.1816 (2) Cl4—Se2—Cl7 89.657 (7) 89.659 (7) 89.659 (7)
Se2—Cl7 2.7446 (2) 2.7445 (2) 2.7445 (2) Cl4—Se2—Cl8 88.605 (7) 88.607 (7) 88.607 (7)
Se2—Cl8 2.7445 (2) 2.7445 (2) 2.7445 (2) Cl1—Se1—Cl8a 172.273 (7) 172.266 (7) 172.265 (7)
Se2—Cl7a 2.7731 (2) 2.7730 (2) 2.7730 (2) Cl4—Se2—Cl7a 171.202 (7) 171.194 (7) 171.194 (7)
Symmetry code: (a) −x + 1, y, −z + [{1\over 2}].

3.2. Hirshfeld Atom Refinement (HAR)

As a next step, we focused on the HAR of the tetra­meric mol­ecule of β-(SeCl4)4 using the x2c-TZVPP basis set and different functionals. Based on the obtained integrated charges, we selected the PBE (HARP) and ωB97X (HARω) functionals (Perdew et al., 1996[Perdew, P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]; Chai & Head-Gordon, 2008[Chai, D. & Head-Gordon, M. (2008). J. Chem. Phys. 128, 084106.]; Pollak & Weigend, 2017[Pollak, P. & Weigend, F. (2017). J. Chem. Theory Comput. 13, 3696-3705.]) for the final study as they led to the lowest and largest delocalization of the charge in the mol­ecule. The set of Kohn–Sham orbitals based on the experimental geometry of the mol­ecule was obtained with ORCA (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]) and was used to calculate the aspherical densities using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). The final refinement was carried out with olex.refine (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and the cycle was repeated until convergence. The Meindl–Henn fractal dimension versus residual electron-density plot (Meindl & Henn, 2007[Meindl, K. & Henn, J. (2007). Acta Cryst. A63, s239.]) shows some unrefined residual electron density that can be ascribed mainly to an anharmonic motion of the Se atoms. However, its refinement would require a resolution of sin θ/λ = 1.35 Å−1 (Kuhs, 1992[Kuhs, W. F. (1992). Acta Cryst. A48, 80-98.]) and was therefore not adopted (see Figs. S1 and S2 in the supporting information). Thus, the residual densities are about 0.44 e Å−3, which is, however, only 1.3% of the electrons of an Se atom. Table S2 contains the final refinement parameters for the HAR. For each functional, we have made two refinements. The first considered only the tetra­meric mol­ecule and was used to calculate the mol­ecular 2D and 3D maps, while the second included a cluster of 14 tetra­meric mol­ecules surrounding the central mol­ecule that was used to evaluate the mol­ecular properties and the inter­molecular inter­actions (vide infra). In all cases, the resulting sets of Kohn–Sham orbitals were used for the following analyses.

3.3. QTAIM analysis

The Quantum Theory of Atoms in Mol­ecules (QTAIM) analysis (Bader, 1990[Bader, R. F. W. (1990). In Atoms in Molecules: A Quantum Theory. Oxford University Press.]) of the local properties of the electron density obtained from the HARP and HARω models of the tetra­meric mol­ecule of 1 revealed nearly identical mol­ecular graphs (Fig. 2[link]). However, there are significant differences in the integrated atomic charges (Table 3[link], and Tables S3 and S4) and the different descriptors of the electron density related to the BCPs (Table 4[link], and Tables S5 and S6). Both models lead to very similar atomic charges ranging from −0.251 to −0.292 e for HARP and from −0.269 to −0.326 e for HARω for the terminal Cl1–Cl6 atoms; however, the ωB97X functional gives ∼0.15 e higher atomic charges of the bridging Cl7 and Cl8 atoms (−0.591 and −0.614 e for HARω versus −0.438 and −0.459 e for HARP). As a result, the hybrid functional ωB97X also leads to significantly higher selenium charges (1.500 and 1.507 e versus 1.262 and 1.260 e) and, therefore, to a significantly higher degree of electron localization in the SeCl3+ cation and the Cl anion. Although the Se—ClT bond lengths point to covalent bonds, these atomic charges and the respective average charge separation indexes (CSI) (Matta & Arabi, 2011[Matta, C. F. & Arabi, A. A. (2011). Future Med. Chem. 3, 969-994.]) of 1.53 (HARP) and 1.80 e (HARω), respectively, reveal a significant ionic com­ponent of these bonds. Similarly, the distances and the higher charge of the ClC atoms point to purely electrostatic closed-shell Se⋯ClC inter­actions with even larger average CSIs of ∼1.71 and ∼2.14 e, respectively. Furthermore, as can be seen from Table 4[link], these different atomic charges are also accom­panied by different values of the topological parameters, such as the density (ρbcp), Laplacian (∇2ρbcp) and ellipticity (ɛ) at the BCPs. The virtually zero values for the ellipticity of all bonds and inter­actions are expected, owing to covalent–ionic Se—ClT single bonds and Se⋯Cl electrostatic inter­actions. Also, the significantly higher electron density at the BCPs of the Se—ClT bonds than that observed for the BCPs(Se⋯ClC) is com­patible with such a bonding situation. Next, the ∇2ρbcp provides additional useful information about the character of the inter­action: when ∇2ρ < 0, there is an accumulation, and when ∇2ρ > 0, there is a depletion of charge density. In this sense, covalent bonds typically exhibit negative Laplacian values, while noncovalent inter­actions show positive values of the Laplacian. Thus, while the positive ∇2ρbcp values for the Se⋯ClC inter­actions are similar for both methods and confirm closed-shell inter­actions between the nuclei, there are significant differences in the ∇2ρbcp values for the Se—ClT bonds. While HARω yields negative values (−0.890 to −1.363 e A−5) congruent with a considerable covalent character of the bonds and, therefore, larger delocalization, HARP gives positive or only slightly negative values (−0.082 to 0.274 e A−5), indicating the highly polarized nature of the Se—ClT bonds in this model. However, it is known that, especially for polar bonds, the Laplacian is very sensitive to even small variations in the position of the BCPs, as a change of only 0.02 Å can cause large changes in the Laplacian value or even in the sign due to very steep gradients along the bond path trajectory (Fig. S7). Such behaviour is also possible for the polar Se—ClT bond (electronegativity = 2.55 for Se and 3.16 for Cl). For a better visualization of these differences, Fig. 3[link] com­pares selected 2D and 3D maps of the Laplacian of 1 among the two methods. The maps clearly show the closed-shell nature of the Se⋯ClC inter­actions and the covalent nature of the Se—ClT bonds for the HARω method. For HARP, one can observe the BCP between two regions of accumulation of electron density. However, no method shows the location of the stereoactive lone electron pair expected to be present on the Se atom.

Table 3
Integrated atomic charges for the crystallographically independent atoms for HAR

Atom Se1 Se2 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8
HARP 1.262 1.260 −0.259 −0.280 −0.251 −0.274 −0.292 −0.275 −0.438 −0.459
HARω 1.500 1.507 −0.288 −0.315 −0.269 −0.296 −0.326 −0.305 −0.591 −0.614

Table 4
Topological properties, namely, density (ρBCP) and Laplacian (∇2ρBCP), at the BCPs and bond lengths (Å) for selected Se—Cl bonds in 1, obtained from HARP and HARω (in parentheses)

Bond ρBCP (e Å−3) 2ρBCP (e Å−5) Bond length ɛ
Se1—Cl1 0.851 (0.885) −0.011 (−1.261) 2.165 (2.165) 0.01 (0.01)
Se1—Cl2 0.821 (0.853) 0.191 (−1.000) 2.184 (2.184) 0.01 (0.02)
Se1—Cl3 0.858 (0.893) −0.082 (−1.363) 2.161 (2.161) 0.01 (0.01)
Se2—Cl4 0.836 (0.870) 0.083 (−1.154) 2.174 (2.174) 0.01 (0.01)
Se2—Cl5 0.803 (0.834) 0.274 (−0.890) 2.196 (2.197) 0.01 (0.02)
Se2—Cl6 0.824 (0.857) 0.175 (−1.032) 2.182 (2.182) 0.01 (0.01)
Se1—Cl7 0.267 (0.258) 1.808 (1.924) 2.755 (2.756) 0.01 (0.01)
Se1—Cl8 0.227 (0.219) 1.652 (1.772) 2.838 (2.839) 0.01 (0.01)
Se1—Cl8a 0.242 (0.233) 1.712 (1.833) 2.805 (2.806) 0.01 (0.02)
Se2—Cl7 0.272 (0.264) 1.810 (1.929) 2.746 (2.747) 0.01 (0.01)
Se2—Cl7a 0.257 (0.249) 1.771 (1.896) 2.774 (2.776) 0.01 (0.01)
Se2—Cl8 0.273 (0.264) 1.787 (1.899) 2.746 (2.747) 0.01 (0.01)
Symmetry code: (a) −x + 1, y, −z + [{1\over 2}].
[Figure 2]
Figure 2
Mol­ecular graph of (a) HARP and (b) HARω, and the distribution of bond critical points (BCPs, red), ring critical points (RCPs, yellow) and cage critical points (CCPs, blue).
[Figure 3]
Figure 3
Laplacian density map in ClT—Se—ClT (top), the ClT—Se—ClC plane (middle) and the isosurface (bottom) of (a) HARP and (b) HARω at zero isolevel (∇2ρBCP = 0 e A−5).

3.4. Deformation density, Electron Localization Function (ELF) and Electrostatic Potential (ESP)

Deformation density analysis is one of the most important tools for determining regions where the valence electron density accumulates and is mainly associated with covalent bonds and lone pairs. Fig. 4[link] and Fig. S6 show the 3D deformation density isosurface maps of 1 obtained from NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). The accumulation of the electron density in the Se—ClT bond regions confirms the covalent character of these bonds, while the ClC atoms have only noncovalent inter­actions with the Se atoms. Finally, each Se atom features an electron-density accumulation ascribable to the stereoactive lone pair pointing to the centre of the Se4Cl4 heterocubane core. While these features are observed for both functionals, the map for the ω97X refinement points to more covalent Se—ClT bonds due to a larger localization of the electron density within the mol­ecule in agreement with the previous analysis. Finally, the σ hole is clearly observable for all ClT atoms, while the valence density of the ClC atoms is rather localized into four lone-pair regions where three are oriented towards the Se atoms. Becke and Edgecombe's Electron Localization Function (ELF) (Becke & Edgecombe, 1990[Becke, A. D. & Edgecombe, K. E. (1990). J. Chem. Phys. 92, 5397-5403.]) is another tool that can be used to describe electronic localization. Similar to QTAIM, the topological analysis of ELF allows for the characterization of inter­atomic inter­actions present in a mol­ecule through points known as critical points. A point at a local maximum is defined as an attractor, and the set of trajectories that end at this point define the attractor basin. There are two types of basins: core basins centred near the inner atomic shell and valence basins associated with inter­molecular surfaces, where there are shared or lone pairs. Therefore, ELF was used to confirm the location of the lone electron pair of the Se atom in 1 (Fig. 5[link]). Furthermore, the basin ascribed to V(Se) has an integrated population of 2.776 (2.432), V(Se,Cl) 0.898 (1.201) and V(Cl) 6.995 (6.740) electrons in HARP (HARω). This confirms that the model obtained using the ωB97X functional describes the Se—Cl bonds as having greater covalent character com­pared to the PBE functional. The integration of the basins shows that there are more shared electrons in V(SeCl), which is consistent with the Laplacian and deformation density maps. It is noteworthy that the sum of the populations of V(SeCl) and V(Se) results in a total of 5.470 (6.035) electrons, in agreement with Silvi's proposition that the central atom has in its valence shell less than eight electrons and should therefore not be considered hypervalent.

[Figure 4]
Figure 4
Deformation density isosurface from (a)/(c) HARP and (b)/(d) HARω at 0.05 e A−3.
[Figure 5]
Figure 5
The localization domains of 1. Core domains of Se atoms, C(Se), are repre­sent­ed in blue, unshared valence of Se atoms, V(Se), in red and valence shell of Cl atoms, V(Cl), in green for (a) HARP and (b) HARω.

Finally, the Electrostatic Potential (ESP) was calculated for 1 and mapped onto the total electron density (Fig. 6[link]). The mapped ESP shows regions of negative potential on the Cl atoms and positive potential on the Se atoms. The highest negative potential is on the ClC atoms, corresponding to the strongest inter­actions. The ClT atoms exhibit the highest potential in the equatorial region of the Cl atom and the lowest potential in the polar region in accordance with the σ-hole polarization observed in the deformation density maps. An inter­esting observation is that the ESP of the Se atom also shows a region of negative potential pointing towards the centre of the cage and is, therefore, related to the lone electron pair.

[Figure 6]
Figure 6
Isosurface of electron density with mapped electrostatic potential for (a) HARP and (b) HARω at an ρ(r) value of 0.05 e Å−3. The minimum ESP values on the isosurface (0.141) are in red and the maximum ESP values on the isosurface (0.494) are in blue.

3.5. Crystal packing and inter­molecular inter­actions

While the tetra­meric mol­ecule assembles mainly via cation–anion inter­actions, the crystal packing is dominated by weak Cl⋯Cl inter­actions (Table 5[link]). To estimate the inter­action energy of one mol­ecule within the crystal, we have evaluated a cluster of 15 mol­ecules, where the central mol­ecule is sur­round­ed by all close neighbours, mimicking the crystal packing. Herein, we use the Espinosa–Molins–Lecomte equation (EML) to evaluate the inter­action energy (Eint) of the closed-shell inter­actions and to understand their influence on the crystal packing (Espinosa et al., 1998[Espinosa, E., Molins, E. & Lecomte, C. (1998). Chem. Phys. Lett. 285, 170-173.]). The inter­action energy is determined from the local potential energy [V(r)] and the local kinetic energy [G(r)] at the position of the BCP according to the Abramov approach (Abramov, 1997[Abramov, Yu. A. (1997). Acta Cryst. A53, 264-272.]). Table 6[link] shows the inter­action energies calculated for all Se—ClT and Se⋯ClC bonds/inter­actions in 1. Based on the results from HARP, the Se—ClT bonds are, on average, about ∼39.1 kcal mol−1, while the Se⋯ClC interactions are, with an average energy of ∼7.4 kcal mol−1, much weaker. The corresponding values derived from HARω are ∼40.1 and ∼7.7 kcal mol−1, respectively. In both cases, the Se—ClT values are about half of the theoretical dissociation energy of 76.9 kcal mol−1 for the diatomic Se—Cl mol­ecule (Luo, 2007[Luo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies, 1st ed., pp. 9-67. Boca Raton: CRC Press.]). However, the high energy of the noncovalent Se⋯ClC inter­actions suggests a significant influence on the stability of the tetra­meric form of SeCl4, as each ClC atom forms three such inter­actions, bringing the total energy to more than half of the Se—ClT bond.

Table 5
Selected EML inter­action energies (kcal mol−1) of Cl⋯Cl contacts obtained from HARP and HARω (in parentheses)

Bond G V Eint
Cl1⋯Cl4a 1.839 (1.892) −1.245 (−1.311) −0.623 (−0.656)
Cl1⋯Cl4b 3.140 (3.286) −2.214 (−2.397) −1.107 (−1.199)
Cl1⋯Cl6c 2.908 (3.013) −2.011 (−2.136) −1.005 (−1.068)
Cl1⋯Cl2d 2.649 (2.732) −1.792 (−1.897) −0.896 (−0.949)
Cl1⋯Cl1d 2.391 (2.454) −1.590 (−1.674) −0.795 (−0.837)
Cl1⋯Cl5e 1.511 (1.534) −0.983 (−1.023) −0.491 (−0.512)
Cl1⋯Cl4f 1.402 (1.427) −0.929 (−0.970) −0.464 (−0.485)
Cl1⋯Cl3d 1.105 (1.127) −0.734 (−0.767) −0.367 (−0.383)
Cl2⋯Cl2a 1.963 (2.023) −1.342 (−1.417) −0.671 (−0.708)
Cl2⋯Cl5f 2.649 (2.578) −1.793 (−1.855) −0.896 (−0.928)
Cl2⋯Cl2d 2.216 (2.533) −1.520 (−1.762) −0.760 (−0.881)
Cl2⋯Cl4c 2.128 (2.192) −1.422 (−1.505) −0.711 (−0.752)
Cl2⋯Cl8c 1.833 (1.893) −1.173 (−1.305) −0.586 (−0.652)
Cl2⋯Cl7f 1.604 (1.612) −1.061 (−1.070) −0.530 (−0.535)
Cl2⋯Cl4f 1.615 (1.557) −1.037 (−1.047) −0.519 (−0.524)
Cl2⋯Cl6c 1.469 (1.380) −0.975 (−0.934) −0.488 (−0.467)
Cl3⋯Cl1a 1.712 (1.757) −1.155 (−1.213) −0.578 (−0.606)
Cl3⋯Cl4g 2.460 (2.732) −1.706 (−1.898) −0.853 (−0.949)
Cl3⋯Cl7f 2.455 (2.292) −1.667 (−1.616) −0.834 (−0.808)
Cl3⋯Cl2d 2.128 (2.192) −1.422 (−1.505) −0.711 (−0.752)
Cl3⋯Cl6h 1.823 (1.848) −1.207 (−1.212) −0.604 (−0.606)
Cl3⋯Cl5f 1.592 (1.646) −1.032 (−1.118) −0.516 (−0.559)
Cl3⋯Cl5h 1.523 (1.632) −1.000 (−1.077) −0.500 (−0.538)
Cl3⋯Cl6f 1.351 (1.507) −0.893 (−1.027) −0.447 (−0.513)
Cl7⋯Cl1f 2.332 (2.435) −1.578 (−1.713) −0.789 (−0.856)
Cl7⋯Cl3f 1.824 (1.895) −1.208 (−1.306) −0.604 (−0.653)
Cl7⋯Cl7f 1.359 (1.420) −0.915 (−0.996) −0.458 (−0.498)
Symmetry codes: (a) −x + 1, y, −z + [{1\over 2}]; (b) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (c) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (d) −x + 1, −y, −z + 1; (e) x, y − 1, z; (f) −x + 1, −y + 1, −z + 1; (g) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (h) x, −y + 1, z + [{1\over 2}].

Table 6
Inter­action energies (kcal mol−1) calculated from the EML equation for all Se atom contacts

Bond G V Eint
Se1—Cl1 40.492 (37.419) −81.054 (−81.054) −40.527 (−41.523)
Se1—Cl2 38.939 (36.037) −76.632 (−76.632) −38.316 (−39.291)
Se1—Cl3 40.722 (37.553) −81.981 (−81.981) −40.991 (−41.989)
Se2—Cl4 39.629 (36.610) −78.718 (−78.718) −39.359 (−40.366)
Se2—Cl5 37.739 (34.912) −73.693 (−73.693) −36.847 (−37.808)
Se2—Cl6 39.090 (36.164) −77.042 (−77.042) −38.521 (−39.522)
Se1—Cl7 13.757 (14.340) −15.745 (−15.745) −7.873 (−8.078)
Se1—Cl8 11.713 (12.334) −12.670 (−12.670) −6.335 (−6.565)
Se1—Cl8a 12.470 (13.084) −13.796 (−13.796) −6.898 (−7.119)
Se2—Cl7 13.957 (14.586) −16.130 (−16.130) −8.065 (−8.306)
Se2—Cl7a 13.256 (13.914) −14.982 (−14.982) −7.491 (−7.742)
Se2—Cl8 13.813 (14.402) −15.994 (−15.994) −7.997 (−8.223)
Symmetry code: (a) −x + 1, y, −z + [{1\over 2}].

Additionally, the remaining inter­actions present in the crystal are all Cl⋯Cl contacts and can be divided into intra- and inter­molecular. The intra­molecular inter­actions form between two ClT atoms and are parallel to the Se⋯Se diagonal of each Se2(ClC)2 face of the heterocubane core (Fig. 7[link]). There are, therefore, six such inter­actions per tetra­meric mol­ecule (each ClT forms only one) and they have average energies of −0.62 (for HARP) and −0.65 kcal mol−1 (for HARω). Although their energies are rather small, the Cl⋯Cl contacts further stabilize the tetra­meric arrangement as they directly link two Cl3Se cationic units.

[Figure 7]
Figure 7
Mol­ecular graph of the Cl⋯Cl contacts identified in the crystal packing of 1.

Next, each ClT atom forms seven additional inter­molecular Cl⋯Cl inter­actions, while each ClC atom forms only three. In total, there are 96 inter­molecular inter­actions originating from the tetra­meric mol­ecule, which explains the stability of the crystal packing. Table 5[link] shows selected inter­action energies associated with one Cl3Se+Cl unit, while Tables S7 and S8 contain additional details. Although all these inter­molecular Cl⋯Cl inter­actions are weak [Eint = −0.219 (−0.227) to −1.108 (−1.200) kcal mol−1], the sum of their energies is rather large: −60.0 and −63.6 kcal mol−1 for HARP and HARω, respectively, revealing their significant contribution to the stabilization of the crystal packing. Overall, this analysis sheds more light on the stabilization of the tetra­meric mol­ecule and the crystal packing.

4. Conclusions

We present the analysis of the distribution of the electron density in the tetra­meric mol­ecule of β-(SeCl4)4 based on the models derived from Hirshfeld Atom Refinement (HAR). The mol­ecule consists of four Cl3Se+ cations containing highly polarized ClT—Se closed-shell bonds and four Cl anions. These charged species assemble into a Se4Cl4 heterocubane core via closed-shell ClC⋯Se inter­actions that have only ∼19% of the energy of the Se—ClT bonds. However, each Cl anion forms three such inter­actions stabilizing the Se4Cl4 tetra­meric core. The rather long Se⋯ClC distances (∼2.8 Å) are the result of the repulsion of the Cl anions with the stereoactive lone electron pairs of the Se atoms that point into the centre of the Se4Cl4 heterocubane core, as evidenced by ELF and deformation density maps. The tetra­meric mol­ecule is further stabilized by low-energy intra­molecular ClT⋯ClT inter­actions linking two neighbouring Cl3Se+ cations. In the crystal, one tetra­meric mol­ecule forms numerous Cl⋯Cl contacts with energies lower than −1.2 kcal mol−1 per contact. However, the sum of all 96 of these contacts per tetra­mer rises to an inter­action energy larger than 60 kcal mol−1.

Supporting information


Computing details top

Tetra-µ3-chlorido-dodecachloridotetraselenium top
Crystal data top
Se4Cl16F(000) = 1632
Mr = 883.04Dx = 2.791 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.31259 (16) ÅCell parameters from 9693 reflections
b = 9.79402 (10) Åθ = 2.5–50.5°
c = 14.76098 (14) ŵ = 9.00 mm1
β = 116.9694 (4)°T = 100 K
V = 2101.83 (4) Å3Rhombic, colourless
Z = 40.44 × 0.23 × 0.23 mm
Data collection top
Bruker SMART APEX DUO with an APEXII detector
diffractometer
5097 independent reflections
Radiation source: Incoatec IµS qith Quazar mirrors5007 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.036
ω–scanθmax = 36.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015a)
h = 2727
Tmin = 0.037, Tmax = 0.119k = 1616
136263 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0069P)2 + 0.890P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.027(Δ/σ)max = 0.006
S = 1.28Δρmax = 0.45 e Å3
5097 reflectionsΔρmin = 0.39 e Å3
92 parametersExtinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00034 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.50248 (2)0.23181 (2)0.39049 (2)0.01189 (2)
Se20.35906 (2)0.52550 (2)0.18171 (2)0.01273 (2)
Cl10.39333 (2)0.24449 (2)0.43518 (2)0.01637 (3)
Cl20.50124 (2)0.00979 (2)0.37648 (2)0.01793 (3)
Cl30.61536 (2)0.24339 (2)0.54198 (2)0.01706 (3)
Cl40.26097 (2)0.51208 (2)0.24339 (2)0.01957 (3)
Cl50.37068 (2)0.74902 (2)0.19068 (2)0.02076 (4)
Cl60.25887 (2)0.52140 (2)0.02147 (2)0.01926 (3)
Cl70.50082 (2)0.51209 (2)0.37522 (2)0.01420 (3)
Cl80.36760 (2)0.24557 (2)0.18441 (2)0.01497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01255 (3)0.01113 (3)0.01213 (3)0.00004 (2)0.00572 (2)0.00026 (2)
Se20.01165 (3)0.01276 (3)0.01371 (3)0.00156 (2)0.00568 (2)0.00132 (2)
Cl10.01548 (7)0.01822 (7)0.01771 (7)0.00189 (5)0.00954 (6)0.00117 (5)
Cl20.02442 (8)0.01151 (6)0.01908 (7)0.00001 (6)0.01093 (6)0.00042 (5)
Cl30.01562 (7)0.01937 (8)0.01345 (7)0.00144 (6)0.00418 (5)0.00025 (5)
Cl40.01579 (7)0.02482 (9)0.02106 (8)0.00400 (6)0.01095 (6)0.00340 (6)
Cl50.02390 (9)0.01308 (7)0.02485 (9)0.00273 (6)0.01065 (7)0.00159 (6)
Cl60.01474 (7)0.02493 (9)0.01506 (7)0.00155 (6)0.00409 (6)0.00235 (6)
Cl70.01451 (6)0.01370 (6)0.01458 (6)0.00011 (5)0.00676 (5)0.00124 (5)
Cl80.01407 (6)0.01562 (7)0.01511 (7)0.00181 (5)0.00652 (5)0.00033 (5)
Geometric parameters (Å, º) top
Se1—Cl32.1608 (2)Se2—Cl42.1744 (2)
Se1—Cl12.1649 (2)Se2—Cl62.1819 (2)
Se1—Cl22.1835 (2)Se2—Cl52.1962 (2)
Se1—Cl72.7534 (2)Se2—Cl82.7445 (2)
Se1—Cl8i2.8030 (2)Se2—Cl72.7446 (2)
Se1—Cl82.8358 (2)Se2—Cl7i2.7731 (2)
Cl3—Se1—Cl196.559 (8)Cl4—Se2—Cl595.440 (9)
Cl3—Se1—Cl296.731 (8)Cl6—Se2—Cl594.900 (9)
Cl1—Se1—Cl296.452 (8)Cl4—Se2—Cl888.605 (7)
Cl3—Se1—Cl790.258 (7)Cl6—Se2—Cl890.316 (7)
Cl1—Se1—Cl789.360 (7)Cl5—Se2—Cl8172.959 (8)
Cl2—Se1—Cl7170.322 (7)Cl4—Se2—Cl789.657 (7)
Cl3—Se1—Cl8i87.926 (7)Cl6—Se2—Cl7172.167 (8)
Cl1—Se1—Cl8i172.273 (7)Cl5—Se2—Cl788.626 (7)
Cl2—Se1—Cl8i89.240 (7)Cl8—Se2—Cl785.631 (6)
Cl7—Se1—Cl8i84.316 (6)Cl4—Se2—Cl7i171.202 (7)
Cl3—Se1—Cl8171.921 (7)Cl6—Se2—Cl7i89.185 (7)
Cl1—Se1—Cl888.791 (7)Cl5—Se2—Cl7i90.287 (7)
Cl2—Se1—Cl888.646 (7)Cl8—Se2—Cl7i85.051 (6)
Cl7—Se1—Cl883.731 (6)Cl7—Se2—Cl7i83.796 (6)
Cl8i—Se1—Cl886.115 (6)Se2—Cl7—Se196.042 (6)
Cl4—Se2—Cl696.953 (8)Se2—Cl8—Se194.165 (6)
Symmetry code: (i) x+1, y, z+1/2.
Selected bond lengths and angles of β-(SeCl4)4 from the independent atom model (IAM) and HAR top
BondIAMHARPHARωAngleIAMHARPHARω
Se1—Cl12.1649 (2)2.1646 (2)2.1646 (2)Cl1—Se1—Cl296.452 (8)96.455 (8)96.456 (8)
Se1—Cl22.1835 (2)2.1834 (2)2.1833 (2)Cl1—Se1—Cl396.559 (8)96.564 (7)96.566 (7)
Se1—Cl32.1608 (2)2.1606 (2)2.1605 (2)Cl2—Se1—Cl396.731 (8)96.733 (8)96.733 (8)
Se1—Cl72.7534 (2)2.7533 (2)2.7534 (2)Cl4—Se2—Cl595.440 (9)95.443 (8)95.443 (8)
Se1—Cl8a2.8030 (2)2.8030 (2)2.8030 (2)Cl4—Se2—Cl696.953 (8)96.955 (8)96.956 (8)
Se1—Cl82.8358 (2)2.8358 (2)2.8358 (2)Cl5—Se2—Cl694.900 (9)94.907 (8)94.908 (8)
Se2—Cl42.1744 (2)2.1742 (2)2.1742 (2)Cl1—Se1—Cl789.360 (7)89.363 (6)89.364 (6)
Se2—Cl52.1962 (2)2.1960 (2)2.1960 (2)Cl1—Se1—Cl888.791 (7)88.790 (6)88.790 (6)
Se2—Cl62.1819 (2)2.1817 (2)2.1816 (2)Cl4—Se2—Cl789.657 (7)89.659 (7)89.659 (7)
Se2—Cl72.7446 (2)2.7445 (2)2.7445 (2)Cl4—Se2—Cl888.605 (7)88.607 (7)88.607 (7)
Se2—Cl82.7445 (2)2.7445 (2)2.7445 (2)Cl1—Se1—Cl8a172.273 (7)172.266 (7)172.265 (7)
Se2—Cl7a2.7731 (2)2.7730 (2)2.7730 (2)Cl4—Se2—Cl7a171.202 (7)171.194 (7)171.194 (7)
Symmetry code: (a) -x+1, y, -z+1/2.
Integrated atomic charges for the crystallographically independent atoms for HAR top
AtomSe1Se2Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8
HARP1.2621.260-0.259-0.280-0.251-0.274-0.292-0.275-0.438-0.459
HARω1.5001.507-0.288-0.315-0.269-0.296-0.326-0.305-0.591-0.614
Topological properties such as density (ρBCP), Laplacian (∇2ρBCP) at the BCPs and bond length (DA-B) for selected Se—Cl bonds in 1, obtained from HARP and HARω (in parentheses) top
BondρBCP (e Å-3)2ρBCP (e Å-5)DA-B (Å)ε
Se1—Cl10.851 (0.885)-0.011 (-1.261)2.165 (2.165)0.01 (0.01)
Se1—Cl20.821 (0.853)0.191 (-1.000)2.184 (2.184)0.01 (0.02)
Se1—Cl30.858 (0.893)-0.082 (-1.363)2.161 (2.161)0.01 (0.01)
Se2—Cl40.836 (0.870)0.083 (-1.154)2.174 (2.174)0.01 (0.01)
Se2—Cl50.803 (0.834)0.274 (-0.890)2.196 (2.197)0.01 (0.02)
Se2—Cl60.824 (0.857)0.175 (-1.032)2.182 (2.182)0.01 (0.01)
Se1—Cl70.267 (0.258)1.808 (1.924)2.755 (2.756)0.01 (0.01)
Se1—Cl80.227 (0.219)1.652 (1.772)2.838 (2.839)0.01 (0.01)
Se1—Cl8a0.242 (0.233)1.712 (1.833)2.805 (2.806)0.01 (0.02)
Se2—Cl70.272 (0.264)1.810 (1.929)2.746 (2.747)0.01 (0.01)
Se2—Cl7a0.257 (0.249)1.771 (1.896)2.774 (2.776)0.01 (0.01)
Se2—Cl80.273 (0.264)1.787 (1.899)2.746 (2.747)0.01 (0.01)
Symmetry code: (a) -x+1, y, -z+1/2.
Interaction energies (kcal mol-1) calculated from the EML equation for all Se atom contacts top
BondGVEint
Se1—Cl140.492 (37.419)-81.054 (-81.054)-40.527 (-41.523)
Se1—Cl238.939 (36.037)-76.632 (-76.632)-38.316 (-39.291)
Se1—Cl340.722 (37.553)-81.981 (-81.981)-40.991 (-41.989)
Se2—Cl439.629 (36.610)-78.718 (-78.718)-39.359 (-40.366)
Se2—Cl537.739 (34.912)-73.693 (-73.693)-36.847 (-37.808)
Se2—Cl639.090 (36.164)-77.042 (-77.042)-38.521 (-39.522)
Se1—Cl713.757 (14.340)-15.745 (-15.745)-7.873 (-8.078)
Se1—Cl811.713 (12.334)-12.670 (-12.670)-6.335 (-6.565)
Se1—Cl8a12.470 (13.084)-13.796 (-13.796)-6.898 (-7.119)
Se2—Cl713.957 (14.586)-16.130 (-16.130)-8.065 (-8.306)
Se2—Cl7a13.256 (13.914)-14.982 (-14.982)-7.491 (-7.742)
Se2—Cl813.813 (14.402)-15.994 (-15.994)-7.997 (-8.223)
Symmetry code: (a) -x+1, y, -z+1/2.
Selected EML interaction energies (kcal mol-1) of Cl···Cl contacts obtained from HARP and HARω (in parentheses) top
BondGVEint
Cl1···Cl4a1.839 (1.892)-1.245 (-1.311)-0.623 (-0.656)
Cl1···Cl4b3.140 (3.286)-2.214 (-2.397)-1.107 (-1.199)
Cl1···Cl6c2.908 (3.013)-2.011 (-2.136)-1.005 (-1.068)
Cl1···Cl2d2.649 (2.732)-1.792 (-1.897)-0.896 (-0.949)
Cl1···Cl1d2.391 (2.454)-1.590 (-1.674)-0.795 (-0.837)
Cl1···Cl5e1.511 (1.534)-0.983 (-1.023)-0.491 (-0.512)
Cl1···Cl4f1.402 (1.427)-0.929 (-0.970)-0.464 (-0.485)
Cl1···Cl3d1.105 (1.127)-0.734 (-0.767)-0.367 (-0.383)
Cl2···Cl2a1.963 (2.023)-1.342 (-1.417)-0.671 (-0.708)
Cl2···Cl5f2.649 (2.578)-1.793 (-1.855)-0.896 (-0.928)
Cl2···Cl2d2.216 (2.533)-1.520 (-1.762)-0.760 (-0.881)
Cl2···Cl4c2.128 (2.192)-1.422 (-1.505)-0.711 (-0.752)
Cl2···Cl8c1.833 (1.893)-1.173 (-1.305)-0.586 (-0.652)
Cl2···Cl7f1.604 (1.612)-1.061 (-1.070)-0.530 (-0.535)
Cl2···Cl4f1.615 (1.557)-1.037 (-1.047)-0.519 (-0.524)
Cl2···Cl6c1.469 (1.380)-0.975 (-0.934)-0.488 (-0.467)
Cl3···Cl1a1.712 (1.757)-1.155 (-1.213)-0.578 (-0.606)
Cl3···Cl4g2.460 (2.732)-1.706 (-1.898)-0.853 (-0.949)
Cl3···Cl7f2.455 (2.292)-1.667 (-1.616)-0.834 (-0.808)
Cl3···Cl2d2.128 (2.192)-1.422 (-1.505)-0.711 (-0.752)
Cl3···Cl6h1.823 (1.848)-1.207 (-1.212)-0.604 (-0.606)
Cl3···Cl5f1.592 (1.646)-1.032 (-1.118)-0.516 (-0.559)
Cl3···Cl5h1.523 (1.632)-1.000 (-1.077)-0.500 (-0.538)
Cl3···Cl6f1.351 (1.507)-0.893 (-1.027)-0.447 (-0.513)
Cl7···Cl1f2.332 (2.435)-1.578 (-1.713)-0.789 (-0.856)
Cl7···Cl3f1.824 (1.895)-1.208 (-1.306)-0.604 (-0.653)
Cl7···Cl7f1.359 (1.420)-0.915 (-0.996)-0.458 (-0.498)
Symmetry codes: (a) -x+1, y, -z+1/2; (b) -x+1/2, y-1/2, -z+1/2; (c) x+1/2, -y+1/2, z+1/2; (d) -x+1, -y, -z+1; (e) x, y-1, z; (f) -x+1, -y+1, -z+1; (g) -x+1/2, y-1/2, -z+1/2; (h) x, -y+1, z+1/2.
 

Acknowledgements

We are grateful to Professor Florian Kleemiss (RWTH Aachen University) for the continuous development of NoSpherA2. Mol­ecular graphics of the ELF were created with UCSF ChimeraX, developed by the Resource for Biocom­puting, Visualization, and Informatics at the University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases.

Funding information

Funding for this research was provided by: Dirección General de Asuntos del Personal Académico from the UNAM (grant No. IN216224 to Vojtech Jancik); Dirección General de Cómputo y de Tecnologías de Información y Comunicación de la UNAM (grant No. LANCAD-UNAM-DGTIC-372 to Vojtech Jancik); Consejo Nacional de Humanidades, Ciencias y Tecnologías (grant No. 2328 to Vojtech Jancik; scholarship No. 855697 to Juan de Dios Guzmán Hernández).

References

First citationAbramov, Yu. A. (1997). Acta Cryst. A53, 264–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBader, R. F. W. (1990). In Atoms in Molecules: A Quantum Theory. Oxford University Press.  Google Scholar
First citationBecke, A. D. & Edgecombe, K. E. (1990). J. Chem. Phys. 92, 5397–5403.  CrossRef CAS Web of Science Google Scholar
First citationBorn, P., Kniep, R. & Mootz, D. (1979). Z. Anorg. Allg. Chem. 451, 12–24.  CrossRef ICSD CAS Google Scholar
First citationBorn, P., Kniep, R. & Mootz, D. (1981a). Z. Naturforsch. B, 36, 1516–1519.  CrossRef Google Scholar
First citationBorn, P., Kniep, R. & Mootz, D. (1981b). Z. Naturforsch. B, 36, 1660–1662.  CrossRef Google Scholar
First citationBruker (2007). SAINT and APEX. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuss, B. & Krebs, B. (1971). Inorg. Chem. 10, 2795–2800.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationChai, D. & Head-Gordon, M. (2008). J. Chem. Phys. 128, 084106.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEspinosa, E., Molins, E. & Lecomte, C. (1998). Chem. Phys. Lett. 285, 170–173.  Web of Science CrossRef CAS Google Scholar
First citationFugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., Sugimoto, K. & Grabowsky, S. (2019). Chem. Eur. J. 25, 6523–6532.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationGerding, H. & Houtgraaf, H. (1954). Recl Trav. Chim. Pays Bas, 73, 737–747.  CrossRef CAS Google Scholar
First citationGreenwood, N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. London: Butterworth–Heinemann.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeith, T. A. (2019). AIMAll. TK Gristmill Software, Overland Park, KS, USA. https://aim.tkgristmill.com/Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R. & Stalke, D. (2015b). J. Appl. Cryst. 48, 1907–1913.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuhs, W. F. (1992). Acta Cryst. A48, 80–98.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationLuo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies, 1st ed., pp. 9–67. Boca Raton: CRC Press.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatta, C. F. & Arabi, A. A. (2011). Future Med. Chem. 3, 969–994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeindl, K. & Henn, J. (2007). Acta Cryst. A63, s239.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMeng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H. & Ferrin, T. E. (2023). Protein Sci. 32, e4792.  Web of Science CrossRef PubMed Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.  Web of Science CrossRef PubMed Google Scholar
First citationNoury, S., Silvi, B. & Gillespie, R. J. (2002). Inorg. Chem. 41, 2164–2172.  CrossRef PubMed CAS Google Scholar
First citationPerdew, P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Google Scholar
First citationPollak, P. & Weigend, F. (2017). J. Chem. Theory Comput. 13, 3696–3705.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRichtera, L., Jancik, V., Martínez-Otero, D., Pokluda, A., Zak, Z., Taraba, J. & Touzin, J. (2014). Inorg. Chem. 53, 6569–6577.  CSD CrossRef CAS PubMed Google Scholar
First citationSchmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607–8616.  Web of Science PubMed Google Scholar
First citationSchürmann, C. J., Teuteberg, T. L., Stückl, A. C., Ruth, P. N., Hecker, F., Herbst–Irmer, R., Mata, R. A. & Stalke, D. (2022). Angew. Chem. Int. Ed. 61, e202203665.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimons, J. H. (1930). J. Am. Chem. Soc. 52, 3483–3487.  CrossRef CAS Google Scholar
First citationWang, C.-L. J. (2004). Sulfur Tetrafluoride, in Encyclopedia of Reagents for Organic Synthesis, edited by L. Paquette. New York: John Wiley & Sons.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds