

research papers

On the deprotonation of chlorothiazide
aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
*Correspondence e-mail: a.r.kennedy@strath.ac.uk
Three alkali metal salt forms of the diuretic chlorothiazide (systematic name: 6-chloro-1,1-dioxo-2H-1,2,4-benzothiazine-7-sulfonamide, HCTZ) are described. When crystallized from aqueous solution, the Na and K salts, namely, poly[[μ-aqua-aqua(μ3-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)sodium] hemihydrate], {[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O}n, and poly[[diaqua(μ5-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)potassium] hemihydrate], {[K(C7H5ClN3O4S2)(H2O)2]·0.5H2O}n, are both found to have stoichiometry MCTZ·2.5H2O, with CTZ deprotonated at a heterocyclic ring N atom. Both the stoichiometry and the deprotonation site are different to those described in previously published versions of these structures. The Cs salt form is found to be the monohydrate CsCTZ·H2O, namely, poly[[aqua(μ5-6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ido)caesium], [Cs(C7H5ClN3O4S2)(H2O)]n. As with the Na and K cognates, this structure is also deprotonated at the heterocyclic ring. NaCTZ is found to be a two-dimensional coordination polymer with bridges between Na centres formed by H2O and SO2 groups, and by links through the length of the coordinated CTZ anions. Water ligands in KCTZ and CsCTZ are terminal, rather than bridging between metal centres, but both compounds form structures where M—Cl interactions link two-dimensional motifs formed via M—O bonds (and in CsCTZ, M—N bonds) into three-dimensional coordination polymers.
Keywords: crystal structure; pharmaceuticals; salt selection; sulfonamide; alkali metals; diuretic.
1. Introduction
The active pharmaceutical ingredient (API) chlorothiazide and its sodium salt (NaCTZ, where CTZ is the 6-chloro-1,1-dioxo-7-sulfamoyl-2H-1,2,4-benzothiadiazin-2-ide anion) are sulfonamide compounds utilized as diuretic and antihypertensive drugs (Martins et al., 2022; Steuber et al., 2020
). Chlorothiazide has also been widely used as a model API in crystallization studies. These studies have identified two polymorphs under ambient conditions and an additional high-pressure polymorphic form of chlorothiazide (Shankland et al., 1997
; Brydson & Kennedy, 2024
; Oswald et al., 2010
), as well as numerous solvate and cocrystal forms (e.g. Johnston et al., 2011
; Aljohani et al., 2017
; Teng et al., 2020
). Despite this widespread study, and despite NaCTZ being used as an injectable form of the drug (Hankins et al., 2001
), only four structures of salt forms of chlorothiazide have been reported. These are APUZER [Cambridge Structural Database (CSD, Version 5.45 with updates to June 2024) refcode; Groom et al., 2016
], which was reported as a trihydrate form of NaCTZ (Paluch et al., 2010
), APUZIV and APUZOB which were, respectively, reported as the dihydrate and the mixed hydrate/ethanolate forms of KCTZ (Paluch et al., 2011
), and VEKBOF, which has the organic cation PhC(NH2)2 (Aljohani et al., 2017
). The alkali metal salt forms are of particular pharmaceutical interest, as they are reported to have aqueous solubilities that are orders of magnitude greater than that of chlorothiazide itself (Paluch et al., 2010
, 2011
).
Our attention was originally drawn to APUZER as its two-dimensional diagram in the CSD features a neutral CTZ ligand with the charge on Na+ being balanced by a hydroxide ligand. Examining the associated and the original article quickly showed that this was a transcription error (Paluch et al., 2010). However, the anionic form of CTZ that is reported is in itself unusual. The structure given shows deprotonation of the SO2NH2 group and a proton present on the thiadiazine ring N atom adjacent to the ring SO2 group. This is unusual as the SO2NH2 group should be less acidic that the ring N—H group, and the solid-state structures of neutral CTZ forms invariably report the tautomer with the heterocyclic ring protonated at the N atom para to the SO2 functionality (e.g. Brydson & Kennedy, 2024
; Johnston et al., 2011
; Aljohani et al., 2017
). The KCTZ salt forms APUZIV and APUZOB are reported to have the same deprotonation pattern as APUZER (Paluch et al., 2011
), but the organic salt VEKBOF has a CTZ anion with the more intuitive deprotonation of the N—H group of the heterocyclic ring and retention of the SO2NH2 group (Aljohani et al., 2017
).
It is noted that the H-atom modelling in the reported structures of all three alkali metal salt forms has some problems. Notably, some H atoms on water molecules are missing, some refined N—H distances are unreasonably short (e.g. 0.65 Å), and those O—H and N—H bond lengths that are reasonable have all been fixed at the distances given. As incorrect H-atom positions are a known pitfall even for relatively high-quality determinations (Seidel, 2018; Kennedy et al., 2023
; Bernal & Watkins, 2013
; Raymond & Girolami, 2023
; Harlow, 1996
), we investigated the deprotonation of CTZ by redetermining the structures of the hydrated NaCTZ and KCTZ forms and by determining a related new structure – that of a monohydrated form of CsCTZ.
2. Experimental
2.1. Synthesis and crystallization
The triclinic polymorph of CTZ was purchased from Thermo Scientific. Crystals of NaCTZ were prepared according to the aqueous method of Paluch et al. (2010). Crystals of KCTZ were prepared by adding excess KCl to an aqueous solution of NaCTZ, followed by slow evaporation of the solvent. For the preparation of CsCTZ, CTZ (0.10 g, 0.34 mmol) was dissolved in the minimum amount of a 1:1 (v/v) acetone–water mix. To this was added CsOH·H2O (0.06 g, 0.36 mmol) dissolved in the minimum amount of water. After stirring and heating, the resulting solution was left to evaporate for 3 d at room temperature. This gave crystals of CsCTZ in approximately 50% yield. FT–IR (cm−1); 3422, 3308, 3258, 3082, 2959, 1602, 1573, 1509, 1466, 1300, 1246, 1152, 1094, 956, 893, 714, 674, 614, 524.
2.2. Refinement
Crystal data, data collection and structure . All H atoms were observed by difference synthesis, except for those of the disordered water molecule of NaCTZ. The H atoms of this latter group were thus placed in positions calculated so as to give sensible intermolecular hydrogen-bonding interactions. H atoms bound to C atoms were placed in expected geometric positions and treated in riding modes, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Well-ordered H atoms bound to N or to O atoms were placed as found and refined isotropically with N/O—H distances restrained to 0.88 (1) Å.
|
3. Results and discussion
The core structures of NaCTZ, KCTZ and CsCTZ as newly determined herein are shown in Figs. 1–3
and key crystallographic parameters are given in Table 1
. Paluch et al. (2010
) modelled the structure of NaCTZ in APUZER (CSD refcode) as a trihydrate, with two water ligands coordinated to sodium and one free water molecule `of solvation'. Both in the original article and in our hands, using this model gives the free water molecule an extremely large displacement ellipsoid and results in an O⋯O separation of just 1.482 Å between two free water molecule sites related by a centre of symmetry. In our current model, we thus treat this site, O3W, as a half-occupancy water molecule. This gives normal displacement ellipsoids, removes the erroneous O⋯O separation and reinterprets the structure as NaCTZ·2.5H2O. In the text of Paluch et al. (2011
), KCTZ (APUZIV) is described as a dihydrate form. However, both the file deposited for APUZIV and our redetermination show that, similar to the Na salt, the K salt has stoichiometry KCTZ·2.5H2O. Note that for both NaCTZ and KCTZ, a water content of 2.5 water molecules per cation is closer to the reported TGA derived water contents than are the alternative descriptions of these structures (Paluch et al., 2010
, 2011
).
![]() | Figure 1 Contents of the asymmetric unit of NaCTZ, expanded so as to show all metal-to-ligand coordination bonds. Note that here and elsewhere, non-H atoms are drawn as 50% probability ellipsoids and H atoms as small spheres of arbitrary size. See supporting information for full details of bonding contacts, including symmetry operations, for all structures. |
![]() | Figure 2 Contents of the asymmetric unit of KCTZ, expanded so as to show all metal-to-ligand coordination bonds. |
![]() | Figure 3 Contents of the asymmetric unit of CsCTZ, expanded so as to show all metal-to-ligand coordination bonds. |
In both the original structures of NaCTZ and KCTZ (APUZER and APUZIV), some water H atoms were omitted, a H atom was placed on a heterocyclic N atom and the pendant arm was modelled as the deprotonated SO2NH group (Paluch et al., 2010, 2011
). In the current work, all the H atoms were observed in difference syntheses maps, with the exceptions of the H atoms of the disordered half-occupancy water molecule of NaCTZ. Adding the H atoms in the observed positions and modelling freely and isotropically gave structurally sensible H-atom positions for the water molecules and gave CTZ anions that had intact SO2NH2 groups and no protons on the heterocyclic N atoms. Moreover, there were no electron-density features suggesting any degree of protonation of the heterocyclic N atoms. Difference electron-density maps for NaCTZ and KCTZ are available as supporting information. As some O—H distances of the freely refined models were slightly short (0.79 Å), the final reported models restrained X—H (X = O or N) to be 0.88 (1) Å (see Tables 2
–4
). Similar treatment of CsCTZ gave a structure with the same protonation behaviour for the CTZ anion as was found herein for NaCTZ and KCTZ. The H atoms of the disordered half-occupancy water molecule of NaCTZ were added in calculated positions that gave sensible intermolecular hydrogen-bonding contacts (see Table 2
). Thus, electron-density data clearly gives models for both NaCTZ and KCTZ that differ from those reported as APUZER and APUZIV. We think it is clear that these structures should have been described as having intact SO2NH2 groups and as having been deprotonated at the heterocyclic ring.
|
|
|
The K salt APUZOB is a mixed ethanolate/hydrate that was also reported to have a deprotonated SO2NH unit (Paluch et al., 2011). We were unable to obtain crystals of this form, but have investigated its deprotonation site by comparing the various bond lengths involving the N atoms of the CTZ anions. Study of Table 5
shows clear geometric differences between the salt forms that contain deprotonated CTZ anions and the neutral polymorphs of chlorothiazide (Leech et al., 2008
; Brydson & Kennedy, 2024
). All the salt forms show similar bond lengths to each other, including the two crystallographically independent CTZ anions of APUZOB. We believe that as this group forms a coherent set, it indicates that APUZOB may also have been incorrectly reported with respect to the deprotonation site, and that it should also be deprotonated at the ring N atom. Note that in the neutral polymorphs the C1—N1 bond is considerably shorter than the C2—N1 bond, indicating that it is mostly C1—N1 that has double-bond character. In contrast, for the anionic CTZ forms, C1—N1 is slightly longer than C2—N1. The chemical scheme has been drawn so as to place the double bond at the shorter C2—N1 site, but of course such small differences mean that in reality an intermediate resonance form is observed.
|
NaCTZ has a six-coordinate octahedral Na centre with an O6 coordination set. Three of these O atoms are from water ligands (two bridging between Na centres and one terminal) and the other three are from SO2 units of the CTZ anion. Details of coordination bonds for the three salt forms are given in Table 6. All three of these SO2—Na bonds lead to bridges between Na centres. The SO2NH2 unit forms eight-membered [NaOSO]2 rings which alternate with four-membered NaONaO rings (O from water) to propagate the structure perpendicular to the crystallographic b direction. The CTZ anions bridge between these chains via Na bonds to both SO2 groups of CTZ to give connectivity parallel to the crystallographic a direction, giving an overall two-dimensional coordination polymer (see Fig. 4
). Hydrophilic inorganic layers thus alternate with hydrophobic organic bilayers along the c direction, with the main CTZ-to-CTZ interactions across the organic bilayers being from N—H⋯N hydrogen bonds (Table 2
and Fig. 5
).
|
![]() | Figure 4 Detail of the coordination bonding in NaCTZ, showing one-dimensional chains with [NaONaO] and [NaOSO]2 rings linked into a two-dimensional motif by CTZ anions bridging between the chains. |
![]() | Figure 5 Packing structure of NaCTZ, viewed along the a axis and showing organic and inorganic layers alternating along the c direction. |
The K centre in KCTZ is seven-coordinate and has a somewhat unusual O6Cl coordination shell. The two water ligands are terminal and thus the coordination polymer builds solely through interactions with the CTZ anions. The unbound water molecule sits on a crystallographic twofold axis, giving an overall stoichiometry of KCTZ·2.5H2O. Each K centre bonds to four CTZ anions through interactions with all four chemically distinct O atoms of CTZ. There is also a relatively unusual bond to Cl of a CTZ anion. At 3.3257 (4) Å, the K—Cl bond with the organic halide is similar to, or only slightly longer than, typical bond lengths reported between K and chloride anions (e.g. 3.325 and 3.094 Å in ZUKDUH and BEPSAS, respectively) (Zaleskaya et al., 2020; Yang et al., 2013
). Alkali metal to organic halide bonds are described in the literature, but most are observed with simple polyhalogenated aromatics and relatively few with less substituted rings (e.g. Smith, 2015
; Rosokha et al., 2009
; Mastropierro et al., 2022
; Osterloh et al., 2001
). A rare example of such a bond in a drug material is the Na—Cl bond observed in the structure of the Na salt of diclofenac (Oyama et al., 2021
). With each K centre making bonds with five neighbouring CTZ anions, the result is a three-dimensional coordination polymer as shown in Fig. 6
. K-to-O interactions form a two-dimensional structure parallel to the crystallographic c direction and it is the K—Cl bonds that link these layers into the three-dimensional coordination polymer. These bonds in the third dimension are supported by N—H⋯N hydrogen bonds and by hydrogen bonds involving both coordinated and noncoordinated water molecules. The overall packing structure displays inorganic and organic layers alternating along the crystallographic c direction (see Fig. 6
).
![]() | Figure 6 Packing structure of KCTZ, viewed along the a axis and showing organic and inorganic layers alternating along the c direction. |
Despite the large size of the Cs cation, CsCTZ has a Cs centre with a maximum of seven dative bonds, the same as found for K in KCTZ. These form an O5NCl coordination shell. Although consistent with the treatment of KCTZ above, it is debatable whether or not the Cs—Cl contact of 3.7738 (9) Å should be considered as a because although this distance is shorter than the sum of the van der Waals radii for the two atoms, it is longer than the sum of the ionic radii. A search of the CSD showed that the Cs—Cl contact herein is approximately 0.2–0.4 Å longer than contacts described as Cs—Cl bonds, but that some structures do include similar distances as formal R—Cl bonds to Cl atoms (e.g. XELZAQ, NEPNIH and DIQZAG) (Cametti et al., 2006; Smith, 2013a
,b
). CsCTZ is the only structure herein to form an M—N bond, and it is notable that this bond is not with a formally charge-carrying ring N atom, but is with the N3 atom of the SO2NH2 group. At 3.457 (3) Å, the Cs—N bond is considerably longer than the Cs—O bonds [range 2.952 (3)–3.244 (4) Å]. As with KCTZ, the sole water ligand is terminal. The other six interactions involve a Cs centre contacting six different neighbouring CTZ anions. The bonds to O and to N give a two-dimensional coordination polymer lying parallel to the crystallographic ab plane (see Fig. 7
). Contacts between these planes which would result in a three-dimensional construct are limited to the Cs—Cl interactions discussed above and to N—H⋯N hydrogen bonds, with the latter motif being similar to that found in NaCTZ. Again, as in NaCTZ, a layered structure is formed with inorganic layers and organic bilayers alternating along the crystallographic c direction.
![]() | Figure 7 Part of the structure of KCTZ, showing the two-dimensional coordination motif formed by Cs—O and Cs—N bonds. Cs—Cl and hydrogen bonds link neighbouring motifs, along the c direction, into a three-dimensional network. |
In all three structures, both ring N atoms act as hydrogen-bond acceptors (see Tables 2–4
). The ring sulfonamide N atom always accepts a single hydrogen bond from a neighbouring NH2 moiety. The closeness in space of the two N atoms of these interactions may go some way to explaining why APUZER and APUZIV incorrectly assign an H atom to the ring rather than to NH2. In all three structures, ring atom N2 accepts a hydrogen bond from a metal-coordinated water molecule and, in the case of KCTZ only, it also accepts a second hydrogen bond from a NH2 group. As well as the interactions described above, the NH2 groups of NaCTZ and CsCTZ also donate hydrogen bonds to water molecules. Only in KCTZ does the NH2 group act as a hydrogen-bond acceptor, accepting a bond from the non-metal-coordinated water molecule. The O atoms of the SO2 groups of the CTZ anions only accept hydrogen bonds from water molecules and thus make no CTZ-to-CTZ contacts.
4. Summary
Both modelling electron density and geometric comparisons with other structures suggest that the previously reported NaCTZ and KCTZ structures APUZER and APUZIV have been misidentified both in terms of hydration state and in terms of the deprotonated site of the CTZ anion. Both should have the formula MCTZ·2.5H2O and both should feature deprotonation of the CTZ heterocyclic ring, rather than of the SO2NH2 group. The Cs salt CsCTZ is found to crystallize as CsCTZ·H2O and has the same deprotonation site on the CTZ heterocyclic ring as do its Na and K cognates. An unusual feature for salt structures of drug anions is that both KCTZ and CsCTZ display M—Cl contacts with the chlorobenzene group, although that in the Cs salt is relatively long. Both these structures give coordination polymers where M—O, or M—O and M—N, bonds give two-dimensional moieties. It is the M—Cl contact that expands the K and Cs coordination polymers into the third dimension. Lacking any Na—Cl contact, the structure of NaCTZ remains a two-dimensional coordination polymer.
Supporting information
https://doi.org/10.1107/S2053229625000701/qf3065sup1.cif
contains datablocks NaCTZ, KCTZ, CsCTZ, global. DOI:Structure factors: contains datablock NaCTZ. DOI: https://doi.org/10.1107/S2053229625000701/qf3065NaCTZsup2.hkl
Structure factors: contains datablock KCTZ. DOI: https://doi.org/10.1107/S2053229625000701/qf3065KCTZsup3.hkl
Structure factors: contains datablock CsCTZ. DOI: https://doi.org/10.1107/S2053229625000701/qf3065CsCTZsup4.hkl
[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O | Z = 2 |
Mr = 362.74 | F(000) = 370 |
Triclinic, P1 | Dx = 1.815 Mg m−3 |
a = 8.3728 (7) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.0819 (8) Å | Cell parameters from 9631 reflections |
c = 9.6533 (6) Å | θ = 4.6–71.1° |
α = 83.013 (6)° | µ = 6.16 mm−1 |
β = 74.055 (6)° | T = 100 K |
γ = 70.189 (7)° | Slab cut from mass, colourless |
V = 663.70 (10) Å3 | 0.13 × 0.11 × 0.05 mm |
Rigaku Synergy-i diffractometer | 2427 reflections with I > 2σ(I) |
Radiation source: microsource tube | Rint = 0.045 |
ω scans | θmax = 71.9°, θmin = 5.8° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) | h = −10→10 |
Tmin = 0.587, Tmax = 1.000 | k = −11→10 |
10937 measured reflections | l = −11→10 |
2522 independent reflections |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0768P)2 + 0.9303P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2522 reflections | Δρmax = 0.87 e Å−3 |
210 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na1 | 0.51193 (13) | 0.31409 (11) | 0.96262 (10) | 0.0181 (2) | |
Cl1 | −0.21121 (8) | 1.00632 (7) | 0.44660 (6) | 0.01987 (19) | |
S1 | 0.20461 (8) | 0.41614 (7) | 0.75673 (6) | 0.01702 (19) | |
S2 | −0.33213 (7) | 0.95212 (7) | 0.80244 (6) | 0.01555 (19) | |
O1 | 0.2997 (3) | 0.4640 (2) | 0.8388 (2) | 0.0255 (4) | |
O2 | 0.0816 (3) | 0.3409 (2) | 0.8458 (2) | 0.0275 (5) | |
O3 | −0.3553 (2) | 0.8628 (2) | 0.93696 (19) | 0.0187 (4) | |
O4 | −0.2981 (2) | 1.0975 (2) | 0.8019 (2) | 0.0212 (4) | |
O1W | 0.3229 (2) | 0.5162 (2) | 1.13402 (19) | 0.0193 (4) | |
H1W | 0.310 (4) | 0.517 (4) | 1.2268 (13) | 0.029* | |
H2W | 0.2147 (19) | 0.559 (4) | 1.127 (3) | 0.029* | |
O2W | 0.6943 (3) | 0.2247 (2) | 1.1313 (3) | 0.0303 (5) | |
H3W | 0.699 (5) | 0.309 (3) | 1.161 (4) | 0.045* | |
H4W | 0.804 (2) | 0.179 (4) | 1.087 (4) | 0.045* | |
O3W | 1.0038 (7) | 0.0570 (6) | 0.9401 (6) | 0.0455 (12) | 0.5 |
H5W | 1.029387 | 0.151659 | 0.908877 | 0.068* | 0.5 |
H6W | 1.055461 | 0.041235 | 0.843577 | 0.068* | 0.5 |
N1 | 0.3385 (3) | 0.3055 (3) | 0.6325 (2) | 0.0223 (5) | |
N2 | 0.2754 (3) | 0.4861 (3) | 0.4312 (2) | 0.0228 (5) | |
N3 | −0.4954 (3) | 0.9832 (3) | 0.7372 (3) | 0.0212 (5) | |
C1 | 0.3591 (4) | 0.3552 (3) | 0.4928 (3) | 0.0248 (6) | |
H1 | 0.449735 | 0.283357 | 0.427239 | 0.030* | |
C2 | 0.1403 (3) | 0.5962 (3) | 0.5181 (3) | 0.0175 (5) | |
C3 | 0.0902 (3) | 0.5811 (3) | 0.6693 (3) | 0.0157 (5) | |
C4 | −0.0516 (3) | 0.6927 (3) | 0.7517 (3) | 0.0164 (5) | |
H4 | −0.081828 | 0.679362 | 0.853710 | 0.020* | |
C5 | −0.1487 (3) | 0.8226 (3) | 0.6863 (3) | 0.0153 (5) | |
C6 | −0.0982 (3) | 0.8418 (3) | 0.5352 (3) | 0.0159 (5) | |
C7 | 0.0416 (3) | 0.7320 (3) | 0.4535 (3) | 0.0183 (5) | |
H7 | 0.072603 | 0.747406 | 0.351726 | 0.022* | |
H1N | −0.564 (4) | 0.925 (4) | 0.770 (4) | 0.033 (10)* | |
H2N | −0.538 (5) | 1.076 (2) | 0.700 (4) | 0.045 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0214 (5) | 0.0139 (5) | 0.0206 (5) | −0.0058 (4) | −0.0083 (4) | 0.0017 (4) |
Cl1 | 0.0238 (3) | 0.0144 (3) | 0.0211 (3) | −0.0043 (2) | −0.0096 (2) | 0.0043 (2) |
S1 | 0.0197 (3) | 0.0121 (3) | 0.0194 (3) | −0.0021 (2) | −0.0096 (2) | 0.0009 (2) |
S2 | 0.0164 (3) | 0.0115 (3) | 0.0177 (3) | −0.0030 (2) | −0.0042 (2) | −0.0006 (2) |
O1 | 0.0300 (10) | 0.0185 (9) | 0.0309 (10) | −0.0015 (8) | −0.0198 (9) | −0.0023 (8) |
O2 | 0.0266 (10) | 0.0222 (10) | 0.0315 (11) | −0.0076 (8) | −0.0091 (8) | 0.0105 (8) |
O3 | 0.0204 (9) | 0.0157 (9) | 0.0170 (9) | −0.0037 (7) | −0.0034 (7) | 0.0019 (7) |
O4 | 0.0244 (10) | 0.0141 (9) | 0.0245 (9) | −0.0074 (7) | −0.0027 (8) | −0.0026 (7) |
O1W | 0.0225 (9) | 0.0181 (9) | 0.0178 (9) | −0.0074 (7) | −0.0053 (7) | 0.0008 (7) |
O2W | 0.0353 (12) | 0.0223 (10) | 0.0420 (12) | −0.0144 (9) | −0.0214 (10) | 0.0090 (9) |
O3W | 0.044 (3) | 0.034 (3) | 0.053 (3) | −0.015 (2) | 0.000 (2) | −0.002 (2) |
N1 | 0.0261 (12) | 0.0142 (10) | 0.0239 (11) | −0.0008 (9) | −0.0088 (9) | −0.0008 (9) |
N2 | 0.0249 (12) | 0.0207 (11) | 0.0194 (11) | −0.0029 (9) | −0.0049 (9) | −0.0028 (9) |
N3 | 0.0185 (11) | 0.0171 (11) | 0.0278 (12) | −0.0043 (9) | −0.0092 (9) | 0.0042 (9) |
C1 | 0.0228 (14) | 0.0222 (14) | 0.0266 (14) | −0.0019 (11) | −0.0064 (11) | −0.0050 (11) |
C2 | 0.0180 (12) | 0.0159 (12) | 0.0191 (12) | −0.0047 (10) | −0.0055 (10) | −0.0026 (9) |
C3 | 0.0168 (12) | 0.0131 (11) | 0.0176 (12) | −0.0034 (9) | −0.0070 (9) | 0.0006 (9) |
C4 | 0.0178 (12) | 0.0162 (12) | 0.0163 (11) | −0.0064 (10) | −0.0051 (9) | 0.0007 (9) |
C5 | 0.0159 (12) | 0.0123 (11) | 0.0182 (12) | −0.0048 (9) | −0.0046 (9) | −0.0008 (9) |
C6 | 0.0197 (12) | 0.0121 (11) | 0.0182 (12) | −0.0055 (9) | −0.0097 (10) | 0.0033 (9) |
C7 | 0.0219 (13) | 0.0179 (12) | 0.0159 (12) | −0.0069 (10) | −0.0060 (10) | 0.0012 (9) |
Na1—O1Wi | 2.355 (2) | O2W—H4W | 0.874 (10) |
Na1—O1 | 2.360 (2) | O3W—O3Wiv | 1.459 (10) |
Na1—O3ii | 2.365 (2) | O3W—H5W | 0.9497 |
Na1—O2W | 2.418 (2) | O3W—H6W | 0.9188 |
Na1—O1W | 2.438 (2) | N1—C1 | 1.352 (4) |
Na1—O4iii | 2.464 (2) | N2—C1 | 1.323 (4) |
Na1—Na1i | 3.4671 (19) | N2—C2 | 1.378 (3) |
Cl1—C6 | 1.742 (2) | N3—H1N | 0.880 (10) |
S1—O2 | 1.454 (2) | N3—H2N | 0.875 (10) |
S1—O1 | 1.4546 (19) | C1—H1 | 0.9500 |
S1—N1 | 1.580 (2) | C2—C3 | 1.407 (4) |
S1—C3 | 1.743 (2) | C2—C7 | 1.414 (4) |
S2—O4 | 1.4412 (19) | C3—C4 | 1.390 (4) |
S2—O3 | 1.4470 (18) | C4—C5 | 1.380 (3) |
S2—N3 | 1.585 (2) | C4—H4 | 0.9500 |
S2—C5 | 1.775 (2) | C5—C6 | 1.410 (3) |
O1W—H1W | 0.873 (10) | C6—C7 | 1.371 (4) |
O1W—H2W | 0.874 (10) | C7—H7 | 0.9500 |
O2W—H3W | 0.868 (10) | ||
O1Wi—Na1—O1 | 89.08 (8) | Na1i—O1W—H1W | 104 (2) |
O1Wi—Na1—O3ii | 177.80 (8) | Na1—O1W—H1W | 130 (2) |
O1—Na1—O3ii | 93.09 (8) | Na1i—O1W—H2W | 111 (2) |
O1Wi—Na1—O2W | 86.14 (7) | Na1—O1W—H2W | 116 (2) |
O1—Na1—O2W | 163.79 (9) | H1W—O1W—H2W | 101 (2) |
O3ii—Na1—O2W | 91.86 (7) | Na1—O2W—H3W | 105 (3) |
O1Wi—Na1—O1W | 87.34 (7) | Na1—O2W—H4W | 111 (3) |
O1—Na1—O1W | 77.79 (7) | H3W—O2W—H4W | 102 (2) |
O3ii—Na1—O1W | 93.45 (7) | O3Wiv—O3W—H5W | 143.5 |
O2W—Na1—O1W | 86.51 (8) | O3Wiv—O3W—H6W | 129.6 |
O1Wi—Na1—O4iii | 95.35 (7) | H5W—O3W—H6W | 77.9 |
O1—Na1—O4iii | 104.61 (7) | C1—N1—S1 | 120.88 (19) |
O3ii—Na1—O4iii | 83.78 (7) | C1—N2—C2 | 118.2 (2) |
O2W—Na1—O4iii | 91.27 (8) | S2—N3—H1N | 118 (3) |
O1W—Na1—O4iii | 176.40 (7) | S2—N3—H2N | 118 (3) |
O1Wi—Na1—Na1i | 44.61 (5) | H1N—N3—H2N | 120 (4) |
O1—Na1—Na1i | 80.82 (6) | N2—C1—N1 | 131.4 (3) |
O3ii—Na1—Na1i | 136.14 (7) | N2—C1—H1 | 114.3 |
O2W—Na1—Na1i | 84.92 (6) | N1—C1—H1 | 114.3 |
O1W—Na1—Na1i | 42.73 (5) | N2—C2—C3 | 124.1 (2) |
O4iii—Na1—Na1i | 139.91 (7) | N2—C2—C7 | 119.0 (2) |
O2—S1—O1 | 113.07 (12) | C3—C2—C7 | 116.9 (2) |
O2—S1—N1 | 110.62 (13) | C4—C3—C2 | 121.8 (2) |
O1—S1—N1 | 109.82 (12) | C4—C3—S1 | 118.57 (19) |
O2—S1—C3 | 108.99 (12) | C2—C3—S1 | 119.58 (19) |
O1—S1—C3 | 108.63 (11) | C5—C4—C3 | 120.4 (2) |
N1—S1—C3 | 105.40 (12) | C5—C4—H4 | 119.8 |
O4—S2—O3 | 118.27 (11) | C3—C4—H4 | 119.8 |
O4—S2—N3 | 109.06 (12) | C4—C5—C6 | 118.7 (2) |
O3—S2—N3 | 109.68 (12) | C4—C5—S2 | 116.10 (19) |
O4—S2—C5 | 108.34 (11) | C6—C5—S2 | 125.19 (19) |
O3—S2—C5 | 103.78 (11) | C7—C6—C5 | 121.1 (2) |
N3—S2—C5 | 107.08 (12) | C7—C6—Cl1 | 117.98 (19) |
S1—O1—Na1 | 130.84 (12) | C5—C6—Cl1 | 120.93 (19) |
S2—O3—Na1ii | 134.86 (11) | C6—C7—C2 | 121.1 (2) |
S2—O4—Na1v | 123.99 (11) | C6—C7—H7 | 119.5 |
Na1i—O1W—Na1 | 92.66 (7) | C2—C7—H7 | 119.5 |
O2—S1—O1—Na1 | 67.61 (19) | N1—S1—C3—C4 | 172.8 (2) |
N1—S1—O1—Na1 | −56.47 (19) | O2—S1—C3—C2 | −124.4 (2) |
C3—S1—O1—Na1 | −171.27 (15) | O1—S1—C3—C2 | 112.1 (2) |
O4—S2—O3—Na1ii | 151.47 (14) | N1—S1—C3—C2 | −5.6 (2) |
N3—S2—O3—Na1ii | 25.59 (19) | C2—C3—C4—C5 | 0.3 (4) |
C5—S2—O3—Na1ii | −88.55 (16) | S1—C3—C4—C5 | −178.08 (18) |
O3—S2—O4—Na1v | −55.18 (16) | C3—C4—C5—C6 | −1.7 (4) |
N3—S2—O4—Na1v | 71.01 (15) | C3—C4—C5—S2 | 177.36 (19) |
C5—S2—O4—Na1v | −172.77 (12) | O4—S2—C5—C4 | 112.7 (2) |
O2—S1—N1—C1 | 125.0 (2) | O3—S2—C5—C4 | −13.8 (2) |
O1—S1—N1—C1 | −109.5 (2) | N3—S2—C5—C4 | −129.79 (19) |
C3—S1—N1—C1 | 7.3 (3) | O4—S2—C5—C6 | −68.3 (2) |
C2—N2—C1—N1 | −0.8 (5) | O3—S2—C5—C6 | 165.2 (2) |
S1—N1—C1—N2 | −5.2 (5) | N3—S2—C5—C6 | 49.2 (2) |
C1—N2—C2—C3 | 2.7 (4) | C4—C5—C6—C7 | 1.7 (4) |
C1—N2—C2—C7 | −175.7 (2) | S2—C5—C6—C7 | −177.2 (2) |
N2—C2—C3—C4 | −177.3 (2) | C4—C5—C6—Cl1 | −177.98 (18) |
C7—C2—C3—C4 | 1.1 (4) | S2—C5—C6—Cl1 | 3.0 (3) |
N2—C2—C3—S1 | 1.0 (4) | C5—C6—C7—C2 | −0.3 (4) |
C7—C2—C3—S1 | 179.48 (18) | Cl1—C6—C7—C2 | 179.42 (19) |
O2—S1—C3—C4 | 54.1 (2) | N2—C2—C7—C6 | 177.4 (2) |
O1—S1—C3—C4 | −69.5 (2) | C3—C2—C7—C6 | −1.1 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) x+1, y−1, z; (iv) −x+2, −y, −z+2; (v) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···O2Wii | 0.88 (1) | 2.02 (1) | 2.888 (3) | 170 (4) |
N3—H2N···N1v | 0.88 (1) | 2.10 (1) | 2.969 (3) | 173 (4) |
O1W—H1W···N2vi | 0.87 (1) | 1.91 (1) | 2.778 (3) | 171 (3) |
O1W—H2W···O2ii | 0.87 (1) | 2.29 (1) | 3.148 (3) | 169 (3) |
O2W—H3W···O1i | 0.87 (1) | 2.07 (2) | 2.895 (3) | 160 (4) |
O2W—H4W···O3W | 0.87 (1) | 1.97 (2) | 2.797 (6) | 158 (4) |
O2W—H4W···O3Wiv | 0.87 (1) | 2.20 (3) | 2.915 (6) | 139 (3) |
O3W—H5W···O2vii | 0.95 | 1.90 | 2.853 (5) | 180 |
O3W—H6W···Cl1viii | 0.92 | 2.76 | 3.683 (5) | 180 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iv) −x+2, −y, −z+2; (v) x−1, y+1, z; (vi) x, y, z+1; (vii) x+1, y, z; (viii) −x+1, −y+1, −z+1. |
[Na(C7H5ClN3O4S2)(H2O)2]·0.5H2O | F(000) = 1544 |
Mr = 378.85 | Dx = 1.897 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 18.3139 (2) Å | Cell parameters from 12825 reflections |
b = 7.3622 (1) Å | θ = 4.5–71.4° |
c = 19.9670 (2) Å | µ = 8.66 mm−1 |
β = 99.734 (1)° | T = 100 K |
V = 2653.40 (5) Å3 | Fragment cut from large prism, colourless |
Z = 8 | 0.16 × 0.15 × 0.05 mm |
Rigaku Synergy-i diffractometer | 2503 reflections with I > 2σ(I) |
Radiation source: microsource tube | Rint = 0.022 |
ω scans | θmax = 71.5°, θmin = 4.5° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) | h = −18→22 |
Tmin = 0.446, Tmax = 1.000 | k = −9→9 |
13919 measured reflections | l = −24→24 |
2543 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0343P)2 + 3.9765P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.48 e Å−3 |
2543 reflections | Δρmin = −0.38 e Å−3 |
215 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
9 restraints | Extinction coefficient: 0.00031 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.11773 (2) | 0.89080 (4) | 0.19140 (2) | 0.01083 (10) | |
Cl1 | 0.09218 (2) | 1.11324 (5) | 0.52250 (2) | 0.01243 (11) | |
S1 | 0.36653 (2) | 0.89482 (4) | 0.39296 (2) | 0.00840 (10) | |
S2 | 0.08021 (2) | 1.10414 (5) | 0.35713 (2) | 0.00892 (10) | |
O1 | 0.34684 (6) | 0.73265 (14) | 0.35300 (5) | 0.0134 (2) | |
O2 | 0.39097 (6) | 1.04350 (15) | 0.35474 (5) | 0.0140 (2) | |
O3 | 0.10107 (6) | 1.12077 (14) | 0.29124 (5) | 0.0132 (2) | |
O4 | 0.02550 (6) | 0.97116 (15) | 0.36677 (5) | 0.0136 (2) | |
O1W | 0.26295 (6) | 0.90304 (17) | 0.22131 (6) | 0.0207 (3) | |
O2W | 0.13816 (6) | 0.66881 (16) | 0.30999 (6) | 0.0165 (2) | |
O3W | 0.000000 | 1.5291 (2) | 0.250000 | 0.0200 (4) | |
N1 | 0.42998 (7) | 0.84845 (18) | 0.45591 (6) | 0.0121 (3) | |
N2 | 0.35882 (7) | 0.90613 (17) | 0.54540 (6) | 0.0108 (3) | |
N3 | 0.04938 (7) | 1.29844 (18) | 0.37646 (6) | 0.0113 (3) | |
C1 | 0.41800 (8) | 0.8576 (2) | 0.51982 (8) | 0.0112 (3) | |
H1 | 0.459270 | 0.823160 | 0.552876 | 0.013* | |
C2 | 0.29611 (8) | 0.95812 (19) | 0.50058 (7) | 0.0092 (3) | |
C3 | 0.29070 (8) | 0.96249 (19) | 0.42939 (7) | 0.0088 (3) | |
C4 | 0.22545 (8) | 1.01253 (19) | 0.38690 (7) | 0.0098 (3) | |
H4 | 0.223559 | 1.015385 | 0.339074 | 0.012* | |
C5 | 0.16342 (8) | 1.0581 (2) | 0.41429 (7) | 0.0092 (3) | |
C6 | 0.16830 (8) | 1.0567 (2) | 0.48563 (7) | 0.0094 (3) | |
C7 | 0.23287 (8) | 1.0099 (2) | 0.52783 (7) | 0.0104 (3) | |
H7 | 0.234972 | 1.012309 | 0.575683 | 0.012* | |
H1N | 0.0222 (9) | 1.294 (3) | 0.4080 (8) | 0.019 (5)* | |
H2N | 0.0844 (9) | 1.380 (2) | 0.3857 (11) | 0.022 (5)* | |
H1W | 0.2919 (11) | 0.830 (3) | 0.2474 (11) | 0.048 (7)* | |
H2W | 0.2934 (11) | 0.988 (2) | 0.2134 (12) | 0.039 (7)* | |
H3W | 0.1406 (12) | 0.659 (3) | 0.3537 (5) | 0.035 (6)* | |
H4W | 0.0941 (7) | 0.627 (3) | 0.2948 (10) | 0.027 (6)* | |
H5W | 0.0100 (16) | 1.457 (3) | 0.2178 (11) | 0.059 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.01097 (17) | 0.01121 (18) | 0.01004 (17) | 0.00046 (11) | 0.00099 (12) | −0.00086 (10) |
Cl1 | 0.00949 (18) | 0.0185 (2) | 0.01009 (18) | 0.00352 (12) | 0.00388 (13) | 0.00040 (12) |
S1 | 0.00761 (18) | 0.00937 (19) | 0.00848 (18) | 0.00134 (12) | 0.00213 (13) | 0.00021 (12) |
S2 | 0.00730 (18) | 0.01066 (19) | 0.00848 (18) | 0.00115 (12) | 0.00046 (13) | −0.00087 (12) |
O1 | 0.0142 (5) | 0.0130 (5) | 0.0130 (5) | 0.0015 (4) | 0.0025 (4) | −0.0032 (4) |
O2 | 0.0131 (5) | 0.0144 (6) | 0.0158 (5) | 0.0009 (4) | 0.0058 (4) | 0.0038 (4) |
O3 | 0.0129 (5) | 0.0182 (6) | 0.0084 (5) | 0.0034 (4) | 0.0011 (4) | −0.0008 (4) |
O4 | 0.0090 (5) | 0.0146 (5) | 0.0168 (5) | −0.0017 (4) | 0.0009 (4) | −0.0003 (4) |
O1W | 0.0130 (6) | 0.0229 (7) | 0.0246 (6) | −0.0012 (5) | −0.0014 (5) | 0.0061 (5) |
O2W | 0.0159 (5) | 0.0199 (6) | 0.0141 (5) | −0.0008 (5) | 0.0031 (4) | 0.0011 (5) |
O3W | 0.0212 (8) | 0.0248 (9) | 0.0127 (8) | 0.000 | −0.0010 (6) | 0.000 |
N1 | 0.0092 (6) | 0.0153 (6) | 0.0114 (6) | 0.0027 (5) | 0.0006 (5) | 0.0002 (5) |
N2 | 0.0095 (6) | 0.0127 (6) | 0.0098 (6) | 0.0014 (5) | 0.0004 (5) | 0.0004 (5) |
N3 | 0.0101 (6) | 0.0123 (6) | 0.0119 (6) | 0.0021 (5) | 0.0027 (5) | −0.0010 (5) |
C1 | 0.0106 (7) | 0.0103 (7) | 0.0119 (7) | 0.0012 (5) | −0.0005 (5) | 0.0004 (5) |
C2 | 0.0093 (7) | 0.0073 (7) | 0.0107 (7) | −0.0010 (5) | 0.0012 (5) | −0.0001 (5) |
C3 | 0.0085 (7) | 0.0075 (7) | 0.0111 (7) | −0.0003 (5) | 0.0032 (5) | −0.0006 (5) |
C4 | 0.0115 (7) | 0.0092 (7) | 0.0086 (6) | −0.0009 (5) | 0.0017 (5) | −0.0005 (5) |
C5 | 0.0088 (7) | 0.0082 (7) | 0.0100 (7) | −0.0002 (5) | −0.0001 (5) | −0.0002 (5) |
C6 | 0.0088 (7) | 0.0084 (7) | 0.0120 (7) | −0.0008 (5) | 0.0046 (5) | −0.0009 (5) |
C7 | 0.0116 (7) | 0.0108 (7) | 0.0088 (6) | −0.0013 (6) | 0.0020 (5) | −0.0004 (5) |
K1—O1W | 2.6269 (12) | O2W—H3W | 0.869 (9) |
K1—O3 | 2.6720 (11) | O2W—H4W | 0.870 (9) |
K1—O2i | 2.7133 (11) | O3W—H5W | 0.878 (10) |
K1—O4ii | 2.7478 (11) | O3W—H5Wii | 0.878 (10) |
K1—O1iii | 2.7813 (11) | N1—C1 | 1.333 (2) |
K1—O2W | 2.8493 (12) | N2—C1 | 1.323 (2) |
K1—Cl1iv | 3.3257 (4) | N2—C2 | 1.3853 (19) |
K1—H4W | 2.92 (2) | N3—H1N | 0.867 (9) |
Cl1—C6 | 1.7337 (15) | N3—H2N | 0.874 (10) |
S1—O1 | 1.4474 (11) | C1—H1 | 0.9500 |
S1—O2 | 1.4480 (11) | C2—C3 | 1.409 (2) |
S1—N1 | 1.5979 (12) | C2—C7 | 1.413 (2) |
S1—C3 | 1.7456 (14) | C3—C4 | 1.393 (2) |
S2—O3 | 1.4358 (11) | C4—C5 | 1.383 (2) |
S2—O4 | 1.4369 (11) | C4—H4 | 0.9500 |
S2—N3 | 1.6086 (13) | C5—C6 | 1.4121 (19) |
S2—C5 | 1.7753 (15) | C6—C7 | 1.375 (2) |
O1W—H1W | 0.867 (10) | C7—H7 | 0.9500 |
O1W—H2W | 0.870 (10) | ||
O1W—K1—O3 | 92.73 (4) | O4—S2—C5 | 109.02 (7) |
O1W—K1—O2i | 96.24 (4) | N3—S2—C5 | 108.28 (7) |
O3—K1—O2i | 147.44 (3) | S1—O1—K1i | 150.74 (6) |
O1W—K1—O4ii | 161.11 (4) | S1—O2—K1iii | 152.34 (6) |
O3—K1—O4ii | 87.58 (3) | S2—O3—K1 | 135.34 (6) |
O2i—K1—O4ii | 93.57 (3) | S2—O4—K1ii | 136.68 (6) |
O1W—K1—O1iii | 76.09 (3) | K1—O1W—H1W | 127.5 (16) |
O3—K1—O1iii | 74.14 (3) | K1—O1W—H2W | 129.7 (15) |
O2i—K1—O1iii | 138.42 (3) | H1W—O1W—H2W | 102.1 (17) |
O4ii—K1—O1iii | 85.86 (3) | K1—O2W—H3W | 149.2 (16) |
O1W—K1—O2W | 81.09 (4) | K1—O2W—H4W | 86.0 (14) |
O3—K1—O2W | 76.05 (3) | H3W—O2W—H4W | 102.1 (16) |
O2i—K1—O2W | 74.55 (3) | H5W—O3W—H5Wii | 105 (4) |
O4ii—K1—O2W | 117.17 (3) | C1—N1—S1 | 121.80 (11) |
O1iii—K1—O2W | 141.17 (3) | C1—N2—C2 | 117.97 (13) |
O1W—K1—Cl1iv | 101.20 (3) | S2—N3—H1N | 114.3 (14) |
O3—K1—Cl1iv | 138.42 (3) | S2—N3—H2N | 112.5 (14) |
O2i—K1—Cl1iv | 69.95 (2) | H1N—N3—H2N | 111 (2) |
O4ii—K1—Cl1iv | 67.21 (2) | N2—C1—N1 | 131.43 (14) |
O1iii—K1—Cl1iv | 71.65 (2) | N2—C1—H1 | 114.3 |
O2W—K1—Cl1iv | 144.47 (3) | N1—C1—H1 | 114.3 |
O1W—K1—H4W | 97.3 (2) | N2—C2—C3 | 124.57 (13) |
O3—K1—H4W | 81.1 (4) | N2—C2—C7 | 118.03 (13) |
O2i—K1—H4W | 66.8 (4) | C3—C2—C7 | 117.40 (13) |
O4ii—K1—H4W | 101.4 (3) | C4—C3—C2 | 121.82 (13) |
O1iii—K1—H4W | 153.9 (4) | C4—C3—S1 | 118.87 (11) |
O2W—K1—H4W | 17.30 (19) | C2—C3—S1 | 119.27 (11) |
Cl1iv—K1—H4W | 134.3 (3) | C5—C4—C3 | 120.05 (13) |
C6—Cl1—K1v | 116.30 (5) | C5—C4—H4 | 120.0 |
O1—S1—O2 | 113.79 (6) | C3—C4—H4 | 120.0 |
O1—S1—N1 | 109.73 (7) | C4—C5—C6 | 118.76 (13) |
O2—S1—N1 | 109.12 (7) | C4—C5—S2 | 117.73 (11) |
O1—S1—C3 | 108.88 (6) | C6—C5—S2 | 123.44 (11) |
O2—S1—C3 | 110.03 (7) | C7—C6—C5 | 121.41 (13) |
N1—S1—C3 | 104.90 (7) | C7—C6—Cl1 | 118.04 (11) |
O3—S2—O4 | 118.71 (6) | C5—C6—Cl1 | 120.54 (11) |
O3—S2—N3 | 107.61 (7) | C6—C7—C2 | 120.52 (13) |
O4—S2—N3 | 107.03 (7) | C6—C7—H7 | 119.7 |
O3—S2—C5 | 105.84 (7) | C2—C7—H7 | 119.7 |
O2—S1—O1—K1i | 97.01 (13) | N1—S1—C3—C4 | −179.97 (12) |
N1—S1—O1—K1i | −25.57 (15) | O1—S1—C3—C2 | 114.92 (12) |
C3—S1—O1—K1i | −139.87 (12) | O2—S1—C3—C2 | −119.73 (12) |
O1—S1—O2—K1iii | 124.07 (13) | N1—S1—C3—C2 | −2.49 (14) |
N1—S1—O2—K1iii | −113.01 (14) | C2—C3—C4—C5 | −0.6 (2) |
C3—S1—O2—K1iii | 1.58 (16) | S1—C3—C4—C5 | 176.81 (11) |
O4—S2—O3—K1 | −35.28 (11) | C3—C4—C5—C6 | 1.4 (2) |
N3—S2—O3—K1 | −156.89 (8) | C3—C4—C5—S2 | −175.42 (11) |
C5—S2—O3—K1 | 87.50 (9) | O3—S2—C5—C4 | −12.18 (13) |
O3—S2—O4—K1ii | −56.10 (11) | O4—S2—C5—C4 | 116.57 (12) |
N3—S2—O4—K1ii | 65.81 (10) | N3—S2—C5—C4 | −127.33 (12) |
C5—S2—O4—K1ii | −177.29 (8) | O3—S2—C5—C6 | 171.11 (12) |
O1—S1—N1—C1 | −114.03 (13) | O4—S2—C5—C6 | −60.14 (14) |
O2—S1—N1—C1 | 120.66 (13) | N3—S2—C5—C6 | 55.97 (14) |
C3—S1—N1—C1 | 2.80 (15) | C4—C5—C6—C7 | −0.5 (2) |
C2—N2—C1—N1 | 0.1 (3) | S2—C5—C6—C7 | 176.13 (11) |
S1—N1—C1—N2 | −2.0 (2) | C4—C5—C6—Cl1 | 179.84 (11) |
C1—N2—C2—C3 | 0.2 (2) | S2—C5—C6—Cl1 | −3.49 (19) |
C1—N2—C2—C7 | 179.96 (13) | K1v—Cl1—C6—C7 | 1.64 (14) |
N2—C2—C3—C4 | 178.63 (14) | K1v—Cl1—C6—C5 | −178.72 (10) |
C7—C2—C3—C4 | −1.1 (2) | C5—C6—C7—C2 | −1.2 (2) |
N2—C2—C3—S1 | 1.2 (2) | Cl1—C6—C7—C2 | 178.40 (11) |
C7—C2—C3—S1 | −178.52 (11) | N2—C2—C7—C6 | −177.75 (13) |
O1—S1—C3—C4 | −62.56 (13) | C3—C2—C7—C6 | 2.0 (2) |
O2—S1—C3—C4 | 62.78 (13) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+2, z−1/2; (v) x, −y+2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···Cl1 | 0.87 (1) | 2.77 (2) | 3.1942 (13) | 112 (2) |
N3—H1N···N1vi | 0.87 (1) | 2.12 (1) | 2.9337 (18) | 157 (2) |
N3—H2N···N2vii | 0.87 (1) | 2.23 (1) | 3.0173 (18) | 150 (2) |
O1W—H1W···O1 | 0.87 (1) | 2.29 (2) | 3.0792 (16) | 151 (2) |
O1W—H2W···O2Wiii | 0.87 (1) | 1.94 (1) | 2.8075 (17) | 176 (2) |
O2W—H3W···N2viii | 0.87 (1) | 2.07 (1) | 2.9308 (17) | 171 (2) |
O2W—H4W···O3Wix | 0.87 (1) | 1.94 (1) | 2.8053 (13) | 173 (2) |
O3W—H5W···O2iii | 0.88 (1) | 2.58 (3) | 3.1279 (10) | 121 (2) |
O3W—H5W···N3ii | 0.88 (1) | 2.32 (2) | 3.0506 (16) | 140 (3) |
Symmetry codes: (ii) −x, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1/2, −y+5/2, −z+1; (viii) −x+1/2, −y+3/2, −z+1; (ix) x, y−1, z. |
[Cs(C7H5ClN3O4S2)(H2O)] | Z = 2 |
Mr = 445.64 | F(000) = 428 |
Triclinic, P1 | Dx = 2.339 Mg m−3 |
a = 7.71260 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.05930 (1) Å | Cell parameters from 14584 reflections |
c = 10.13810 (1) Å | θ = 4.6–71.3° |
α = 93.9760 (1)° | µ = 28.08 mm−1 |
β = 107.5390 (1)° | T = 100 K |
γ = 107.8000 (1)° | Block, colourless |
V = 632.84 (1) Å3 | 0.24 × 0.15 × 0.12 mm |
Rigaku Synergy-i diffractometer | 2433 reflections with I > 2σ(I) |
Radiation source: microsource tube | Rint = 0.059 |
ω scans | θmax = 71.3°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2019) | h = −9→9 |
Tmin = 0.022, Tmax = 0.247 | k = −11→11 |
14718 measured reflections | l = −12→12 |
2436 independent reflections |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0698P)2 + 0.7171P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2436 reflections | Δρmax = 1.75 e Å−3 |
188 parameters | Δρmin = −1.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | −0.19755 (3) | 0.16090 (3) | 0.06985 (2) | 0.02257 (13) | |
Cl1 | 1.03692 (13) | 0.82370 (10) | 0.53756 (9) | 0.0214 (2) | |
S2 | 0.81621 (13) | 0.73056 (11) | 0.19288 (9) | 0.0183 (2) | |
S1 | 0.38932 (13) | 0.17021 (10) | 0.27036 (9) | 0.0184 (2) | |
O3 | 0.7174 (4) | 0.6319 (3) | 0.0560 (3) | 0.0248 (6) | |
O4 | 0.7650 (5) | 0.8660 (3) | 0.2229 (3) | 0.0234 (6) | |
O2 | 0.4670 (5) | 0.0792 (3) | 0.1954 (3) | 0.0271 (7) | |
O1 | 0.2130 (4) | 0.1869 (4) | 0.1831 (3) | 0.0295 (7) | |
O1W | −0.2150 (6) | 0.4223 (5) | −0.1322 (3) | 0.0374 (9) | |
N3 | 1.0432 (5) | 0.7903 (4) | 0.2161 (4) | 0.0218 (7) | |
N2 | 0.5892 (5) | 0.3067 (4) | 0.5846 (3) | 0.0190 (6) | |
N1 | 0.3536 (5) | 0.0923 (4) | 0.4000 (4) | 0.0207 (7) | |
C4 | 0.6226 (6) | 0.4561 (5) | 0.2559 (4) | 0.0192 (8) | |
H4 | 0.563234 | 0.424715 | 0.156832 | 0.023* | |
C1 | 0.4529 (6) | 0.1675 (5) | 0.5329 (4) | 0.0204 (8) | |
H1 | 0.418951 | 0.110381 | 0.601872 | 0.025* | |
C2 | 0.6474 (6) | 0.3975 (5) | 0.4920 (4) | 0.0187 (7) | |
C6 | 0.8538 (6) | 0.6436 (5) | 0.4595 (4) | 0.0183 (7) | |
C7 | 0.7948 (6) | 0.5453 (5) | 0.5464 (4) | 0.0202 (8) | |
H7 | 0.854654 | 0.577644 | 0.645379 | 0.024* | |
C5 | 0.7657 (6) | 0.6024 (5) | 0.3117 (4) | 0.0176 (7) | |
C3 | 0.5655 (6) | 0.3554 (4) | 0.3436 (4) | 0.0182 (7) | |
H1N | 1.089 (10) | 0.717 (6) | 0.199 (8) | 0.06 (2)* | |
H2N | 1.115 (7) | 0.862 (5) | 0.292 (4) | 0.032 (14)* | |
H1W | −0.305 (7) | 0.401 (7) | −0.215 (3) | 0.048 (18)* | |
H2W | −0.233 (10) | 0.504 (6) | −0.095 (6) | 0.07 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.02216 (18) | 0.02638 (18) | 0.01930 (17) | 0.00832 (12) | 0.00680 (12) | 0.00601 (11) |
Cl1 | 0.0226 (5) | 0.0186 (4) | 0.0190 (4) | 0.0039 (3) | 0.0049 (4) | 0.0022 (3) |
S2 | 0.0207 (5) | 0.0186 (4) | 0.0165 (4) | 0.0067 (4) | 0.0070 (4) | 0.0047 (3) |
S1 | 0.0185 (5) | 0.0185 (5) | 0.0167 (5) | 0.0046 (4) | 0.0057 (4) | 0.0038 (4) |
O3 | 0.0276 (16) | 0.0257 (14) | 0.0185 (14) | 0.0062 (13) | 0.0067 (12) | 0.0063 (11) |
O4 | 0.0287 (15) | 0.0198 (14) | 0.0269 (15) | 0.0125 (12) | 0.0117 (13) | 0.0083 (12) |
O2 | 0.0316 (16) | 0.0202 (14) | 0.0292 (15) | 0.0024 (12) | 0.0180 (13) | −0.0016 (12) |
O1 | 0.0215 (15) | 0.0335 (16) | 0.0266 (15) | 0.0052 (13) | 0.0010 (12) | 0.0133 (13) |
O1W | 0.046 (2) | 0.048 (2) | 0.0215 (16) | 0.0320 (18) | 0.0005 (15) | 0.0001 (14) |
N3 | 0.0194 (17) | 0.0221 (17) | 0.0230 (17) | 0.0051 (14) | 0.0085 (14) | 0.0025 (13) |
N2 | 0.0225 (16) | 0.0196 (15) | 0.0177 (15) | 0.0102 (13) | 0.0067 (13) | 0.0063 (12) |
N1 | 0.0210 (16) | 0.0203 (15) | 0.0204 (16) | 0.0071 (13) | 0.0062 (13) | 0.0050 (13) |
C4 | 0.0206 (18) | 0.0205 (18) | 0.0186 (17) | 0.0106 (16) | 0.0057 (15) | 0.0042 (15) |
C1 | 0.025 (2) | 0.0232 (19) | 0.0175 (18) | 0.0125 (16) | 0.0085 (16) | 0.0075 (15) |
C2 | 0.0214 (18) | 0.0207 (18) | 0.0181 (18) | 0.0121 (16) | 0.0072 (15) | 0.0048 (14) |
C6 | 0.0187 (18) | 0.0180 (17) | 0.0177 (18) | 0.0072 (15) | 0.0051 (15) | 0.0008 (14) |
C7 | 0.0219 (19) | 0.024 (2) | 0.0160 (18) | 0.0117 (16) | 0.0048 (15) | 0.0036 (15) |
C5 | 0.0181 (18) | 0.0177 (17) | 0.0175 (18) | 0.0072 (15) | 0.0054 (14) | 0.0043 (14) |
C3 | 0.0177 (17) | 0.0165 (17) | 0.0203 (18) | 0.0065 (14) | 0.0057 (15) | 0.0028 (14) |
Cs1—O1 | 2.952 (3) | S1—C3 | 1.743 (4) |
Cs1—O2i | 3.056 (3) | O1W—H1W | 0.879 (10) |
Cs1—O2ii | 3.131 (3) | O1W—H2W | 0.878 (10) |
Cs1—O4iii | 3.162 (3) | N3—H1N | 0.878 (10) |
Cs1—O1W | 3.244 (4) | N3—H2N | 0.879 (10) |
Cs1—N3iv | 3.457 (3) | N2—C1 | 1.318 (6) |
Cs1—Cl1v | 3.7738 (9) | N2—C2 | 1.376 (5) |
Cs1—S1i | 3.9823 (9) | N1—C1 | 1.340 (5) |
Cs1—Cs1vi | 4.4045 (4) | C4—C3 | 1.386 (6) |
Cs1—Cs1i | 5.2201 (4) | C4—C5 | 1.386 (6) |
Cl1—C6 | 1.738 (4) | C4—H4 | 0.9500 |
S2—O4 | 1.439 (3) | C1—H1 | 0.9500 |
S2—O3 | 1.442 (3) | C2—C7 | 1.406 (6) |
S2—N3 | 1.602 (3) | C2—C3 | 1.418 (5) |
S2—C5 | 1.775 (4) | C6—C7 | 1.371 (6) |
S1—O1 | 1.440 (3) | C6—C5 | 1.414 (5) |
S1—O2 | 1.452 (3) | C7—H7 | 0.9500 |
S1—N1 | 1.591 (4) | ||
O1—Cs1—O2i | 119.37 (9) | O3—S2—C5 | 104.42 (18) |
O1—Cs1—O2ii | 132.81 (9) | N3—S2—C5 | 110.04 (18) |
O2i—Cs1—O2ii | 89.22 (8) | O1—S1—O2 | 113.5 (2) |
O1—Cs1—O4iii | 79.80 (8) | O1—S1—N1 | 109.56 (18) |
O2i—Cs1—O4iii | 85.11 (8) | O2—S1—N1 | 109.89 (19) |
O2ii—Cs1—O4iii | 65.18 (8) | O1—S1—C3 | 109.91 (19) |
O1—Cs1—O1W | 106.11 (9) | O2—S1—C3 | 108.19 (18) |
O2i—Cs1—O1W | 85.42 (9) | N1—S1—C3 | 105.52 (19) |
O2ii—Cs1—O1W | 113.37 (9) | O1—S1—Cs1i | 75.11 (14) |
O4iii—Cs1—O1W | 170.44 (9) | O2—S1—Cs1i | 41.72 (13) |
O1—Cs1—N3iv | 76.42 (9) | N1—S1—Cs1i | 110.10 (13) |
O2i—Cs1—N3iv | 66.43 (8) | C3—S1—Cs1i | 139.76 (14) |
O2ii—Cs1—N3iv | 150.07 (8) | S2—O4—Cs1vii | 127.51 (17) |
O4iii—Cs1—N3iv | 125.86 (8) | S1—O2—Cs1i | 119.85 (17) |
O1W—Cs1—N3iv | 50.48 (9) | S1—O2—Cs1viii | 134.98 (16) |
O1—Cs1—Cl1v | 68.96 (7) | Cs1i—O2—Cs1viii | 90.78 (8) |
O2i—Cs1—Cl1v | 137.82 (6) | S1—O1—Cs1 | 160.92 (19) |
O2ii—Cs1—Cl1v | 65.14 (6) | Cs1—O1W—H1W | 122 (4) |
O4iii—Cs1—Cl1v | 54.33 (6) | Cs1—O1W—H2W | 113 (5) |
O1W—Cs1—Cl1v | 134.54 (6) | H1W—O1W—H2W | 99 (2) |
N3iv—Cs1—Cl1v | 144.79 (6) | S2—N3—Cs1iv | 119.81 (17) |
O1—Cs1—S1i | 101.00 (7) | S2—N3—H1N | 115 (5) |
O2i—Cs1—S1i | 18.43 (6) | Cs1iv—N3—H1N | 69 (5) |
O2ii—Cs1—S1i | 104.31 (5) | S2—N3—H2N | 114 (4) |
O4iii—Cs1—S1i | 82.28 (6) | Cs1iv—N3—H2N | 115 (4) |
O1W—Cs1—S1i | 89.14 (6) | H1N—N3—H2N | 116 (6) |
N3iv—Cs1—S1i | 56.24 (6) | C1—N2—C2 | 118.2 (3) |
Cl1v—Cs1—S1i | 136.254 (19) | C1—N1—S1 | 121.5 (3) |
O1—Cs1—Cs1vi | 145.42 (6) | C3—C4—C5 | 120.4 (4) |
O2i—Cs1—Cs1vi | 45.30 (6) | C3—C4—H4 | 119.8 |
O2ii—Cs1—Cs1vi | 43.92 (5) | C5—C4—H4 | 119.8 |
O4iii—Cs1—Cs1vi | 69.05 (6) | N2—C1—N1 | 131.3 (4) |
O1W—Cs1—Cs1vi | 103.09 (7) | N2—C1—H1 | 114.3 |
N3iv—Cs1—Cs1vi | 109.79 (6) | N1—C1—H1 | 114.3 |
Cl1v—Cs1—Cs1vi | 102.429 (16) | N2—C2—C7 | 118.6 (3) |
S1i—Cs1—Cs1vi | 61.158 (14) | N2—C2—C3 | 124.8 (4) |
O1—Cs1—Cs1i | 47.10 (7) | C7—C2—C3 | 116.6 (4) |
O2i—Cs1—Cs1i | 72.44 (6) | C7—C6—C5 | 121.4 (4) |
O2ii—Cs1—Cs1i | 133.40 (6) | C7—C6—Cl1 | 117.6 (3) |
O4iii—Cs1—Cs1i | 70.74 (6) | C5—C6—Cl1 | 120.9 (3) |
O1W—Cs1—Cs1i | 107.52 (7) | C6—C7—C2 | 121.3 (4) |
N3iv—Cs1—Cs1i | 57.41 (6) | C6—C7—H7 | 119.4 |
Cl1v—Cs1—Cs1i | 100.538 (16) | C2—C7—H7 | 119.4 |
S1i—Cs1—Cs1i | 54.261 (14) | C4—C5—C6 | 118.2 (4) |
Cs1vi—Cs1—Cs1i | 106.207 (8) | C4—C5—S2 | 117.5 (3) |
C6—Cl1—Cs1v | 107.76 (14) | C6—C5—S2 | 124.2 (3) |
O4—S2—O3 | 118.76 (18) | C4—C3—C2 | 122.0 (4) |
O4—S2—N3 | 107.95 (19) | C4—C3—S1 | 119.4 (3) |
O3—S2—N3 | 107.30 (18) | C2—C3—S1 | 118.5 (3) |
O4—S2—C5 | 108.19 (18) | ||
O3—S2—O4—Cs1vii | −61.6 (3) | N2—C2—C7—C6 | −177.5 (4) |
N3—S2—O4—Cs1vii | 60.7 (2) | C3—C2—C7—C6 | 0.7 (6) |
C5—S2—O4—Cs1vii | 179.74 (18) | C3—C4—C5—C6 | 1.4 (6) |
O1—S1—O2—Cs1i | −24.8 (2) | C3—C4—C5—S2 | −174.9 (3) |
N1—S1—O2—Cs1i | 98.2 (2) | C7—C6—C5—C4 | −2.7 (6) |
C3—S1—O2—Cs1i | −147.02 (17) | Cl1—C6—C5—C4 | 179.0 (3) |
O1—S1—O2—Cs1viii | 101.8 (3) | C7—C6—C5—S2 | 173.3 (3) |
N1—S1—O2—Cs1viii | −135.2 (2) | Cl1—C6—C5—S2 | −4.9 (5) |
C3—S1—O2—Cs1viii | −20.5 (3) | O4—S2—C5—C4 | 115.0 (3) |
Cs1i—S1—O2—Cs1viii | 126.6 (3) | O3—S2—C5—C4 | −12.4 (4) |
O2—S1—O1—Cs1 | 116.3 (6) | N3—S2—C5—C4 | −127.2 (3) |
N1—S1—O1—Cs1 | −6.9 (7) | O4—S2—C5—C6 | −61.1 (4) |
C3—S1—O1—Cs1 | −122.4 (6) | O3—S2—C5—C6 | 171.5 (3) |
Cs1i—S1—O1—Cs1 | 99.5 (6) | N3—S2—C5—C6 | 56.7 (4) |
O4—S2—N3—Cs1iv | −99.20 (19) | C5—C4—C3—C2 | 0.9 (6) |
O3—S2—N3—Cs1iv | 29.9 (2) | C5—C4—C3—S1 | −178.5 (3) |
C5—S2—N3—Cs1iv | 142.93 (17) | N2—C2—C3—C4 | 176.0 (4) |
O1—S1—N1—C1 | −119.3 (3) | C7—C2—C3—C4 | −2.0 (6) |
O2—S1—N1—C1 | 115.4 (3) | N2—C2—C3—S1 | −4.6 (5) |
C3—S1—N1—C1 | −1.1 (4) | C7—C2—C3—S1 | 177.4 (3) |
Cs1i—S1—N1—C1 | 159.9 (3) | O1—S1—C3—C4 | −59.2 (4) |
C2—N2—C1—N1 | −0.1 (7) | O2—S1—C3—C4 | 65.2 (4) |
S1—N1—C1—N2 | −0.5 (6) | N1—S1—C3—C4 | −177.2 (3) |
C1—N2—C2—C7 | −179.1 (4) | Cs1i—S1—C3—C4 | 31.1 (4) |
C1—N2—C2—C3 | 2.9 (6) | O1—S1—C3—C2 | 121.4 (3) |
Cs1v—Cl1—C6—C7 | 2.6 (3) | O2—S1—C3—C2 | −114.2 (3) |
Cs1v—Cl1—C6—C5 | −179.1 (3) | N1—S1—C3—C2 | 3.3 (4) |
C5—C6—C7—C2 | 1.7 (6) | Cs1i—S1—C3—C2 | −148.3 (2) |
Cl1—C6—C7—C2 | 179.9 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) −x−1, −y, −z; (vii) x+1, y+1, z; (viii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···O1Wiv | 0.88 (1) | 2.00 (2) | 2.864 (5) | 168 (7) |
N3—H2N···N1vii | 0.88 (1) | 2.25 (3) | 3.048 (5) | 151 (5) |
O1W—H1W···N2ix | 0.88 (1) | 1.96 (3) | 2.761 (5) | 150 (6) |
O1W—H2W···O3ii | 0.88 (1) | 2.05 (3) | 2.867 (5) | 154 (7) |
Symmetry codes: (ii) x−1, y, z; (iv) −x+1, −y+1, −z; (vii) x+1, y+1, z; (ix) x−1, y, z−1. |
S1—N1 | N1—C1 | C1—N2 | N2—C2 | S2—N3 | |
CTZ, form 1 | 1.619 | 1.299 | 1.341 | 1.394 | 1.607 |
CTZ, form 2 | 1.620 | 1.309 | 1.344 | 1.391 | 1.590 |
NaCTZ | 1.580 (2) | 1.352 (4) | 1.323 (4) | 1.378 (3) | 1.585 (2) |
KCTZ | 1.5979 (12) | 1.333 (2) | 1.323 (2) | 1.3853 (19) | 1.6086 (13) |
CsCTZ | 1.591 (4) | 1.340 (5) | 1.318 (6) | 1.376 (5) | 1.602 (3) |
APUZOB A | 1.598 | 1.335 | 1.333 | 1.379 | 1.618 |
APUZOB B | 1.590 | 1.340 | 1.327 | 1.385 | 1.609 |
VEKBOF | 1.577 | 1.333 | 1.306 | 1.385 | 1.599 |
NaCTZ | KCTZ | CsCTZ | |
M—N3 | 3.457 (3) | ||
M—O1 | 2.360 (2) | 2.7813 (11) | 2.952 (3) |
M—O2 | 2.7133 (11) | 3.056 (3), 3.131 (3) | |
M—O3 | 2.365 (2) | 2.6720 (11) | 3.162 (3) |
M—O4 | 2.464 (2) | 2.7478 (11) | |
M—Cl1 | 3.3257 (4) | 3.7738 (9) | |
M—OH2 | 2.355 (2) | 2.6269 (12) | 3.244 (4) |
2.418 (2) | 2.8493 (12) | ||
2.438 (2) |
References
Aljohani, M., Pallipurath, A. R., McArdle, P. & Erxleben, A. (2017). Cryst. Growth Des. 17, 5223–5232. Web of Science CSD CrossRef CAS Google Scholar
Bernal, I. & Watkins, S. F. (2013). Acta Cryst. C69, 808–810. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brydson, R. K. H. & Kennedy, A. R. (2024). Acta Cryst. E80, 806–810. CSD CrossRef IUCr Journals Google Scholar
Cametti, M., Nissinen, M., Dalla Cort, A., Rissanen, K. & Mandolini, L. (2006). Inorg. Chem. 45, 6099–6101. CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hankins, J., Lonsway, R. A., Hedrick, C. & Perdue, M. (2001). Editors. Infusion Therapy in Clinical Practise. Philadelphia: Saunders. Google Scholar
Harlow, R. L. (1996). J. Res. Natl Inst. Stand. Technol. 101, 327–339. CrossRef CAS PubMed Web of Science Google Scholar
Johnston, A., Bardin, J., Johnston, B. F., Fernandes, P., Kennedy, A. R., Price, S. L. & Florence, A. J. (2011). Cryst. Growth Des. 11, 405–413. Web of Science CSD CrossRef CAS Google Scholar
Kennedy, A. R., Cruickshank, L., Maher, P. & McKinnon, Z. (2023). Acta Cryst. C79, 386–394. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leech, C. K., Fabbiani, F. P. A., Shankland, K., David, W. I. F. & Ibberson, R. M. (2008). Acta Cryst. B64, 101–107. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martins, V. M., Ziegelmann, P. K., Helal, L., Ferrari, F., Lucca, M. B., Fuchs, S. C. & Fuchs, F. D. (2022). Syst. Rev. 11, 23. CrossRef PubMed Google Scholar
Mastropierro, P., Kennedy, A. R. & Hevia, E. (2022). Chem. Commun. 58, 5292–5295. CSD CrossRef CAS Google Scholar
Osterloh, F., Achim, C. & Holm, R. H. (2001). Inorg. Chem. 40, 224–232. CSD CrossRef PubMed CAS Google Scholar
Oswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). ChemEngComm, 12, 2533–2540. CAS Google Scholar
Oyama, H., Miyamoto, T., Sekine, A., Nugrahani, I. & Uekusa, H. (2021). Crystals, 11, 412. CSD CrossRef Google Scholar
Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2010). Eur. J. Pharm. Sci. 41, 603–611. Web of Science CSD CrossRef CAS PubMed Google Scholar
Paluch, K. J., Tajber, L., McCabe, T., O'Brien, J. E., Corrigan, O. I. & Healy, A. M. (2011). Eur. J. Pharm. Sci. 42, 220–229. Web of Science CSD CrossRef CAS PubMed Google Scholar
Raymond, K. N. & Girolami, G. S. (2023). Acta Cryst. C79, 445–455. Web of Science CrossRef IUCr Journals Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rosokha, S. V., Lu, J., Rosokha, T. Y. & Kochi, J. K. (2009). Phys. Chem. Chem. Phys. 11, 324–332. Web of Science CSD CrossRef PubMed CAS Google Scholar
Seidel, R. W. (2018). IUCrData, 3, x181324. Google Scholar
Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. (2013a). Acta Cryst. E69, m22–m23. CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2013b). Acta Cryst. E69, m628. CSD CrossRef IUCr Journals Google Scholar
Smith, G. (2015). Acta Cryst. C71, 140–145. CSD CrossRef IUCr Journals Google Scholar
Steuber, T. D., Janzen, K. M. & Howard, M. L. (2020). Pharmacotherapy, 40, 924–935. Web of Science CrossRef CAS PubMed Google Scholar
Teng, R., Wang, L., Chen, M., Fang, W., Gao, Z., Chai, Y., Zhao, P. & Bao, Y. (2020). J. Mol. Struct. 1217, 128432. Web of Science CSD CrossRef Google Scholar
Yang, P., Wang, J., Jia, C., Yang, X.-J. & Wu, B. (2013). Eur. J. Org. Chem. 2013, 3446–3454. CSD CrossRef CAS Google Scholar
Zaleskaya, M., Jagleniec, D., Karbarz, M., Dobrzycki, L. & Romański, J. (2020). Inorg. Chem. Front. 7, 972–983. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
