

research papers
Synthesis and characterization of coumarin-derived sulfur analogues using Lawesson's reagent
aDepartment of Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: neliswa.mama@mandela.ac.za
The synthesis and characterization of six novel coumarin derivatives containing O and S atoms are described here, namely, ethyl 2-oxo-2H-chromene-3-carboxylate, C12H10O4 (S1a), ethyl 2-sulfanylidene-2H-chromene-3-carboxylate, C12H10O3S (S2a), ethyl 2-sulfanylidene-2H-chromene-3-carbothioate, C12H10O2S2 (S3a), ethyl 8-methoxy-2-oxo-2H-chromene-3-carboxylate, C13H12O5 (S1b), ethyl 8-methoxy-2-sulfanylidene-2H-chromene-3-carboxylate, C13H12O4S (S2b), and ethyl 8-methoxy-2-sulfanylidene-2H-chromene-3-carbothioate, C13H12O3S2 (S3b). Compounds S1a/b were synthesized in good yields following the Knoevenagel condensation method. The thiocarbonyl analogues of these compounds, S2a/b and S3a/b, were obtained using Lawesson's reagent as a thionating compound. The structures of S2a/b and S3a/b were confirmed using FT–IR, 1H and 13C NMR, and UV–Vis spectroscopy, and single-crystal X-ray diffraction. Hirshfeld surface and energy framework analyses show that stacked π–π ring interactions occur for all the structures obtained here, and various hydrogen-bond interactions link the stacks to form three-dimensional energy frameworks.
1. Introduction
Coumarin derivatives are heterocyclic compounds that occur naturally and were first isolated from tonka beans in 1820 by Vogel (Matos et al., 2015). Various reactions can be used to synthesize coumarin-based compounds. These reactions include the Perkin, Claisen, Pechmann, Heck lactonization, Baylis–Hillman, Michael, Wittig, Knoevenagel, Reformatsky and Kostanecki reactions. Coumarin derivatives are essential due to their various uses, such as photosensitizers, fluorescent materials, optical brighteners, laser dyes and pharmaceuticals (Liu et al., 2012
; Bakhtiari et al., 2014
; Zhang et al., 2016
; Abdallah et al., 2020
). In addition, these compounds possess desirable characteristics which include good spectral properties, the ability to undergo multiple substitution reactions offering versatility in chemical modification and the ability to carry out electrophilic substitution reactions to obtain various coumarin derivatives (Bojtár et al., 2019
; Olson et al., 2013
; Hansen et al., 2015
). Lawesson's reagent (Fig. 1
) is a sulfur-rich thionating reagent that can be used in the conversion of carbonyl oxygen to form the corresponding thiocarbonyl analogues (Kayukova et al., 2015
; Jesberger et al., 2003
; Khatoon & Abdulmalek, 2021
).
![]() | Figure 1 The molecular structure of Lawesson's reagent. |
The compounds ethyl 2-oxo-2H-chromene-3-carboxylate (S1a), ethyl 2-sulfanylidene-2H-chromene-3-carboxylate (S2a), ethyl 2-sulfanylidene-2H-chromene-3-carbothioate (S3a), ethyl 8-methoxy-2-oxo-2H-chromene-3-carboxylate (S1b), ethyl 8-methoxy-2-sulfanylidene-2H-chromene-3-carboxylate (S2b) and ethyl 8-methoxy-2-sulfanylidene-2H-chromene-3-carbothioate (S3b) (Scheme 1) were prepared and characterized.
2. Experimental
2.1. Materials and procedures
The chemicals that were used in the synthesis and analysis of compounds S1–S3 were purchased from Sigma Merck and were used without purification. The synthesis reactions were monitored using (TLC) and nuclear magnetic resonance (NMR) and IR spectroscopy. The TLC plates that were used to monitor the reactions were aluminium sheets coated with silica gel 60 F254 and were viewed under UV light to confirm the formation of various products. The relevant NMR samples were prepared using CDCl3 with tetramethylsilane (TMS) as an internal reference. The NMR chemical shifts are recorded in parts per million (ppm) and the coupling constants are recorded in Hz.
2.2. Synthesis of coumarin derivatives S1 (Patil et al., 2011
)
Compounds S1a and S1b were prepared by refluxing a mixture containing equimolar quantities of diethyl malonate (0.01 M) and a salicylaldehyde derivative (0.01 M) in ethanol (25 ml) in the presence of 1 ml of piperidine and 5 drops of glacial acetic acid for 3 h. The mixture was placed on ice and the resulting precipitate was filtered off, washed with ice-cold ethanol and dried to yield S1a as a white solid and S1b as a yellow solid.
Analytical data for S1a: yield 95%. 1H NMR (CDCl3): δ 1.33–1.37 (t, 3H), 3.91 (s, 3H), 4.32–4.37 (q, 2H), 7.12–7.22 (m, 3H), 8.43 (s, 1H). 13C NMR (CDCl3): δ 14.18, 56.27, 61.84, 115.86, 118.29, 118.35, 120.60, 124.74, 144.70, 146.94, 148.74, 156.12, 162.92. IR νmax (cm−1): 3040–2854 (C—H), 1735 (C=O), 1701 (C=O).
Analytical data for S1b: yield 47%. 1H NMR: (CDCl3): δ 1.42–1.45 (t, 3H), 4.41–4.47 (q, 2H), 7.34–7.39 (m, 2H), 7.63–7.69 (m, 2H), 8.54 (s, 1H). 13C NMR (CDCl3): δ 14.24, 62.00, 116.82, 117.92, 118.42, 124.84, 129.49, 134.32, 148.57, 155.21, 156.71, 163.10. IR νmax (cm−1): 3065–2914 (C—H), 1761 (C=O). M.p. 93–95 °C.
2.3. Preparation of S2 and S3
A mixture of coumarin derivative S1a or S1b and Lawesson's reagent (LR) was added in a 1:2 molar ratio to dry toluene (25 ml). The reaction mixture was refluxed under an N2 atmosphere for 8 h (Scheme 2). The resulting solution was added to water and extracted three times using ethyl acetate. The extracts were washed with brine followed by water and dried using anhydrous Na2SO4. The ethyl acetate was removed under reduced pressure and the products were purified using preparative TLC (DCM–PET ether solvent).
Analytical data for S2a, 1H NMR (CDCl3): δ 1.41–1.45 (t, 3H), 4.01 (s, 3H), 4.41–4.44 (q, 2H), 7.14–7.19 (m, 2H), 7.29–7.31 (m, 1H), 7.85 (s, 1H). 13C NMR (CDCl3): δ 14.06, 56.32, 62.24, 115.13, 119.78, 120.13, 125.69, 132.54, 135.72, 146.61, 146.98, 164.94, 191.38. IR νmax (cm−1): 3022–2852 (C—H), 1728 (C=O).
Analytical data for S2b, 1H NMR (CDCl3): δ 1.42–1.45 (t, 3H), 4.41–4.47 (q, 2H), 7.36–7.39 (t, 1H), 7.48–7.61 (d-d, 2H), 7.66–7.70 (t, 1H), 7.88 (s, 1H). 13C NMR (CDCl3): δ 14.06, 62.28, 116.58, 119.44, 125.73, 128.76, 132.31, 133.78, 135.62, 157.01, 164.89, 192.16. IR νmax (cm−1): 3055–2930 (C—H), 1718 (C=O). M.p. 80–84 °C.
Analytical data for S3a, 1H NMR (CDCl3): δ 1.51–1.54 (t, 3H), 4.01 (s, 3H), 4.71–4.76 (q, 2H), 7.13–7.16 (m, 2H), 7.28–7.29 (m, 1H), 7.74 (s, 1H). 13C NMR (CDCl3): δ 13.33, 25.32, 69.54, 114.53, 119.67, 120.69, 125.59, 133.97, 141.33, 146.61, 146.74, 191.63, 211.05. IR νmax (cm−1): 3015–2845 (C—H).
Analytical data for S3b, 1H NMR (CDCl3): δ 1.51–1.55 (t, 3H), 4.71–4.77 (q, 2H), 7.34–7.38 (t, 1H), 7.48–7.60 (dd, 2H), 7.62–7.66 (t, 1H), 7.77 (s, 1H). 13C NMR (CDCl3) δC: 13.33, 69.56, 116.48, 119.97, 119.97, 125.64, 128.56, 133.06, 133.87, 141.11, 156.11, 192.40, 210.96. IR νmax (cm−1): 3050–2840 (C—H). M.p. 77–82 °C.
2.4. Crystallization, and analyses of the structures
Growing crystals for diffraction studies was achieved by slow vaporation from hexane. Crystal data, data collection and structure . All H atoms were placed in calculated positions and refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density, with Uiso(H) = 1.5Ueq(C). Structure S3b was refined as an Fig. 2
shows the molecular structures obtained (Farrugia, 2012
). CrystalExplorer (Spackman et al., 2021
) was utilized to investigate the intermolecular interactions using the Hirshfeld surfaces, fingerprint plots, energy frameworks and lattice energies (Tan et al., 2019
; Mackenzie et al., 2017
). The basis set B3LYP/631-G(d,p) was used for all calculations. The topologies of the electrostatic and van der Waals interactions were determined with TopCryst (Shevchenko & Blatov, 2021
).
|
![]() | Figure 2 The molecular structures of (a) S1a, (b) S2a, (c) S3a, (d) S1b, (e) S2b and (f) S3b, showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. |
3. Results and discussion
3.1. Synthesis of coumarin derivatives S1–S3
The synthesis of coumarin ester derivatives S1a/b was achieved using the Knoevenagel condensation method, as outlined in Scheme 2. The reaction between coumarin ester derivatives and an excess of Lawesson's reagent was conducted in toluene under nitrogen gas to obtain thiocarbonyl analogues S2 (major product) and S3 (minor product) in good yields. The structures of these analogues were confirmed by FT–IR, 1H NMR and 13C NMR spectroscopic and X-ray crystallographic data.
3.2. UV–Vis absorption analysis of coumarin derivatives S1–S3
The absorption spectra of the coumarin derivatives S1a/b, S2a/b and S3a/b were obtained in acetonitrile and displayed absorbance properties in the region of 238–460 nm (Figs. 3 and 4
). The absorption spectra of S1a and S1b are characterized by intense absorption peaks near 270–350 nm, which could be attributed to π–π* transitions from the conjugated coumarin ring, whereas the less intense bands around 238–260 nm for S1a and at 272–341 nm for S1b were attributed to n–π from the carbonyl groups on the coumarin ring. The presence of the strong electron-donating group at position 8 in compound S1b seems to increase the electron density of the coumarin ring; thus, the π–π* transition of the molecule reflected in the observed less intense band at lower wavelength (242–255 nm).
![]() | Figure 3 UV–Vis spectra of compounds S1a, S2a and S3a in acetonitrile medium. |
![]() | Figure 4 UV–Vis spectra of compounds S1b, S2b and S3b in acetonitrile medium. |
On the other hand, the thiocarbonyl analogues S2a/b and S3a/b showed two strong absorption bands around 260–340 and 345–450 nm. The presence of the S atoms in compounds S2 and S3 resulted to a new band at 345–450 nm which is attributed to n–π* transitions from the S atoms.
3.3. Crystal structures
The title compounds crystallized in monoclinic space groups, except for S3b, which crystallized in an orthorhombic All the bond lengths and angles are in the expected ranges. A search of the Cambridge Structural Database (CSD, Version 5.45, update of June 2024; Groom et al., 2016) yielded only four crystal structures of S1a and S1b (García-Báez et al., 2003
; Mahendra et al., 2003
; Shang et al., 2015
; Takahashi et al., 2006
) identical to the structures reported here.
The structure of S1a is essentially planar, with the O2 and C10 atoms 0.279 (2) and 0.170 (2) Å in opposite directions out of the mean coumarin plane and the mean plane through C10/O3/O4 rotated by 10.7 (2)° from the coumarin plane. There is one intramolecular interaction, i.e. C3—H3⋯O3 (Table 2). The energy framework calculations show that the strongest interactions are due to centrosymmetric π-ring offset-stacked chains down the a axis and with total energy contributions of −55.91 and −48.0 kJ mol−1 (dispersion contributions are −61.3 and −64.8 kJ mol−1, respectively). The distance between the mean coumarin planes alternates between 3.18 and 3.46 Å. The −55.9 kJ mol−1 interactions also include the C11—H11A⋯π-ring interaction with the C3–C9 ring, which is visible on the fingerprint plot as a broad wing, but obscured by the H⋯H contact surface [Fig. 5
(a)]. Each π-stack is linked to six other stacks with interactions of total energies of −31.0 or −21.8 kJ mol−1. The electrostatic interactions occur in all dimensions, while the dispersion interactions are in planes parallel to the ac plane. As a result, the total energy framework [Fig. 6
(a)] extends in all dimensions, with the underlying net determined as 16T3 by TopCryst. Centrosymmetric pairs of C8—H8⋯O2ii interactions link two molecules with an R22(12) graph-set motif (Bernstein et al., 1995
). This corresponds to the −31.0 kJ mol−1 interaction linking π-stacks. The C6—H6⋯O2i and C7—H7⋯O4i interactions [Fig. 7
(a) and Table 2
] link molecules with C(8) and C(9) descriptors, respectively, parallel to the b axis, with the molecules arranged in a zigzag chain fashion. This corresponds to the −21.8 kJ mol−1 interaction. The dominant intermolecular hydrogen-bond interaction, as shown by the dnorm Hirshfeld surface, is C11—H11B⋯O4iii, which links molecules alternately in two planes parallel to the c axis, with a dihedral angle of 60.6° between the planes. This interaction can be described with a C(5) descriptor and is visible on the fingerprint plot as a broad spike [Fig. 6
(a)]. The energy framework interaction is only −7.5 kJ mol−1 in this orientation and is mainly dispersion in nature.
|
![]() | Figure 5 Hirshfeld fingerprint plots of (a) S1a, (b) S2a, (c) S3a, (d) S1b, (e) S2b and (f) S3b. Spike indicators: (i) O⋯H/H⋯O; (ii) S⋯H/H⋯S; (iii) C⋯H/H⋯C. |
![]() | Figure 6 Energy frameworks within a 10 Å sphere and with a tube size of 100 and a cut-off at 5 kJ mol−1. (a) S1a viewed down the a and c axes; (b) S2a viewed down the b and c axes; (c) S3a viewed down the a and c axes; (d) S1b viewed down the a and c axes; (e) S2b viewed down the a and c axes; (f) S3b viewed down the a and c axes. |
![]() | Figure 7 Hirshfeld dnorm surface and selected intermolecular hydrogen-bond interactions. For clarity, not all interactions are shown. [Symmetry codes for S1a: (i) −x, y + |
For S2a, the S1 and C10 atoms are 0.203 (1) and 0.210 (2) Å, respectively, in opposite directions out of the mean coumarin ring, and with the mean plane of the C10/O3/O2 carboxylate group rotated by 38.7 (1)° from the plane of the coumarin ring. The molecules are arranged in zigzag planes parallel to the ac plane and centrosymmetric offset π-ring chains stack parallel to the b axis, with alternating distances of 3.41 and 3.09 Å between the mean coumarin planes. The energy frameworks show the strongest interactions down the b axis, with alternating total energies of −48.9 and −35.1 kJ mol−1. The total energy framework [Fig. 6(b)] extends in all dimensions, with the main interactions in the bc plane. The underlying net was determined as bcu-x or sqc38by by TopCryst. Adjacent stacks are linked with interactions of −31.0 kJ mol−1 total energy, with −20.4 and −21.2 kJ mol−1 electrostatic and dispersion contributions, respectively. This arises from the C8—H8⋯O3ii chain interactions [Fig. 7
(b)], with a C(8) descriptor, seen as a sharp peak on the fingerprint plot [Fig. 5
(b)]. Also, the Hirshfeld shape index indicates a prominent C1=S1⋯π ring interaction with the C4–C9 ring, with a herringbone packing orientation. The shortest S⋯centroid distance is 3.7011 (8) Å. Prominent on the Hirshfeld dnorm surface is the C3—H3⋯S1i chain interaction down the c axis, with a C(5) descriptor and a sharp peak on the fingerprint plot [Fig. 5
(b)]. This corresponds to the −20.0 kJ mol−1 energy framework interaction, with electrostatic and dispersion contributions of −16.7 and −17.6 kJ mol−1, respectively. The shape index surface also shows weaker C5—H5⋯O1i and C12—H12C⋯S1i contributions (Table 3
). The C12—H12A⋯S1iv hydrogen bond is also prominent on the shape index linking adjacent chains that correspond to the −19.9 kJ mol−1 interaction on the energy framework. Also contributing is the weak C12—H12B⋯O3iii interaction with a C(6) descriptor.
|
In S3a, compared to S1a and S2a, the ethoxycarbonyl group is rotated most from the mean coumarin plane, by 75.41 (5)°. Atoms S1 and C10 are only 0.026 (2) and 0.030 (2) Å out of this plane. The dnorm surface for S3a is featureless [Fig. 7(c)]; however, the shape index indicates a number of possible interactions. On either side of the coumarin ring there are stacked centrosymmetrical π-ring interactions with alternating coumarin planes separated by 3.35 and 3.40 Å. The stacking occurs in the [110] and [1
0] directions in planes parallel to the ab plane. The total energy alternates between −45.7 and −47.8 kJ mol−1 down the stack. Stacks in the ab plane are linked, with interactions having total energies of −14.7 and −23.0 kJ mol−1, and the stack planes are joined with interactions of −13.4 kJ mol−1. The total energy framework [Fig. 6
(c)] extends in all dimensions and the underlying topology determined by TopCryst is tcf-x. The shortest interaction is C3—H3⋯S1i [Fig. 7
(c)], with a length of 3.03 Å. This links molecules down the b axis, with a C(5) descriptor, results in the only noticeable spike on the fingerprint plot [Fig. 5
(c)] and corresponds to the −14.7 kJ mol−1 interaction. On each edge of the coumarin group there are two interactions, both of total energy −23.0 kJ mol−1, which include centrosymmetric pairs of C8—H8⋯O1ii, and C—H⋯π ring interactions including C8—H8, C3—H3 and C5—H5. The ethyl group is held in place by a number of C—H⋯π⋯S interactions, namely, C12—H12A⋯S1iii, C12—H12C⋯S2iv and C12—H12B⋯S2v, with lengths varying from 3.15 to 3.33 Å (Table 4
). The C12—H12A⋯S1iii interaction contributes to the −13.4 kJ mol−1 interaction linking planes of stacks together and is mainly dispersion in nature. The fingerprint plot for S3a has broad wings for the O⋯H/H⋯O interactions which are obscured by the H⋯H contact surface.
|
The ethoxycarbonyl group of S1b is rotated to a larger extent [58.27 (4)°] from the coumarin plane compared to S1a, while the methoxy group is only rotated by 7.17 (8)°. In S1b, the O2, C10 and O5 atoms are all less that 0.06 Å out of the mean coumarin plane. The centrosymmetric staggered π-ring stacking is prominent down the a axis, with alternating layers of 3.28 and 3.43 Å between the mean coumarin planes; this is also evident on the dnorm surface. The dispersion energy (−74.2 kJ mol−1) is dominant, with total energies of −63.9 and −54.9 kJ mol−1. Adjacent π-ring stacks are linked on four sides, with interactions having total energies of −31.2 and −33.6 kJ mol−1, and two other π-ring stacks with interactions of −11.6 kJ mol−1. A three-dimensional framework [Fig. 6(d)] occurs with a 16-c net topology. The dnorm surface shows one strong intramolecular interaction C5—H5⋯O4i [Fig. 7
(d) and Table 5
] linking atoms in a chain down the b axis, with a C(7) descriptor and corresponding to the −31.2 kJ mol−1 interaction. This interaction is also indicated as a spike on the fingerprint plot [Fig. 5
(d)], but is obscured by the H⋯H contact surface. The shape index surface also shows evidence of C11—H11B⋯H11B—C11 π-interactions between the methylene C atom of the ethyl group corresponding to the −11.6 kJ mol−1 interaction, which has mainly a dispersion contribution. The −33.6 kJ mol−1 interaction, with both electrostatic and dispersion contributions, arises from a number of C—H⋯O π-interactions involving the methoxy and ethoxy groups with atoms O1, O2, O3 and O5. The fingerprint plot has broad wings for the C⋯H/H⋯C contact (obscured by the H⋯H surface) that correspond to C13—H13B⋯C10 π-interactions between molecules in the π-stack.
|
In the S2b structure, the C10 and S1 atoms lie more than 0.1 Å from the mean coumarin plane, and the plane of the ethoxycarbonyl group is rotated by 65.67 (5)°. The methoxy group is rotated by 6.53 (10)° with respect to the coumarin plane. Offset π-ring interactions are also prominent, with pairs of centrosymmetric interactions stacking molecules down the a axis in alternating planes 3.31 and 3.37 Å apart. The energy framework calculations show strong dispersion effects of −84.2 and −75.6 kJ mol−1 alternating down the π-stacked rings (total energy −60.9 and −67.1 kJ mol−1, respectively). The π-ring stacks are connected to four adjacent stacks, with interactions having total energies of −30.4 or −32.7 kJ mol−1, resulting in a three-dimensional energy framework [Fig. 6(e)], with the underlying topology determined by TopCryst as a 16-c net. Adjacent methoxy and ethoxycarbonyl groups are linked by a C11—H11B⋯O4ii interaction [Fig. 7
(e)], linking molecules in the [101] direction with a C(10) motif and corresponding to the −32.7 kJ mol−1 interaction, which has −21.5 and −24.36 kJ mol−1 electrostatic and dispersion contributions, respectively. The shape index indicates possible π-interaction of the ethoxy group with atom S1, and of the methoxy group with atoms S1 and O2. The dnorm surface [Fig. 7
(e)] shows a prominent intermolecular C5—H5⋯O3i interaction that, together with the C3—H3⋯S1i interaction, links two molecules in a ring R22(10) motif (Table 6
). Both these interactions cause noticeable spikes on the fingerprint plot [Fig. 5
(e)]. Furthermore, these two interactions form a chain of interactions with C(7) and C(5) descriptors, respectively, that link molecules down the b axis. These interactions correspond to the −30.4 kJ mol−1 interaction, with −21.9 and −25.0 kJ mol−1 electrostatic and dispersion contributions, respectively.
|
For S3b, the S1 and C10 atoms both lie more than 0.09 Å in opposite directions out of the mean coumarin plane. The ethoxycarbonyl and methoxy groups are rotated by 73.56 (11) and 1.84 (5)°, respectively, from the mean coumarin plane. There is one intramolecular C11—H11B⋯S2 interaction of length 2.67 Å. Unlike the previous structures, where the stacked coumarin groups are centrosymmetric and their mean planes parallel, the coumarin groups in S3c have twofold screw-axis symmetry and an angle of 4.30° between the successive mean coumarin planes. The coumarin rings are stacked down the a axis, with centroid-to-centroid distances of 3.60 Å. The total energy of the interaction is −58.9 kJ mol−1, with dispersion and electrostatic contributions of −69.0 and −20.4 kJ mol−1, respectively. There is a prominent C12—H12C⋯S2iii interaction [Fig. 7(f)], with a C(6) motif, that links alternate molecules in the π-ring stack along the a axis, contributing to the electrostatic contribution and indicated by sharp spikes on the fingerprint plot [Fig. 5
(f)]. Electrostatic and dispersion contributions with total energies of −12.2, −24.2 and −32.5 kJ mol−1 link four adjacent π-stacks, creating a three-dimensional framework [Fig. 6
(f)] with an 18-c net topology. The C5—H5⋯S2i interaction links molecules down the b axis with a C(7) graph-set descriptor. This corresponds to the −24.2 kJ mol−1 interaction, with −19.2 and −25.38 kJ mol−1 electrostatic and dispersion contributions, respectively. The −32.5 kJ mol−1 framework interaction has electrostatic and dispersion contributions of −22.5 and −20.3 kJ mol−1, respectively. The shape index indicates that this arises from C11—H11A⋯O3ii, C12—H12B⋯S1ii and C13—H13C⋯S1iv interactions that link molecules down the c axis (Table 7
). The C11—H11A⋯O3 interaction has a noticeable spike on the fingerprint plot [Fig. 5
(f)]. The remaining interaction of −12.1 kJ mol−1 arises from interactions between atom S2 and the methoxy group.
|
Fig. 8 compares the relative percentage contributions of close contacts to the Hirshfeld surfaces for all the structures. As can be seen, the contributions of the O⋯H/H⋯O and S⋯H/H⋯S contacts together form a significant part of the intermolecular interactions. Also indicated is the presence of O⋯C/C⋯O, C⋯C and C⋯H/H⋯C interactions in all the structures. Table 8
lists the lattice energies calculated with CrystalExplorer, taking into account all molecules within a 20 Å radius. The energy framework diagrams (Fig. 6
) show that all the structures have a three-dimensional framework. TopCryst and Topospro (Shevchenko & Blatov, 2021
; Shevchenko et al., 2022
) can be used to determine the underlying topology network of all the intramolecular interactions and provide a convenient way to describe the interaction network. The network of the electrostatic and van der Waals interactions determined with TopCryst are shown in Fig. 9
. All the networks determined for the structures are three-dimensional and correspond with the energy frameworks determined by CrystalExplorer.
|
![]() | Figure 8 Relative percentage contributions of close contacts to the Hirshfeld surfaces. |
![]() | Figure 9 Topology networks determined with TopCryst. (a) S1a viewed down the a and c axes; (b) S2a viewed down the b and c axes; (c) S3a viewed down the a and c axes; (d) S1b viewed down the a and c axes; (e) S2b viewed down the a and c axes; (f) S3b viewed down the a and c axes. |
4. Conclusion
A number of novel coumarin derivatives were successfully synthesized and characterized. The intermolecular interactions were investigated extensively using the energy framework feature of CrystalExplorer. This proved particularly useful for locating π-type interactions to better understand the total energy network, more so than what can be obtained by just looking at conventional intermolecular hydrogen-bond interactions. Furthermore, the topology of the different energy frameworks can be conveniently compared using TopCryst. The coumarin derivatives synthesized here all show extensive π-interactions in their structures. This, together with preliminary absorption spectrometry, indicate that the compounds are well suited for further investigations as chemosensors.
Supporting information
https://doi.org/10.1107/S2053229625000956/ef3062sup1.cif
contains datablocks S1a, S2a, S3a, S1b, S2b, S3b, global. DOI:Structure factors: contains datablock S1a. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S1asup2.hkl
Structure factors: contains datablock S2a. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S2asup3.hkl
Structure factors: contains datablock S3a. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S3asup4.hkl
Structure factors: contains datablock S1b. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S1bsup5.hkl
Structure factors: contains datablock S2b. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S2bsup6.hkl
Structure factors: contains datablock S3b. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S3bsup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S1asup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S2asup9.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S3asup10.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S1bsup11.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S2bsup12.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229625000956/ef3062S3bsup13.cml
C12H10O4 | F(000) = 456 |
Mr = 218.20 | Dx = 1.399 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9043 (7) Å | Cell parameters from 9584 reflections |
b = 15.7768 (13) Å | θ = 2.5–28.3° |
c = 8.7381 (7) Å | µ = 0.11 mm−1 |
β = 108.115 (4)° | T = 296 K |
V = 1035.67 (15) Å3 | Block, colourless |
Z = 4 | 1.00 × 0.75 × 0.44 mm |
Bruker APEXII CCD diffractometer | 2575 independent reflections |
Radiation source: sealed tube | 2036 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
φ and ω scans | h = −9→10 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −21→21 |
Tmin = 0.950, Tmax = 1.000 | l = −11→10 |
19039 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0618P)2 + 0.3474P] where P = (Fo2 + 2Fc2)/3 |
2575 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015b)), with Uiso(H) set to 1.5Ueq(C). A reflection with large difference between its observed and calculated intensities was omitted. This is due to obstruction by the beam stop. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.10842 (15) | 0.48136 (7) | 0.22105 (12) | 0.0511 (3) | |
O2 | 0.2851 (2) | 0.37275 (9) | 0.23199 (15) | 0.0754 (4) | |
O3 | 0.50441 (15) | 0.40453 (7) | 0.73198 (13) | 0.0502 (3) | |
O4 | 0.4520 (2) | 0.30744 (8) | 0.53748 (16) | 0.0705 (4) | |
C1 | 0.2398 (2) | 0.42700 (9) | 0.30712 (18) | 0.0481 (4) | |
C2 | 0.30961 (18) | 0.44272 (9) | 0.48090 (16) | 0.0391 (3) | |
C3 | 0.26476 (18) | 0.51395 (9) | 0.54409 (16) | 0.0405 (3) | |
H3 | 0.315334 | 0.524519 | 0.653570 | 0.049* | |
C4 | 0.14146 (19) | 0.57366 (9) | 0.44718 (16) | 0.0398 (3) | |
C5 | 0.0936 (2) | 0.64961 (10) | 0.50492 (19) | 0.0513 (4) | |
H5 | 0.146159 | 0.664765 | 0.612101 | 0.062* | |
C6 | −0.0306 (2) | 0.70194 (11) | 0.4043 (2) | 0.0546 (4) | |
H6 | −0.061234 | 0.752617 | 0.443226 | 0.066* | |
C7 | −0.1106 (2) | 0.67955 (11) | 0.2448 (2) | 0.0521 (4) | |
H7 | −0.195610 | 0.715130 | 0.177780 | 0.063* | |
C8 | −0.0658 (2) | 0.60542 (11) | 0.18455 (18) | 0.0502 (4) | |
H8 | −0.120164 | 0.590389 | 0.077569 | 0.060* | |
C9 | 0.06156 (19) | 0.55350 (9) | 0.28588 (16) | 0.0413 (3) | |
C10 | 0.43036 (19) | 0.37694 (9) | 0.58187 (17) | 0.0422 (3) | |
C11 | 0.6066 (2) | 0.34219 (11) | 0.8463 (2) | 0.0557 (4) | |
H11A | 0.714478 | 0.327653 | 0.821662 | 0.067* | |
H11B | 0.537059 | 0.290991 | 0.841208 | 0.067* | |
C12 | 0.6513 (4) | 0.38057 (16) | 1.0093 (2) | 0.0846 (7) | |
H12A | 0.717687 | 0.431803 | 1.012208 | 0.127* | |
H12B | 0.721409 | 0.341395 | 1.087627 | 0.127* | |
H12C | 0.543534 | 0.393302 | 1.033485 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0624 (7) | 0.0513 (6) | 0.0330 (5) | −0.0007 (5) | 0.0051 (4) | −0.0070 (4) |
O2 | 0.1098 (11) | 0.0635 (8) | 0.0468 (7) | 0.0178 (8) | 0.0156 (7) | −0.0126 (6) |
O3 | 0.0551 (6) | 0.0465 (6) | 0.0419 (5) | 0.0010 (5) | 0.0046 (5) | 0.0059 (4) |
O4 | 0.0885 (10) | 0.0569 (7) | 0.0596 (7) | 0.0243 (7) | 0.0134 (7) | −0.0046 (6) |
C1 | 0.0614 (9) | 0.0415 (7) | 0.0388 (7) | −0.0052 (6) | 0.0118 (6) | −0.0052 (6) |
C2 | 0.0403 (7) | 0.0402 (7) | 0.0364 (6) | −0.0047 (5) | 0.0113 (5) | −0.0001 (5) |
C3 | 0.0427 (7) | 0.0446 (7) | 0.0324 (6) | −0.0045 (6) | 0.0090 (5) | −0.0022 (5) |
C4 | 0.0446 (7) | 0.0399 (7) | 0.0344 (6) | −0.0044 (5) | 0.0115 (5) | 0.0002 (5) |
C5 | 0.0627 (10) | 0.0476 (8) | 0.0419 (8) | 0.0011 (7) | 0.0137 (7) | −0.0034 (6) |
C6 | 0.0649 (10) | 0.0458 (8) | 0.0569 (9) | 0.0059 (7) | 0.0244 (8) | 0.0038 (7) |
C7 | 0.0489 (9) | 0.0560 (9) | 0.0524 (9) | 0.0033 (7) | 0.0172 (7) | 0.0140 (7) |
C8 | 0.0486 (8) | 0.0605 (9) | 0.0375 (7) | −0.0054 (7) | 0.0075 (6) | 0.0056 (6) |
C9 | 0.0454 (8) | 0.0426 (7) | 0.0353 (7) | −0.0077 (6) | 0.0120 (5) | −0.0007 (5) |
C10 | 0.0408 (7) | 0.0444 (7) | 0.0423 (7) | −0.0027 (6) | 0.0142 (6) | 0.0018 (6) |
C11 | 0.0509 (9) | 0.0588 (10) | 0.0517 (9) | 0.0050 (7) | 0.0080 (7) | 0.0174 (7) |
C12 | 0.1002 (17) | 0.0838 (15) | 0.0499 (10) | −0.0008 (12) | −0.0055 (10) | 0.0109 (10) |
O1—C9 | 1.3726 (18) | C5—H5 | 0.9300 |
O1—C1 | 1.3762 (19) | C6—C7 | 1.385 (2) |
O2—C1 | 1.199 (2) | C6—H6 | 0.9300 |
O3—C10 | 1.3323 (18) | C7—C8 | 1.374 (2) |
O3—C11 | 1.4546 (18) | C7—H7 | 0.9300 |
O4—C10 | 1.1930 (19) | C8—C9 | 1.384 (2) |
C1—C2 | 1.4665 (19) | C8—H8 | 0.9300 |
C2—C3 | 1.347 (2) | C11—C12 | 1.486 (3) |
C2—C10 | 1.498 (2) | C11—H11A | 0.9700 |
C3—C4 | 1.4286 (19) | C11—H11B | 0.9700 |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—C9 | 1.3903 (19) | C12—H12B | 0.9600 |
C4—C5 | 1.397 (2) | C12—H12C | 0.9600 |
C5—C6 | 1.372 (2) | ||
C9—O1—C1 | 123.08 (11) | C6—C7—H7 | 119.6 |
C10—O3—C11 | 115.81 (13) | C7—C8—C9 | 118.80 (14) |
O2—C1—O1 | 116.66 (13) | C7—C8—H8 | 120.6 |
O2—C1—C2 | 127.39 (15) | C9—C8—H8 | 120.6 |
O1—C1—C2 | 115.95 (13) | O1—C9—C8 | 117.57 (12) |
C3—C2—C1 | 120.21 (13) | O1—C9—C4 | 120.81 (13) |
C3—C2—C10 | 122.49 (12) | C8—C9—C4 | 121.61 (14) |
C1—C2—C10 | 117.29 (13) | O4—C10—O3 | 123.84 (14) |
C2—C3—C4 | 121.66 (12) | O4—C10—C2 | 125.09 (14) |
C2—C3—H3 | 119.2 | O3—C10—C2 | 110.98 (12) |
C4—C3—H3 | 119.2 | O3—C11—C12 | 107.38 (16) |
C9—C4—C5 | 118.27 (14) | O3—C11—H11A | 110.2 |
C9—C4—C3 | 117.47 (13) | C12—C11—H11A | 110.2 |
C5—C4—C3 | 124.25 (13) | O3—C11—H11B | 110.2 |
C6—C5—C4 | 120.31 (14) | C12—C11—H11B | 110.2 |
C6—C5—H5 | 119.8 | H11A—C11—H11B | 108.5 |
C4—C5—H5 | 119.8 | C11—C12—H12A | 109.5 |
C5—C6—C7 | 120.22 (15) | C11—C12—H12B | 109.5 |
C5—C6—H6 | 119.9 | H12A—C12—H12B | 109.5 |
C7—C6—H6 | 119.9 | C11—C12—H12C | 109.5 |
C8—C7—C6 | 120.76 (15) | H12A—C12—H12C | 109.5 |
C8—C7—H7 | 119.6 | H12B—C12—H12C | 109.5 |
C9—O1—C1—O2 | −170.12 (15) | C1—O1—C9—C8 | 176.51 (13) |
C9—O1—C1—C2 | 9.4 (2) | C1—O1—C9—C4 | −2.7 (2) |
O2—C1—C2—C3 | 169.72 (18) | C7—C8—C9—O1 | −177.68 (14) |
O1—C1—C2—C3 | −9.7 (2) | C7—C8—C9—C4 | 1.6 (2) |
O2—C1—C2—C10 | −10.3 (3) | C5—C4—C9—O1 | 177.48 (14) |
O1—C1—C2—C10 | 170.26 (12) | C3—C4—C9—O1 | −3.9 (2) |
C1—C2—C3—C4 | 3.6 (2) | C5—C4—C9—C8 | −1.7 (2) |
C10—C2—C3—C4 | −176.39 (12) | C3—C4—C9—C8 | 176.86 (13) |
C2—C3—C4—C9 | 3.3 (2) | C11—O3—C10—O4 | −4.2 (2) |
C2—C3—C4—C5 | −178.17 (14) | C11—O3—C10—C2 | 172.48 (12) |
C9—C4—C5—C6 | 0.7 (2) | C3—C2—C10—O4 | 167.43 (16) |
C3—C4—C5—C6 | −177.81 (15) | C1—C2—C10—O4 | −12.5 (2) |
C4—C5—C6—C7 | 0.5 (3) | C3—C2—C10—O3 | −9.2 (2) |
C5—C6—C7—C8 | −0.7 (3) | C1—C2—C10—O3 | 170.81 (12) |
C6—C7—C8—C9 | −0.3 (2) | C10—O3—C11—C12 | −170.62 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3 | 0.93 | 2.38 | 2.7074 (18) | 101 |
C6—H6···O2i | 0.93 | 2.72 | 3.352 (2) | 126 |
C7—H7···O4i | 0.93 | 2.72 | 3.647 (2) | 175 |
C8—H8···O2ii | 0.93 | 2.68 | 3.5281 (19) | 153 |
C11—H11B···O4iii | 0.97 | 2.55 | 3.335 (2) | 138 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) x, −y+1/2, z+1/2. |
C12H10O3S | F(000) = 488 |
Mr = 234.26 | Dx = 1.433 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9040 (9) Å | Cell parameters from 9977 reflections |
b = 7.1792 (5) Å | θ = 2.8–28.3° |
c = 13.6794 (10) Å | µ = 0.28 mm−1 |
β = 111.708 (3)° | T = 200 K |
V = 1086.15 (14) Å3 | Block, orange |
Z = 4 | 0.87 × 0.66 × 0.58 mm |
Bruker APEXII CCD diffractometer | 2710 independent reflections |
Radiation source: sealed tube | 2368 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 3.1° |
φ and ω scans | h = −15→15 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −9→9 |
Tmin = 0.941, Tmax = 1.000 | l = −18→18 |
18714 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3885P] where P = (Fo2 + 2Fc2)/3 |
2710 reflections | (Δ/σ)max = 0.001 |
146 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015b)), with Uiso(H) set to 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.68456 (3) | 0.43084 (6) | 0.84814 (3) | 0.04121 (13) | |
O1 | 0.48774 (8) | 0.39467 (14) | 0.68841 (7) | 0.0318 (2) | |
O2 | 0.83417 (8) | 0.21273 (15) | 0.62860 (8) | 0.0365 (2) | |
O3 | 0.83740 (11) | 0.1203 (2) | 0.78624 (9) | 0.0553 (3) | |
C1 | 0.60892 (11) | 0.35577 (17) | 0.72921 (10) | 0.0281 (3) | |
C2 | 0.65837 (11) | 0.26139 (17) | 0.66052 (10) | 0.0265 (2) | |
C3 | 0.58888 (11) | 0.22923 (17) | 0.55840 (10) | 0.0260 (2) | |
H3 | 0.624245 | 0.174648 | 0.513348 | 0.031* | |
C4 | 0.46333 (11) | 0.27595 (16) | 0.51726 (10) | 0.0256 (2) | |
C5 | 0.38646 (12) | 0.24153 (18) | 0.41294 (11) | 0.0308 (3) | |
H5 | 0.417869 | 0.188928 | 0.364605 | 0.037* | |
C6 | 0.26519 (12) | 0.2843 (2) | 0.38078 (12) | 0.0364 (3) | |
H6 | 0.212784 | 0.260143 | 0.310366 | 0.044* | |
C7 | 0.21943 (12) | 0.3631 (2) | 0.45177 (13) | 0.0383 (3) | |
H7 | 0.135610 | 0.390826 | 0.428998 | 0.046* | |
C8 | 0.29350 (12) | 0.4014 (2) | 0.55439 (12) | 0.0351 (3) | |
H8 | 0.262173 | 0.457387 | 0.601913 | 0.042* | |
C9 | 0.41497 (11) | 0.35579 (17) | 0.58591 (10) | 0.0275 (3) | |
C10 | 0.78606 (12) | 0.19249 (19) | 0.70162 (10) | 0.0312 (3) | |
C11 | 0.95289 (12) | 0.1308 (3) | 0.65020 (13) | 0.0454 (4) | |
H11A | 0.945526 | −0.005515 | 0.638459 | 0.054* | |
H11B | 1.006123 | 0.153982 | 0.724223 | 0.054* | |
C12 | 1.00447 (14) | 0.2189 (2) | 0.57749 (14) | 0.0466 (4) | |
H12A | 1.080684 | 0.157390 | 0.584930 | 0.070* | |
H12B | 1.019497 | 0.351332 | 0.594885 | 0.070* | |
H12C | 0.947173 | 0.206148 | 0.504812 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0483 (2) | 0.0499 (2) | 0.02965 (19) | −0.00848 (16) | 0.01939 (16) | −0.00791 (14) |
O1 | 0.0326 (5) | 0.0368 (5) | 0.0325 (5) | −0.0007 (4) | 0.0197 (4) | −0.0041 (4) |
O2 | 0.0249 (4) | 0.0532 (6) | 0.0350 (5) | 0.0072 (4) | 0.0153 (4) | 0.0087 (4) |
O3 | 0.0511 (7) | 0.0791 (9) | 0.0405 (6) | 0.0246 (6) | 0.0225 (5) | 0.0245 (6) |
C1 | 0.0335 (6) | 0.0277 (6) | 0.0292 (6) | −0.0035 (5) | 0.0187 (5) | 0.0007 (5) |
C2 | 0.0282 (6) | 0.0277 (6) | 0.0277 (6) | −0.0010 (4) | 0.0150 (5) | 0.0019 (4) |
C3 | 0.0277 (6) | 0.0269 (6) | 0.0283 (6) | −0.0002 (4) | 0.0159 (5) | −0.0008 (4) |
C4 | 0.0267 (6) | 0.0225 (5) | 0.0310 (6) | −0.0014 (4) | 0.0147 (5) | 0.0012 (4) |
C5 | 0.0319 (6) | 0.0294 (6) | 0.0323 (6) | −0.0014 (5) | 0.0133 (5) | −0.0002 (5) |
C6 | 0.0312 (6) | 0.0362 (7) | 0.0383 (7) | −0.0014 (5) | 0.0086 (5) | 0.0041 (6) |
C7 | 0.0278 (6) | 0.0368 (7) | 0.0515 (8) | 0.0025 (5) | 0.0161 (6) | 0.0086 (6) |
C8 | 0.0325 (6) | 0.0336 (7) | 0.0477 (8) | 0.0028 (5) | 0.0246 (6) | 0.0036 (6) |
C9 | 0.0300 (6) | 0.0243 (6) | 0.0334 (6) | −0.0021 (4) | 0.0177 (5) | 0.0009 (5) |
C10 | 0.0301 (6) | 0.0355 (7) | 0.0296 (6) | 0.0006 (5) | 0.0128 (5) | 0.0011 (5) |
C11 | 0.0255 (6) | 0.0597 (10) | 0.0529 (9) | 0.0104 (6) | 0.0168 (6) | 0.0099 (7) |
C12 | 0.0331 (7) | 0.0524 (9) | 0.0632 (10) | 0.0002 (6) | 0.0282 (7) | −0.0041 (8) |
S1—C1 | 1.6322 (13) | C5—H5 | 0.9500 |
O1—C1 | 1.3692 (16) | C6—C7 | 1.397 (2) |
O1—C9 | 1.3768 (16) | C6—H6 | 0.9500 |
O2—C10 | 1.3304 (15) | C7—C8 | 1.381 (2) |
O2—C11 | 1.4566 (16) | C7—H7 | 0.9500 |
O3—C10 | 1.2078 (17) | C8—C9 | 1.3867 (17) |
C1—C2 | 1.4483 (16) | C8—H8 | 0.9500 |
C2—C3 | 1.3543 (17) | C11—C12 | 1.490 (2) |
C2—C10 | 1.4963 (17) | C11—H11A | 0.9900 |
C3—C4 | 1.4286 (16) | C11—H11B | 0.9900 |
C3—H3 | 0.9500 | C12—H12A | 0.9800 |
C4—C9 | 1.3935 (16) | C12—H12B | 0.9800 |
C4—C5 | 1.4031 (18) | C12—H12C | 0.9800 |
C5—C6 | 1.3792 (19) | ||
C1—O1—C9 | 123.02 (10) | C6—C7—H7 | 119.3 |
C10—O2—C11 | 117.29 (11) | C7—C8—C9 | 117.98 (13) |
O1—C1—C2 | 116.79 (11) | C7—C8—H8 | 121.0 |
O1—C1—S1 | 116.65 (9) | C9—C8—H8 | 121.0 |
C2—C1—S1 | 126.47 (10) | O1—C9—C8 | 117.37 (11) |
C3—C2—C1 | 120.61 (11) | O1—C9—C4 | 120.56 (11) |
C3—C2—C10 | 118.63 (11) | C8—C9—C4 | 122.06 (12) |
C1—C2—C10 | 120.74 (11) | O3—C10—O2 | 124.10 (12) |
C2—C3—C4 | 121.14 (11) | O3—C10—C2 | 125.84 (12) |
C2—C3—H3 | 119.4 | O2—C10—C2 | 109.97 (11) |
C4—C3—H3 | 119.4 | O2—C11—C12 | 107.54 (13) |
C9—C4—C5 | 118.77 (11) | O2—C11—H11A | 110.2 |
C9—C4—C3 | 117.64 (11) | C12—C11—H11A | 110.2 |
C5—C4—C3 | 123.57 (11) | O2—C11—H11B | 110.2 |
C6—C5—C4 | 119.81 (12) | C12—C11—H11B | 110.2 |
C6—C5—H5 | 120.1 | H11A—C11—H11B | 108.5 |
C4—C5—H5 | 120.1 | C11—C12—H12A | 109.5 |
C5—C6—C7 | 119.98 (13) | C11—C12—H12B | 109.5 |
C5—C6—H6 | 120.0 | H12A—C12—H12B | 109.5 |
C7—C6—H6 | 120.0 | C11—C12—H12C | 109.5 |
C8—C7—C6 | 121.39 (13) | H12A—C12—H12C | 109.5 |
C8—C7—H7 | 119.3 | H12B—C12—H12C | 109.5 |
C9—O1—C1—C2 | −3.00 (17) | C1—O1—C9—C8 | 179.75 (11) |
C9—O1—C1—S1 | 173.67 (9) | C1—O1—C9—C4 | −1.07 (18) |
O1—C1—C2—C3 | 5.61 (18) | C7—C8—C9—O1 | −179.95 (12) |
S1—C1—C2—C3 | −170.68 (10) | C7—C8—C9—C4 | 0.9 (2) |
O1—C1—C2—C10 | −172.58 (11) | C5—C4—C9—O1 | −178.91 (11) |
S1—C1—C2—C10 | 11.13 (18) | C3—C4—C9—O1 | 2.65 (17) |
C1—C2—C3—C4 | −4.18 (19) | C5—C4—C9—C8 | 0.24 (19) |
C10—C2—C3—C4 | 174.05 (11) | C3—C4—C9—C8 | −178.21 (12) |
C2—C3—C4—C9 | 0.02 (18) | C11—O2—C10—O3 | 4.4 (2) |
C2—C3—C4—C5 | −178.35 (11) | C11—O2—C10—C2 | −172.26 (12) |
C9—C4—C5—C6 | −0.95 (19) | C3—C2—C10—O3 | −138.68 (16) |
C3—C4—C5—C6 | 177.39 (12) | C1—C2—C10—O3 | 39.5 (2) |
C4—C5—C6—C7 | 0.5 (2) | C3—C2—C10—O2 | 37.89 (16) |
C5—C6—C7—C8 | 0.6 (2) | C1—C2—C10—O2 | −143.88 (12) |
C6—C7—C8—C9 | −1.3 (2) | C10—O2—C11—C12 | −162.40 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1i | 0.95 | 2.72 | 3.6489 (12) | 166 |
C5—H5···O1i | 0.95 | 2.89 | 3.8188 (16) | 167 |
C8—H8···O3ii | 0.95 | 2.54 | 3.4876 (19) | 175 |
C12—H12B···O3iii | 0.98 | 2.69 | 3.567 (2) | 150 |
C12—H12C···S1i | 0.98 | 3.22 | 4.0821 (18) | 148 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2. |
C12H10O2S2 | F(000) = 1040 |
Mr = 250.32 | Dx = 1.424 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5314 (5) Å | Cell parameters from 9948 reflections |
b = 6.7175 (3) Å | θ = 2.9–28.2° |
c = 27.7746 (10) Å | µ = 0.44 mm−1 |
β = 92.7398 (14)° | T = 200 K |
V = 2335.38 (16) Å3 | Rod, orange |
Z = 8 | 0.30 × 0.16 × 0.11 mm |
Bruker D8 QUEST diffractometer | 2894 independent reflections |
Radiation source: sealed x-ray tube | 2326 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 28.3°, θmin = 2.9° |
φ and ω scans | h = −16→16 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.891, Tmax = 1.000 | l = −33→36 |
27927 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0316P)2 + 3.2817P] where P = (Fo2 + 2Fc2)/3 |
2894 reflections | (Δ/σ)max = 0.001 |
146 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015b)), with Uiso(H) set to 1.5Ueq(C). A number of reflections with large differences between their observed and calculated intensities were omitted. This is due to obstruction by the beam stop. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.33053 (5) | 0.71005 (7) | 0.36927 (2) | 0.04185 (15) | |
S2 | 0.47874 (5) | 0.19497 (10) | 0.32452 (2) | 0.05020 (18) | |
O1 | 0.35045 (10) | 0.59732 (17) | 0.45755 (4) | 0.0295 (3) | |
O2 | 0.27152 (11) | 0.2486 (2) | 0.33205 (4) | 0.0355 (3) | |
C1 | 0.35078 (14) | 0.5383 (3) | 0.41040 (6) | 0.0278 (4) | |
C2 | 0.37054 (13) | 0.3305 (3) | 0.40137 (6) | 0.0265 (4) | |
C3 | 0.38614 (13) | 0.1999 (3) | 0.43782 (6) | 0.0275 (4) | |
H3 | 0.398708 | 0.063641 | 0.430891 | 0.033* | |
C4 | 0.38402 (13) | 0.2640 (2) | 0.48677 (6) | 0.0257 (3) | |
C5 | 0.39758 (14) | 0.1369 (3) | 0.52671 (7) | 0.0320 (4) | |
H5 | 0.408704 | −0.001439 | 0.521883 | 0.038* | |
C6 | 0.39487 (14) | 0.2112 (3) | 0.57283 (7) | 0.0347 (4) | |
H6 | 0.405039 | 0.124661 | 0.599711 | 0.042* | |
C7 | 0.37716 (14) | 0.4136 (3) | 0.57998 (7) | 0.0347 (4) | |
H7 | 0.375724 | 0.464228 | 0.611875 | 0.042* | |
C8 | 0.36169 (14) | 0.5416 (3) | 0.54140 (6) | 0.0315 (4) | |
H8 | 0.348392 | 0.679137 | 0.546402 | 0.038* | |
C9 | 0.36600 (13) | 0.4651 (3) | 0.49526 (6) | 0.0262 (3) | |
C10 | 0.37067 (15) | 0.2590 (3) | 0.35052 (7) | 0.0310 (4) | |
C11 | 0.25325 (19) | 0.1735 (3) | 0.28332 (7) | 0.0444 (5) | |
H11A | 0.278869 | 0.034569 | 0.281081 | 0.053* | |
H11B | 0.291611 | 0.256207 | 0.260237 | 0.053* | |
C12 | 0.1350 (2) | 0.1834 (4) | 0.27231 (8) | 0.0565 (6) | |
H12A | 0.118947 | 0.137715 | 0.239239 | 0.085* | |
H12B | 0.110442 | 0.320961 | 0.275675 | 0.085* | |
H12C | 0.098262 | 0.097810 | 0.294827 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0659 (4) | 0.0276 (2) | 0.0319 (3) | 0.0031 (2) | 0.0009 (2) | 0.00342 (19) |
S2 | 0.0475 (3) | 0.0589 (4) | 0.0456 (3) | 0.0074 (3) | 0.0162 (2) | −0.0089 (3) |
O1 | 0.0372 (7) | 0.0229 (6) | 0.0284 (6) | −0.0007 (5) | 0.0028 (5) | −0.0014 (5) |
O2 | 0.0391 (7) | 0.0395 (7) | 0.0278 (6) | −0.0046 (6) | −0.0013 (5) | −0.0060 (5) |
C1 | 0.0301 (9) | 0.0257 (8) | 0.0278 (8) | −0.0016 (7) | 0.0024 (7) | −0.0029 (7) |
C2 | 0.0239 (8) | 0.0272 (8) | 0.0285 (8) | −0.0028 (6) | 0.0016 (6) | −0.0039 (7) |
C3 | 0.0239 (8) | 0.0231 (8) | 0.0355 (9) | 0.0001 (6) | 0.0011 (7) | −0.0034 (7) |
C4 | 0.0187 (7) | 0.0258 (8) | 0.0327 (9) | −0.0017 (6) | 0.0015 (6) | −0.0003 (7) |
C5 | 0.0255 (8) | 0.0309 (9) | 0.0397 (10) | 0.0015 (7) | 0.0011 (7) | 0.0053 (8) |
C6 | 0.0274 (9) | 0.0442 (11) | 0.0325 (9) | −0.0003 (8) | 0.0015 (7) | 0.0097 (8) |
C7 | 0.0305 (9) | 0.0439 (11) | 0.0299 (9) | −0.0067 (8) | 0.0026 (7) | −0.0015 (8) |
C8 | 0.0313 (9) | 0.0294 (9) | 0.0341 (9) | −0.0055 (7) | 0.0041 (7) | −0.0047 (7) |
C9 | 0.0222 (8) | 0.0256 (8) | 0.0308 (9) | −0.0035 (6) | 0.0018 (6) | 0.0008 (7) |
C10 | 0.0384 (10) | 0.0233 (8) | 0.0315 (9) | −0.0031 (7) | 0.0043 (7) | −0.0016 (7) |
C11 | 0.0662 (14) | 0.0416 (12) | 0.0248 (9) | −0.0024 (10) | −0.0039 (9) | −0.0057 (8) |
C12 | 0.0621 (15) | 0.0708 (17) | 0.0352 (11) | −0.0166 (13) | −0.0112 (10) | −0.0020 (11) |
S1—C1 | 1.6346 (18) | C5—H5 | 0.9500 |
S2—C10 | 1.6229 (19) | C6—C7 | 1.393 (3) |
O1—C1 | 1.368 (2) | C6—H6 | 0.9500 |
O1—C9 | 1.380 (2) | C7—C8 | 1.380 (3) |
O2—C10 | 1.323 (2) | C7—H7 | 0.9500 |
O2—C11 | 1.452 (2) | C8—C9 | 1.384 (2) |
C1—C2 | 1.442 (2) | C8—H8 | 0.9500 |
C2—C3 | 1.347 (2) | C11—C12 | 1.501 (3) |
C2—C10 | 1.492 (2) | C11—H11A | 0.9900 |
C3—C4 | 1.427 (2) | C11—H11B | 0.9900 |
C3—H3 | 0.9500 | C12—H12A | 0.9800 |
C4—C9 | 1.392 (2) | C12—H12B | 0.9800 |
C4—C5 | 1.404 (2) | C12—H12C | 0.9800 |
C5—C6 | 1.377 (3) | ||
C1—O1—C9 | 122.23 (13) | C6—C7—H7 | 119.5 |
C10—O2—C11 | 118.87 (16) | C7—C8—C9 | 118.49 (17) |
O1—C1—C2 | 117.08 (15) | C7—C8—H8 | 120.8 |
O1—C1—S1 | 117.19 (13) | C9—C8—H8 | 120.8 |
C2—C1—S1 | 125.73 (13) | O1—C9—C8 | 116.96 (15) |
C3—C2—C1 | 121.31 (16) | O1—C9—C4 | 120.94 (15) |
C3—C2—C10 | 119.70 (16) | C8—C9—C4 | 122.09 (16) |
C1—C2—C10 | 118.97 (15) | O2—C10—C2 | 109.90 (15) |
C2—C3—C4 | 120.72 (16) | O2—C10—S2 | 126.98 (14) |
C2—C3—H3 | 119.6 | C2—C10—S2 | 123.05 (14) |
C4—C3—H3 | 119.6 | O2—C11—C12 | 106.55 (18) |
C9—C4—C5 | 118.09 (16) | O2—C11—H11A | 110.4 |
C9—C4—C3 | 117.71 (16) | C12—C11—H11A | 110.4 |
C5—C4—C3 | 124.20 (16) | O2—C11—H11B | 110.4 |
C6—C5—C4 | 120.49 (18) | C12—C11—H11B | 110.4 |
C6—C5—H5 | 119.8 | H11A—C11—H11B | 108.6 |
C4—C5—H5 | 119.8 | C11—C12—H12A | 109.5 |
C5—C6—C7 | 119.84 (18) | C11—C12—H12B | 109.5 |
C5—C6—H6 | 120.1 | H12A—C12—H12B | 109.5 |
C7—C6—H6 | 120.1 | C11—C12—H12C | 109.5 |
C8—C7—C6 | 120.98 (17) | H12A—C12—H12C | 109.5 |
C8—C7—H7 | 119.5 | H12B—C12—H12C | 109.5 |
C9—O1—C1—C2 | −1.3 (2) | C1—O1—C9—C8 | −178.67 (15) |
C9—O1—C1—S1 | 179.57 (12) | C1—O1—C9—C4 | 0.7 (2) |
O1—C1—C2—C3 | 1.1 (2) | C7—C8—C9—O1 | −179.84 (15) |
S1—C1—C2—C3 | −179.87 (14) | C7—C8—C9—C4 | 0.8 (3) |
O1—C1—C2—C10 | 179.45 (14) | C5—C4—C9—O1 | −179.03 (14) |
S1—C1—C2—C10 | −1.5 (2) | C3—C4—C9—O1 | 0.2 (2) |
C1—C2—C3—C4 | −0.3 (3) | C5—C4—C9—C8 | 0.3 (2) |
C10—C2—C3—C4 | −178.61 (15) | C3—C4—C9—C8 | 179.51 (15) |
C2—C3—C4—C9 | −0.4 (2) | C11—O2—C10—C2 | −177.29 (15) |
C2—C3—C4—C5 | 178.78 (16) | C11—O2—C10—S2 | −0.2 (2) |
C9—C4—C5—C6 | −1.1 (2) | C3—C2—C10—O2 | 103.35 (19) |
C3—C4—C5—C6 | 179.71 (16) | C1—C2—C10—O2 | −75.04 (19) |
C4—C5—C6—C7 | 0.8 (3) | C3—C2—C10—S2 | −73.9 (2) |
C5—C6—C7—C8 | 0.3 (3) | C1—C2—C10—S2 | 107.75 (18) |
C6—C7—C8—C9 | −1.1 (3) | C10—O2—C11—C12 | −178.91 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1i | 0.95 | 3.03 | 3.8486 (18) | 146 |
C8—H8···O1ii | 0.95 | 2.91 | 3.600 (2) | 131 |
C12—H12A···S1iii | 0.98 | 3.15 | 3.981 (2) | 144 |
C12—H12C···S2iv | 0.98 | 3.22 | 4.119 (3) | 154 |
C12—H12B···S2v | 0.98 | 3.33 | 4.245 (3) | 156 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, y−1/2, z; (v) x−1/2, y+1/2, z. |
C13H12O5 | F(000) = 520 |
Mr = 248.23 | Dx = 1.447 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8708 (3) Å | Cell parameters from 9891 reflections |
b = 10.6766 (5) Å | θ = 2.6–28.3° |
c = 15.7872 (8) Å | µ = 0.11 mm−1 |
β = 100.253 (2)° | T = 200 K |
V = 1139.60 (9) Å3 | Rods, colourless |
Z = 4 | 1.17 × 0.83 × 0.51 mm |
Bruker APEXII CCD diffractometer | 2822 independent reflections |
Radiation source: sealed tube | 2493 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
φ and ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −14→14 |
Tmin = 0.949, Tmax = 1.000 | l = −21→20 |
20764 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0477P)2 + 0.329P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2822 reflections | Δρmax = 0.32 e Å−3 |
166 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL2019 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.079 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015b)), with Uiso(H) set to 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.79762 (11) | 0.34334 (7) | 0.46569 (5) | 0.02538 (19) | |
O2 | 0.79077 (14) | 0.21576 (8) | 0.35507 (6) | 0.0396 (2) | |
O3 | 0.50507 (11) | 0.44015 (8) | 0.19049 (5) | 0.0301 (2) | |
O4 | 0.81267 (13) | 0.36747 (11) | 0.19048 (6) | 0.0462 (3) | |
O5 | 0.84494 (13) | 0.36117 (7) | 0.63348 (5) | 0.0316 (2) | |
C1 | 0.77090 (15) | 0.32183 (10) | 0.37830 (7) | 0.0260 (2) | |
C2 | 0.71575 (14) | 0.42995 (10) | 0.32256 (6) | 0.0248 (2) | |
C3 | 0.68992 (14) | 0.54435 (10) | 0.35502 (6) | 0.0237 (2) | |
H3 | 0.653204 | 0.612851 | 0.317136 | 0.028* | |
C4 | 0.71753 (14) | 0.56343 (9) | 0.44657 (6) | 0.0217 (2) | |
C5 | 0.69055 (15) | 0.67998 (10) | 0.48436 (7) | 0.0259 (2) | |
H5 | 0.654344 | 0.751578 | 0.449367 | 0.031* | |
C6 | 0.71718 (17) | 0.68909 (10) | 0.57258 (7) | 0.0290 (2) | |
H6 | 0.699072 | 0.767685 | 0.598295 | 0.035* | |
C7 | 0.77047 (16) | 0.58465 (10) | 0.62509 (7) | 0.0268 (2) | |
H7 | 0.789198 | 0.593193 | 0.685903 | 0.032* | |
C8 | 0.79613 (14) | 0.46880 (10) | 0.58905 (6) | 0.0232 (2) | |
C9 | 0.77019 (14) | 0.45954 (9) | 0.49892 (6) | 0.0210 (2) | |
C10 | 0.68750 (16) | 0.40812 (10) | 0.22747 (7) | 0.0277 (2) | |
C11 | 0.45817 (19) | 0.43114 (14) | 0.09661 (7) | 0.0388 (3) | |
H11A | 0.507576 | 0.350933 | 0.077155 | 0.047* | |
H11B | 0.521333 | 0.500698 | 0.070073 | 0.047* | |
C12 | 0.2378 (2) | 0.43823 (13) | 0.07087 (8) | 0.0408 (3) | |
H12A | 0.201660 | 0.432843 | 0.008068 | 0.061* | |
H12B | 0.190598 | 0.517849 | 0.090568 | 0.061* | |
H12C | 0.176997 | 0.368630 | 0.097143 | 0.061* | |
C13 | 0.85078 (18) | 0.36488 (12) | 0.72464 (7) | 0.0339 (3) | |
H13A | 0.723713 | 0.395328 | 0.736432 | 0.051* | |
H13B | 0.956702 | 0.421322 | 0.751243 | 0.051* | |
H13C | 0.875908 | 0.280532 | 0.748572 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0304 (4) | 0.0234 (4) | 0.0220 (4) | 0.0014 (3) | 0.0037 (3) | −0.0014 (3) |
O2 | 0.0543 (6) | 0.0292 (4) | 0.0336 (5) | 0.0017 (4) | 0.0032 (4) | −0.0089 (3) |
O3 | 0.0310 (4) | 0.0405 (4) | 0.0179 (4) | −0.0014 (3) | 0.0018 (3) | −0.0010 (3) |
O4 | 0.0362 (5) | 0.0734 (7) | 0.0298 (5) | 0.0051 (4) | 0.0082 (4) | −0.0159 (4) |
O5 | 0.0454 (5) | 0.0287 (4) | 0.0206 (4) | 0.0055 (3) | 0.0058 (3) | 0.0038 (3) |
C1 | 0.0253 (5) | 0.0285 (5) | 0.0236 (5) | −0.0022 (4) | 0.0027 (4) | −0.0046 (4) |
C2 | 0.0214 (5) | 0.0333 (5) | 0.0195 (5) | −0.0016 (4) | 0.0027 (4) | −0.0023 (4) |
C3 | 0.0209 (4) | 0.0295 (5) | 0.0202 (5) | 0.0008 (4) | 0.0025 (3) | 0.0015 (4) |
C4 | 0.0182 (4) | 0.0259 (5) | 0.0209 (5) | 0.0000 (3) | 0.0036 (3) | −0.0005 (3) |
C5 | 0.0281 (5) | 0.0241 (5) | 0.0258 (5) | 0.0031 (4) | 0.0056 (4) | 0.0017 (4) |
C6 | 0.0351 (6) | 0.0254 (5) | 0.0278 (5) | 0.0024 (4) | 0.0087 (4) | −0.0043 (4) |
C7 | 0.0299 (5) | 0.0305 (5) | 0.0204 (5) | −0.0003 (4) | 0.0057 (4) | −0.0025 (4) |
C8 | 0.0220 (4) | 0.0264 (5) | 0.0211 (5) | 0.0004 (4) | 0.0037 (4) | 0.0022 (4) |
C9 | 0.0185 (4) | 0.0234 (5) | 0.0213 (5) | −0.0005 (3) | 0.0038 (3) | −0.0018 (3) |
C10 | 0.0288 (5) | 0.0323 (5) | 0.0218 (5) | −0.0046 (4) | 0.0041 (4) | −0.0048 (4) |
C11 | 0.0422 (7) | 0.0551 (8) | 0.0173 (5) | −0.0094 (6) | 0.0008 (4) | −0.0021 (5) |
C12 | 0.0459 (7) | 0.0387 (6) | 0.0323 (6) | 0.0044 (5) | −0.0082 (5) | −0.0042 (5) |
C13 | 0.0402 (6) | 0.0403 (6) | 0.0214 (5) | 0.0062 (5) | 0.0062 (4) | 0.0063 (4) |
O1—C9 | 1.3729 (12) | C5—H5 | 0.9500 |
O1—C1 | 1.3784 (12) | C6—C7 | 1.3988 (15) |
O2—C1 | 1.2055 (13) | C6—H6 | 0.9500 |
O3—C10 | 1.3298 (13) | C7—C8 | 1.3858 (14) |
O3—C11 | 1.4627 (12) | C7—H7 | 0.9500 |
O4—C10 | 1.2033 (14) | C8—C9 | 1.4057 (13) |
O5—C8 | 1.3569 (12) | C11—C12 | 1.4981 (18) |
O5—C13 | 1.4330 (12) | C11—H11A | 0.9900 |
C1—C2 | 1.4601 (15) | C11—H11B | 0.9900 |
C2—C3 | 1.3483 (14) | C12—H12A | 0.9800 |
C2—C10 | 1.4973 (13) | C12—H12B | 0.9800 |
C3—C4 | 1.4384 (13) | C12—H12C | 0.9800 |
C3—H3 | 0.9500 | C13—H13A | 0.9800 |
C4—C9 | 1.3920 (14) | C13—H13B | 0.9800 |
C4—C5 | 1.4065 (14) | C13—H13C | 0.9800 |
C5—C6 | 1.3754 (14) | ||
C9—O1—C1 | 122.01 (8) | C7—C8—C9 | 118.42 (9) |
C10—O3—C11 | 116.64 (9) | O1—C9—C4 | 122.15 (9) |
C8—O5—C13 | 117.12 (8) | O1—C9—C8 | 116.68 (8) |
O2—C1—O1 | 117.31 (10) | C4—C9—C8 | 121.17 (9) |
O2—C1—C2 | 126.21 (10) | O4—C10—O3 | 125.37 (10) |
O1—C1—C2 | 116.46 (9) | O4—C10—C2 | 124.51 (10) |
C3—C2—C1 | 121.66 (9) | O3—C10—C2 | 110.12 (9) |
C3—C2—C10 | 121.31 (9) | O3—C11—C12 | 107.53 (10) |
C1—C2—C10 | 117.03 (9) | O3—C11—H11A | 110.2 |
C2—C3—C4 | 120.49 (9) | C12—C11—H11A | 110.2 |
C2—C3—H3 | 119.8 | O3—C11—H11B | 110.2 |
C4—C3—H3 | 119.8 | C12—C11—H11B | 110.2 |
C9—C4—C5 | 119.55 (9) | H11A—C11—H11B | 108.5 |
C9—C4—C3 | 117.23 (9) | C11—C12—H12A | 109.5 |
C5—C4—C3 | 123.21 (9) | C11—C12—H12B | 109.5 |
C6—C5—C4 | 119.22 (9) | H12A—C12—H12B | 109.5 |
C6—C5—H5 | 120.4 | C11—C12—H12C | 109.5 |
C4—C5—H5 | 120.4 | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 121.16 (10) | H12B—C12—H12C | 109.5 |
C5—C6—H6 | 119.4 | O5—C13—H13A | 109.5 |
C7—C6—H6 | 119.4 | O5—C13—H13B | 109.5 |
C8—C7—C6 | 120.47 (9) | H13A—C13—H13B | 109.5 |
C8—C7—H7 | 119.8 | O5—C13—H13C | 109.5 |
C6—C7—H7 | 119.8 | H13A—C13—H13C | 109.5 |
O5—C8—C7 | 125.54 (9) | H13B—C13—H13C | 109.5 |
O5—C8—C9 | 116.03 (9) | ||
C9—O1—C1—O2 | −177.15 (10) | C1—O1—C9—C4 | −1.30 (14) |
C9—O1—C1—C2 | 1.26 (13) | C1—O1—C9—C8 | 178.13 (8) |
O2—C1—C2—C3 | 177.42 (11) | C5—C4—C9—O1 | 179.69 (8) |
O1—C1—C2—C3 | −0.83 (15) | C3—C4—C9—O1 | 0.79 (14) |
O2—C1—C2—C10 | −2.14 (16) | C5—C4—C9—C8 | 0.28 (15) |
O1—C1—C2—C10 | 179.62 (8) | C3—C4—C9—C8 | −178.62 (8) |
C1—C2—C3—C4 | 0.40 (15) | O5—C8—C9—O1 | −0.25 (13) |
C10—C2—C3—C4 | 179.93 (9) | C7—C8—C9—O1 | 179.76 (9) |
C2—C3—C4—C9 | −0.35 (14) | O5—C8—C9—C4 | 179.19 (9) |
C2—C3—C4—C5 | −179.21 (10) | C7—C8—C9—C4 | −0.80 (14) |
C9—C4—C5—C6 | 0.13 (15) | C11—O3—C10—O4 | −3.49 (17) |
C3—C4—C5—C6 | 178.96 (9) | C11—O3—C10—C2 | 176.49 (9) |
C4—C5—C6—C7 | −0.01 (16) | C3—C2—C10—O4 | 121.76 (13) |
C5—C6—C7—C8 | −0.53 (17) | C1—C2—C10—O4 | −58.69 (15) |
C13—O5—C8—C7 | 6.71 (15) | C3—C2—C10—O3 | −58.23 (13) |
C13—O5—C8—C9 | −173.27 (9) | C1—C2—C10—O3 | 121.32 (10) |
C6—C7—C8—O5 | −179.07 (10) | C10—O3—C11—C12 | 165.49 (10) |
C6—C7—C8—C9 | 0.92 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O4i | 0.95 | 2.58 | 3.4065 (14) | 146 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
C13H12O4S | F(000) = 552 |
Mr = 264.29 | Dx = 1.456 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8534 (4) Å | Cell parameters from 9873 reflections |
b = 11.2183 (7) Å | θ = 2.6–28.2° |
c = 15.8581 (10) Å | µ = 0.27 mm−1 |
β = 98.620 (2)° | T = 199 K |
V = 1205.45 (13) Å3 | Block, orange |
Z = 4 | 0.67 × 0.62 × 0.50 mm |
Bruker APEXII CCD diffractometer | 2981 independent reflections |
Radiation source: sealed tube | 2607 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
φ and ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −14→14 |
Tmin = 0.938, Tmax = 1.000 | l = −20→20 |
20324 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4794P] where P = (Fo2 + 2Fc2)/3 |
2981 reflections | (Δ/σ)max = 0.001 |
165 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015b)), with Uiso(H) set to 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.81219 (6) | 0.81003 (3) | 0.35733 (2) | 0.03729 (13) | |
O1 | 0.80196 (13) | 0.64604 (8) | 0.46888 (5) | 0.02304 (19) | |
O2 | 0.52085 (13) | 0.58357 (9) | 0.19721 (5) | 0.0275 (2) | |
O3 | 0.84037 (16) | 0.62830 (12) | 0.19238 (6) | 0.0431 (3) | |
O4 | 0.82689 (15) | 0.62262 (9) | 0.63363 (6) | 0.0312 (2) | |
C1 | 0.78184 (18) | 0.67129 (11) | 0.38399 (7) | 0.0227 (2) | |
C2 | 0.73279 (17) | 0.57362 (11) | 0.32548 (7) | 0.0228 (2) | |
C3 | 0.70415 (17) | 0.46181 (11) | 0.35402 (7) | 0.0232 (2) | |
H3 | 0.673325 | 0.398698 | 0.314315 | 0.028* | |
C4 | 0.72010 (17) | 0.43832 (11) | 0.44368 (7) | 0.0213 (2) | |
C5 | 0.68396 (19) | 0.32579 (11) | 0.47790 (8) | 0.0258 (3) | |
H5 | 0.651227 | 0.259254 | 0.441457 | 0.031* | |
C6 | 0.69689 (19) | 0.31399 (11) | 0.56490 (9) | 0.0277 (3) | |
H6 | 0.671803 | 0.238510 | 0.588238 | 0.033* | |
C7 | 0.74618 (19) | 0.41066 (12) | 0.61991 (8) | 0.0263 (3) | |
H7 | 0.755650 | 0.399798 | 0.679800 | 0.032* | |
C8 | 0.78121 (17) | 0.52209 (11) | 0.58746 (7) | 0.0227 (2) | |
C9 | 0.76794 (16) | 0.53401 (10) | 0.49865 (7) | 0.0204 (2) | |
C10 | 0.70779 (19) | 0.59960 (11) | 0.23125 (8) | 0.0253 (3) | |
C11 | 0.4701 (2) | 0.60326 (12) | 0.10494 (8) | 0.0294 (3) | |
H11A | 0.555050 | 0.554053 | 0.073447 | 0.035* | |
H11B | 0.488335 | 0.688148 | 0.090920 | 0.035* | |
C12 | 0.2582 (3) | 0.56793 (18) | 0.08158 (10) | 0.0469 (4) | |
H12A | 0.215039 | 0.583907 | 0.020897 | 0.070* | |
H12B | 0.177050 | 0.614028 | 0.115732 | 0.070* | |
H12C | 0.243843 | 0.482724 | 0.092827 | 0.070* | |
C13 | 0.8240 (2) | 0.61662 (14) | 0.72369 (8) | 0.0344 (3) | |
H13A | 0.692175 | 0.592954 | 0.734223 | 0.052* | |
H13B | 0.856919 | 0.694987 | 0.749237 | 0.052* | |
H13C | 0.921080 | 0.557826 | 0.749199 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0570 (3) | 0.02629 (19) | 0.02802 (19) | −0.00167 (15) | 0.00464 (16) | 0.00597 (12) |
O1 | 0.0290 (4) | 0.0220 (4) | 0.0179 (4) | −0.0019 (3) | 0.0028 (3) | 0.0025 (3) |
O2 | 0.0302 (5) | 0.0348 (5) | 0.0171 (4) | 0.0004 (4) | 0.0017 (3) | 0.0026 (3) |
O3 | 0.0361 (6) | 0.0699 (8) | 0.0242 (5) | −0.0023 (5) | 0.0079 (4) | 0.0090 (5) |
O4 | 0.0466 (6) | 0.0287 (5) | 0.0185 (4) | −0.0060 (4) | 0.0051 (4) | −0.0012 (3) |
C1 | 0.0228 (6) | 0.0262 (6) | 0.0191 (5) | 0.0016 (4) | 0.0032 (4) | 0.0033 (4) |
C2 | 0.0214 (5) | 0.0293 (6) | 0.0179 (5) | 0.0009 (5) | 0.0034 (4) | 0.0012 (4) |
C3 | 0.0217 (5) | 0.0269 (6) | 0.0208 (5) | −0.0013 (4) | 0.0028 (4) | −0.0021 (4) |
C4 | 0.0183 (5) | 0.0241 (6) | 0.0216 (5) | 0.0005 (4) | 0.0032 (4) | 0.0008 (4) |
C5 | 0.0257 (6) | 0.0237 (6) | 0.0284 (6) | −0.0015 (4) | 0.0050 (5) | 0.0001 (5) |
C6 | 0.0290 (6) | 0.0239 (6) | 0.0309 (6) | 0.0007 (5) | 0.0068 (5) | 0.0064 (5) |
C7 | 0.0278 (6) | 0.0299 (6) | 0.0217 (6) | 0.0009 (5) | 0.0054 (5) | 0.0061 (5) |
C8 | 0.0221 (5) | 0.0259 (6) | 0.0199 (5) | −0.0001 (4) | 0.0023 (4) | 0.0005 (4) |
C9 | 0.0185 (5) | 0.0222 (5) | 0.0207 (5) | 0.0005 (4) | 0.0033 (4) | 0.0026 (4) |
C10 | 0.0301 (6) | 0.0266 (6) | 0.0195 (5) | 0.0017 (5) | 0.0050 (5) | 0.0010 (4) |
C11 | 0.0388 (7) | 0.0323 (6) | 0.0160 (5) | 0.0027 (5) | 0.0012 (5) | 0.0041 (5) |
C12 | 0.0463 (9) | 0.0625 (11) | 0.0282 (7) | −0.0113 (8) | −0.0064 (6) | 0.0089 (7) |
C13 | 0.0421 (8) | 0.0422 (8) | 0.0190 (6) | −0.0058 (6) | 0.0053 (5) | −0.0019 (5) |
S1—C1 | 1.6343 (13) | C5—H5 | 0.9500 |
O1—C1 | 1.3623 (14) | C6—C7 | 1.4011 (19) |
O1—C9 | 1.3747 (14) | C6—H6 | 0.9500 |
O2—C10 | 1.3258 (16) | C7—C8 | 1.3864 (17) |
O2—C11 | 1.4692 (14) | C7—H7 | 0.9500 |
O3—C10 | 1.2154 (16) | C8—C9 | 1.4040 (16) |
O4—C8 | 1.3555 (15) | C11—C12 | 1.497 (2) |
O4—C13 | 1.4327 (15) | C11—H11A | 0.9900 |
C1—C2 | 1.4425 (17) | C11—H11B | 0.9900 |
C2—C3 | 1.3577 (18) | C12—H12A | 0.9800 |
C2—C10 | 1.5068 (16) | C12—H12B | 0.9800 |
C3—C4 | 1.4341 (16) | C12—H12C | 0.9800 |
C3—H3 | 0.9500 | C13—H13A | 0.9800 |
C4—C9 | 1.3907 (16) | C13—H13B | 0.9800 |
C4—C5 | 1.4105 (17) | C13—H13C | 0.9800 |
C5—C6 | 1.3757 (18) | ||
C1—O1—C9 | 122.15 (10) | C7—C8—C9 | 118.00 (11) |
C10—O2—C11 | 117.07 (10) | O1—C9—C4 | 121.78 (10) |
C8—O4—C13 | 117.57 (10) | O1—C9—C8 | 116.28 (10) |
O1—C1—C2 | 117.20 (11) | C4—C9—C8 | 121.93 (11) |
O1—C1—S1 | 117.11 (9) | O3—C10—O2 | 125.43 (12) |
C2—C1—S1 | 125.69 (9) | O3—C10—C2 | 124.87 (12) |
C3—C2—C1 | 121.25 (11) | O2—C10—C2 | 109.68 (10) |
C3—C2—C10 | 120.57 (11) | O2—C11—C12 | 106.41 (11) |
C1—C2—C10 | 118.16 (11) | O2—C11—H11A | 110.4 |
C2—C3—C4 | 120.46 (11) | C12—C11—H11A | 110.4 |
C2—C3—H3 | 119.8 | O2—C11—H11B | 110.4 |
C4—C3—H3 | 119.8 | C12—C11—H11B | 110.4 |
C9—C4—C5 | 119.23 (11) | H11A—C11—H11B | 108.6 |
C9—C4—C3 | 117.09 (11) | C11—C12—H12A | 109.5 |
C5—C4—C3 | 123.65 (11) | C11—C12—H12B | 109.5 |
C6—C5—C4 | 118.90 (12) | H12A—C12—H12B | 109.5 |
C6—C5—H5 | 120.5 | C11—C12—H12C | 109.5 |
C4—C5—H5 | 120.5 | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 121.55 (11) | H12B—C12—H12C | 109.5 |
C5—C6—H6 | 119.2 | O4—C13—H13A | 109.5 |
C7—C6—H6 | 119.2 | O4—C13—H13B | 109.5 |
C8—C7—C6 | 120.38 (11) | H13A—C13—H13B | 109.5 |
C8—C7—H7 | 119.8 | O4—C13—H13C | 109.5 |
C6—C7—H7 | 119.8 | H13A—C13—H13C | 109.5 |
O4—C8—C7 | 126.05 (11) | H13B—C13—H13C | 109.5 |
O4—C8—C9 | 115.95 (10) | ||
C9—O1—C1—C2 | −3.16 (16) | C1—O1—C9—C4 | 3.16 (17) |
C9—O1—C1—S1 | 175.96 (8) | C1—O1—C9—C8 | −175.89 (10) |
O1—C1—C2—C3 | 1.27 (17) | C5—C4—C9—O1 | −179.07 (10) |
S1—C1—C2—C3 | −177.76 (10) | C3—C4—C9—O1 | −1.08 (17) |
O1—C1—C2—C10 | 179.41 (10) | C5—C4—C9—C8 | −0.08 (18) |
S1—C1—C2—C10 | 0.38 (17) | C3—C4—C9—C8 | 177.92 (10) |
C1—C2—C3—C4 | 0.66 (18) | O4—C8—C9—O1 | −0.24 (16) |
C10—C2—C3—C4 | −177.43 (10) | C7—C8—C9—O1 | 179.45 (10) |
C2—C3—C4—C9 | −0.77 (17) | O4—C8—C9—C4 | −179.29 (11) |
C2—C3—C4—C5 | 177.13 (12) | C7—C8—C9—C4 | 0.40 (18) |
C9—C4—C5—C6 | 0.08 (18) | C11—O2—C10—O3 | −0.6 (2) |
C3—C4—C5—C6 | −177.78 (11) | C11—O2—C10—C2 | −179.06 (10) |
C4—C5—C6—C7 | −0.42 (19) | C3—C2—C10—O3 | −113.31 (16) |
C5—C6—C7—C8 | 0.8 (2) | C1—C2—C10—O3 | 68.54 (18) |
C13—O4—C8—C7 | −5.25 (19) | C3—C2—C10—O2 | 65.20 (15) |
C13—O4—C8—C9 | 174.41 (11) | C1—C2—C10—O2 | −112.95 (12) |
C6—C7—C8—O4 | 178.93 (12) | C10—O2—C11—C12 | 174.50 (12) |
C6—C7—C8—C9 | −0.73 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1i | 0.95 | 2.91 | 3.7460 (12) | 147 |
C5—H5···O3i | 0.95 | 2.59 | 3.4774 (17) | 156 |
C11—H11B···O4ii | 0.99 | 2.53 | 3.2803 (17) | 132 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2. |
C13H12O3S2 | Dx = 1.426 Mg m−3 |
Mr = 280.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9921 reflections |
a = 6.9815 (3) Å | θ = 2.6–28.3° |
b = 11.7185 (4) Å | µ = 0.40 mm−1 |
c = 15.9642 (5) Å | T = 200 K |
V = 1306.07 (8) Å3 | Block, orange |
Z = 4 | 0.48 × 0.15 × 0.15 mm |
F(000) = 584 |
Bruker D8 QUEST diffractometer | 3236 independent reflections |
Radiation source: sealed x-ray tube | 2716 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 28.3°, θmin = 2.2° |
φ and ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.508, Tmax = 1.000 | l = −21→21 |
39191 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.059P)2 + 0.5127P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
3236 reflections | Δρmax = 0.66 e Å−3 |
166 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin. |
Primary atom site location: dual | Absolute structure parameter: 0.28 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELXL program (Sheldrick, 2015bActa Cryst. A71, 3–8.)), with Uiso(H) set to 1.5Ueq(C). Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.4505 (2) | 0.42794 (9) | 0.64815 (7) | 0.0549 (3) | |
S2 | 0.65791 (17) | 0.60773 (12) | 0.81399 (7) | 0.0576 (4) | |
O1 | 0.4600 (4) | 0.5818 (2) | 0.53460 (14) | 0.0366 (5) | |
O2 | 0.2942 (4) | 0.6656 (2) | 0.79980 (15) | 0.0396 (6) | |
O3 | 0.4718 (5) | 0.5983 (2) | 0.37205 (15) | 0.0477 (7) | |
C1 | 0.4566 (6) | 0.5617 (3) | 0.6188 (2) | 0.0346 (7) | |
C2 | 0.4547 (5) | 0.6598 (3) | 0.6730 (2) | 0.0332 (7) | |
C3 | 0.4485 (5) | 0.7675 (3) | 0.6411 (2) | 0.0336 (7) | |
H3 | 0.442878 | 0.830990 | 0.678033 | 0.040* | |
C4 | 0.4504 (5) | 0.7861 (3) | 0.5523 (2) | 0.0316 (7) | |
C5 | 0.4439 (6) | 0.8948 (3) | 0.5152 (2) | 0.0394 (8) | |
H5 | 0.436584 | 0.961497 | 0.548912 | 0.047* | |
C6 | 0.4484 (6) | 0.9031 (3) | 0.4291 (2) | 0.0420 (8) | |
H6 | 0.444656 | 0.976303 | 0.403595 | 0.050* | |
C7 | 0.4585 (6) | 0.8055 (3) | 0.3785 (2) | 0.0386 (8) | |
H7 | 0.461900 | 0.813305 | 0.319335 | 0.046* | |
C8 | 0.4635 (5) | 0.6985 (3) | 0.4140 (2) | 0.0345 (7) | |
C9 | 0.4585 (5) | 0.6903 (3) | 0.5017 (2) | 0.0300 (7) | |
C10 | 0.4616 (6) | 0.6432 (3) | 0.7656 (2) | 0.0361 (7) | |
C11 | 0.2741 (7) | 0.6566 (4) | 0.8913 (2) | 0.0478 (10) | |
H11A | 0.254324 | 0.576048 | 0.907750 | 0.057* | |
H11B | 0.391389 | 0.685042 | 0.919242 | 0.057* | |
C12 | 0.1089 (9) | 0.7255 (6) | 0.9162 (3) | 0.0795 (19) | |
H12A | 0.130065 | 0.805098 | 0.899767 | 0.119* | |
H12B | 0.092360 | 0.721120 | 0.977080 | 0.119* | |
H12C | −0.006428 | 0.696472 | 0.888450 | 0.119* | |
C13 | 0.4702 (8) | 0.6049 (4) | 0.2824 (2) | 0.0530 (10) | |
H13A | 0.472751 | 0.527718 | 0.258801 | 0.079* | |
H13B | 0.582927 | 0.647326 | 0.263161 | 0.079* | |
H13C | 0.353765 | 0.644242 | 0.263827 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0899 (9) | 0.0342 (5) | 0.0404 (5) | 0.0014 (5) | 0.0125 (6) | 0.0063 (4) |
S2 | 0.0494 (6) | 0.0810 (9) | 0.0425 (5) | 0.0054 (6) | −0.0037 (5) | 0.0205 (6) |
O1 | 0.0486 (14) | 0.0347 (12) | 0.0265 (10) | 0.0022 (12) | 0.0039 (11) | 0.0021 (9) |
O2 | 0.0466 (15) | 0.0476 (15) | 0.0247 (11) | 0.0026 (12) | 0.0035 (10) | 0.0002 (10) |
O3 | 0.0749 (19) | 0.0425 (14) | 0.0258 (11) | 0.0013 (15) | 0.0017 (12) | −0.0030 (11) |
C1 | 0.0406 (18) | 0.0355 (17) | 0.0276 (14) | −0.0001 (16) | 0.0063 (15) | 0.0025 (13) |
C2 | 0.0323 (16) | 0.0401 (17) | 0.0272 (15) | 0.0019 (16) | 0.0030 (14) | 0.0028 (13) |
C3 | 0.0334 (17) | 0.0399 (17) | 0.0274 (15) | 0.0010 (16) | 0.0012 (14) | 0.0005 (13) |
C4 | 0.0297 (16) | 0.0349 (16) | 0.0301 (16) | 0.0006 (15) | 0.0009 (14) | 0.0027 (13) |
C5 | 0.048 (2) | 0.0338 (17) | 0.0365 (17) | 0.0027 (18) | −0.0010 (16) | 0.0012 (14) |
C6 | 0.051 (2) | 0.0395 (18) | 0.0357 (17) | 0.0040 (19) | −0.0003 (17) | 0.0107 (15) |
C7 | 0.0394 (18) | 0.047 (2) | 0.0293 (15) | 0.0001 (18) | −0.0028 (16) | 0.0071 (15) |
C8 | 0.0353 (17) | 0.0401 (17) | 0.0281 (15) | 0.0013 (16) | −0.0017 (15) | 0.0006 (14) |
C9 | 0.0296 (16) | 0.0328 (15) | 0.0276 (15) | −0.0009 (14) | 0.0020 (14) | 0.0036 (12) |
C10 | 0.0426 (19) | 0.0339 (16) | 0.0319 (16) | −0.0020 (16) | 0.0019 (15) | 0.0052 (13) |
C11 | 0.067 (3) | 0.054 (2) | 0.0215 (16) | 0.000 (2) | 0.0053 (17) | 0.0026 (16) |
C12 | 0.084 (4) | 0.120 (5) | 0.035 (2) | 0.037 (4) | 0.018 (2) | 0.003 (3) |
C13 | 0.071 (3) | 0.060 (2) | 0.0284 (16) | 0.005 (2) | −0.0058 (19) | −0.0045 (17) |
S1—C1 | 1.636 (4) | C5—H5 | 0.9500 |
S2—C10 | 1.627 (4) | C6—C7 | 1.402 (6) |
O1—C1 | 1.365 (4) | C6—H6 | 0.9500 |
O1—C9 | 1.376 (4) | C7—C8 | 1.376 (5) |
O2—C10 | 1.316 (5) | C7—H7 | 0.9500 |
O2—C11 | 1.471 (4) | C8—C9 | 1.403 (5) |
O3—C8 | 1.353 (5) | C11—C12 | 1.463 (7) |
O3—C13 | 1.434 (4) | C11—H11A | 0.9900 |
C1—C2 | 1.439 (5) | C11—H11B | 0.9900 |
C2—C3 | 1.362 (5) | C12—H12A | 0.9800 |
C2—C10 | 1.492 (5) | C12—H12B | 0.9800 |
C3—C4 | 1.434 (4) | C12—H12C | 0.9800 |
C3—H3 | 0.9500 | C13—H13A | 0.9800 |
C4—C9 | 1.385 (5) | C13—H13B | 0.9800 |
C4—C5 | 1.405 (5) | C13—H13C | 0.9800 |
C5—C6 | 1.378 (5) | ||
C1—O1—C9 | 122.4 (3) | C7—C8—C9 | 118.2 (3) |
C10—O2—C11 | 118.8 (3) | O1—C9—C4 | 121.8 (3) |
C8—O3—C13 | 116.6 (3) | O1—C9—C8 | 116.4 (3) |
O1—C1—C2 | 117.0 (3) | C4—C9—C8 | 121.8 (3) |
O1—C1—S1 | 116.6 (3) | O2—C10—C2 | 110.8 (3) |
C2—C1—S1 | 126.4 (3) | O2—C10—S2 | 127.0 (3) |
C3—C2—C1 | 121.0 (3) | C2—C10—S2 | 122.0 (3) |
C3—C2—C10 | 119.5 (3) | C12—C11—O2 | 107.8 (4) |
C1—C2—C10 | 119.4 (3) | C12—C11—H11A | 110.1 |
C2—C3—C4 | 120.7 (3) | O2—C11—H11A | 110.1 |
C2—C3—H3 | 119.6 | C12—C11—H11B | 110.1 |
C4—C3—H3 | 119.6 | O2—C11—H11B | 110.1 |
C9—C4—C5 | 119.4 (3) | H11A—C11—H11B | 108.5 |
C9—C4—C3 | 117.0 (3) | C11—C12—H12A | 109.5 |
C5—C4—C3 | 123.7 (3) | C11—C12—H12B | 109.5 |
C6—C5—C4 | 118.9 (3) | H12A—C12—H12B | 109.5 |
C6—C5—H5 | 120.5 | C11—C12—H12C | 109.5 |
C4—C5—H5 | 120.5 | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 121.2 (3) | H12B—C12—H12C | 109.5 |
C5—C6—H6 | 119.4 | O3—C13—H13A | 109.5 |
C7—C6—H6 | 119.4 | O3—C13—H13B | 109.5 |
C8—C7—C6 | 120.5 (3) | H13A—C13—H13B | 109.5 |
C8—C7—H7 | 119.8 | O3—C13—H13C | 109.5 |
C6—C7—H7 | 119.8 | H13A—C13—H13C | 109.5 |
O3—C8—C7 | 126.0 (3) | H13B—C13—H13C | 109.5 |
O3—C8—C9 | 115.8 (3) | ||
C9—O1—C1—C2 | −1.1 (5) | C1—O1—C9—C4 | −1.0 (5) |
C9—O1—C1—S1 | 177.7 (3) | C1—O1—C9—C8 | 179.6 (3) |
O1—C1—C2—C3 | 2.7 (5) | C5—C4—C9—O1 | −178.3 (3) |
S1—C1—C2—C3 | −176.0 (3) | C3—C4—C9—O1 | 1.5 (5) |
O1—C1—C2—C10 | −176.7 (3) | C5—C4—C9—C8 | 1.1 (5) |
S1—C1—C2—C10 | 4.6 (5) | C3—C4—C9—C8 | −179.2 (4) |
C1—C2—C3—C4 | −2.2 (6) | O3—C8—C9—O1 | −0.8 (5) |
C10—C2—C3—C4 | 177.2 (3) | C7—C8—C9—O1 | 178.8 (3) |
C2—C3—C4—C9 | 0.1 (6) | O3—C8—C9—C4 | 179.8 (3) |
C2—C3—C4—C5 | 179.9 (4) | C7—C8—C9—C4 | −0.6 (6) |
C9—C4—C5—C6 | −0.9 (6) | C11—O2—C10—C2 | −178.5 (3) |
C3—C4—C5—C6 | 179.4 (4) | C11—O2—C10—S2 | −1.2 (5) |
C4—C5—C6—C7 | 0.3 (7) | C3—C2—C10—O2 | 73.3 (5) |
C5—C6—C7—C8 | 0.2 (6) | C1—C2—C10—O2 | −107.2 (4) |
C13—O3—C8—C7 | −1.7 (6) | C3—C2—C10—S2 | −104.1 (4) |
C13—O3—C8—C9 | 177.9 (4) | C1—C2—C10—S2 | 75.3 (4) |
C6—C7—C8—O3 | 179.5 (4) | C10—O2—C11—C12 | 158.3 (4) |
C6—C7—C8—C9 | −0.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S2i | 0.95 | 2.86 | 3.764 (4) | 160 |
C11—H11A···O3ii | 0.99 | 2.64 | 3.460 (6) | 140 |
C11—H11B···S2 | 0.99 | 2.67 | 3.005 (5) | 100 |
C12—H12C···S2iii | 0.98 | 2.83 | 3.805 (7) | 178 |
C13—H13C···S1iv | 0.98 | 2.94 | 3.656 (5) | 131 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1/2, −y+1, z+1/2; (iii) x−1, y, z; (iv) −x+1/2, −y+1, z−1/2. |
Acknowledgements
NMU is thanked for funding and facilities.
References
Abdallah, M., Hijazi, A., Dumur, F. & Lalevée, J. (2020). Molecules, 25, 2063. CrossRef PubMed Google Scholar
Bakhtiari, G., Moradi, S. & Soltanali, S. A. (2014). Arab. J. Chem. 7, 972–975. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bojtár, M., Kormos, A., Kis-Petik, K., Kellermayer, M. & Kele, P. (2019). Org. Lett. 21, 9410–9414. PubMed Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
García-Báez, E. V., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2003). Cryst. Growth Des. 3, 35–45. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. (2015). Chem. Soc. Rev. 44, 3358–3377. Web of Science CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929–1958. Web of Science CrossRef Google Scholar
Kayukova, L. A., Praliyev, K. D., Gut'yar, V. G. & Baitursynova, G. P. (2015). Russ. J. Org. Chem. 51, 148–160. CrossRef CAS Google Scholar
Khatoon, H. & Abdulmalek, E. A. (2021). Molecules, 26, 6937. CrossRef PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, X., Cole, J. M., Waddell, P. G., Lin, T. C., Radia, J. & Zeidler, A. (2012). J. Phys. Chem. A, 116, 727–737. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahendra, M., Doreswamy, B. H., Sridhar, M. A., Prasad, J. S., Narodia, V. P., Naliapara, Y. T. & Shah, A. (2003). Anal. Sci. X, 19, X33–X34. CAS Google Scholar
Matos, M. J., Santana, L., Uriarte, E., Abreu, O. A., Molina, E. & Yordi, E. G. (2015). Phytochemicals – Isolation, Characterisation and Role in Human Health, edited by A. V. Rao & L. G. Rao, ch. 5. London: IntechOpen. https://doi.org/10.5772/59982. Google Scholar
Olson, J. P., Banghart, M. R., Sabatini, B. L. & Ellis-Davies, G. C. R. (2013). J. Am. Chem. Soc. 135, 15948–15954. CrossRef CAS PubMed Google Scholar
Patil, S. A., Unki, S. N., Kulkarni, A. D., Naik, V. H. & Badami, P. S. (2011). J. Mol. Struct. 985, 330–338. CrossRef CAS Google Scholar
Shang, Y., He, X., Zhou, Y., Yu, Z., Han, G., Jin, W. & Chen, J. (2015). Tetrahedron, 71, 864–868. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shevchenko, A. P. & Blatov, V. A. (2021). Struct. Chem. 32, 507–519. Web of Science CrossRef CAS Google Scholar
Shevchenko, A. P., Shabalin, A. A., Karpukhin, I. Y. & Blatov, V. A. (2022). Sci. Technol. Adv. Mater. Meth. 2, 252–265. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Takahashi, H., Takechi, H., Kubo, K. & Matsumoto, T. (2006). Acta Cryst. E62, o2553–o2555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, G., Zheng, H., Guo, M., Du, L., Liu, G. & Wang, P. (2016). Appl. Surf. Sci. 367, 167–173. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.