research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Monoprotonated species of 2-amino­malonyl difluoride, [C3H4F2NO2][H2F3]

crossmark logo

aDepartment Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany
*Correspondence e-mail: dirk.hollenwaeger@cup.uni-muenchen.de

Edited by T. Ohhara, J-PARC Center, Japan Atomic Energy Agency, Japan (Received 4 October 2024; accepted 25 December 2024; online 8 January 2025)

The monoprotonated species of 2-amino­malonyl difluoride, namely, 1,3-di­fluoro-1,3-dioxopropan-2-aminium di­hy­dro­gen trifluoride, [C3H4F2NO2][H2F3], was synthesized from sulfur tetra­fluoride in anhydrous hy­dro­gen fluoride (aHF) with [NH4][C3H5NO4] as the starting material. The solvent was removed and the salt was dissolved in aHF and crystallized. In the solid state, the three-dimensional network is built by medium–strong N—H⋯F hy­dro­gen bonds and C⋯F contacts. This is the first structure determination of an aminoacyl difluoride and the second of an aminoacyl fluoride.

1. Introduction

The monoprotonated species of 2-aminomalonyl difluoride, as the [C3H4F2NO2][H2F3] salt, is the second characterized salt of an acyl­amino fluoride, after the synthesis of glycinoyl fluoride (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]). Glycinoyl fluoride with protection groups was first characterized by NMR spectroscopy in 1999 by Carpino & Mansour (1999[Carpino, L. A. & Mansour, E. M. E. (1999). J. Org. Chem. 64, 8399-8401.]). The direct synthesis of acyl­amino fluorides was investigated by our group in 2024 (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]). The solid state of glycinoyl fluoride was characterized by vibrational and NMR spectroscopy, as well as single-crystal X-ray diffraction (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]). [C3H4F2NO2]+ is the first cation of the group of acyl fluorides which contains two acyl fluoride moieties. The direct synthesis with sulfur tetra­fluoride in an­hy­drous hy­dro­gen fluoride (aHF) applies Kollonitsch's idea of using HF as a solvent to improve the formation of SF3+ to activate the de­oxy­fluorinating species (Kollonitsch et al., 1975[Kollonitsch, J., Marburg, S. & Perkins, L. (1975). J. Org. Chem. 40, 3808-3809.]). The aHF also performs the function of protonating the NH2 group to prevent adduct formation of SF4 with the lone pair of the nitro­gen (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]; Goettel et al., 2012[Goettel, J. T., Chaudhary, P., Hazendonk, P., Mercier, H. P. A. & Gerken, M. (2012). Chem. Commun. 48, 9120-9122.]; Chaudhary et al., 2015[Chaudhary, P., Goettel, J. T., Mercier, H. P. A., Sowlati-Hashjin, S., Hazendonk, P. & Gerken, M. (2015). Chem. A Eur. J. 21, 6247-6256.]). [C3H4F2NO2][H2F3] is produced with [NH4][C3H5NO4] as the starting material and belongs to the group of com­plexones (Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]; Anderegg et al., 2005[Anderegg, G., Arnaud-Neu, F., Delgado, R., Felcman, J. & Popov, K. (2005). Pure Appl. Chem. 77, 1445-1495.]). Due to the high toxicity of fluoride, its application is highly likely to be limited. The salt could be used in the specialized field of fluorine chemistry, as its two acyl fluoride moieties make it highly inter­esting for conversion in superacidic or Lewis acidic media.

2. Experimental

2.1. Synthesis and crystallization

[NH4][C3H5NO4] (67 mg, 0.893 mmol) was added in an FEP (fluorinated ethyl­ene propyl­ene) tube reactor. An­hy­drous hy­dro­gen fluoride (aHF, 0.75 ml) and sulfur tetra­fluoride (203 mg, 1.87 mmol) were then added at −196 °C, and the mixture homogenized at room tem­per­a­ture. Excess solvent was removed at −78 °C overnight. The product was a colourless solid that was stable at room tem­per­a­ture. The equation of the formation is shown in Scheme 1[link].

[Scheme 1]

2.2. Analysis (X-ray and Raman)

We investigated and characterized the [C3H4F2NO2][H2F3] salt by single-crystal X-ray diffraction and Raman spectroscopy. Complete data and the devices used for the X-ray measurements are listed in the supporting information (CIF file). Low-tem­per­a­ture Raman spectroscopic studies were performed using a Bruker MultiRAM FT–Raman spectrometer with Nd:YAG laser excitation (λ = 1064 cm−1) under vacuum at −196 °C. For measurements, the synthesized com­pounds were transferred to a cooled glass cell.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The positions of the H atoms were identified by residual electron-density peaks on the difference Fourier map and by evaluation of the contacts (Fig. 1[link]). Due to the high diffraction resolution, all H atoms were assigned with respect to the difference map and freely refined.

Table 1
Experimental details

Crystal data
Chemical formula C3H3F2NO2+·H2F3
Mr 183.09
Crystal system, space group Orthorhombic, P212121
Temperature (K) 102
a, b, c (Å) 5.5736 (2), 9.2154 (4), 12.7952 (7)
V3) 657.20 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.34 × 0.11 × 0.07
 
Data collection
Diffractometer Rigaku Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.945, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7118, 2187, 1930
Rint 0.034
(sin θ/λ)max−1) 0.752
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.067, 1.02
No. of reflections 2187
No. of parameters 124
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.27, −0.18
Absolute structure Flack x determined using 683 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.3 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).
[Figure 1]
Figure 1
A difference Fourier map of [C3H4F2NO2][H2F3] without the H atoms between F3, F4 and F5, and between N1 and F3, F4 and F5. The green solid lines and red dotted lines show positive and negative density distribution, respectively.

3. Results and discussion

3.1. Single-crystal X-ray diffraction

Herein we present the results of the single-crystal X-ray diffraction study of the salt [C3H4F2NO2][H2F3], namely, monoprotonated 2-amino­malonyl difluoride di­hy­dro­gen tri­fluo­ride. The salt crystallizes in the ortho­rhom­bic space group P212121 with four formula units per unit cell. The asymmetric unit is shown in Fig. 2[link]. The C1—C3 [1.518 (2) Å] and C2—C3 [1.519 (2) Å] bonds are shortened com­pared to those of the starting material [1.539 (2) and 1.549 (2) Å, respectively; Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]]. The C—C bond lengths are elongated com­pared to the electron diffraction values of malonyl difluoride [1.502 (5) Å; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]]. The C1—F1 bond length [1.331 (2) Å] is in the same range as the C2—F2 bond [1.329 (2) Å]. Compared to the C—F bond length of malonyl difluoride (Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]), the bond in [C3H4F2NO2][H2F3] [1.349 (4) Å] is slightly shortened. The C=O bonds [C1=O1 = 1.175 (2) Å and C1=O2 = 1.172 (2) Å] are in the same range as in malonyl difluoride [1.177 (3) Å; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]]. The C3—N1 bond length [1.469 (2) Å] is significantly shortened with respect to the starting material [1.482 (2) Å], the Csp3—Nsp3 bond lengths (1.488 Å) in organic com­pounds and the bond in glycine [1.482 (3) Å; Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]; Jiang et al., 2015[Jiang, Q., Shtukenberg, A. G., Ward, M. D. & Hu, C. (2015). Cryst. Growth Des. 15, 2568-2573.]]. Table 2[link] lists the bond lengths, bond angles and torsion angles of the [C3H4F2NO2][H2F3] salt, the starting material [NH4][C3H5NO4], glycinoyl fluoride, β-glycine and malonyl di­fluoride (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.],b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]; Jiang et al., 2015[Jiang, Q., Shtukenberg, A. G., Ward, M. D. & Hu, C. (2015). Cryst. Growth Des. 15, 2568-2573.]; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]). The bond deviation of the crystal structure of [C3H4F2NO2][H2F3] with respect to malonyl difluoride results from the structure of malonyl difluoride being measured in the gas phase (Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]). The shortened C—C bond lengths of the [C3H4F2NO2][H2F3] salt com­pared to the [NH4][C3H5NO4] salt is a result of the stronger negative inductive effect of fluorine com­pared to oxygen in the carb­oxy­lic acid. Additionally, the starting material is a zwitterionic anion and the shown aminoacyl fluoride is a cationic salt. The determined structures of glycinoyl fluoride and [C3H4F2NO2][H2F3] are in good agreement with each other (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]). The second acyl fluoride moiety of [C3H4F2NO2][H2F3] also exerts a negative inductive effect on the backbone, whereby the C—C bonds are slightly lengthened com­pared to glycinoyl fluoride (Hollenwäger et al., 2024a[Hollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101-2109.]).

Table 2
Bond lengths (Å), bond angles (°) and torsion angles (°) of [C3H4F2NO2][H2F3], [NH4][C3H5NO4], glycinoyl fluoride, β-glycine and malonyl difluoride

Bond length [C3H4F2NO2][H2F3] [NH4][C3H5NO4] Glycinoyl fluoride β-Glycine Malonyl difluoride
C1—C3 1.518 (2) 1.5394 (18) 1.509 (5) 1.536 (3) 1.502 (5)
C2—C3 1.519 (2) 1.5485 (18)     1.502 (5)
C1—F1 1.331 (2)   1.333 (4)   1.349 (4)
C2—F2 1.329 (2)       1.349 (4)
C1=O1 1.175 (2) 1.2483 (16)   1.257 (2) 1.177 (3)
C2=O2 1.172 (2) 1.2462 (17)   1.258 (3) 1.177 (3)
C3—N1 1.469 (2) 1.4821 (16) 1.476 (5) 1.482 (3)  
           
Angle          
C1—C2—C3 114.1 (1) 113.00 (10)     110.2 (10)
C3—C1—O1 126.0 (2) 117.7 (1) 127.2 (3)   129.1 (8)
C3—C2—O2 125.9 (2) 116.9 (1)     129.1 (8)
C3—C1—F1 111.3 (1)   110.2 (3)   109.7 (7)
C3—C2—F2 111.4 (1)       109.7 (7)
N1—C3—C1 108.5 (1) 109.56 (10) 108.3 (3) 111.8 (1)  
N1—C3—C2 108.6 (1) 109.98 (10)      
           
Torsion angle          
F1—C1—C3—N1 −173.5 (1)        
F1—C1—C3—C2 65.4 (2)        
O1—C1—C3—N1 4.7 (2) −2.96 (16) 8.1 (5)    
O1—C1—C3—C2 −116.4 (2) 120.0 (1)     112.0 (20)
F2—C2—C3—N1 177.7 (1)   −171.2 (3)    
F2—C2—C3—C1 −61.2        
O2—C2—C3—C1 122.4 (2) −112.3 (1)     0.0
[Figure 2]
Figure 2
The asymmetric unit of [C3H4F2NO2][H2F3], with displacement ellipsoids drawn at the 50% probability level.

The C—C—C angle [114.1 (1)°] is significantly increased com­pared to both the starting material [113.0 (1)°] and malonyl difluoride [110.2 (10)°; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]; Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]]. The C—C—O angles [C3—C1—O1 = 126.0 (2)° and C3—C2—O2 = 125.9 (2)°] are significantly decreased com­pared to malonyl difluoride [129.1 (8)°; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]]. The C—C—F angles [111.4 (1) and 111.3 (1)°] are significantly increased com­pared to malonyl difluoride [109.7 (7)°; Jin et al., 1992[Jin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.]]. The C—C—N angles [N1—C3—C1 = 108.5 (1)° and N1—C3—C2 = 108.6 (1)°] are slightly decreased com­pared to the starting material (Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]). The torsion angles are available in Table 2[link].

The crystal structure of [C3H4F2NO2][H2F3] results from a three-dimensional network (Fig. 3[link]) of two strong hy­dro­gen bonds within the [H2F3] anion [2.322 (2) Å for F4(—H5)⋯F3 and 2.338 (2) Å for F5(—H6)⋯F3] and three medium–strong hy­dro­gen bonds classified according to Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York, Oxford: Oxford University Press.]). The medium–strong hy­dro­gen bonds connect the anion with the cation [2.655 (2) Å for N1(—H3)⋯F3, 2.742 (2) Å for N1(—H1)⋯F5 and 2.743 (2) Å for N1(—H2)⋯F4]. In addition, the network establishes three C⋯F contacts, which are within the van der Waals radii sum (3.17 Å) by approximately 16% [C1⋯F4 = 2.676 (2) Å, C1⋯F5 = 2.682 (2) Å and C2⋯F5 = 2.688 (2) Å]. The hy­dro­gen bonds and C⋯F contacts are listed in the supporting information.

[Figure 3]
Figure 3
Hydrogen bonds in the crystal structure of [C3H4F2NO2][H2F3], with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x − 1, y, −z; (iii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (v) x + 1, y, z; (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (vii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (viii) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.]

3.2. Raman spectroscopy

The low-tem­per­a­ture Raman spectra of [C3H4F2NO2][H2F3], [NH4][C3H5NO4] and C3H4O4 are illustrated in Fig. 4[link]. Table 3[link] lists the Raman data for [C3H4F2NO2][H2F3] and the calculated frequencies for the [C3H4F2NO2]+ cation at the aug-cc-pVTZ level of theory. The first evidence of the successful preparation of the [C3H4F2NO2][H2F3] salt is the C=O valence oscillation being blue-shifted by approximately 193 cm−1 to 1877 and 1846 cm−1 com­pared to the starting material at 1684 cm−1 (Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]). The second pieces of evidence are the C—F valence oscillations, which are coupled with the δ(C—H) bands at 1303, 1235 and 1152 cm−1. The C—C stretching vibrations are observed at 923 and 763 cm−1. Only one of the three N—H vibrations is Raman-active and is observed at 3225 cm−1. The C—H stretching oscillation is detected at 2978 cm−1.

Table 3
Experimental (exptl) Raman vibrational frequencies (cm−1) of [C3H4F2NO2][H2F3] and calculated (calc) Raman vibrational frequencies (cm−1) of [C3H4NO2F2]+ at the M062x/aug-cc-pVTZ-level of theory (the scaling factor is 0.956)

Exptl Calc Assignment
  3327 (173) A ν1 ν(NH)
3225 (6) 3182 (251) A ν2 ν(NH)
  3143 (67) A ν3 ν(NH)
2978 (19) 2980 (22) A ν4 ν(CH)
1877 (100) 1889 (297) A ν5 ν(CO)
1846 (31) 1862 (210) A ν6 ν(CO)
1627 (14) 1578 (34) A ν7 δ(NH2)
1611 (14) 1560 (44) A ν8 δ(NH2)
1378 (19) 1446 (187) A ν9 δ(NH2)
1303 (14) 1341 (251) A ν10 ν(CF)+δ(CH)
  1255 (98) A ν11 ν(CF)+δ(CH)
1235 (20) 1237 (208) A ν12 δ(CH)+ν(CF)
1152 (17) 1160 (59) A ν13 δ(CH)+ν(CF)
1133 (13) 1092 (43) A ν14 δ(CH)+δ(NH3)
1083 (14) 1080 (8) A ν15 δ(CH)+δ(NH3)
  1030 (16) A ν16 ν(CN)
923 (20) 895 (51) A ν17 ν(CC)
873 (47) 858 (25) A ν18 δ(CCC)
763 (77) 755 (1) A ν19 ν(CC)
657 (17) 650 (32) A ν20 δ(COF)
603 (20) 588 (3) A ν21 ρ(CCC)
587 (25) 576 (15) A ν22 δ(NH3)
533 (15)        
491 (36)        
475 (32) 486 (47)   ν23 δ(NH3)
439 (21)        
402 (34) 380 (18) A ν24 δ(CCF)
352 (43) 303 (14) A ν25 δ(CCF)
248 (20) 287 (14) A ν26 δ(NH3)
221 (41)        
203 (32) 191 (0) A ν27 δ(NH3)
155 (59) 160 (11) A ν28 δ(COF)
130 (55)        
99 (46) 93 (14) A ν29 τ(COF)
90 (47)        
80 (41) 45 (0) A ν30 τ(COF)
[Figure 4]
Figure 4
Low-tem­per­a­ture Raman spectra of [C3H4F2NO2][H2F3], [NH4][C3H5NO4] and malonic acid (C3H4O4) (Hollenwäger et al., 2024b[Hollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291-296.]).

4. Conclusion

Herein we present the first single-crystal X-ray diffraction and Raman spectroscopy study of the [C3H4F2NO2][H2F3] salt. This salt represents the first difluoride in the group of di­acyl­amino fluorides and is a further example of a com­plexone.

Supporting information


Computing details top

1,3-Difluoro-1,3-dioxopropan-2-aminium dihydrogen trifluoride top
Crystal data top
C3H3F2NO2+·H2F3Dx = 1.850 Mg m3
Mr = 183.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2040 reflections
a = 5.5736 (2) Åθ = 2.7–31.2°
b = 9.2154 (4) ŵ = 0.23 mm1
c = 12.7952 (7) ÅT = 102 K
V = 657.20 (5) Å3Needle, colorless
Z = 40.34 × 0.11 × 0.07 mm
F(000) = 368
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
2187 independent reflections
Radiation source: Enhance (Mo) X-ray Source1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 15.9809 pixels mm-1θmax = 32.3°, θmin = 2.7°
ω scansh = 85
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1313
Tmin = 0.945, Tmax = 1.000l = 1918
7118 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2187 reflectionsΔρmax = 0.27 e Å3
124 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack x determined using 683 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0476 (2)0.32000 (12)0.02215 (9)0.0243 (3)
F20.4306 (2)0.50434 (12)0.05212 (8)0.0244 (3)
O20.4408 (2)0.58347 (13)0.21402 (10)0.0202 (3)
O10.1665 (2)0.31969 (15)0.16660 (11)0.0210 (3)
N10.2218 (3)0.34495 (18)0.29301 (12)0.0171 (3)
C10.0210 (3)0.33015 (19)0.12529 (14)0.0178 (3)
C20.3829 (3)0.49451 (19)0.15364 (13)0.0160 (3)
C30.2606 (3)0.35165 (19)0.17959 (14)0.0148 (3)
H10.154 (4)0.257 (3)0.3148 (19)0.025 (6)*
H20.126 (4)0.414 (2)0.3121 (17)0.020 (5)*
H40.362 (4)0.275 (2)0.1562 (15)0.012 (5)*
H30.355 (4)0.363 (3)0.331 (2)0.037 (7)*
F40.88392 (19)0.54834 (12)0.34615 (9)0.0225 (2)
F50.53500 (19)0.38358 (12)0.59645 (9)0.0221 (2)
F30.59728 (18)0.39321 (12)0.41590 (9)0.0239 (3)
H50.784 (6)0.482 (4)0.378 (3)0.071 (11)*
H60.562 (5)0.385 (4)0.524 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0236 (5)0.0276 (6)0.0217 (5)0.0004 (4)0.0047 (5)0.0041 (5)
F20.0234 (5)0.0291 (6)0.0209 (6)0.0026 (5)0.0059 (4)0.0023 (4)
O20.0194 (6)0.0165 (6)0.0247 (7)0.0033 (5)0.0023 (5)0.0009 (5)
O10.0136 (6)0.0208 (7)0.0287 (7)0.0012 (5)0.0019 (5)0.0008 (6)
N10.0138 (7)0.0171 (7)0.0203 (8)0.0019 (6)0.0009 (6)0.0030 (6)
C10.0185 (8)0.0120 (8)0.0227 (8)0.0006 (6)0.0043 (6)0.0010 (7)
C20.0110 (7)0.0176 (8)0.0195 (8)0.0006 (6)0.0005 (6)0.0027 (7)
C30.0120 (7)0.0135 (8)0.0188 (8)0.0013 (6)0.0014 (6)0.0004 (6)
F40.0201 (5)0.0205 (6)0.0268 (6)0.0018 (4)0.0006 (5)0.0004 (5)
F50.0238 (5)0.0232 (6)0.0193 (5)0.0051 (4)0.0010 (4)0.0032 (4)
F30.0210 (5)0.0301 (6)0.0206 (5)0.0046 (4)0.0020 (4)0.0012 (5)
Geometric parameters (Å, º) top
F1—C11.331 (2)C1—C31.518 (2)
F2—C21.329 (2)C2—C31.519 (2)
O2—C21.172 (2)C3—H40.95 (2)
O1—C11.175 (2)F4—H50.92 (4)
N1—C31.469 (2)F5—H60.94 (3)
N1—H10.94 (2)F3—H51.41 (4)
N1—H20.87 (2)F3—H61.40 (3)
N1—H30.90 (3)
C1···F42.676 (2)C2···F52.688 (2)
C1···F52.682 (2)
C3—N1—H1112.9 (15)O2—C2—C3125.85 (16)
C3—N1—H2109.8 (14)F2—C2—C3111.25 (14)
H1—N1—H2107.6 (19)N1—C3—C1108.51 (14)
C3—N1—H3113.6 (15)N1—C3—C2108.57 (14)
H1—N1—H3109 (2)C1—C3—C2114.07 (14)
H2—N1—H3103 (2)N1—C3—H4111.5 (12)
O1—C1—F1122.64 (16)C1—C3—H4106.3 (12)
O1—C1—C3125.94 (17)C2—C3—H4107.9 (12)
F1—C1—C3111.40 (14)H5—F3—H6118.6 (19)
O2—C2—F2122.80 (16)
O1—C1—C3—N14.7 (3)O2—C2—C3—N11.3 (2)
F1—C1—C3—N1173.50 (14)F2—C2—C3—N1177.71 (13)
O1—C1—C3—C2116.4 (2)O2—C2—C3—C1122.37 (19)
F1—C1—C3—C265.34 (19)F2—C2—C3—C161.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F5i0.94 (2)1.84 (2)2.7422 (19)159 (2)
N1—H2···F4ii0.87 (2)1.88 (2)2.7426 (19)172 (2)
N1—H3···F30.90 (3)1.75 (3)2.6551 (19)174 (2)
F4—H5···F30.92 (4)1.41 (4)2.3221 (15)170 (3)
F5—H6···F30.94 (3)1.40 (3)2.3378 (16)177 (3)
N1—H1···F5i0.94 (2)1.84 (2)2.7422 (19)159 (2)
N1—H2···F4ii0.87 (2)1.88 (2)2.7426 (19)172 (2)
N1—H3···F30.90 (3)1.75 (3)2.6551 (19)174 (2)
F4—H5···F30.92 (4)1.41 (4)2.3221 (15)170 (3)
F5—H6···F30.94 (3)1.40 (3)2.3378 (16)177 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1, y, z.
Bond lengths (Å), bond angles (°) and torsion angles (°) of [C3H4F2NO2][H2F3], [NH4][C3H5NO4], glycinoyl fluoride, β-glycine and malonyl difluoride top
Bond length[C3H4F2NO2][H2F3][NH4][C3H5NO4]Glycinoyl fluorideβ-GlycineMalonyl difluoride
C1—C31.518 (2)1.5394 (18)1.509 (5)1.536 (3)1.502 (5)
C2—C31.519 (2)1.5485 (18)1.502 (5)
C1—F11.331 (2)1.333 (4)1.349 (4)
C2—F21.329 (2)1.349 (4)
C1O11.175 (2)1.2483 (16)1.257 (2)1.177 (3)
C2O21.172 (2)1.2462 (17)1.258 (3)1.177 (3)
C3—N11.469 (2)1.4821 (16)1.476 (5)1.482 (3)
Angle
C1—C2—C3114.1 (1)113.00 (10)110.2 (10)
C3—C1—O1126.0 (2)117.7 (1)127.2 (3)129.1 (8)
C3—C2—O2125.9 (2)116.9 (1)129.1 (8)
C3—C1—F1111.3 (1)110.2 (3)109.7 (7)
C3—C2—F2111.4 (1)109.7 (7)
N1—C3—C1108.5 (1)109.56 (10)108.3 (3)111.8 (1)
N1—C3—C2108.6 (1)109.98 (10)
Torsion angle
F1—C1—C3—N1-173.5 (1)
F1—C1—C3—C265.4 (2)
O1—C1—C3—N14.7 (2)-2.96 (16)8.1 (5)
O1—C1—C3—C2-116.4 (2)120.0 (1)112.0 (20)
F2—C2—C3—N1177.7 (1)-171.2 (3)
F2—C2—C3—C1-61.2
O2—C2—C3—C1122.4 (2)-112.3 (1)0.0
Experimental (exptl) Raman vibrational frequencies (cm-1) of [C3H4F2NO2][H2F3] and calculated (calc) Raman vibrational frequencies (cm-1) of [C3H4NO2F2]+ at the M062x/aug-cc-pVTZ-level of theory (the scaling factor is 0.956) [Please provide suitable headings for columns 3 and 4] top
ExptlCalc??????Assignment
3327 (173)Aν1ν(NH)
3225 (6)3182 (251)Aν2ν(NH)
3143 (67)Aν3ν(NH)
2978 (19)2980 (22)Aν4ν(CH)
1877 (100)1889 (297)Aν5ν(CO)
1846 (31)1862 (210)Aν6ν(CO)
1627 (14)1578 (34)Aν7δ(NH2)
1611 (14)1560 (44)Aν8δ(NH2)
1378 (19)1446 (187)Aν9δ(NH2)
1303 (14)1341 (251)Aν10ν(CF)+δ(CH)
1255 (98)Aν11ν(CF)+δ(CH)
1235 (20)1237 (208)Aν12δ(CH)+ν(CF)
1152 (17)1160 (59)Aν13δ(CH)+ν(CF)
1133 (13)1092 (43)Aν14δ(CH)+δ(NH3)
1083 (14)1080 (8)Aν15δ(CH)+δ(NH3)
1030 (16)Aν16ν(CN)
923 (20)895 (51)Aν17ν(CC)
873 (47)858 (25)Aν18δ(CCC)
763 (77)755 (1)Aν19ν(CC)
657 (17)650 (32)Aν20δ(COF)
603 (20)588 (3)Aν21ρ(CCC)
587 (25)576 (15)Aν22δ(NH3)
533 (15)
491 (36)
475 (32)486 (47)ν23δ(NH3)
439 (21)
402 (34)380 (18)Aν24δ(CCF)
352 (43)303 (14)Aν25δ(CCF)
248 (20)287 (14)Aν26δ(NH3)
221 (41)
203 (32)191 (0)Aν27δ(NH3)
155 (59)160 (11)Aν28δ(COF)
130 (55)
99 (46)93 (14)Aν29τ(COF)
90 (47)
80 (41)45 (0)Aν30τ(COF)
 

Footnotes

Deceased

Acknowledgements

We are grateful to the Department of Chemistry at the Ludwig Maximilian University of Munich, the Deutsche Forschungsgemeinschaft (DFG), the F-Select GmbH, and Professor Dr Karaghiosoff and Dr Constantin Hoch for their support. Open access funding enabled and organized by Projekt DEAL.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAnderegg, G., Arnaud-Neu, F., Delgado, R., Felcman, J. & Popov, K. (2005). Pure Appl. Chem. 77, 1445–1495.  Web of Science CrossRef CAS Google Scholar
First citationCarpino, L. A. & Mansour, E. M. E. (1999). J. Org. Chem. 64, 8399–8401.  CrossRef PubMed CAS Google Scholar
First citationChaudhary, P., Goettel, J. T., Mercier, H. P. A., Sowlati–Hashjin, S., Hazendonk, P. & Gerken, M. (2015). Chem. A Eur. J. 21, 6247–6256.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoettel, J. T., Chaudhary, P., Hazendonk, P., Mercier, H. P. A. & Gerken, M. (2012). Chem. Commun. 48, 9120–9122.  CrossRef CAS Google Scholar
First citationHollenwäger, D., Morgenstern, Y., Daumer, L., Bockmair, V. & Kornath, A. J. (2024a). ACS Earth Space Chem. 8, 2101–2109.  Google Scholar
First citationHollenwäger, D., Nitzer, A., Bockmair, V. & Kornath, A. J. (2024b). Acta Cryst. C80, 291–296.  CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York, Oxford: Oxford University Press.  Google Scholar
First citationJiang, Q., Shtukenberg, A. G., Ward, M. D. & Hu, C. (2015). Cryst. Growth Des. 15, 2568–2573.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, A., Mack, H.-G., Waterfeld, A. & Oberhammer, H. (1992). ChemInform, 23, 49.  Google Scholar
First citationKollonitsch, J., Marburg, S. & Perkins, L. (1975). J. Org. Chem. 40, 3808–3809.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds