research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The crystal structures of methyl prop-2-ynoate, di­methyl fumarate and their protonated species

crossmark logo

aDepartment Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany
*Correspondence e-mail: dirk.hollenwaeger@cup.uni-muenchen.de

Edited by T. Ohhara, J-PARC Center, Japan Atomic Energy Agency, Japan (Received 11 October 2024; accepted 30 November 2024; online 9 December 2024)

Methyl prop-2-ynoate (C4H4O2) was investigated in the binary superacidic system HF/MF5 (M = Sb or As) and dimethyl fumarate (C6H8O4) in the superacidic system HF/SbF5, as well as HF/BF3. The starting materials methyl prop-2-ynoate and dimethyl fumarate were crystallized, the former for the first time. The protonated species of these esters, namely, (1-meth­oxy­prop-2-yn-1-yl­idene)oxidanium hexa­fluoro­arsenate, C4H5O2+ AsF6, 1,4-dimeth­oxy-4-oxo­but-2-en-1-yl­idene]oxidanium tetra­fluoro­borate bis(hy­dro­gen fluoride), C6H9O4+ BF4 2HF, and hemi{[1,4-dimeth­oxy-4-oxidaniumylidenebut-2-en-1-yl­idene]oxi­dan­ium} undeca­fluoro­diantimonate, 0.5C6H10O42+ Sb2F11, were characterized by single-crystal X-ray diffraction and Raman spectroscopy. The protonated species were recrystallized from anhydrous hy­dro­gen fluoride. In the solid state of the monoprotonated species of methyl prop-2-ynoate and the diprotonated species of dimethyl fumarate, strong intra­molecular O—H⋯F hy­dro­gen bonds build a three-dimensional network. The monoprotonated species of dimethyl fumarate builds chains by strong O—H⋯O hy­dro­gen bonds between the cations.

1. Introduction

Protonated esters have occur in two conformations, namely, synanti and synsyn (Hogeveen, 1967[Hogeveen, H. (1967). Recl Trav. Chim. Pays Bas, 86, 816-820.]; Olah et al., 1967[Olah, G. A., O'Brien, D. H. & White, A. M. (1967). J. Am. Chem. Soc. 89, 5694-5700.], 2009[Olah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. (2009). In Superacid Chemistry, 2nd ed. Hoboken, NJ: Wiley.]). The synanti conformation is more stable and is therefore consistent with the protonation of carb­oxy­lic acids (Olah et al., 2009[Olah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. (2009). In Superacid Chemistry, 2nd ed. Hoboken, NJ: Wiley.]; Hollenwäger et al., 2024b[Hollenwäger, D., Thamm, S., Bockmair, V., Nitzer, A. & Kornath, A. J. (2024b). J. Org. Chem. 89, 11421-11428.]; Hogeveen, 1968[Hogeveen, H. (1968). Recl Trav. Chim. Pays Bas, 87, 1313-1317.]). The two conformers were observed in solution by NMR spectroscopy (Olah et al., 2009[Olah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. (2009). In Superacid Chemistry, 2nd ed. Hoboken, NJ: Wiley.]). It has not yet been possible to crystallize the synsyn conformer of protonated esters in the solid state; the example of prop-2-ynoic acid (propiolic acid) shows that this could be achieved with a H/D exchange and solid-state effects through a larger anion (Hollenwäger et al., 2024b[Hollenwäger, D., Thamm, S., Bockmair, V., Nitzer, A. & Kornath, A. J. (2024b). J. Org. Chem. 89, 11421-11428.]). In magic acid (FSO3H/SbF5), the esters show the unimolecular cleavage of methanol by warming to 20 °C (Olah et al., 2009[Olah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. (2009). In Superacid Chemistry, 2nd ed. Hoboken, NJ: Wiley.]). An exception was observed with glycine methyl ester, which is still stable in magic acid even at 93 °C (Hollenwäger, et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]).

The isolation of protonated esters enables the characterization of an important inter­mediate that is present in solution in every acid-catalyzed esterification process. The selected esters also offer the possibility of further functionalization steps due to the double and triple bonds present. This prompted us to investigate methyl prop-2-ynoate and dimethyl fumarate in the binary superacidic media HF/MF5.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. [C4H5O4][MF6] (M = Sb or As)

The Lewis acids (SbF5: 433 mg, 2 mmol; AsF5: 340 mg, 2 mmol) were each condensed into a fluorine-passivated FEP reactor. Anhydrous hy­dro­gen fluoride (0.5 l) was added as reactant and solvent at −196 °C. The mixture was homogenized at room tem­per­a­ture. Methyl prop-2-ynoate (83.6 µl, 84.1 mg, 1.0 mmol) was added at −196 °C under nitro­gen. The mixture was allowed to warm to room tem­per­a­ture. The solvent was removed overnight at −78 °C. The protonated species II and III were obtained as white solids (Scheme 1[link]).

2.1.2. [C6H9O4][MFy] (M = Sb or B; y = 6 or 4)

The Lewis acids (SbF5: 216 mg, 1 mmol; BF3: 67 mg, 1 mmol) were each condensed into a fluorine-passivated FEP reactor. Anhydrous hy­dro­gen fluoride (0.5 l) was added as reactant and solvent at −196 °C. The mixture was homogenized at room tem­per­a­ture. Dimethyl fumarate (144 mg, 0.5 mmol) was added at −196 °C under nitro­gen. The mixture was allowed to warm to room tem­per­a­ture. The solvent was removed overnight at −78 °C. The protonated species V and VI were obtained as white solids (Scheme 1[link]). A clean Raman spectrum of monoprotonated species VI could not be obtained because it contains impurities of either IV or VII.

[Scheme 1]
2.1.3. [C6H10O4][Sb2F11]2 and [C6H10O4][BF4]2

The Lewis acids (SbF5: 216 mg, 1 mmol; BF3: 67 mg, 1 mmol) were each condensed into a fluorine-passivated FEP reactor. Anhydrous hy­dro­gen fluoride (0.5 l) was added as reactant and solvent at −196 °C. The mixture was homogenized at room tem­per­a­ture. Dimethyl fumarate (48 mg, 0.33 mmol) was added at −196 °C under nitro­gen. The mix­ture was allowed to warm to room tem­per­a­ture. The solvent was removed overnight at −78 °C. The protonated species VII and VIII were obtained as white solids.

2.2. Single-crystal X-ray diffraction and Raman spectroscopic analysis

Com­pounds I, III, VI and VII were characterized by single-crystal X-ray diffraction. Com­plete data and devices for the X-ray measurements are listed in the CIF in the supporting information. Low-tem­per­a­ture Raman spectroscopic analysis was performed for IVIII using a Bruker MultiRAM FT–Raman spectrometer with Nd:YAG laser excitation (λ = 1064 cm−1) under vacuum. For the measurements, the synthesized com­pound was transferred to a cooled glass cell.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The successful protonation of the target mol­ecules was confirmed by the charge of the asymmetric unit, as well as the interatomic distances. C—O distances have become nearly equal after protonation, as the charge can formally be localized on the C atom resulting in the loss of double-bond character. The positions of the H atoms were identified by Q-peaks on the difference Fourier map and by evaluation of the contacts (Figs. 1[link]–3[link][link]). Methyl, methylene and acetylenic H atoms were refined under restrictions and the proton positions were modulated.

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Rigaku Xcalibur Sapphire3 diffractometer. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]).

  I III IV
Crystal data
Chemical formula C4H4O2 C4H5O2+·AsF6 C6H8O4
Mr 84.07 274.00 144.12
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Triclinic, P[\overline{1}]
tem­per­a­ture (K) 111 111 112
a, b, c (Å) 3.8409 (5), 15.593 (2), 7.6149 (10) 6.9609 (5), 8.9319 (7), 13.7189 (9) 3.8726 (11), 5.6546 (10), 8.3778 (18)
α, β, γ (°) 90, 99.910 (12), 90 90, 91.664 (7), 90 100.642 (16), 100.42 (2), 105.73 (2)
V3) 449.27 (10) 852.60 (11) 168.30 (7)
Z 4 4 1
μ (mm−1) 0.10 4.06 0.12
Crystal size (mm) 1.00 × 0.56 × 0.31 0.90 × 0.21 × 0.15 0.52 × 0.46 × 0.35
 
Data collection
Tmin, Tmax 0.457, 1.000 0.582, 1.000 0.579, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3885, 1060, 891 4205, 2303, 1900 1403, 825, 703
Rint 0.023 0.029 0.015
θmax (°) 27.9 29.1 28.3
(sin θ/λ)max−1) 0.658 0.685 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05 0.039, 0.099, 1.05 0.048, 0.144, 1.04
No. of reflections 1060 2303 825
No. of parameters 71 123 51
No. of restraints 0 0 0
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15 0.87, −0.92 0.52, −0.24
  VI VII
Crystal data
Chemical formula C6H9O4+·BF4·2HF 0.5C6H10O42+·Sb2F11
Mr 271.96 525.57
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
tem­per­a­ture (K) 101 101
a, b, c (Å) 12.8759 (5), 11.8899 (4), 14.6252 (7) 7.8461 (6), 15.1531 (11), 19.5536 (17)
α, β, γ (°) 90, 90, 90 90, 90, 90
V3) 2239.02 (16) 2324.8 (3)
Z 8 8
μ (mm−1) 0.19 4.79
Crystal size (mm) 0.28 × 0.18 × 0.11 0.25 × 0.11 × 0.05
 
Data collection
Tmin, Tmax 0.885, 1.000 0.807, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7514, 1717, 1478 13316, 3784, 2878
Rint 0.026 0.053
θmax (°) 23.8 32.2
(sin θ/λ)max−1) 0.568 0.750
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.05 0.036, 0.071, 1.04
No. of reflections 1717 3784
No. of parameters 176 169
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.35 1.09, −1.01
com­puter programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).
[Figure 1]
Figure 1
A difference Fourier map of III without the H atom between O1 and F1. The green solid lines and red dotted lines show positive and negative density distribution, respectively.
[Figure 2]
Figure 2
A difference Fourier map of VI without the H atom between O1 and F1. The green solid lines and red dotted lines show positive and negative density distribution, respectively.
[Figure 3]
Figure 3
A difference Fourier map of VII without the H atom between O1 and F1. The green solid lines and red dotted lines show positive and negative density distribution, respectively.

3. Results and discussion

3.1. Single-crystal X-ray diffraction

3.1.1. Crystal structure of methyl prop-2-ynoate (I)

Com­pound I crystallizes in the monoclinic space group P21/n with one formula unit per unit cell. Fig. 4[link] displays the asymmetric unit. The C1—C2 bond length [1.4466 (15) Å] is significantly elongated com­pared to an average Csp1—Csp2 hybridized bond (1.427 Å) determined by X-ray diffraction (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C2≡C3 triple bond [1.1780 (16) Å] is in the same range as average terminal C≡C bonds (1.181 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C1=O1 bond [1.1972 (14) Å] is in the same range as other C=O bonds (1.196 Å) in esters (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C1—O2 bond [1.3195 (12) Å] is significantly shortened com­pared to other esters (1.337 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C4—O2 bond [1.4463 (13) Å] is significantly elongated com­pared to average CH3—O bonds in esters (1.418 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Figure 4]
Figure 4
The asymmetric unit of I, with displacement ellipsoids drawn at the 50% probability level.

The crystal structure of I displays a layered structure built of weak C3—H1⋯O1 hy­dro­gen bonds, according to the classification of Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.]). The layered structure is connected via weak C4—H2A⋯O1 hy­dro­gen bonds into a three-dimensional network (Fig. 5[link]), according to the classification of Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.]).

[Figure 5]
Figure 5
Hy­dro­gen bonds in the crystal structure of I, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 2; (iii) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].]
3.1.2. Crystal structure of (1-meth­oxy­prop-2-yn-1-yl­idene)oxidanium hexa­fluoro­arsenate (III)

Salt III crystallizes in the monoclinic space group P21/n with four formula units per unit cell. Fig. 6[link] displays the asymmetric unit of III. The C1—O1 bond [1.261 (4) Å] is significantly elongated by 0.064 Å due to the protonation com­pared to I. The C1—O2 bond [1.270 (3) Å] is significantly shortened by 0.049 Å com­pared to the starting material I. Due to the protonation, the C4—O2 bond [1.484 (4) °] is elongated by 0.038 Å com­pared to the neutral com­pound I. The C2≡C3 triple bond is not significantly influenced by the protonation.

[Figure 6]
Figure 6
The asymmetric unit of III, with displacement ellipsoids drawn at the 50% probability level.

The three-dimensional network of III (Fig. 7[link]) is built by a strong O1—H3⋯F1 and three weak C3—H1⋯F5, C3—H1⋯F6 and C4—H2B⋯F3 hy­dro­gen bonds, according to the classification of Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.]). Additionally, the crystal structure forms two inter­atomic contacts (C1⋯F2 and C1⋯F5) which are 8% shorter than the sum of the van der Waals radii.

[Figure 7]
Figure 7
The intra­molecular inter­actions in the crystal structure of III, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1; (iv) x, y − 1, z; (v) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}].]
3.1.3. Crystal structure of dimethyl (E)-but-2-enedioate (IV)

The determined crystal structure is in the same range as that reported by Kooijman et al. (2004[Kooijman, H., Sprengers, J. W., Agerbeek, M. J., Elsevier, C. J. & Spek, A. L. (2004). Acta Cryst. E60, o917-o918.]). The formula unit is shown in Fig. 8[link] and the crystal structure exhibits the same three-dimensional network (Fig. 9[link]).

[Figure 8]
Figure 8
The formula unit of IV, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y + 2, −z + 1.]
[Figure 9]
Figure 9
The intra­molecular inter­actions in the crystal structure of IV, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x − 1, y − 1, z; (iii) −x, −y + 1, −z + 1; (iv) x − 1, y, z; (v) −x, −y + 2, −z + 1; (vi) x + 1, y, z; (vii) x + 1, y + 1, z; (viii) −x + 2, −y + 2, −z + 1; (ix) −x + 2, −y + 3, −z + 1.]
3.1.4. Crystal structure of 1,4-dimeth­oxy-4-oxobut-2-en-1-yl­idene]oxidanium tetra­fluoro­borate–hy­dro­gen fluoride (1/2) (VI)

The crystal structure of the monoprotonated species VI of dimethyl fumarate crystallizes in the ortho­rhom­bic space group Pbca with eight formula units per unit cell. Fig. 10[link] displays the asymmetric unit. Similar to fumaric acid and acetyl­enedi­carb­oxy­lic acid, the monoprotonated type forms extended chains of cations that are connected via strong O3—H9⋯O1 hy­dro­gen bonds (Jessen & Kornath, 2022[Jessen, C. & Kornath, A. J. (2022). Eur. J. Inorg. Chem. 2022, e202100965,]; Bayer et al., 2020[Bayer, M. C., Jessen, C. & Kornath, A. J. (2020). Z. Anorg. Allg. Chem. 646, 333-339.]; Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.]). Due to the protonation, the C1—O1 [1.248 (3) Å] and C4—O3 [1.247 (3) Å] bonds are significantly elongated com­pared to the neutral com­pound [1.205 (2) Å]. The C1—O2 and C4—O4 bonds [both 1.289 (3) Å] are shortened by 0.052 Å com­pared to the starting material IV. The CH3—O and C2=C3 bonds are not significantly influenced by the monoprotonation.

[Figure 10]
Figure 10
The asymmetric unit of VI, with displacement ellipsoids drawn at the 50% probability level.

Besides the strong hy­dro­gen bonding between the cations, the crystal structure forms a medium–strong C6—H6⋯F6 hy­dro­gen bond [3.198 (3) Å] and two weak C5—H3⋯F4 [3.242 (3) Å] and C6—H7⋯F2 [3.261 (3) Å] hy­dro­gen bonds. Furthermore, the crystal structure forms six inter­atomic C⋯F contacts, i.e. C1⋯F1 [2.900 (3) Å], C1⋯F6 [2.943 (3) Å], C2⋯F6 [2.987 (3) Å], C3⋯F6 [3.048 (3) Å], C4⋯F2 [3.020 (3) Å] and C4⋯F5 [2.974 (3) Å], which are shorter than the sum of the van der Waals radii (3.17 Å). The inter­actions in the crystal structure of VI are shown in Fig. 11[link].

[Figure 11]
Figure 11
The intra­molecular inter­actions in the crystal structure of VI, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], z; (ii) −x + [{1\over 2}], y + [{1\over 2}], z; (iii) x − [{1\over 2}], y + 1, −z + [{1\over 2}]; (iv) x, y + 1, z; (v) −x + 1, −y + 1, −z + 1; (vi) x, −y + [{1\over 2}], z + [{1\over 2}]; (vii) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.]
3.1.5. Crystal structure of hemi{[1,4-dimeth­oxy-4-oxidan­iumylidenebut-2-en-1-yl­idene]oxidanium} undeca­fluoro­diarsenate (VII)

The crystal structure of the diprotonated species VII of dimethyl fumarate crystallizes in the ortho­rhom­bic space group Pbca with eight formula units per unit cell. Fig. 12[link] displays the formula unit. The crystal structure of the diprotonated species has a C1—O1 bond [1.277 (5) Å] significantly elongated by 0.072 Å com­pared to the starting material [1.205 (2) Å]. The C1—O2 bond [1.281 (5) Å] is shortened by 0.060 Å com­pared to the neutral com­pound [1.341 (1) Å]. The C3—O2 bond [1.489 (6) Å] is elongated by 0.034 Å com­pared to IV [1.455 (2) Å].

[Figure 12]
Figure 12
The formula unit of VIII, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The three-dimensional network is formed by a strong O1—H1⋯F1 hy­dro­gen bond and seven inter­atomic inter­actions (Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.]). The inter­atomic inter­actions are C1⋯F4 [3.061 (4) Å], C1⋯F7 [3.001 (4) Å], C2⋯F3 [2.958 (5) Å], C2⋯F7 [3.008 (5) Å], C3⋯F2 [3.050 (6) Å], O1⋯F7 [2.985 (4) Å] and O1⋯F11 [2.864 (4) Å]. Fig. 13[link] displays the inter­atomic distances in the crystal structure of VII.

[Figure 13]
Figure 13
The intra­molecular inter­actions in the crystal structure of VIII, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + [{3\over 2}], y + [{1\over 2}], z; (iii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (iv) −x + 2, −y + 1, −z + 1; (v) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (vi) −x + [{1\over 2}], y + [{1\over 2}], z; (vii) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (viii) x − 1, y, z.]

3.2. Raman spectroscopy

3.2.1. Raman spectra of I, II and III

Fig. 14[link] displays the low-tem­per­a­ture Raman spectra of I, II and III. The first evidence for succesful protonation is the significantly red-shifted C=O oscillation from 1700 cm−1 in the starting material I to 1617 (in II) and 1615 cm−1 (in III). Due to the protonation, the C—O oscillation is blue-shifted in the Raman spectra to 1414 (in II) and 1413 cm−1 (in III) com­pared to the starting material (1278 cm−1). The H3C—O oscillation is red-shifted by 42 cm−1 to 948 (in II) and 951 cm−1 (in III) com­pared to I (990 cm−1). The oscillation of the triple bond is only slightly affected from 2107 cm−1 to 2141 (in II) and 2140 cm−1 (in III).

[Figure 14]
Figure 14
The low-tem­per­a­ture Raman spectra of I (black), II (red) and III (blue).
3.2.2. Raman spectra of IV, V, VII and VIII

Fig. 15[link] shows the low-tem­per­a­ture Raman spectra of IV, V, VII and VIII. The C=O oscillation is red-shifted by 48 cm−1 to 1611 cm−1 com­pared to IV (1659 cm−1). Due to the pro­ton­ation, the C—O oscillation is blue-shifted in the Raman spectra to 1401 cm−1 (V) com­pared to the neutral com­pound (1217 cm−1). The C=C oscillation is only slightly red shifted to 1705 cm−1 com­pared to the starting material (1725 cm−1).

[Figure 15]
Figure 15
The low-tem­per­a­ture Raman spectra of IV (black), V (red), VII (green) and VIII (blue).

The diprotonation is characterized by a red-shifted C=O oscillation by 46 cm−1 to 1613 cm−1 in the spectra of VII and VIII com­pared to the Raman spectrum of IV (1659 cm−1). The C=C oscillation is significantly red-shifted by 38 cm−1 to 1686 cm−1 in the spectra of VII and VIII com­pared to the Raman spectrum of IV (1724 cm−1). Due to the protonation, the C—O oscillation is blue-shifted in the Raman spectra to 1419 (in VII) and 1425 cm−1 (in VIII) com­pared to the neutral com­pound (1217 cm−1).

4. Conclusion

We present herein the first single-crystal X-ray diffraction and Raman spectroscopy study of the monoprotonated species of methyl prop-2-ynoate and mono- and diprotonated species of dimethyl fumarate. All three protonated species crystallize in the more stable synanti conformation. Furthermore, the first single-crystal structure of methyl prop-2-ynoate is reported. The protonated species are important inter­mediates of acid-catalyzed reactions.

Supporting information


Computing details top

Methyl prop-2-ynoate (I) top
Crystal data top
C4H4O2F(000) = 176
Mr = 84.07Dx = 1.243 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.8409 (5) ÅCell parameters from 1269 reflections
b = 15.593 (2) Åθ = 3.0–31.5°
c = 7.6149 (10) ŵ = 0.10 mm1
β = 99.910 (12)°T = 111 K
V = 449.27 (10) Å3Needle, colorless
Z = 41.00 × 0.56 × 0.31 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1060 independent reflections
Radiation source: Enhance (Mo) X-ray Source891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 15.9809 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1220
Tmin = 0.457, Tmax = 1.000l = 1010
3885 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.099All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0483P]
where P = (Fo2 + 2Fc2)/3
1060 reflections(Δ/σ)max = 0.001
71 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.31342 (18)0.52742 (5)0.65891 (10)0.0344 (2)
O10.1276 (2)0.59990 (5)0.87804 (11)0.0450 (3)
C10.2479 (3)0.59799 (6)0.74312 (14)0.0293 (3)
C20.3393 (3)0.67347 (7)0.65039 (14)0.0350 (3)
C40.2276 (3)0.44773 (8)0.73879 (18)0.0383 (3)
C30.4129 (3)0.73534 (8)0.57592 (18)0.0440 (3)
H10.470 (4)0.7836 (9)0.517 (2)0.058 (4)*
H2B0.295 (4)0.4053 (9)0.664 (2)0.061 (5)*
H2A0.363 (4)0.4414 (9)0.853 (2)0.057 (4)*
H2C0.013 (4)0.4444 (9)0.741 (2)0.061 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0382 (4)0.0368 (4)0.0295 (4)0.0001 (3)0.0097 (3)0.0030 (3)
O10.0635 (6)0.0427 (5)0.0340 (5)0.0123 (4)0.0229 (4)0.0042 (3)
C10.0265 (5)0.0361 (6)0.0249 (5)0.0037 (4)0.0031 (4)0.0007 (4)
C20.0328 (5)0.0416 (6)0.0308 (6)0.0017 (4)0.0064 (4)0.0010 (4)
C40.0390 (6)0.0356 (6)0.0398 (7)0.0007 (4)0.0056 (5)0.0014 (5)
C30.0465 (7)0.0409 (6)0.0462 (7)0.0022 (5)0.0124 (5)0.0041 (5)
Geometric parameters (Å, º) top
O2—C11.3195 (12)C1—C21.4466 (15)
O2—C41.4463 (13)C2—C31.1780 (16)
O1—C11.1972 (14)
C1—O2—C4115.83 (9)O2—C1—C2111.02 (9)
O1—C1—O2124.88 (10)C3—C2—C1179.47 (11)
O1—C1—C2124.10 (10)
C4—O2—C1—O10.50 (16)C4—O2—C1—C2179.25 (9)
(1-Methoxyprop-2-yn-1-ylidene)oxidanium hexafluoroarsenate (III) top
Crystal data top
C4H5O2+·AsF6F(000) = 528
Mr = 274.00Dx = 2.135 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9609 (5) ÅCell parameters from 1298 reflections
b = 8.9319 (7) Åθ = 2.3–31.5°
c = 13.7189 (9) ŵ = 4.06 mm1
β = 91.664 (7)°T = 111 K
V = 852.60 (11) Å3Needle, colorless
Z = 40.90 × 0.21 × 0.15 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
2303 independent reflections
Radiation source: Enhance (Mo) X-ray Source1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 15.9809 pixels mm-1θmax = 29.1°, θmin = 2.7°
ω scansh = 69
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 912
Tmin = 0.582, Tmax = 1.000l = 1818
4205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0444P)2]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.55531 (4)0.61946 (4)0.31141 (2)0.02340 (12)
F30.3663 (2)0.7351 (3)0.28285 (13)0.0380 (5)
F50.5944 (3)0.5983 (2)0.18954 (13)0.0380 (5)
F20.5053 (3)0.6364 (3)0.43228 (14)0.0462 (6)
O20.0897 (3)0.1533 (3)0.50117 (16)0.0301 (5)
O10.1633 (3)0.3569 (3)0.42071 (18)0.0310 (5)
F40.7411 (3)0.5020 (3)0.33987 (16)0.0503 (6)
F10.3982 (3)0.4674 (3)0.30251 (16)0.0508 (6)
F60.7072 (3)0.7683 (3)0.31930 (17)0.0496 (6)
C10.1973 (4)0.2223 (4)0.44299 (19)0.0244 (6)
C20.3535 (4)0.1383 (4)0.4053 (2)0.0256 (6)
C30.4795 (4)0.0709 (4)0.3697 (2)0.0323 (7)
H10.5808150.0167190.3410950.039*
C40.0767 (4)0.2351 (5)0.5405 (3)0.0417 (9)
H2A0.0309850.3247460.5752620.063*
H2B0.1446960.1700890.5855300.063*
H2C0.1642730.2646470.4866570.063*
H30.235 (6)0.394 (5)0.387 (3)0.047 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.02680 (18)0.0244 (2)0.01897 (17)0.00042 (12)0.00046 (12)0.00004 (12)
F30.0363 (9)0.0460 (13)0.0313 (9)0.0157 (10)0.0033 (8)0.0030 (10)
F50.0382 (10)0.0531 (14)0.0230 (9)0.0054 (9)0.0071 (8)0.0007 (9)
F20.0596 (13)0.0605 (16)0.0187 (8)0.0094 (11)0.0016 (9)0.0008 (10)
O20.0335 (11)0.0311 (13)0.0260 (10)0.0035 (10)0.0083 (9)0.0020 (10)
O10.0305 (11)0.0281 (13)0.0344 (12)0.0014 (10)0.0023 (10)0.0015 (11)
F40.0579 (12)0.0450 (14)0.0469 (12)0.0253 (11)0.0158 (10)0.0018 (11)
F10.0657 (14)0.0441 (14)0.0430 (12)0.0300 (12)0.0066 (10)0.0002 (11)
F60.0425 (11)0.0429 (14)0.0631 (14)0.0170 (10)0.0034 (10)0.0051 (13)
C10.0251 (13)0.0279 (17)0.0200 (13)0.0020 (12)0.0033 (11)0.0057 (13)
C20.0283 (14)0.0260 (17)0.0226 (13)0.0005 (12)0.0000 (11)0.0028 (13)
C30.0292 (14)0.0346 (19)0.0333 (16)0.0049 (14)0.0032 (12)0.0012 (15)
C40.0339 (16)0.049 (2)0.0436 (19)0.0021 (17)0.0149 (15)0.0097 (19)
Geometric parameters (Å, º) top
As1—F61.700 (2)O2—C11.270 (3)
As1—F41.702 (2)O2—C41.484 (4)
As1—F31.7091 (19)O1—C11.261 (4)
As1—F21.7109 (19)C1—C21.430 (4)
As1—F51.7122 (18)C2—C31.180 (4)
As1—F11.746 (2)
F6—As1—F490.03 (12)F6—As1—F1179.51 (12)
F6—As1—F390.88 (11)F4—As1—F190.37 (13)
F4—As1—F3179.09 (11)F3—As1—F188.72 (12)
F6—As1—F290.72 (11)F2—As1—F189.55 (11)
F4—As1—F290.39 (11)F5—As1—F187.85 (10)
F3—As1—F289.53 (10)C1—O2—C4118.0 (3)
F6—As1—F591.87 (11)O1—C1—O2120.3 (3)
F4—As1—F590.84 (10)O1—C1—C2123.4 (3)
F3—As1—F589.20 (9)O2—C1—C2116.2 (3)
F2—As1—F5177.13 (10)C3—C2—C1176.8 (3)
C4—O2—C1—O10.8 (4)C4—O2—C1—C2178.7 (3)
Dimethyl (E)-but-2-enedioate (IV) top
Crystal data top
C6H8O4Z = 1
Mr = 144.12F(000) = 76
Triclinic, P1Dx = 1.422 Mg m3
a = 3.8726 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6546 (10) ÅCell parameters from 712 reflections
c = 8.3778 (18) Åθ = 3.9–32.0°
α = 100.642 (16)°µ = 0.12 mm1
β = 100.42 (2)°T = 112 K
γ = 105.73 (2)°Plate, colorless
V = 168.30 (7) Å30.52 × 0.46 × 0.35 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
825 independent reflections
Radiation source: Enhance (Mo) X-ray Source703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 15.9809 pixels mm-1θmax = 28.3°, θmin = 4.1°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 57
Tmin = 0.579, Tmax = 1.000l = 1011
1403 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.0039P]
where P = (Fo2 + 2Fc2)/3
825 reflections(Δ/σ)max < 0.001
51 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2058 (2)0.46773 (15)0.30549 (11)0.0270 (3)
O10.5682 (3)0.77635 (18)0.21852 (12)0.0381 (4)
C20.3998 (3)0.8781 (2)0.47844 (15)0.0244 (4)
C10.4062 (3)0.7084 (2)0.32036 (14)0.0237 (4)
C30.1927 (4)0.2863 (2)0.15494 (16)0.0295 (4)
H1A0.0780710.3323240.0560570.044*
H1B0.0467220.1160900.1568670.044*
H1C0.4446250.2883100.1504860.044*
H10.246 (5)0.796 (3)0.544 (2)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0328 (5)0.0188 (5)0.0261 (5)0.0011 (4)0.0112 (4)0.0039 (4)
O10.0484 (6)0.0260 (6)0.0335 (6)0.0030 (4)0.0210 (5)0.0035 (4)
C20.0249 (6)0.0231 (7)0.0238 (6)0.0045 (5)0.0075 (4)0.0056 (5)
C10.0235 (6)0.0206 (6)0.0242 (6)0.0027 (5)0.0059 (4)0.0048 (5)
C30.0354 (7)0.0197 (6)0.0278 (7)0.0028 (5)0.0086 (5)0.0006 (5)
Geometric parameters (Å, º) top
O2—C11.3414 (14)C2—C2i1.329 (2)
O2—C31.4549 (14)C2—C11.4937 (17)
O1—C11.2055 (15)
C1—O2—C3115.47 (9)O1—C1—C2125.05 (11)
C2i—C2—C1120.37 (14)O2—C1—C2111.03 (11)
O1—C1—O2123.92 (11)
C3—O2—C1—O10.07 (19)C2i—C2—C1—O14.2 (2)
C3—O2—C1—C2179.80 (9)C2i—C2—C1—O2175.91 (13)
Symmetry code: (i) x+1, y+2, z+1.
1,4-Dimethoxy-4-oxobut-2-en-1-ylidene]oxidanium tetrafluoroborate–hydrogen fluoride (1/2) (VI) top
Crystal data top
C6H9O4+·BF4·2HFDx = 1.614 Mg m3
Mr = 271.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2510 reflections
a = 12.8759 (5) Åθ = 2.7–31.9°
b = 11.8899 (4) ŵ = 0.19 mm1
c = 14.6252 (7) ÅT = 101 K
V = 2239.02 (16) Å3Plate, colorless
Z = 80.28 × 0.18 × 0.11 mm
F(000) = 1104
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1717 independent reflections
Radiation source: Enhance (Mo) X-ray Source1478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 15.9809 pixels mm-1θmax = 23.8°, θmin = 2.7°
ω scansh = 1411
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 136
Tmin = 0.885, Tmax = 1.000l = 1616
7514 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0431P)2 + 2.1459P]
where P = (Fo2 + 2Fc2)/3
1717 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.52277 (12)0.16806 (12)0.38516 (10)0.0424 (4)
F50.50136 (12)0.27683 (13)0.53107 (11)0.0415 (4)
O40.32442 (12)0.62198 (12)0.58784 (10)0.0255 (4)
O10.13464 (12)0.86421 (12)0.36669 (10)0.0249 (4)
O30.36950 (12)0.47179 (12)0.50843 (11)0.0256 (4)
O20.18127 (12)0.71387 (13)0.28735 (10)0.0275 (4)
F60.36144 (13)0.08191 (13)0.38730 (12)0.0467 (4)
F20.68532 (12)0.09644 (14)0.38787 (12)0.0525 (5)
F40.54899 (14)0.01889 (13)0.39813 (14)0.0598 (5)
F30.58307 (16)0.06993 (16)0.26486 (12)0.0681 (6)
C40.32631 (17)0.56549 (18)0.51262 (15)0.0223 (5)
C20.23256 (17)0.71960 (18)0.44011 (16)0.0229 (5)
C10.17955 (17)0.77141 (18)0.36205 (15)0.0222 (5)
C30.27536 (18)0.61916 (19)0.43439 (15)0.0232 (5)
C60.3732 (2)0.5736 (2)0.66902 (16)0.0340 (6)
H70.3324940.5088330.6899260.051*
H60.3758830.6302830.7175920.051*
H80.4438300.5491540.6539950.051*
C50.1229 (2)0.7558 (2)0.20841 (16)0.0328 (6)
H40.0483430.7477170.2199430.049*
H50.1419760.7124580.1539400.049*
H30.1394890.8353470.1985200.049*
B10.5867 (2)0.0793 (2)0.35695 (19)0.0294 (6)
H20.2735 (18)0.5775 (19)0.3809 (16)0.025 (6)*
H10.2311 (19)0.758 (2)0.4951 (17)0.030 (6)*
H100.509 (3)0.231 (3)0.485 (3)0.088 (14)*
H110.425 (3)0.056 (3)0.396 (3)0.088 (13)*
H90.363 (3)0.421 (2)0.4363 (11)0.101 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0422 (9)0.0355 (8)0.0493 (9)0.0150 (7)0.0058 (7)0.0100 (7)
F50.0399 (9)0.0439 (9)0.0408 (9)0.0092 (7)0.0031 (7)0.0027 (7)
O40.0301 (9)0.0235 (8)0.0231 (9)0.0014 (7)0.0017 (7)0.0002 (7)
O10.0253 (9)0.0184 (8)0.0311 (9)0.0009 (7)0.0025 (7)0.0018 (7)
O30.0245 (9)0.0187 (8)0.0336 (9)0.0026 (7)0.0009 (7)0.0017 (7)
O20.0305 (9)0.0290 (9)0.0231 (8)0.0060 (7)0.0015 (7)0.0002 (7)
F60.0404 (10)0.0405 (9)0.0593 (11)0.0046 (8)0.0029 (8)0.0040 (8)
F20.0313 (9)0.0594 (11)0.0667 (11)0.0051 (8)0.0063 (8)0.0041 (9)
F40.0510 (11)0.0370 (9)0.0915 (14)0.0035 (8)0.0098 (10)0.0054 (9)
F30.0852 (14)0.0799 (13)0.0393 (10)0.0153 (11)0.0028 (9)0.0159 (9)
C40.0189 (11)0.0191 (12)0.0289 (13)0.0028 (10)0.0013 (9)0.0006 (10)
C20.0241 (12)0.0216 (12)0.0231 (12)0.0011 (10)0.0019 (10)0.0014 (10)
C10.0182 (11)0.0207 (12)0.0277 (12)0.0020 (10)0.0012 (9)0.0012 (10)
C30.0253 (12)0.0210 (11)0.0234 (12)0.0016 (10)0.0002 (10)0.0027 (10)
C60.0383 (15)0.0376 (14)0.0261 (13)0.0023 (12)0.0086 (11)0.0054 (11)
C50.0348 (14)0.0400 (14)0.0238 (12)0.0042 (12)0.0042 (11)0.0049 (11)
B10.0270 (15)0.0262 (14)0.0349 (16)0.0014 (12)0.0013 (12)0.0065 (12)
Geometric parameters (Å, º) top
F1—B11.401 (3)F2—B11.363 (3)
O4—C41.289 (3)F4—B11.401 (3)
O4—C61.461 (3)F3—B11.352 (3)
O1—C11.247 (3)C4—C31.465 (3)
O3—C41.247 (3)C2—C31.318 (3)
O2—C11.289 (3)C2—C11.466 (3)
O2—C51.465 (3)
C4—O4—C6118.69 (18)O2—C1—C2115.41 (19)
C1—O2—C5118.59 (17)C2—C3—C4122.2 (2)
O3—C4—O4121.1 (2)F3—B1—F2112.1 (2)
O3—C4—C3123.4 (2)F3—B1—F1109.6 (2)
O4—C4—C3115.54 (19)F2—B1—F1109.7 (2)
C3—C2—C1121.7 (2)F3—B1—F4110.3 (2)
O1—C1—O2121.6 (2)F2—B1—F4107.8 (2)
O1—C1—C2123.0 (2)F1—B1—F4107.3 (2)
C6—O4—C4—O30.6 (3)C3—C2—C1—O22.4 (3)
C6—O4—C4—C3179.66 (19)C1—C2—C3—C4178.5 (2)
C5—O2—C1—O14.1 (3)O3—C4—C3—C2178.2 (2)
C5—O2—C1—C2175.19 (19)O4—C4—C3—C21.5 (3)
C3—C2—C1—O1176.9 (2)
Hemi{[1,4-dimethoxy-4-oxidaniumylidenebut-2-en-1-ylidene]oxidanium} undecafluorodiarsenate (VII) top
Crystal data top
0.5C6H10O42+·Sb2F11Dx = 3.003 Mg m3
Mr = 525.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3099 reflections
a = 7.8461 (6) Åθ = 3.1–31.4°
b = 15.1531 (11) ŵ = 4.79 mm1
c = 19.5536 (17) ÅT = 101 K
V = 2324.8 (3) Å3Needle, colorless
Z = 80.25 × 0.11 × 0.05 mm
F(000) = 1920
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
3784 independent reflections
Radiation source: Enhance (Mo) X-ray Source2878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 15.9809 pixels mm-1θmax = 32.2°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 2218
Tmin = 0.807, Tmax = 1.000l = 1929
13316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max = 0.002
169 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 1.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.53289 (3)0.11951 (2)0.58884 (2)0.01838 (7)
Sb20.87980 (3)0.29435 (2)0.64518 (2)0.01906 (8)
F60.6878 (3)0.20173 (15)0.64187 (14)0.0290 (6)
F40.3807 (3)0.04618 (14)0.54353 (14)0.0254 (6)
F111.0501 (3)0.37949 (16)0.64744 (16)0.0325 (7)
F70.7631 (3)0.34255 (15)0.57101 (14)0.0267 (6)
F10.4121 (3)0.22282 (15)0.56555 (15)0.0288 (6)
F80.7357 (3)0.35628 (15)0.70374 (15)0.0313 (6)
F20.4096 (4)0.11295 (17)0.66985 (15)0.0331 (6)
F30.6723 (3)0.13957 (15)0.51323 (14)0.0278 (6)
O20.4521 (4)0.52155 (17)0.62437 (16)0.0208 (6)
F50.6789 (3)0.03114 (16)0.61891 (17)0.0360 (7)
F100.9958 (3)0.21939 (16)0.58552 (17)0.0348 (7)
F90.9623 (4)0.23004 (17)0.71862 (17)0.0414 (8)
O10.4065 (4)0.37941 (18)0.61581 (18)0.0226 (6)
H10.4003970.3393970.5861740.034*
C10.4470 (5)0.4521 (2)0.5871 (2)0.0175 (8)
C30.4204 (6)0.5136 (3)0.6992 (3)0.0283 (10)
H40.3129920.4820940.7068600.043*
H50.4130860.5726650.7194630.043*
H30.5140770.4809190.7205350.043*
C20.4888 (5)0.4604 (3)0.5143 (2)0.0189 (9)
H20.498 (5)0.410 (3)0.488 (2)0.006 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.02181 (13)0.01431 (12)0.01902 (15)0.00328 (10)0.00136 (11)0.00006 (12)
Sb20.02106 (13)0.01545 (12)0.02066 (16)0.00268 (10)0.00279 (11)0.00125 (12)
F60.0361 (14)0.0251 (12)0.0258 (16)0.0164 (10)0.0012 (12)0.0014 (12)
F40.0274 (13)0.0227 (11)0.0260 (15)0.0048 (9)0.0033 (11)0.0063 (12)
F110.0221 (13)0.0275 (13)0.048 (2)0.0080 (10)0.0049 (13)0.0029 (13)
F70.0308 (14)0.0278 (12)0.0213 (15)0.0027 (10)0.0024 (11)0.0062 (12)
F10.0360 (15)0.0194 (12)0.0311 (17)0.0062 (10)0.0033 (12)0.0022 (12)
F80.0339 (15)0.0317 (12)0.0283 (16)0.0049 (11)0.0051 (12)0.0102 (13)
F20.0389 (16)0.0416 (15)0.0189 (15)0.0156 (12)0.0049 (12)0.0013 (13)
F30.0304 (14)0.0282 (12)0.0247 (15)0.0035 (10)0.0094 (11)0.0026 (12)
O20.0278 (15)0.0178 (13)0.0169 (16)0.0014 (11)0.0022 (13)0.0029 (13)
F50.0330 (14)0.0241 (12)0.051 (2)0.0011 (10)0.0142 (15)0.0103 (14)
F100.0333 (15)0.0254 (13)0.046 (2)0.0047 (10)0.0046 (13)0.0071 (13)
F90.0490 (18)0.0352 (15)0.040 (2)0.0077 (13)0.0171 (15)0.0145 (15)
O10.0253 (15)0.0161 (13)0.0263 (18)0.0005 (11)0.0040 (13)0.0002 (13)
C10.0161 (18)0.0158 (17)0.021 (2)0.0045 (14)0.0015 (16)0.0022 (18)
C30.041 (3)0.027 (2)0.017 (2)0.0022 (18)0.001 (2)0.004 (2)
C20.0175 (19)0.0186 (18)0.021 (2)0.0007 (14)0.0006 (16)0.0020 (18)
Geometric parameters (Å, º) top
Sb1—F41.856 (2)Sb2—F71.864 (3)
Sb1—F51.858 (2)Sb2—F101.865 (3)
Sb1—F21.859 (3)Sb2—F62.060 (2)
Sb1—F31.864 (3)O2—C11.281 (5)
Sb1—F11.886 (2)O2—C31.489 (6)
Sb1—F62.026 (2)O1—C11.277 (5)
Sb2—F91.852 (3)C1—C21.466 (6)
Sb2—F111.858 (2)C2—C2i1.334 (8)
Sb2—F81.863 (3)
F4—Sb1—F596.68 (11)F9—Sb2—F7168.79 (11)
F4—Sb1—F292.29 (12)F11—Sb2—F795.72 (12)
F5—Sb1—F290.73 (14)F8—Sb2—F789.00 (12)
F4—Sb1—F395.54 (11)F9—Sb2—F1089.65 (14)
F5—Sb1—F390.38 (13)F11—Sb2—F1094.98 (12)
F2—Sb1—F3171.91 (11)F8—Sb2—F10170.88 (11)
F4—Sb1—F193.34 (11)F7—Sb2—F1089.53 (13)
F5—Sb1—F1169.97 (12)F9—Sb2—F685.50 (11)
F2—Sb1—F189.34 (12)F11—Sb2—F6178.88 (11)
F3—Sb1—F188.18 (12)F8—Sb2—F685.34 (11)
F4—Sb1—F6176.70 (11)F7—Sb2—F683.29 (11)
F5—Sb1—F684.91 (11)F10—Sb2—F685.55 (11)
F2—Sb1—F684.78 (11)Sb1—F6—Sb2150.90 (15)
F3—Sb1—F687.33 (11)C1—O2—C3119.2 (3)
F1—Sb1—F685.11 (11)O1—C1—O2117.7 (4)
F9—Sb2—F1195.48 (12)O1—C1—C2123.8 (4)
F9—Sb2—F890.04 (14)O2—C1—C2118.4 (4)
F11—Sb2—F894.12 (12)C2i—C2—C1120.8 (5)
C3—O2—C1—O13.3 (5)O1—C1—C2—C2i172.3 (5)
C3—O2—C1—C2176.4 (4)O2—C1—C2—C2i8.1 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.841.812.569 (4)149
C3—H5···F9ii0.982.583.427 (5)145
C3—H3···F80.982.593.437 (5)145
C2—H2···F10iii0.92 (4)2.43 (4)3.352 (5)175 (3)
Symmetry codes: (ii) x+3/2, y+1/2, z; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the Department of Chemistry at the Ludwig Maximilian University of Munich, the Deutsche Forschungsgemeinschaft (DFG), the F-Select GmbH and Professor Dr Konstantin Karaghiosoff and Dr Constantin Hoch for their support. Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by: Ludwig-Maximilians-University; F-Select GmbH; Deutsche Forschungsgemeinschaft.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBayer, M. C., Jessen, C. & Kornath, A. J. (2020). Z. Anorg. Allg. Chem. 646, 333–339.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHogeveen, H. (1967). Recl Trav. Chim. Pays Bas, 86, 816–820.  CrossRef CAS Google Scholar
First citationHogeveen, H. (1968). Recl Trav. Chim. Pays Bas, 87, 1313–1317.  CrossRef CAS Google Scholar
First citationHollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101–2109.  Google Scholar
First citationHollenwäger, D., Thamm, S., Bockmair, V., Nitzer, A. & Kornath, A. J. (2024b). J. Org. Chem. 89, 11421–11428.  PubMed Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to hy­dro­gen Bonding. New York, Oxford: Oxford University Press.  Google Scholar
First citationJessen, C. & Kornath, A. J. (2022). Eur. J. Inorg. Chem. 2022, e202100965,  CSD CrossRef CAS Google Scholar
First citationKooijman, H., Sprengers, J. W., Agerbeek, M. J., Elsevier, C. J. & Spek, A. L. (2004). Acta Cryst. E60, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationOlah, G. A., O'Brien, D. H. & White, A. M. (1967). J. Am. Chem. Soc. 89, 5694–5700.  CrossRef CAS Google Scholar
First citationOlah, G. A., Prakash, G. K. S., Molnar, A. & Sommer, J. (2009). In Superacid Chemistry, 2nd ed. Hoboken, NJ: Wiley.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds