research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

On the de­pro­ton­ation of chloro­thia­zide

crossmark logo

aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong (Received 7 November 2024; accepted 27 January 2025; online 30 January 2025)

Three alkali metal salt forms of the diuretic chloro­thia­zide (systematic name: 6-chloro-1,1-dioxo-2H-1,2,4-benzo­thia­zine-7-sulfonamide, HCTZ) are described. When crystallized from aqueous solution, the Na and K salts, namely, poly[[μ-aqua-aqua­(μ3-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzo­thia­diazin-2-ido)sodium] hemihydrate], {[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O}n, and poly[[di­aqua­(μ5-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzo­thia­diazin-2-ido)potassium] hemihydrate], {[K(C7H5ClN3O4S2)(H2O)2]·0.5H2O}n, are both found to have stoichiometry MCTZ·2.5H2O, with CTZ de­pro­ton­ated at a heterocyclic ring N atom. Both the stoichiometry and the de­pro­ton­ation site are different to those described in previously published versions of these structures. The Cs salt form is found to be the monohydrate CsCTZ·H2O, namely, poly[[aqua­(μ5-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzo­thia­diazin-2-ido)caesium], [Cs(C7H5ClN3O4S2)(H2O)]n. As with the Na and K cognates, this structure is also de­pro­ton­ated at the heterocyclic ring. NaCTZ is found to be a two-dimensional coordination polymer with bridges between Na centres formed by H2O and SO2 groups, and by links through the length of the coordinated CTZ anions. Water ligands in KCTZ and CsCTZ are terminal, rather than bridging between metal centres, but both com­pounds form structures where M—Cl inter­actions link two-dimensional motifs formed via M—O bonds (and in CsCTZ, M—N bonds) into three-dimensional coordination polymers.

1. Introduction

The active pharmaceutical ingredient (API) chloro­thia­zide and its sodium salt (NaCTZ, where CTZ is the 6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzo­thia­diazin-2-ide anion) are sulfonamide com­pounds utilized as diuretic and anti­hy­per­ten­sive drugs (Martins et al., 2022[Martins, V. M., Ziegelmann, P. K., Helal, L., Ferrari, F., Lucca, M. B., Fuchs, S. C. & Fuchs, F. D. (2022). Syst. Rev. 11, 23.]; Steuber et al., 2020[Steuber, T. D., Janzen, K. M. & Howard, M. L. (2020). Pharmacotherapy, 40, 924-935.]). Chloro­­thia­zide has also been widely used as a model API in crystallization studies. These studies have identified two poly­morphs under ambient conditions and an additional high-pressure polymorphic form of chloro­thia­zide (Shankland et al., 1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]; Brydson & Kennedy, 2024[Brydson, R. K. H. & Kennedy, A. R. (2024). Acta Cryst. E80, 806-810.]; Oswald et al., 2010[Oswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). ChemEngComm, 12, 2533-2540.]), as well as numerous solvate and cocrystal forms (e.g. Johnston et al., 2011[Johnston, A., Bardin, J., Johnston, B. F., Fernandes, P., Kennedy, A. R., Price, S. L. & Florence, A. J. (2011). Cryst. Growth Des. 11, 405-413.]; Aljohani et al., 2017[Aljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223-5232.]; Teng et al., 2020[Teng, R., Wang, L., Chen, M., Fang, W., Gao, Z., Chai, Y., Zhao, P. & Bao, Y. (2020). J. Mol. Struct. 1217, 128432.]). Despite this widespread study, and despite NaCTZ being used as an injectable form of the drug (Hankins et al., 2001[Hankins, J., Lonsway, R. A., Hedrick, C. & Perdue, M. (2001). Editors. Infusion Therapy in Clinical Practise. Philadelphia: Saunders.]), only four structures of salt forms of chloro­thia­zide have been reported. These are APUZER [Cambridge Structural Database (CSD, Version 5.45 with updates to June 2024) refcode; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]], which was reported as a trihydrate form of NaCTZ (Paluch et al., 2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.]), APUZIV and APUZOB which were, respectively, reported as the dihydrate and the mixed hydrate/ethano­late forms of KCTZ (Paluch et al., 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]), and VEKBOF, which has the organic cation PhC(NH2)2 (Aljohani et al., 2017[Aljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223-5232.]). The alkali metal salt forms are of particular pharmaceutical inter­est, as they are reported to have aqueous solubilities that are orders of magnitude greater than that of chloro­thia­zide itself (Paluch et al., 2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.], 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]).

[Scheme 1]

Our attention was originally drawn to APUZER as its two-dimensional diagram in the CSD features a neutral CTZ ligand with the charge on Na+ being balanced by a hydroxide ligand. Examining the associated CIF and the original article quickly showed that this was a transcription error (Paluch et al., 2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.]). However, the anionic form of CTZ that is reported is in itself unusual. The structure given shows de­pro­ton­ation of the SO2NH2 group and a proton present on the thia­diazine ring N atom adjacent to the ring SO2 group. This is unusual as the SO2NH2 group should be less acidic that the ring N—H group, and the solid-state structures of neutral CTZ forms invariably report the tautomer with the heterocyclic ring protonated at the N atom para to the SO2 functionality (e.g. Brydson & Kennedy, 2024[Brydson, R. K. H. & Kennedy, A. R. (2024). Acta Cryst. E80, 806-810.]; Johnston et al., 2011[Johnston, A., Bardin, J., Johnston, B. F., Fernandes, P., Kennedy, A. R., Price, S. L. & Florence, A. J. (2011). Cryst. Growth Des. 11, 405-413.]; Aljohani et al., 2017[Aljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223-5232.]). The KCTZ salt forms APUZIV and APUZOB are reported to have the same de­pro­ton­ation pattern as APUZER (Paluch et al., 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]), but the organic salt VEKBOF has a CTZ anion with the more intuitive de­pro­ton­ation of the N—H group of the heterocyclic ring and retention of the SO2NH2 group (Aljohani et al., 2017[Aljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223-5232.]).

It is noted that the H-atom modelling in the reported structures of all three alkali metal salt forms has some problems. Notably, some H atoms on water mol­ecules are missing, some refined N—H distances are unreasonably short (e.g. 0.65 Å), and those O—H and N—H bond lengths that are reasonable have all been fixed at the distances given. As incorrect H-atom positions are a known pitfall even for relatively high-quality crystal structure determinations (Seidel, 2018[Seidel, R. W. (2018). IUCrData, 3, x181324.]; Kennedy et al., 2023[Kennedy, A. R., Cruickshank, L., Maher, P. & McKinnon, Z. (2023). Acta Cryst. C79, 386-394.]; Bernal & Watkins, 2013[Bernal, I. & Watkins, S. F. (2013). Acta Cryst. C69, 808-810.]; Raymond & Girolami, 2023[Raymond, K. N. & Girolami, G. S. (2023). Acta Cryst. C79, 445-455.]; Harlow, 1996[Harlow, R. L. (1996). J. Res. Natl Inst. Stand. Technol. 101, 327-339.]), we investigated the de­pro­ton­ation of CTZ by redetermining the structures of the hydrated NaCTZ and KCTZ forms and by determining a related new structure – that of a monohydrated form of CsCTZ.

2. Experimental

2.1. Synthesis and crystallization

The triclinic polymorph of CTZ was purchased from Thermo Scientific. Crystals of NaCTZ were prepared ac­cord­ing to the aqueous method of Paluch et al. (2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.]). Crystals of KCTZ were prepared by adding excess KCl to an aqueous solution of NaCTZ, followed by slow evaporation of the solvent. For the preparation of CsCTZ, CTZ (0.10 g, 0.34 mmol) was dissolved in the minimum amount of a 1:1 (v/v) acetone–water mix. To this was added CsOH·H2O (0.06 g, 0.36 mmol) dissolved in the minimum amount of water. After stirring and heating, the resulting solution was left to evaporate for 3 d at room temperature. This gave crystals of CsCTZ in approximately 50% yield. FT–IR (cm−1); 3422, 3308, 3258, 3082, 2959, 1602, 1573, 1509, 1466, 1300, 1246, 1152, 1094, 956, 893, 714, 674, 614, 524.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were observed by difference synthesis, except for those of the disordered water mol­ecule of NaCTZ. The H atoms of this latter group were thus placed in positions calculated so as to give sensible inter­molecular hy­dro­gen-bonding inter­actions. H atoms bound to C atoms were placed in expected geometric positions and treated in riding modes, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Well-ordered H atoms bound to N or to O atoms were placed as found and refined isotropically with N/O—H distances restrained to 0.88 (1) Å.

Table 1
Experimental details

Experiments were carried out at 100 K with Cu Kα radiation using a Rigaku Synergy-i diffractometer. H atoms were treated by a mixture of independent and constrained refinement.

  NaCTZ KCTZ CsCTZ
Crystal data
Chemical formula [Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O [Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O [Cs(C7H5ClN3O4S2)(H2O)]
Mr 362.74 378.85 445.64
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c Triclinic, P[\overline{1}]
a, b, c (Å) 8.3728 (7), 9.0819 (8), 9.6533 (6) 18.3139 (2), 7.3622 (1), 19.9670 (2) 7.71260 (1), 9.05930 (1), 10.13810 (1)
α, β, γ (°) 83.013 (6), 74.055 (6), 70.189 (7) 90, 99.734 (1), 90 93.9760 (1), 107.5390 (1), 107.8000 (1)
V3) 663.70 (10) 2653.40 (5) 632.84 (1)
Z 2 8 2
μ (mm−1) 6.16 8.66 28.08
Crystal size (mm) 0.13 × 0.11 × 0.05 0.16 × 0.15 × 0.05 0.24 × 0.15 × 0.12
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.587, 1.000 0.446, 1.000 0.022, 0.247
No. of measured, independent and observed [I > 2σ(I)] reflections 10937, 2522, 2427 13919, 2543, 2503 14718, 2436, 2433
Rint 0.045 0.022 0.059
(sin θ/λ)max−1) 0.616 0.615 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.06 0.022, 0.062, 1.07 0.036, 0.095, 1.11
No. of reflections 2522 2543 2436
No. of parameters 210 215 188
No. of restraints 8 9 5
Δρmax, Δρmin (e Å−3) 0.87, −0.45 0.48, −0.38 1.75, −1.53
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and SHELXL in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

The core structures of NaCTZ, KCTZ and CsCTZ as newly determined herein are shown in Figs. 1[link]–3[link][link] and key crystallographic parameters are given in Table 1[link]. Paluch et al. (2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.]) modelled the structure of NaCTZ in APUZER (CSD refcode) as a trihydrate, with two water ligands coordinated to sodium and one free water mol­ecule `of solvation'. Both in the original article and in our hands, using this model gives the free water mol­ecule an extremely large displacement ellipsoid and results in an O⋯O separation of just 1.482 Å between two free water mol­ecule sites related by a centre of symmetry. In our current model, we thus treat this site, O3W, as a half-occupancy water mol­ecule. This gives normal displacement ellipsoids, removes the erroneous O⋯O separation and re­inter­prets the structure as NaCTZ·2.5H2O. In the text of Paluch et al. (2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]), KCTZ (APUZIV) is described as a dihydrate form. However, both the CIF file deposited for APUZIV and our redetermination show that, similar to the Na salt, the K salt has stoichiometry KCTZ·2.5H2O. Note that for both NaCTZ and KCTZ, a water content of 2.5 water mol­ecules per cation is closer to the reported TGA derived water contents than are the alternative descriptions of these structures (Paluch et al., 2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.], 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]).

[Figure 1]
Figure 1
Contents of the asymmetric unit of NaCTZ, expanded so as to show all metal-to-ligand coordination bonds. Note that here and elsewhere, non-H atoms are drawn as 50% probability ellipsoids and H atoms as small spheres of arbitrary size. See supporting information for full details of bonding contacts, including symmetry operations, for all structures.
[Figure 2]
Figure 2
Contents of the asymmetric unit of KCTZ, expanded so as to show all metal-to-ligand coordination bonds.
[Figure 3]
Figure 3
Contents of the asymmetric unit of CsCTZ, expanded so as to show all metal-to-ligand coordination bonds.

In both the original structures of NaCTZ and KCTZ (APUZER and APUZIV), some water H atoms were omitted, a H atom was placed on a heterocyclic N atom and the pendant arm was modelled as the de­pro­ton­ated SO2NH group (Paluch et al., 2010[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603-611.], 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]). In the current work, all the H atoms were observed in difference syntheses maps, with the exceptions of the H atoms of the disordered half-occupancy water mol­ecule of NaCTZ. Adding the H atoms in the observed positions and modelling freely and isotropically gave structurally sensible H-atom positions for the water mol­ecules and gave CTZ anions that had intact SO2NH2 groups and no protons on the heterocyclic N atoms. Moreover, there were no electron-density features suggesting any degree of protonation of the heterocyclic N atoms. Difference electron-density maps for NaCTZ and KCTZ are available as supporting information. As some O—H distances of the freely refined models were slightly short (0.79 Å), the final reported models restrained X—H (X = O or N) to be 0.88 (1) Å (see Tables 2[link]–4[link][link]). Similar treatment of CsCTZ gave a structure with the same protonation behaviour for the CTZ anion as was found herein for NaCTZ and KCTZ. The H atoms of the disordered half-occupancy water mol­ecule of NaCTZ were added in calculated positions that gave sensible inter­molecular hy­dro­gen-bonding contacts (see Table 2[link]). Thus, electron-density data clearly gives models for both NaCTZ and KCTZ that differ from those reported as APUZER and APUZIV. We think it is clear that these structures should have been described as having intact SO2NH2 groups and as having been de­pro­ton­ated at the heterocyclic ring.

Table 2
Hydrogen-bond geometry (Å, °) for NaCTZ[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O2Wi 0.88 (1) 2.02 (1) 2.888 (3) 170 (4)
N3—H2N⋯N1ii 0.88 (1) 2.10 (1) 2.969 (3) 173 (4)
O1W—H1W⋯N2iii 0.87 (1) 1.91 (1) 2.778 (3) 171 (3)
O1W—H2W⋯O2i 0.87 (1) 2.29 (1) 3.148 (3) 169 (3)
O2W—H3W⋯O1iv 0.87 (1) 2.07 (2) 2.895 (3) 160 (4)
O2W—H4W⋯O3W 0.87 (1) 1.97 (2) 2.797 (6) 158 (4)
O2W—H4W⋯O3Wv 0.87 (1) 2.20 (3) 2.915 (6) 139 (3)
O3W—H5W⋯O2vi 0.95 1.90 2.853 (5) 180
O3W—H6W⋯Cl1vii 0.92 2.76 3.683 (5) 180
Symmetry codes: (i) [-x, -y+1, -z+2]; (ii) [x-1, y+1, z]; (iii) [x, y, z+1]; (iv) [-x+1, -y+1, -z+2]; (v) [-x+2, -y, -z+2]; (vi) [x+1, y, z]; (vii) [-x+1], [-y+1, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for KCTZ[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯Cl1 0.87 (1) 2.77 (2) 3.1942 (13) 112 (2)
N3—H1N⋯N1i 0.87 (1) 2.12 (1) 2.9337 (18) 157 (2)
N3—H2N⋯N2ii 0.87 (1) 2.23 (1) 3.0173 (18) 150 (2)
O1W—H1W⋯O1 0.87 (1) 2.29 (2) 3.0792 (16) 151 (2)
O1W—H2W⋯O2Wiii 0.87 (1) 1.94 (1) 2.8075 (17) 176 (2)
O2W—H3W⋯N2iv 0.87 (1) 2.07 (1) 2.9308 (17) 171 (2)
O2W—H4W⋯O3Wv 0.87 (1) 1.94 (1) 2.8053 (13) 173 (2)
O3W—H5W⋯O2iii 0.88 (1) 2.58 (3) 3.1279 (10) 121 (2)
O3W—H5W⋯N3vi 0.88 (1) 2.32 (2) 3.0506 (16) 140 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x, y-1, z]; (vi) [-x, y, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for CsCTZ[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1Wi 0.88 (1) 2.00 (2) 2.864 (5) 168 (7)
N3—H2N⋯N1ii 0.88 (1) 2.25 (3) 3.048 (5) 151 (5)
O1W—H1W⋯N2iii 0.88 (1) 1.96 (3) 2.761 (5) 150 (6)
O1W—H2W⋯O3iv 0.88 (1) 2.05 (3) 2.867 (5) 154 (7)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x+1, y+1, z]; (iii) [x-1, y, z-1]; (iv) [x-1, y, z].

The K salt APUZOB is a mixed ethano­late/hydrate that was also reported to have a de­pro­ton­ated SO2NH unit (Paluch et al., 2011[Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220-229.]). We were unable to obtain crystals of this form, but have investigated its de­pro­ton­ation site by com­paring the various bond lengths involving the N atoms of the CTZ anions. Study of Table 5[link] shows clear geometric differences between the salt forms that contain de­pro­ton­ated CTZ anions and the neutral polymorphs of chloro­thia­zide (Leech et al., 2008[Leech, C. K., Fabbiani, F. P. A., Shankland, K., David, W. I. F. & Ibberson, R. M. (2008). Acta Cryst. B64, 101-107.]; Brydson & Kennedy, 2024[Brydson, R. K. H. & Kennedy, A. R. (2024). Acta Cryst. E80, 806-810.]). All the salt forms show similar bond lengths to each other, including the two crystallographically independent CTZ anions of APUZOB. We believe that as this group forms a coherent set, it indicates that APUZOB may also have been incorrectly reported with respect to the de­pro­ton­ation site, and that it should also be de­pro­ton­ated at the ring N atom. Note that in the neutral polymorphs the C1—N1 bond is considerably shorter than the C2—N1 bond, indicating that it is mostly C1—N1 that has double-bond character. In contrast, for the anionic CTZ forms, C1—N1 is slightly longer than C2—N1. The chemical scheme has been drawn so as to place the double bond at the shorter C2—N1 site, but of course such small differences mean that in reality an inter­mediate resonance form is observed.

Table 5
Selected bond lengths (Å) for polymorphic forms 1 and 2 of CTZ, and for salt forms containing CTZ anions

  S1—N1 N1—C1 C1—N2 N2—C2 S2—N3
CTZ, form 1 1.619 1.299 1.341 1.394 1.607
CTZ, form 2 1.620 1.309 1.344 1.391 1.590
NaCTZ 1.580 (2) 1.352 (4) 1.323 (4) 1.378 (3) 1.585 (2)
KCTZ 1.5979 (12) 1.333 (2) 1.323 (2) 1.3853 (19) 1.6086 (13)
CsCTZ 1.591 (4) 1.340 (5) 1.318 (6) 1.376 (5) 1.602 (3)
APUZOB A 1.598 1.335 1.333 1.379 1.618
APUZOB B 1.590 1.340 1.327 1.385 1.609
VEKBOF 1.577 1.333 1.306 1.385 1.599

NaCTZ has a six-coordinate octa­hedral Na centre with an O6 coordination set. Three of these O atoms are from water ligands (two bridging between Na centres and one terminal) and the other three are from SO2 units of the CTZ anion. Details of coordination bonds for the three salt forms are given in Table 6[link]. All three of these SO2—Na bonds lead to bridges between Na centres. The SO2NH2 unit forms eight-membered [NaOSO]2 rings which alternate with four-membered NaONaO rings (O from water) to propagate the structure perpendicular to the crystallographic b direction. The CTZ anions bridge between these chains via Na bonds to both SO2 groups of CTZ to give connectivity parallel to the crystallographic a direction, giving an overall two-dimensional co­ordination polymer (see Fig. 4[link]). Hydro­philic inorganic layers thus alternate with hydro­phobic organic bilayers along the c direction, with the main CTZ-to-CTZ inter­actions across the organic bilayers being from N—H⋯N hy­dro­gen bonds (Table 2[link] and Fig. 5[link]).

Table 6
Bond lengths (Å) for coordination bonds in NaCTZ, KCTZ and CsCTZ

  NaCTZ KCTZ CsCTZ
M—N3     3.457 (3)
M—O1 2.360 (2) 2.7813 (11) 2.952 (3)
M—O2   2.7133 (11) 3.056 (3), 3.131 (3)
M—O3 2.365 (2) 2.6720 (11) 3.162 (3)
M—O4 2.464 (2) 2.7478 (11)  
M—Cl1   3.3257 (4) 3.7738 (9)
M—OH2 2.355 (2) 2.6269 (12) 3.244 (4)
  2.418 (2) 2.8493 (12)  
  2.438 (2)    
[Figure 4]
Figure 4
Detail of the coordination bonding in NaCTZ, showing one-dimensional chains with [NaONaO] and [NaOSO]2 rings linked into a two-dimensional motif by CTZ anions bridging between the chains.
[Figure 5]
Figure 5
Packing structure of NaCTZ, viewed along the a axis and showing organic and inorganic layers alternating along the c direction.

The K centre in KCTZ is seven-coordinate and has a somewhat unusual O6Cl coordination shell. The two water ligands are terminal and thus the coordination polymer builds solely through inter­actions with the CTZ anions. The unbound water mol­ecule sits on a crystallographic twofold axis, giving an overall stoichiometry of KCTZ·2.5H2O. Each K centre bonds to four CTZ anions through inter­actions with all four chemically distinct O atoms of CTZ. There is also a relatively unusual bond to Cl of a CTZ anion. At 3.3257 (4) Å, the K—Cl bond with the organic halide is similar to, or only slightly longer than, typical bond lengths reported between K and chloride anions (e.g. 3.325 and 3.094 Å in ZUKDUH and BEPSAS, respectively) (Zaleskaya et al., 2020[Zaleskaya, M., Jagleniec, D., Karbarz, M., Dobrzycki, L. & Romański, J. (2020). Inorg. Chem. Front. 7, 972-983.]; Yang et al., 2013[Yang, P., Wang, J., Jia, C., Yang, X.-J. & Wu, B. (2013). Eur. J. Org. Chem. 2013, 3446-3454.]). Alkali metal to organic halide bonds are described in the literature, but most are observed with simple polyhalogenated aromatics and relatively few with less substituted rings (e.g. Smith, 2015[Smith, G. (2015). Acta Cryst. C71, 140-145.]; Rosokha et al., 2009[Rosokha, S. V., Lu, J., Rosokha, T. Y. & Kochi, J. K. (2009). Phys. Chem. Chem. Phys. 11, 324-332.]; Mastropierro et al., 2022[Mastropierro, P., Kennedy, A. R. & Hevia, E. (2022). Chem. Commun. 58, 5292-5295.]; Osterloh et al., 2001[Osterloh, F., Achim, C. & Holm, R. H. (2001). Inorg. Chem. 40, 224-232.]). A rare example of such a bond in a drug material is the Na—Cl bond observed in the structure of the Na salt of diclofenac (Oyama et al., 2021[Oyama, H., Miyamoto, T., Sekine, A., Nugrahani, I. & Uekusa, H. (2021). Crystals, 11, 412.]). With each K centre making bonds with five neighbouring CTZ anions, the result is a three-dimensional coordination polymer as shown in Fig. 6[link]. K-to-O inter­actions form a two-dimensional structure parallel to the crystallographic c direction and it is the K—Cl bonds that link these layers into the three-dimensional coordination polymer. These bonds in the third di­men­sion are supported by N—H⋯N hy­dro­gen bonds and by hy­dro­gen bonds involving both coordinated and noncoordinated water mol­ecules. The overall packing structure displays inorganic and organic layers alternating along the crystallographic c direction (see Fig. 6[link]).

[Figure 6]
Figure 6
Packing structure of KCTZ, viewed along the a axis and showing organic and inorganic layers alternating along the c direction.

Despite the large size of the Cs cation, CsCTZ has a Cs centre with a maximum of seven dative bonds, the same as found for K in KCTZ. These form an O5NCl coordination shell. Although consistent with the treatment of KCTZ above, it is debatable whether or not the Cs—Cl contact of 3.7738 (9) Å should be considered as a dative bond, because although this distance is shorter than the sum of the van der Waals radii for the two atoms, it is longer than the sum of the ionic radii. A search of the CSD showed that the Cs—Cl con­tact herein is approximately 0.2–0.4 Å longer than contacts described as Cs—Cl bonds, but that some structures do include similar distances as formal R—Cl bonds to Cl atoms (e.g. XELZAQ, NEPNIH and DIQZAG) (Cametti et al., 2006[Cametti, M., Nissinen, M., Dalla Cort, A., Rissanen, K. & Mandolini, L. (2006). Inorg. Chem. 45, 6099-6101.]; Smith, 2013a[Smith, G. (2013a). Acta Cryst. E69, m22-m23.],b[Smith, G. (2013b). Acta Cryst. E69, m628.]). CsCTZ is the only structure herein to form an M—N bond, and it is notable that this bond is not with a formally charge-carrying ring N atom, but is with the N3 atom of the SO2NH2 group. At 3.457 (3) Å, the Cs—N bond is considerably longer than the Cs—O bonds [range 2.952 (3)–3.244 (4) Å]. As with KCTZ, the sole water ligand is terminal. The other six inter­actions involve a Cs centre contacting six different neighbouring CTZ anions. The bonds to O and to N give a two-dimensional coordination polymer lying parallel to the crystallographic ab plane (see Fig. 7[link]). Contacts between these planes which would result in a three-dimensional construct are limited to the Cs—Cl inter­actions discussed above and to N—H⋯N hy­dro­gen bonds, with the latter motif being similar to that found in NaCTZ. Again, as in NaCTZ, a layered structure is formed with inorganic layers and organic bilayers alternating along the crystallographic c direction.

[Figure 7]
Figure 7
Part of the structure of KCTZ, showing the two-dimensional coordination motif formed by Cs—O and Cs—N bonds. Cs—Cl and hy­dro­gen bonds link neighbouring motifs, along the c direction, into a three-dimensional network.

In all three structures, both ring N atoms act as hy­dro­gen-bond acceptors (see Tables 2[link]–4[link][link]). The ring sulfonamide N atom always accepts a single hy­dro­gen bond from a neighbouring NH2 moiety. The closeness in space of the two N atoms of these inter­actions may go some way to explaining why APUZER and APUZIV incorrectly assign an H atom to the ring rather than to NH2. In all three structures, ring atom N2 accepts a hy­dro­gen bond from a metal-coordinated water mol­ecule and, in the case of KCTZ only, it also accepts a second hy­dro­gen bond from a NH2 group. As well as the inter­actions described above, the NH2 groups of NaCTZ and CsCTZ also donate hy­dro­gen bonds to water mol­ecules. Only in KCTZ does the NH2 group act as a hy­dro­gen-bond acceptor, accepting a bond from the non-metal-coordinated water mol­ecule. The O atoms of the SO2 groups of the CTZ anions only accept hy­dro­gen bonds from water mol­ecules and thus make no CTZ-to-CTZ contacts.

4. Summary

Both modelling electron density and geometric com­parisons with other structures suggest that the previously reported NaCTZ and KCTZ structures APUZER and APUZIV have been misidentified both in terms of hydration state and in terms of the de­pro­ton­ated site of the CTZ anion. Both should have the formula MCTZ·2.5H2O and both should feature de­pro­ton­ation of the CTZ heterocyclic ring, rather than of the SO2NH2 group. The Cs salt CsCTZ is found to crystallize as CsCTZ·H2O and has the same de­pro­ton­ation site on the CTZ heterocyclic ring as do its Na and K cognates. An unusual feature for salt structures of drug anions is that both KCTZ and CsCTZ display M—Cl contacts with the chloro­benzene group, although that in the Cs salt is relatively long. Both these structures give coordination polymers where M—O, or M—O and M—N, bonds give two-dimensional moieties. It is the M—Cl contact that expands the K and Cs coordination polymers into the third dimension. Lacking any Na—Cl contact, the structure of NaCTZ remains a two-dimensional coordination polymer.

Supporting information


Computing details top

Poly[[µ-aqua-aqua(µ3-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)sodium] hemihydrate] (NaCTZ) top
Crystal data top
[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2OZ = 2
Mr = 362.74F(000) = 370
Triclinic, P1Dx = 1.815 Mg m3
a = 8.3728 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.0819 (8) ÅCell parameters from 9631 reflections
c = 9.6533 (6) Åθ = 4.6–71.1°
α = 83.013 (6)°µ = 6.16 mm1
β = 74.055 (6)°T = 100 K
γ = 70.189 (7)°Slab cut from mass, colourless
V = 663.70 (10) Å30.13 × 0.11 × 0.05 mm
Data collection top
Rigaku Synergy-i
diffractometer
2427 reflections with I > 2σ(I)
Radiation source: microsource tubeRint = 0.045
ω scansθmax = 71.9°, θmin = 5.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 1010
Tmin = 0.587, Tmax = 1.000k = 1110
10937 measured reflectionsl = 1110
2522 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.9303P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2522 reflectionsΔρmax = 0.87 e Å3
210 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.51193 (13)0.31409 (11)0.96262 (10)0.0181 (2)
Cl10.21121 (8)1.00632 (7)0.44660 (6)0.01987 (19)
S10.20461 (8)0.41614 (7)0.75673 (6)0.01702 (19)
S20.33213 (7)0.95212 (7)0.80244 (6)0.01555 (19)
O10.2997 (3)0.4640 (2)0.8388 (2)0.0255 (4)
O20.0816 (3)0.3409 (2)0.8458 (2)0.0275 (5)
O30.3553 (2)0.8628 (2)0.93696 (19)0.0187 (4)
O40.2981 (2)1.0975 (2)0.8019 (2)0.0212 (4)
O1W0.3229 (2)0.5162 (2)1.13402 (19)0.0193 (4)
H1W0.310 (4)0.517 (4)1.2268 (13)0.029*
H2W0.2147 (19)0.559 (4)1.127 (3)0.029*
O2W0.6943 (3)0.2247 (2)1.1313 (3)0.0303 (5)
H3W0.699 (5)0.309 (3)1.161 (4)0.045*
H4W0.804 (2)0.179 (4)1.087 (4)0.045*
O3W1.0038 (7)0.0570 (6)0.9401 (6)0.0455 (12)0.5
H5W1.0293870.1516590.9088770.068*0.5
H6W1.0554610.0412350.8435770.068*0.5
N10.3385 (3)0.3055 (3)0.6325 (2)0.0223 (5)
N20.2754 (3)0.4861 (3)0.4312 (2)0.0228 (5)
N30.4954 (3)0.9832 (3)0.7372 (3)0.0212 (5)
C10.3591 (4)0.3552 (3)0.4928 (3)0.0248 (6)
H10.4497350.2833570.4272390.030*
C20.1403 (3)0.5962 (3)0.5181 (3)0.0175 (5)
C30.0902 (3)0.5811 (3)0.6693 (3)0.0157 (5)
C40.0516 (3)0.6927 (3)0.7517 (3)0.0164 (5)
H40.0818280.6793620.8537100.020*
C50.1487 (3)0.8226 (3)0.6863 (3)0.0153 (5)
C60.0982 (3)0.8418 (3)0.5352 (3)0.0159 (5)
C70.0416 (3)0.7320 (3)0.4535 (3)0.0183 (5)
H70.0726030.7474060.3517260.022*
H1N0.564 (4)0.925 (4)0.770 (4)0.033 (10)*
H2N0.538 (5)1.076 (2)0.700 (4)0.045 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0214 (5)0.0139 (5)0.0206 (5)0.0058 (4)0.0083 (4)0.0017 (4)
Cl10.0238 (3)0.0144 (3)0.0211 (3)0.0043 (2)0.0096 (2)0.0043 (2)
S10.0197 (3)0.0121 (3)0.0194 (3)0.0021 (2)0.0096 (2)0.0009 (2)
S20.0164 (3)0.0115 (3)0.0177 (3)0.0030 (2)0.0042 (2)0.0006 (2)
O10.0300 (10)0.0185 (9)0.0309 (10)0.0015 (8)0.0198 (9)0.0023 (8)
O20.0266 (10)0.0222 (10)0.0315 (11)0.0076 (8)0.0091 (8)0.0105 (8)
O30.0204 (9)0.0157 (9)0.0170 (9)0.0037 (7)0.0034 (7)0.0019 (7)
O40.0244 (10)0.0141 (9)0.0245 (9)0.0074 (7)0.0027 (8)0.0026 (7)
O1W0.0225 (9)0.0181 (9)0.0178 (9)0.0074 (7)0.0053 (7)0.0008 (7)
O2W0.0353 (12)0.0223 (10)0.0420 (12)0.0144 (9)0.0214 (10)0.0090 (9)
O3W0.044 (3)0.034 (3)0.053 (3)0.015 (2)0.000 (2)0.002 (2)
N10.0261 (12)0.0142 (10)0.0239 (11)0.0008 (9)0.0088 (9)0.0008 (9)
N20.0249 (12)0.0207 (11)0.0194 (11)0.0029 (9)0.0049 (9)0.0028 (9)
N30.0185 (11)0.0171 (11)0.0278 (12)0.0043 (9)0.0092 (9)0.0042 (9)
C10.0228 (14)0.0222 (14)0.0266 (14)0.0019 (11)0.0064 (11)0.0050 (11)
C20.0180 (12)0.0159 (12)0.0191 (12)0.0047 (10)0.0055 (10)0.0026 (9)
C30.0168 (12)0.0131 (11)0.0176 (12)0.0034 (9)0.0070 (9)0.0006 (9)
C40.0178 (12)0.0162 (12)0.0163 (11)0.0064 (10)0.0051 (9)0.0007 (9)
C50.0159 (12)0.0123 (11)0.0182 (12)0.0048 (9)0.0046 (9)0.0008 (9)
C60.0197 (12)0.0121 (11)0.0182 (12)0.0055 (9)0.0097 (10)0.0033 (9)
C70.0219 (13)0.0179 (12)0.0159 (12)0.0069 (10)0.0060 (10)0.0012 (9)
Geometric parameters (Å, º) top
Na1—O1Wi2.355 (2)O2W—H4W0.874 (10)
Na1—O12.360 (2)O3W—O3Wiv1.459 (10)
Na1—O3ii2.365 (2)O3W—H5W0.9497
Na1—O2W2.418 (2)O3W—H6W0.9188
Na1—O1W2.438 (2)N1—C11.352 (4)
Na1—O4iii2.464 (2)N2—C11.323 (4)
Na1—Na1i3.4671 (19)N2—C21.378 (3)
Cl1—C61.742 (2)N3—H1N0.880 (10)
S1—O21.454 (2)N3—H2N0.875 (10)
S1—O11.4546 (19)C1—H10.9500
S1—N11.580 (2)C2—C31.407 (4)
S1—C31.743 (2)C2—C71.414 (4)
S2—O41.4412 (19)C3—C41.390 (4)
S2—O31.4470 (18)C4—C51.380 (3)
S2—N31.585 (2)C4—H40.9500
S2—C51.775 (2)C5—C61.410 (3)
O1W—H1W0.873 (10)C6—C71.371 (4)
O1W—H2W0.874 (10)C7—H70.9500
O2W—H3W0.868 (10)
O1Wi—Na1—O189.08 (8)Na1i—O1W—H1W104 (2)
O1Wi—Na1—O3ii177.80 (8)Na1—O1W—H1W130 (2)
O1—Na1—O3ii93.09 (8)Na1i—O1W—H2W111 (2)
O1Wi—Na1—O2W86.14 (7)Na1—O1W—H2W116 (2)
O1—Na1—O2W163.79 (9)H1W—O1W—H2W101 (2)
O3ii—Na1—O2W91.86 (7)Na1—O2W—H3W105 (3)
O1Wi—Na1—O1W87.34 (7)Na1—O2W—H4W111 (3)
O1—Na1—O1W77.79 (7)H3W—O2W—H4W102 (2)
O3ii—Na1—O1W93.45 (7)O3Wiv—O3W—H5W143.5
O2W—Na1—O1W86.51 (8)O3Wiv—O3W—H6W129.6
O1Wi—Na1—O4iii95.35 (7)H5W—O3W—H6W77.9
O1—Na1—O4iii104.61 (7)C1—N1—S1120.88 (19)
O3ii—Na1—O4iii83.78 (7)C1—N2—C2118.2 (2)
O2W—Na1—O4iii91.27 (8)S2—N3—H1N118 (3)
O1W—Na1—O4iii176.40 (7)S2—N3—H2N118 (3)
O1Wi—Na1—Na1i44.61 (5)H1N—N3—H2N120 (4)
O1—Na1—Na1i80.82 (6)N2—C1—N1131.4 (3)
O3ii—Na1—Na1i136.14 (7)N2—C1—H1114.3
O2W—Na1—Na1i84.92 (6)N1—C1—H1114.3
O1W—Na1—Na1i42.73 (5)N2—C2—C3124.1 (2)
O4iii—Na1—Na1i139.91 (7)N2—C2—C7119.0 (2)
O2—S1—O1113.07 (12)C3—C2—C7116.9 (2)
O2—S1—N1110.62 (13)C4—C3—C2121.8 (2)
O1—S1—N1109.82 (12)C4—C3—S1118.57 (19)
O2—S1—C3108.99 (12)C2—C3—S1119.58 (19)
O1—S1—C3108.63 (11)C5—C4—C3120.4 (2)
N1—S1—C3105.40 (12)C5—C4—H4119.8
O4—S2—O3118.27 (11)C3—C4—H4119.8
O4—S2—N3109.06 (12)C4—C5—C6118.7 (2)
O3—S2—N3109.68 (12)C4—C5—S2116.10 (19)
O4—S2—C5108.34 (11)C6—C5—S2125.19 (19)
O3—S2—C5103.78 (11)C7—C6—C5121.1 (2)
N3—S2—C5107.08 (12)C7—C6—Cl1117.98 (19)
S1—O1—Na1130.84 (12)C5—C6—Cl1120.93 (19)
S2—O3—Na1ii134.86 (11)C6—C7—C2121.1 (2)
S2—O4—Na1v123.99 (11)C6—C7—H7119.5
Na1i—O1W—Na192.66 (7)C2—C7—H7119.5
O2—S1—O1—Na167.61 (19)N1—S1—C3—C4172.8 (2)
N1—S1—O1—Na156.47 (19)O2—S1—C3—C2124.4 (2)
C3—S1—O1—Na1171.27 (15)O1—S1—C3—C2112.1 (2)
O4—S2—O3—Na1ii151.47 (14)N1—S1—C3—C25.6 (2)
N3—S2—O3—Na1ii25.59 (19)C2—C3—C4—C50.3 (4)
C5—S2—O3—Na1ii88.55 (16)S1—C3—C4—C5178.08 (18)
O3—S2—O4—Na1v55.18 (16)C3—C4—C5—C61.7 (4)
N3—S2—O4—Na1v71.01 (15)C3—C4—C5—S2177.36 (19)
C5—S2—O4—Na1v172.77 (12)O4—S2—C5—C4112.7 (2)
O2—S1—N1—C1125.0 (2)O3—S2—C5—C413.8 (2)
O1—S1—N1—C1109.5 (2)N3—S2—C5—C4129.79 (19)
C3—S1—N1—C17.3 (3)O4—S2—C5—C668.3 (2)
C2—N2—C1—N10.8 (5)O3—S2—C5—C6165.2 (2)
S1—N1—C1—N25.2 (5)N3—S2—C5—C649.2 (2)
C1—N2—C2—C32.7 (4)C4—C5—C6—C71.7 (4)
C1—N2—C2—C7175.7 (2)S2—C5—C6—C7177.2 (2)
N2—C2—C3—C4177.3 (2)C4—C5—C6—Cl1177.98 (18)
C7—C2—C3—C41.1 (4)S2—C5—C6—Cl13.0 (3)
N2—C2—C3—S11.0 (4)C5—C6—C7—C20.3 (4)
C7—C2—C3—S1179.48 (18)Cl1—C6—C7—C2179.42 (19)
O2—S1—C3—C454.1 (2)N2—C2—C7—C6177.4 (2)
O1—S1—C3—C469.5 (2)C3—C2—C7—C61.1 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1, y1, z; (iv) x+2, y, z+2; (v) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O2Wii0.88 (1)2.02 (1)2.888 (3)170 (4)
N3—H2N···N1v0.88 (1)2.10 (1)2.969 (3)173 (4)
O1W—H1W···N2vi0.87 (1)1.91 (1)2.778 (3)171 (3)
O1W—H2W···O2ii0.87 (1)2.29 (1)3.148 (3)169 (3)
O2W—H3W···O1i0.87 (1)2.07 (2)2.895 (3)160 (4)
O2W—H4W···O3W0.87 (1)1.97 (2)2.797 (6)158 (4)
O2W—H4W···O3Wiv0.87 (1)2.20 (3)2.915 (6)139 (3)
O3W—H5W···O2vii0.951.902.853 (5)180
O3W—H6W···Cl1viii0.922.763.683 (5)180
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iv) x+2, y, z+2; (v) x1, y+1, z; (vi) x, y, z+1; (vii) x+1, y, z; (viii) x+1, y+1, z+1.
Poly[[diaqua(µ4-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)potassium] hemihydrate] (KCTZ) top
Crystal data top
[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2OF(000) = 1544
Mr = 378.85Dx = 1.897 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.3139 (2) ÅCell parameters from 12825 reflections
b = 7.3622 (1) Åθ = 4.5–71.4°
c = 19.9670 (2) ŵ = 8.66 mm1
β = 99.734 (1)°T = 100 K
V = 2653.40 (5) Å3Fragment cut from large prism, colourless
Z = 80.16 × 0.15 × 0.05 mm
Data collection top
Rigaku Synergy-i
diffractometer
2503 reflections with I > 2σ(I)
Radiation source: microsource tubeRint = 0.022
ω scansθmax = 71.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 1822
Tmin = 0.446, Tmax = 1.000k = 99
13919 measured reflectionsl = 2424
2543 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0343P)2 + 3.9765P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.48 e Å3
2543 reflectionsΔρmin = 0.38 e Å3
215 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraintsExtinction coefficient: 0.00031 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.11773 (2)0.89080 (4)0.19140 (2)0.01083 (10)
Cl10.09218 (2)1.11324 (5)0.52250 (2)0.01243 (11)
S10.36653 (2)0.89482 (4)0.39296 (2)0.00840 (10)
S20.08021 (2)1.10414 (5)0.35713 (2)0.00892 (10)
O10.34684 (6)0.73265 (14)0.35300 (5)0.0134 (2)
O20.39097 (6)1.04350 (15)0.35474 (5)0.0140 (2)
O30.10107 (6)1.12077 (14)0.29124 (5)0.0132 (2)
O40.02550 (6)0.97116 (15)0.36677 (5)0.0136 (2)
O1W0.26295 (6)0.90304 (17)0.22131 (6)0.0207 (3)
O2W0.13816 (6)0.66881 (16)0.30999 (6)0.0165 (2)
O3W0.0000001.5291 (2)0.2500000.0200 (4)
N10.42998 (7)0.84845 (18)0.45591 (6)0.0121 (3)
N20.35882 (7)0.90613 (17)0.54540 (6)0.0108 (3)
N30.04938 (7)1.29844 (18)0.37646 (6)0.0113 (3)
C10.41800 (8)0.8576 (2)0.51982 (8)0.0112 (3)
H10.4592700.8231600.5528760.013*
C20.29611 (8)0.95812 (19)0.50058 (7)0.0092 (3)
C30.29070 (8)0.96249 (19)0.42939 (7)0.0088 (3)
C40.22545 (8)1.01253 (19)0.38690 (7)0.0098 (3)
H40.2235591.0153850.3390740.012*
C50.16342 (8)1.0581 (2)0.41429 (7)0.0092 (3)
C60.16830 (8)1.0567 (2)0.48563 (7)0.0094 (3)
C70.23287 (8)1.0099 (2)0.52783 (7)0.0104 (3)
H70.2349721.0123090.5756830.012*
H1N0.0222 (9)1.294 (3)0.4080 (8)0.019 (5)*
H2N0.0844 (9)1.380 (2)0.3857 (11)0.022 (5)*
H1W0.2919 (11)0.830 (3)0.2474 (11)0.048 (7)*
H2W0.2934 (11)0.988 (2)0.2134 (12)0.039 (7)*
H3W0.1406 (12)0.659 (3)0.3537 (5)0.035 (6)*
H4W0.0941 (7)0.627 (3)0.2948 (10)0.027 (6)*
H5W0.0100 (16)1.457 (3)0.2178 (11)0.059 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01097 (17)0.01121 (18)0.01004 (17)0.00046 (11)0.00099 (12)0.00086 (10)
Cl10.00949 (18)0.0185 (2)0.01009 (18)0.00352 (12)0.00388 (13)0.00040 (12)
S10.00761 (18)0.00937 (19)0.00848 (18)0.00134 (12)0.00213 (13)0.00021 (12)
S20.00730 (18)0.01066 (19)0.00848 (18)0.00115 (12)0.00046 (13)0.00087 (12)
O10.0142 (5)0.0130 (5)0.0130 (5)0.0015 (4)0.0025 (4)0.0032 (4)
O20.0131 (5)0.0144 (6)0.0158 (5)0.0009 (4)0.0058 (4)0.0038 (4)
O30.0129 (5)0.0182 (6)0.0084 (5)0.0034 (4)0.0011 (4)0.0008 (4)
O40.0090 (5)0.0146 (5)0.0168 (5)0.0017 (4)0.0009 (4)0.0003 (4)
O1W0.0130 (6)0.0229 (7)0.0246 (6)0.0012 (5)0.0014 (5)0.0061 (5)
O2W0.0159 (5)0.0199 (6)0.0141 (5)0.0008 (5)0.0031 (4)0.0011 (5)
O3W0.0212 (8)0.0248 (9)0.0127 (8)0.0000.0010 (6)0.000
N10.0092 (6)0.0153 (6)0.0114 (6)0.0027 (5)0.0006 (5)0.0002 (5)
N20.0095 (6)0.0127 (6)0.0098 (6)0.0014 (5)0.0004 (5)0.0004 (5)
N30.0101 (6)0.0123 (6)0.0119 (6)0.0021 (5)0.0027 (5)0.0010 (5)
C10.0106 (7)0.0103 (7)0.0119 (7)0.0012 (5)0.0005 (5)0.0004 (5)
C20.0093 (7)0.0073 (7)0.0107 (7)0.0010 (5)0.0012 (5)0.0001 (5)
C30.0085 (7)0.0075 (7)0.0111 (7)0.0003 (5)0.0032 (5)0.0006 (5)
C40.0115 (7)0.0092 (7)0.0086 (6)0.0009 (5)0.0017 (5)0.0005 (5)
C50.0088 (7)0.0082 (7)0.0100 (7)0.0002 (5)0.0001 (5)0.0002 (5)
C60.0088 (7)0.0084 (7)0.0120 (7)0.0008 (5)0.0046 (5)0.0009 (5)
C70.0116 (7)0.0108 (7)0.0088 (6)0.0013 (6)0.0020 (5)0.0004 (5)
Geometric parameters (Å, º) top
K1—O1W2.6269 (12)O2W—H3W0.869 (9)
K1—O32.6720 (11)O2W—H4W0.870 (9)
K1—O2i2.7133 (11)O3W—H5W0.878 (10)
K1—O4ii2.7478 (11)O3W—H5Wii0.878 (10)
K1—O1iii2.7813 (11)N1—C11.333 (2)
K1—O2W2.8493 (12)N2—C11.323 (2)
K1—Cl1iv3.3257 (4)N2—C21.3853 (19)
K1—H4W2.92 (2)N3—H1N0.867 (9)
Cl1—C61.7337 (15)N3—H2N0.874 (10)
S1—O11.4474 (11)C1—H10.9500
S1—O21.4480 (11)C2—C31.409 (2)
S1—N11.5979 (12)C2—C71.413 (2)
S1—C31.7456 (14)C3—C41.393 (2)
S2—O31.4358 (11)C4—C51.383 (2)
S2—O41.4369 (11)C4—H40.9500
S2—N31.6086 (13)C5—C61.4121 (19)
S2—C51.7753 (15)C6—C71.375 (2)
O1W—H1W0.867 (10)C7—H70.9500
O1W—H2W0.870 (10)
O1W—K1—O392.73 (4)O4—S2—C5109.02 (7)
O1W—K1—O2i96.24 (4)N3—S2—C5108.28 (7)
O3—K1—O2i147.44 (3)S1—O1—K1i150.74 (6)
O1W—K1—O4ii161.11 (4)S1—O2—K1iii152.34 (6)
O3—K1—O4ii87.58 (3)S2—O3—K1135.34 (6)
O2i—K1—O4ii93.57 (3)S2—O4—K1ii136.68 (6)
O1W—K1—O1iii76.09 (3)K1—O1W—H1W127.5 (16)
O3—K1—O1iii74.14 (3)K1—O1W—H2W129.7 (15)
O2i—K1—O1iii138.42 (3)H1W—O1W—H2W102.1 (17)
O4ii—K1—O1iii85.86 (3)K1—O2W—H3W149.2 (16)
O1W—K1—O2W81.09 (4)K1—O2W—H4W86.0 (14)
O3—K1—O2W76.05 (3)H3W—O2W—H4W102.1 (16)
O2i—K1—O2W74.55 (3)H5W—O3W—H5Wii105 (4)
O4ii—K1—O2W117.17 (3)C1—N1—S1121.80 (11)
O1iii—K1—O2W141.17 (3)C1—N2—C2117.97 (13)
O1W—K1—Cl1iv101.20 (3)S2—N3—H1N114.3 (14)
O3—K1—Cl1iv138.42 (3)S2—N3—H2N112.5 (14)
O2i—K1—Cl1iv69.95 (2)H1N—N3—H2N111 (2)
O4ii—K1—Cl1iv67.21 (2)N2—C1—N1131.43 (14)
O1iii—K1—Cl1iv71.65 (2)N2—C1—H1114.3
O2W—K1—Cl1iv144.47 (3)N1—C1—H1114.3
O1W—K1—H4W97.3 (2)N2—C2—C3124.57 (13)
O3—K1—H4W81.1 (4)N2—C2—C7118.03 (13)
O2i—K1—H4W66.8 (4)C3—C2—C7117.40 (13)
O4ii—K1—H4W101.4 (3)C4—C3—C2121.82 (13)
O1iii—K1—H4W153.9 (4)C4—C3—S1118.87 (11)
O2W—K1—H4W17.30 (19)C2—C3—S1119.27 (11)
Cl1iv—K1—H4W134.3 (3)C5—C4—C3120.05 (13)
C6—Cl1—K1v116.30 (5)C5—C4—H4120.0
O1—S1—O2113.79 (6)C3—C4—H4120.0
O1—S1—N1109.73 (7)C4—C5—C6118.76 (13)
O2—S1—N1109.12 (7)C4—C5—S2117.73 (11)
O1—S1—C3108.88 (6)C6—C5—S2123.44 (11)
O2—S1—C3110.03 (7)C7—C6—C5121.41 (13)
N1—S1—C3104.90 (7)C7—C6—Cl1118.04 (11)
O3—S2—O4118.71 (6)C5—C6—Cl1120.54 (11)
O3—S2—N3107.61 (7)C6—C7—C2120.52 (13)
O4—S2—N3107.03 (7)C6—C7—H7119.7
O3—S2—C5105.84 (7)C2—C7—H7119.7
O2—S1—O1—K1i97.01 (13)N1—S1—C3—C4179.97 (12)
N1—S1—O1—K1i25.57 (15)O1—S1—C3—C2114.92 (12)
C3—S1—O1—K1i139.87 (12)O2—S1—C3—C2119.73 (12)
O1—S1—O2—K1iii124.07 (13)N1—S1—C3—C22.49 (14)
N1—S1—O2—K1iii113.01 (14)C2—C3—C4—C50.6 (2)
C3—S1—O2—K1iii1.58 (16)S1—C3—C4—C5176.81 (11)
O4—S2—O3—K135.28 (11)C3—C4—C5—C61.4 (2)
N3—S2—O3—K1156.89 (8)C3—C4—C5—S2175.42 (11)
C5—S2—O3—K187.50 (9)O3—S2—C5—C412.18 (13)
O3—S2—O4—K1ii56.10 (11)O4—S2—C5—C4116.57 (12)
N3—S2—O4—K1ii65.81 (10)N3—S2—C5—C4127.33 (12)
C5—S2—O4—K1ii177.29 (8)O3—S2—C5—C6171.11 (12)
O1—S1—N1—C1114.03 (13)O4—S2—C5—C660.14 (14)
O2—S1—N1—C1120.66 (13)N3—S2—C5—C655.97 (14)
C3—S1—N1—C12.80 (15)C4—C5—C6—C70.5 (2)
C2—N2—C1—N10.1 (3)S2—C5—C6—C7176.13 (11)
S1—N1—C1—N22.0 (2)C4—C5—C6—Cl1179.84 (11)
C1—N2—C2—C30.2 (2)S2—C5—C6—Cl13.49 (19)
C1—N2—C2—C7179.96 (13)K1v—Cl1—C6—C71.64 (14)
N2—C2—C3—C4178.63 (14)K1v—Cl1—C6—C5178.72 (10)
C7—C2—C3—C41.1 (2)C5—C6—C7—C21.2 (2)
N2—C2—C3—S11.2 (2)Cl1—C6—C7—C2178.40 (11)
C7—C2—C3—S1178.52 (11)N2—C2—C7—C6177.75 (13)
O1—S1—C3—C462.56 (13)C3—C2—C7—C62.0 (2)
O2—S1—C3—C462.78 (13)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+2, z1/2; (v) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···Cl10.87 (1)2.77 (2)3.1942 (13)112 (2)
N3—H1N···N1vi0.87 (1)2.12 (1)2.9337 (18)157 (2)
N3—H2N···N2vii0.87 (1)2.23 (1)3.0173 (18)150 (2)
O1W—H1W···O10.87 (1)2.29 (2)3.0792 (16)151 (2)
O1W—H2W···O2Wiii0.87 (1)1.94 (1)2.8075 (17)176 (2)
O2W—H3W···N2viii0.87 (1)2.07 (1)2.9308 (17)171 (2)
O2W—H4W···O3Wix0.87 (1)1.94 (1)2.8053 (13)173 (2)
O3W—H5W···O2iii0.88 (1)2.58 (3)3.1279 (10)121 (2)
O3W—H5W···N3ii0.88 (1)2.32 (2)3.0506 (16)140 (3)
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+5/2, z+1; (viii) x+1/2, y+3/2, z+1; (ix) x, y1, z.
Poly[[aqua(µ5-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)caesium] (CsCTZ) top
Crystal data top
[Cs(C7H5ClN3O4S2)(H2O)]Z = 2
Mr = 445.64F(000) = 428
Triclinic, P1Dx = 2.339 Mg m3
a = 7.71260 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.05930 (1) ÅCell parameters from 14584 reflections
c = 10.13810 (1) Åθ = 4.6–71.3°
α = 93.9760 (1)°µ = 28.08 mm1
β = 107.5390 (1)°T = 100 K
γ = 107.8000 (1)°Block, colourless
V = 632.84 (1) Å30.24 × 0.15 × 0.12 mm
Data collection top
Rigaku Synergy-i
diffractometer
2433 reflections with I > 2σ(I)
Radiation source: microsource tubeRint = 0.059
ω scansθmax = 71.3°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
h = 99
Tmin = 0.022, Tmax = 0.247k = 1111
14718 measured reflectionsl = 1212
2436 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.7171P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2436 reflectionsΔρmax = 1.75 e Å3
188 parametersΔρmin = 1.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.19755 (3)0.16090 (3)0.06985 (2)0.02257 (13)
Cl11.03692 (13)0.82370 (10)0.53756 (9)0.0214 (2)
S20.81621 (13)0.73056 (11)0.19288 (9)0.0183 (2)
S10.38932 (13)0.17021 (10)0.27036 (9)0.0184 (2)
O30.7174 (4)0.6319 (3)0.0560 (3)0.0248 (6)
O40.7650 (5)0.8660 (3)0.2229 (3)0.0234 (6)
O20.4670 (5)0.0792 (3)0.1954 (3)0.0271 (7)
O10.2130 (4)0.1869 (4)0.1831 (3)0.0295 (7)
O1W0.2150 (6)0.4223 (5)0.1322 (3)0.0374 (9)
N31.0432 (5)0.7903 (4)0.2161 (4)0.0218 (7)
N20.5892 (5)0.3067 (4)0.5846 (3)0.0190 (6)
N10.3536 (5)0.0923 (4)0.4000 (4)0.0207 (7)
C40.6226 (6)0.4561 (5)0.2559 (4)0.0192 (8)
H40.5632340.4247150.1568320.023*
C10.4529 (6)0.1675 (5)0.5329 (4)0.0204 (8)
H10.4189510.1103810.6018720.025*
C20.6474 (6)0.3975 (5)0.4920 (4)0.0187 (7)
C60.8538 (6)0.6436 (5)0.4595 (4)0.0183 (7)
C70.7948 (6)0.5453 (5)0.5464 (4)0.0202 (8)
H70.8546540.5776440.6453790.024*
C50.7657 (6)0.6024 (5)0.3117 (4)0.0176 (7)
C30.5655 (6)0.3554 (4)0.3436 (4)0.0182 (7)
H1N1.089 (10)0.717 (6)0.199 (8)0.06 (2)*
H2N1.115 (7)0.862 (5)0.292 (4)0.032 (14)*
H1W0.305 (7)0.401 (7)0.215 (3)0.048 (18)*
H2W0.233 (10)0.504 (6)0.095 (6)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02216 (18)0.02638 (18)0.01930 (17)0.00832 (12)0.00680 (12)0.00601 (11)
Cl10.0226 (5)0.0186 (4)0.0190 (4)0.0039 (3)0.0049 (4)0.0022 (3)
S20.0207 (5)0.0186 (4)0.0165 (4)0.0067 (4)0.0070 (4)0.0047 (3)
S10.0185 (5)0.0185 (5)0.0167 (5)0.0046 (4)0.0057 (4)0.0038 (4)
O30.0276 (16)0.0257 (14)0.0185 (14)0.0062 (13)0.0067 (12)0.0063 (11)
O40.0287 (15)0.0198 (14)0.0269 (15)0.0125 (12)0.0117 (13)0.0083 (12)
O20.0316 (16)0.0202 (14)0.0292 (15)0.0024 (12)0.0180 (13)0.0016 (12)
O10.0215 (15)0.0335 (16)0.0266 (15)0.0052 (13)0.0010 (12)0.0133 (13)
O1W0.046 (2)0.048 (2)0.0215 (16)0.0320 (18)0.0005 (15)0.0001 (14)
N30.0194 (17)0.0221 (17)0.0230 (17)0.0051 (14)0.0085 (14)0.0025 (13)
N20.0225 (16)0.0196 (15)0.0177 (15)0.0102 (13)0.0067 (13)0.0063 (12)
N10.0210 (16)0.0203 (15)0.0204 (16)0.0071 (13)0.0062 (13)0.0050 (13)
C40.0206 (18)0.0205 (18)0.0186 (17)0.0106 (16)0.0057 (15)0.0042 (15)
C10.025 (2)0.0232 (19)0.0175 (18)0.0125 (16)0.0085 (16)0.0075 (15)
C20.0214 (18)0.0207 (18)0.0181 (18)0.0121 (16)0.0072 (15)0.0048 (14)
C60.0187 (18)0.0180 (17)0.0177 (18)0.0072 (15)0.0051 (15)0.0008 (14)
C70.0219 (19)0.024 (2)0.0160 (18)0.0117 (16)0.0048 (15)0.0036 (15)
C50.0181 (18)0.0177 (17)0.0175 (18)0.0072 (15)0.0054 (14)0.0043 (14)
C30.0177 (17)0.0165 (17)0.0203 (18)0.0065 (14)0.0057 (15)0.0028 (14)
Geometric parameters (Å, º) top
Cs1—O12.952 (3)S1—C31.743 (4)
Cs1—O2i3.056 (3)O1W—H1W0.879 (10)
Cs1—O2ii3.131 (3)O1W—H2W0.878 (10)
Cs1—O4iii3.162 (3)N3—H1N0.878 (10)
Cs1—O1W3.244 (4)N3—H2N0.879 (10)
Cs1—N3iv3.457 (3)N2—C11.318 (6)
Cs1—Cl1v3.7738 (9)N2—C21.376 (5)
Cs1—S1i3.9823 (9)N1—C11.340 (5)
Cs1—Cs1vi4.4045 (4)C4—C31.386 (6)
Cs1—Cs1i5.2201 (4)C4—C51.386 (6)
Cl1—C61.738 (4)C4—H40.9500
S2—O41.439 (3)C1—H10.9500
S2—O31.442 (3)C2—C71.406 (6)
S2—N31.602 (3)C2—C31.418 (5)
S2—C51.775 (4)C6—C71.371 (6)
S1—O11.440 (3)C6—C51.414 (5)
S1—O21.452 (3)C7—H70.9500
S1—N11.591 (4)
O1—Cs1—O2i119.37 (9)O3—S2—C5104.42 (18)
O1—Cs1—O2ii132.81 (9)N3—S2—C5110.04 (18)
O2i—Cs1—O2ii89.22 (8)O1—S1—O2113.5 (2)
O1—Cs1—O4iii79.80 (8)O1—S1—N1109.56 (18)
O2i—Cs1—O4iii85.11 (8)O2—S1—N1109.89 (19)
O2ii—Cs1—O4iii65.18 (8)O1—S1—C3109.91 (19)
O1—Cs1—O1W106.11 (9)O2—S1—C3108.19 (18)
O2i—Cs1—O1W85.42 (9)N1—S1—C3105.52 (19)
O2ii—Cs1—O1W113.37 (9)O1—S1—Cs1i75.11 (14)
O4iii—Cs1—O1W170.44 (9)O2—S1—Cs1i41.72 (13)
O1—Cs1—N3iv76.42 (9)N1—S1—Cs1i110.10 (13)
O2i—Cs1—N3iv66.43 (8)C3—S1—Cs1i139.76 (14)
O2ii—Cs1—N3iv150.07 (8)S2—O4—Cs1vii127.51 (17)
O4iii—Cs1—N3iv125.86 (8)S1—O2—Cs1i119.85 (17)
O1W—Cs1—N3iv50.48 (9)S1—O2—Cs1viii134.98 (16)
O1—Cs1—Cl1v68.96 (7)Cs1i—O2—Cs1viii90.78 (8)
O2i—Cs1—Cl1v137.82 (6)S1—O1—Cs1160.92 (19)
O2ii—Cs1—Cl1v65.14 (6)Cs1—O1W—H1W122 (4)
O4iii—Cs1—Cl1v54.33 (6)Cs1—O1W—H2W113 (5)
O1W—Cs1—Cl1v134.54 (6)H1W—O1W—H2W99 (2)
N3iv—Cs1—Cl1v144.79 (6)S2—N3—Cs1iv119.81 (17)
O1—Cs1—S1i101.00 (7)S2—N3—H1N115 (5)
O2i—Cs1—S1i18.43 (6)Cs1iv—N3—H1N69 (5)
O2ii—Cs1—S1i104.31 (5)S2—N3—H2N114 (4)
O4iii—Cs1—S1i82.28 (6)Cs1iv—N3—H2N115 (4)
O1W—Cs1—S1i89.14 (6)H1N—N3—H2N116 (6)
N3iv—Cs1—S1i56.24 (6)C1—N2—C2118.2 (3)
Cl1v—Cs1—S1i136.254 (19)C1—N1—S1121.5 (3)
O1—Cs1—Cs1vi145.42 (6)C3—C4—C5120.4 (4)
O2i—Cs1—Cs1vi45.30 (6)C3—C4—H4119.8
O2ii—Cs1—Cs1vi43.92 (5)C5—C4—H4119.8
O4iii—Cs1—Cs1vi69.05 (6)N2—C1—N1131.3 (4)
O1W—Cs1—Cs1vi103.09 (7)N2—C1—H1114.3
N3iv—Cs1—Cs1vi109.79 (6)N1—C1—H1114.3
Cl1v—Cs1—Cs1vi102.429 (16)N2—C2—C7118.6 (3)
S1i—Cs1—Cs1vi61.158 (14)N2—C2—C3124.8 (4)
O1—Cs1—Cs1i47.10 (7)C7—C2—C3116.6 (4)
O2i—Cs1—Cs1i72.44 (6)C7—C6—C5121.4 (4)
O2ii—Cs1—Cs1i133.40 (6)C7—C6—Cl1117.6 (3)
O4iii—Cs1—Cs1i70.74 (6)C5—C6—Cl1120.9 (3)
O1W—Cs1—Cs1i107.52 (7)C6—C7—C2121.3 (4)
N3iv—Cs1—Cs1i57.41 (6)C6—C7—H7119.4
Cl1v—Cs1—Cs1i100.538 (16)C2—C7—H7119.4
S1i—Cs1—Cs1i54.261 (14)C4—C5—C6118.2 (4)
Cs1vi—Cs1—Cs1i106.207 (8)C4—C5—S2117.5 (3)
C6—Cl1—Cs1v107.76 (14)C6—C5—S2124.2 (3)
O4—S2—O3118.76 (18)C4—C3—C2122.0 (4)
O4—S2—N3107.95 (19)C4—C3—S1119.4 (3)
O3—S2—N3107.30 (18)C2—C3—S1118.5 (3)
O4—S2—C5108.19 (18)
O3—S2—O4—Cs1vii61.6 (3)N2—C2—C7—C6177.5 (4)
N3—S2—O4—Cs1vii60.7 (2)C3—C2—C7—C60.7 (6)
C5—S2—O4—Cs1vii179.74 (18)C3—C4—C5—C61.4 (6)
O1—S1—O2—Cs1i24.8 (2)C3—C4—C5—S2174.9 (3)
N1—S1—O2—Cs1i98.2 (2)C7—C6—C5—C42.7 (6)
C3—S1—O2—Cs1i147.02 (17)Cl1—C6—C5—C4179.0 (3)
O1—S1—O2—Cs1viii101.8 (3)C7—C6—C5—S2173.3 (3)
N1—S1—O2—Cs1viii135.2 (2)Cl1—C6—C5—S24.9 (5)
C3—S1—O2—Cs1viii20.5 (3)O4—S2—C5—C4115.0 (3)
Cs1i—S1—O2—Cs1viii126.6 (3)O3—S2—C5—C412.4 (4)
O2—S1—O1—Cs1116.3 (6)N3—S2—C5—C4127.2 (3)
N1—S1—O1—Cs16.9 (7)O4—S2—C5—C661.1 (4)
C3—S1—O1—Cs1122.4 (6)O3—S2—C5—C6171.5 (3)
Cs1i—S1—O1—Cs199.5 (6)N3—S2—C5—C656.7 (4)
O4—S2—N3—Cs1iv99.20 (19)C5—C4—C3—C20.9 (6)
O3—S2—N3—Cs1iv29.9 (2)C5—C4—C3—S1178.5 (3)
C5—S2—N3—Cs1iv142.93 (17)N2—C2—C3—C4176.0 (4)
O1—S1—N1—C1119.3 (3)C7—C2—C3—C42.0 (6)
O2—S1—N1—C1115.4 (3)N2—C2—C3—S14.6 (5)
C3—S1—N1—C11.1 (4)C7—C2—C3—S1177.4 (3)
Cs1i—S1—N1—C1159.9 (3)O1—S1—C3—C459.2 (4)
C2—N2—C1—N10.1 (7)O2—S1—C3—C465.2 (4)
S1—N1—C1—N20.5 (6)N1—S1—C3—C4177.2 (3)
C1—N2—C2—C7179.1 (4)Cs1i—S1—C3—C431.1 (4)
C1—N2—C2—C32.9 (6)O1—S1—C3—C2121.4 (3)
Cs1v—Cl1—C6—C72.6 (3)O2—S1—C3—C2114.2 (3)
Cs1v—Cl1—C6—C5179.1 (3)N1—S1—C3—C23.3 (4)
C5—C6—C7—C21.7 (6)Cs1i—S1—C3—C2148.3 (2)
Cl1—C6—C7—C2179.9 (3)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O1Wiv0.88 (1)2.00 (2)2.864 (5)168 (7)
N3—H2N···N1vii0.88 (1)2.25 (3)3.048 (5)151 (5)
O1W—H1W···N2ix0.88 (1)1.96 (3)2.761 (5)150 (6)
O1W—H2W···O3ii0.88 (1)2.05 (3)2.867 (5)154 (7)
Symmetry codes: (ii) x1, y, z; (iv) x+1, y+1, z; (vii) x+1, y+1, z; (ix) x1, y, z1.
Selected bond lengths (Å) for polymorphic forms 1 and 2 of CTZ, and for salt forms containing CTZ anions top
S1—N1N1—C1C1—N2N2—C2S2—N3
CTZ, form 11.6191.2991.3411.3941.607
CTZ, form 21.6201.3091.3441.3911.590
NaCTZ1.580 (2)1.352 (4)1.323 (4)1.378 (3)1.585 (2)
KCTZ1.5979 (12)1.333 (2)1.323 (2)1.3853 (19)1.6086 (13)
CsCTZ1.591 (4)1.340 (5)1.318 (6)1.376 (5)1.602 (3)
APUZOB A1.5981.3351.3331.3791.618
APUZOB B1.5901.3401.3271.3851.609
VEKBOF1.5771.3331.3061.3851.599
Bond lengths (Å) for coordination bonds in NaCTZ, KCTZ and CsCTZ top
NaCTZKCTZCsCTZ
M—N33.457 (3)
M—O12.360 (2)2.7813 (11)2.952 (3)
M—O22.7133 (11)3.056 (3), 3.131 (3)
M—O32.365 (2)2.6720 (11)3.162 (3)
M—O42.464 (2)2.7478 (11)
M—Cl13.3257 (4)3.7738 (9)
M—OH22.355 (2)2.6269 (12)3.244 (4)
2.418 (2)2.8493 (12)
2.438 (2)
 

References

First citationAljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223–5232.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernal, I. & Watkins, S. F. (2013). Acta Cryst. C69, 808–810.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrydson, R. K. H. & Kennedy, A. R. (2024). Acta Cryst. E80, 806–810.  CSD CrossRef IUCr Journals Google Scholar
First citationCametti, M., Nissinen, M., Dalla Cort, A., Rissanen, K. & Mandolini, L. (2006). Inorg. Chem. 45, 6099–6101.  CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHankins, J., Lonsway, R. A., Hedrick, C. & Perdue, M. (2001). Editors. Infusion Therapy in Clinical Practise. Philadelphia: Saunders.  Google Scholar
First citationHarlow, R. L. (1996). J. Res. Natl Inst. Stand. Technol. 101, 327–339.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnston, A., Bardin, J., Johnston, B. F., Fernandes, P., Kennedy, A. R., Price, S. L. & Florence, A. J. (2011). Cryst. Growth Des. 11, 405–413.  Web of Science CSD CrossRef CAS Google Scholar
First citationKennedy, A. R., Cruickshank, L., Maher, P. & McKinnon, Z. (2023). Acta Cryst. C79, 386–394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeech, C. K., Fabbiani, F. P. A., Shankland, K., David, W. I. F. & Ibberson, R. M. (2008). Acta Cryst. B64, 101–107.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartins, V. M., Ziegelmann, P. K., Helal, L., Ferrari, F., Lucca, M. B., Fuchs, S. C. & Fuchs, F. D. (2022). Syst. Rev. 11, 23.  CrossRef PubMed Google Scholar
First citationMastropierro, P., Kennedy, A. R. & Hevia, E. (2022). Chem. Commun. 58, 5292–5295.  CSD CrossRef CAS Google Scholar
First citationOsterloh, F., Achim, C. & Holm, R. H. (2001). Inorg. Chem. 40, 224–232.  CSD CrossRef PubMed CAS Google Scholar
First citationOswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). ChemEngComm, 12, 2533–2540.  CAS Google Scholar
First citationOyama, H., Miyamoto, T., Sekine, A., Nugrahani, I. & Uekusa, H. (2021). Crystals, 11, 412.  CSD CrossRef Google Scholar
First citationPaluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603–611.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPaluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220–229.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaymond, K. N. & Girolami, G. S. (2023). Acta Cryst. C79, 445–455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRosokha, S. V., Lu, J., Rosokha, T. Y. & Kochi, J. K. (2009). Phys. Chem. Chem. Phys. 11, 324–332.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeidel, R. W. (2018). IUCrData, 3, x181324.  Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2013a). Acta Cryst. E69, m22–m23.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013b). Acta Cryst. E69, m628.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2015). Acta Cryst. C71, 140–145.  CSD CrossRef IUCr Journals Google Scholar
First citationSteuber, T. D., Janzen, K. M. & Howard, M. L. (2020). Pharmacotherapy, 40, 924–935.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTeng, R., Wang, L., Chen, M., Fang, W., Gao, Z., Chai, Y., Zhao, P. & Bao, Y. (2020). J. Mol. Struct. 1217, 128432.  Web of Science CSD CrossRef Google Scholar
First citationYang, P., Wang, J., Jia, C., Yang, X.-J. & Wu, B. (2013). Eur. J. Org. Chem. 2013, 3446–3454.  CSD CrossRef CAS Google Scholar
First citationZaleskaya, M., Jagleniec, D., Karbarz, M., Dobrzycki, L. & Romański, J. (2020). Inorg. Chem. Front. 7, 972–983.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds