research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Rb2Ca2Si2O7: a new alkali alkaline-earth silicate based on [Si2O7]6− anions

crossmark logo

aInstitute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck, Tyrol, A-6020, Austria
*Correspondence e-mail: volker.kahlenberg@uibk.ac.at

Edited by A. Lemmerer, University of the Witwatersrand, South Africa (Received 7 January 2025; accepted 10 February 2025; online 17 February 2025)

Synthesis experiments were conducted in the ternary Rb2O–CaO–SiO2 system, resulting in the formation of a hitherto unknown com­pound with the com­position Rb2Ca2Si2O7, i.e. dirubidium dicalcium pyrosilicate. Single crystals of sufficient size and quality were recovered from a starting mixture with an Rb2O:CaO:SiO2 molar ratio of 2:1:3. The educts were confined in a lid-covered platinum crucible and gradually cooled from 1050 °C at a rate of 0.3 °C min−1 to 800 °C before being finally quenched in air to ambient conditions. The crystal structure was investigated at −80 and 15 °C from single-crystal X-ray diffraction data, with structure determination performed using direct methods. The com­pound was found to be of ortho­rhom­bic symmetry, belonging to the space group Pmmn (No. 59), with a = 5.7363 (6), b = 13.8532 (12), c = 9.9330 (10) Å, V = 789.34 (13) Å3 and Z = 4 (at 15 °C). The final refinement calculations at ambient tem­per­a­ture converged at R1 = 0.030 and wR2 = 0.076 for 773 observed reflections with I > 2σ(I). The silicate anion is based on pyrosilicate units of com­position [Si2O7]6− with point-group symmetry m (Cs). Charge com­pensation is achieved by the incorporation of rubidium and calcium cations distributed among a total of five independent sites within the asymmetric unit. Two of the nontetra­hedrally coordinated cation sites (M4 and M5) are exclusively occupied by calcium cations, which are surrounded by six O atoms in the form of octa­hedra or trigonal prisms, respectively. The rubidium cations on the M1–M3 sites show more com­plex coordination environments. The M2 site, for example, is characterized by a tricapped trigonal prism polyhedron. Notably, the M3 site exhibits a 50% population of Ca2+ and Rb+, respectively. The com­pound shows closer structural resemblances with K2Ca2Si2O7 and can be derived from a hexa­gonal aristotype with space-group symmetry P63/mmc by displacements of the atoms. The corresponding distortion modes can be classified by certain irreducible representations of the high-symmetry parent phase. Structural investigations were com­pleted by determining the thermal expansion tensor for the tem­per­a­ture inter­val between −80 and 15 °C.

1. Introduction

The ternary A2O–CaO–SiO2 systems, where A represents a chemical element in Group 1 of the Periodic Table have been the subject of many investigations in the past. However, the extent to which these systems were studied through synthesis experiments and/or thermodynamic modelling varies considerably depending on the specific alkali metal in question. This observation is directly correlated with the importance of a particular system for certain disciplines within the fields of inorganic chemistry and technical mineralogy. To date, the Na2O–CaO–SiO2 system has undoubtedly attracted the greatest attention (Morey & Bowen, 1925[Morey, G. W. & Bowen, N. L. (1925). J. Glass Technol. Soc. 9, 226-264.]; Segnit, 1953[Segnit, E. R. (1953). Am. J. Sci. 251, 586-601.]; Williamson & Glasser, 1965[Williamson, J. & Glasser, F. P. (1965). Science, 148, 1589-1591.]; Shahid & Glasser, 1971[Shahid, K. A. & Glasser, F. P. (1971). Phys. Chem. Glasses, 12, 50-57.]; Zhang et al., 2011[Zhang, Z., Xiao, Y., Voncken, J., Yang, Y., Boom, R., Wang, N. & Zou, Z. (2011). J. Am. Ceram. Soc. 94, 3088-3093.]; Santoso et al., 2022[Santoso, I., Riihimäki, M., Sibarani, D., Taskinen, P., Hupa, L., Paek, M. K. & Lindberg, D. (2022). J. Eur. Ceram. Soc. 42, 2449-2463.]). The corresponding melts have been of fundamental importance to the glass industry, facilitating the production of flat and hollow soda-lime silicate glass products that are ubiquitous in everyday life (Varshneya, 1994[Varshneya, A. K. (1994). Fundamentals of Inorganic Glasses, p. 570. London: Academic Press.]; Shelby, 2009[Shelby, J. E. (2009). Glass Science and Technology, 2nd ed., p. 291. Cambridge: The Royal Society of Chemistry.]). The crystalline counterparts cannot only occur as glass defects due to devitrification problems (Holland & Preston, 1938[Holland, A. J. & Preston, E. (1938). J. Soc. Glass Technol. 21, 395-408.]; Kahlenberg et al., 2010[Kahlenberg, V., Girtler, D., Arroyabe, E., Kaindl, R. & Többens, D. (2010). Miner. Petrol. 100, 1-9.]), but have also been studied as optical diffusers (Butt et al., 2014[Butt, H., Knowles, K. M., Montelongo, Y., Amaratunga, G. A. J. & Wilkinson, T. D. (2014). ACS Nano, 8, 2929-2935.]), constituents of bioactive ceramics (Reddy et al., 2014[Reddy, P. M., Lakshmi, R., Dass, F. P. & Sasikumar, S. (2014). Sci. Eng. Compos. Mater. 23, 375-380.]; Zandi Karimi et al., 2018[Zandi Karimi, A., Rezabeigi, E. & Drew, R. A. L. (2018). J. Non-Cryst. Solids, 502, 176-183.]) or as host materials for rare-earth-element-based silicate phosphors (Liu et al., 2014[Liu, Q., Liu, Y., Ding, Y., Peng, Z., Yu, Q., Tian, X. & Dong, G. (2014). J. Sol-Gel Sci. Technol. 71, 276-282.]; Parauha et al., 2022[Parauha, Y. R., Halwar, D. K. & Dhoble, S. J. (2022). Displays, 75, 102304.]). It is noteworthy that some sodium calcium silicates, such as combeite (Na2Ca2Si3O9), are also present in nature as exotic species in rather unusual petrological environments (Mitchell & Dawson, 2012[Mitchell, R. H. & Dawson, J. B. (2012). Lithos, 152, 40-46.]; Weidendorfer et al., 2016[Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. (2016). Contrib. Mineral. Petrol. 171, 43.]; Kahlenberg, 2023[Kahlenberg, V. (2023). Miner. Petrol. 117, 293-306.]).

Conversely, the K2O–CaO–SiO2 system has only recently experienced a resurgence of inter­est, because several of the ternary phases can occur in ashes from biomass combustion and gasification (Olanders & Steenari, 1995[Olanders, B. & Steenari, B. M. (1995). Biomass Bioenergy, 8, 105-115.]; Chen & Zhao, 2016[Chen, M. & Zhao, B. (2016). Fuel, 180, 638-644.]; Santoso et al., 2020[Santoso, I., Taskinen, P., Jokilaakso, A., Paek, M.-K. & Lindberg, D. (2020). Fuel, 265, 116894.]). During the last 15 years, eight potassium calcium silicates have been structurally characterized in detail, most of them for the first time. A recent summary of these phases, encom­passing a vast array of connectivities of the [SiO4] tetra­hedra silicate anions and new structure types, can be found in the article by Liu et al. (2021[Liu, H., Hildebrandt, E., Krammer, H., Kahlenberg, V., Krüger, H. & Schottenberger, H. (2021). J. Am. Ceram. Soc. 104, 6678-6695.]).

According to West (1978[West, A. R. (1978). J. Am. Ceram. Soc. 61, 152-155.]), four thermodynamically stable ternary phases occur in the Li2O–CaO–SiO2 system. A major subject of inter­est for lithium calcium silicates is their applications in glass ceramics (Al-Harbi, 2007[Al-Harbi, O. A. (2007). Eur. J. Glass. Sci. Technol. A48, 35-40.]) or for the synthesis of phosphors after doping with rare earth elements (Kim et al., 2012[Kim, J. S., Song, H. J., Roh, H. S., Yim, D. K., Noh, J. H. & Hong, K. S. (2012). Mater. Lett. 79, 112-115.]; Wu et al., 2020[Wu, Q., Zhao, Q., Zheng, P., Chen, W., Xiang, D., He, Z., Huang, Q., Ding, J. & Zhou, J. (2020). Ceram. Int. 46, 2845-2852.]).

Because the highly radioactive and extremely unstable alkali metal francium is not a suitable subject for phase analytical studies, only two other systems remain for consideration, Rb2O–CaO–SiO2 and Cs2O–CaO–SiO2, both of which have been relegated to the backwaters of silicate research. One potential explanation for this fact is that these ternary silicate phases are expected to be more sensitive to water and humidity in com­parison to the corresponding com­pounds con­taining alkali elements with lower atomic numbers. Naturally, this aspect presents a clear disadvantage from an applicational perspective. For the rubidium-con­taining system, the existence of only one crystalline com­pound has been reported so far. Single crystals of Rb2Ca2Si3O9 were obtained using a polycrystalline precursor and an RbCl2 flux (Kahlenberg et al., 2016[Kahlenberg, V., Müllner, M., Schmidmair, D., Perfler, L. & Többens, D. (2016). Z. Kristallogr. 231, 209-217.]). Its crystal structure is based on silicate anions forming sechser single chains.

In the course of a systematic investigation of the ternary Rb2O–CaO–SiO2 system, the crystal structure of a previously unknown com­pound, which was crystallized from the melt without the application of a mineralizer, is reported.

2. Experimental

2.1. Synthesis

The synthesis experiment for 1 g of a sample with an Rb2O:CaO:SiO2 molar ratio of 2:1:3 (or Rb4CaSi3O9) was based on a stoichiometric mixture of the following educts: Rb2CO3 (Aldrich, 99.8%), CaCO3 (calcite, Merck, >99.9%) and SiO2 (quartz, AlfaAesar, 99.995%). Prior to weighing on an analytical balance, the reagents were dried at 400 °C for a period of 24 h. In addition to removing physically adsorbed water, this step is important because rubidium carbonate is known to be very hygroscopic. Homogenization was per­formed with an agate mortar and a pestle for a duration of 15 min in a glove-bag under argon. The mixture was immediately transferred to a 50 ml platinum crucible, which was covered with a platinum lid. The con­tainer was heated in a box furnace in air from room tem­per­a­ture to 1050 °C at a rate of 6 °C min−1. The sample was annealed at the maximum tem­per­a­ture for 60 min and subsequently cooled to 800 °C at a rate of 0.3 °C min−1 before final quenching to ambient con­ditions. Weight losses were determined from weight differences before and after heating. The observed difference was 0.6% higher than the predicted value (based on CO2 release from the disintegration of the carbonates), indicating that losses due to Rb2O evaporation were small. A preliminary visual inspection of the product following the removal of the lid indicated that the sample had melted. The crucible was then stored in an evacuated desiccator for further analysis.

2.2. Single-crystal diffraction

The solidified melt cake was mechanically separated from the crucible and further crushed in an agate mortar. Portions of the sample were immediately transferred to a glass slide into a drop of Paratone-N oil (Hampton Research) and in­ves­ti­gated under a polarizing binocular, which revealed the existence of transparent colourless birefringent single crystals (showing sharp extinction between crossed polarizers) up to 350 µm in size. The majority of the crystals were found to be at least partially embedded in an optically isotropic glassy matrix.

Notably, fresh transparent crystals when exposed to air at 38% relative humidity and 21 °C (laboratory conditions) on a glass slide began to become slightly opaque after 3 d. After 6 d, the samples were com­pletely opaque with a milky white colour, indicating an ongoing hydration reaction. However, the hydration product was not analysed further.

Several crystals displaying prismatic to plate-like mor­phol­ogy were isolated from the oil and affixed to glass fibers using fingernail hardener. They were subsequently studied using single-crystal diffraction performed on an Oxford Dif­fraction Gemini R Ultra diffractometer, which was equipped with a four-circle kappa goniometer and a Ruby CCD detector. Preliminary diffraction experiments were con­ducted with the objective of determining the unit-cell parameters. The screening process was performed in a dried air gas stream of −80 (2) °C generated by an Oxford Cryosystems Desktop Cooler to protect the samples from potential hydration. All crystals were found to belong to the same phase and exhibited an ortho­rhom­bic primitive metric that did not correspond to any entries of the Rb2O–CaO–SiO2 system or one of the relevant silicate subsystems currently available in the Inorganic Crystal Structure Database (Hellenbrandt, 2004[Hellenbrandt, M. (2004). Crystallogr. Rev. 10, 17-22.]). The sample with the best overall diffraction quality was selected for further structural analysis. A full sphere of reciprocal space up to 29.50° θ was obtained with Mo Kα radiation (see Table 1[link]). The data were processed using the CrysAlis PRO software package (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). Following indexing, the diffraction pattern was integrated. The data reduction process involved Lorentz and polarization corrections. Finally, the tem­per­a­ture was raised to 15 (2) °C and a second data collection was started using the identical run list employed for the low-tem­per­a­ture study, while keeping the crystal im­mer­sed in a dry environment (see Table 1[link]). There was no evidence of a phase transition upon heating to ambient conditions. Once the correct chemical formula had been established on the basis of structure determination (see below), an analytical numeric absorption correction was applied to both data sets using a multifaceted crystal model.

Table 1
Experimental details

For both determinations: Rb2Ca2Si2O7, Mr = 419.28, orthorhombic, Pmmn, Z = 4. Experiments were carried out with Mo Kα radiation using a Rigaku Gemini R Ultra diffractometer equipped with a four-circle kappa goniometer and a Ruby CCD detector. The absorption correction was analytical [CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]. Refinement was on 78 parameters.

  Data at 15 °C (RT) Data at −80 °C (LT)
Crystal data
Temperature (K) 288 193
a, b, c (Å) 5.7363 (6), 13.8532 (12), 9.933 (1) 5.7281 (6), 13.8361 (13), 9.9233 (11)
V3) 789.34 (13) 786.47 (14)
μ (mm−1) 14 14.05
Crystal size (mm) 0.32 × 0.1 × 0.04 0.32 × 0.1 × 0.04
 
Tmin, Tmax 0.121, 0.678 0.109, 0.675
No. of measured, independent and observed [I > 2σ(I)] reflections 10834, 931, 773 10870, 929, 777
Rint 0.058 0.059
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06 0.029, 0.067, 1.07
No. of reflections 931 929
Δρmax, Δρmin (e Å−3) 0.86, −0.70 0.93, −0.75
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The intensity statistics clearly indicated the presence of a centre of symmetry. Merging the two data sets in the ortho­rhom­bic Laue group 2/m 2/m 2/m resulted in reasonable inter­nal R values (see Table 1[link]). Based on the observed reflection conditions (hk0): h+k = 2n, only the space groups P21mn, Pm21n and Pmmn remained. The structure solution for the low-tem­per­a­ture set was successfully initiated in the centrosymmetric space group using direct methods (SIR2002; Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), which provided a crystal-chemically sound starting model. One missing O atom was found from a difference Fourier map (SHEXL97; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The same software was also employed for subsequent full-matrix least-squares refinements. The scattering curves and anomalous dispersion coefficients were obtained from the Inter­national Tables for Crystallography (Vol. C; Prince, 2004[Prince, E. (2004). Editor. International Tables for X-ray Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, 3rd ed. Dordrecht: Springer.]). The final structure model obtained from the low-tem­per­a­ture data collection was then used as a starting point for the refinement of the structure under ambient conditions. The calculations with anisotropic displacement parameters for all atoms resulted in R1 residuals of 0.029 (at −80 °C) and 0.030 (at 15 °C) The largest shift/e.s.d. in the final cycles was < 0.001. Section 2.3[link] provides a detailed analysis of the site populations of the five non­tetra­hedrally coordinated cation sites in the asymmetric unit. The resulting chemical com­position from the structure analysis was Rb2Ca2Si2O7. Table 2[link] lists the final coordinates, site occupancies and equivalent isotropic displacement parameters, while Table 3[link] provides the anisotropic displacement parameters. Table 4[link] summarizes the selected inter­atomic distances. Structural features were illustrated using the VESTA3 program (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]). Bond valence sum (BVS) calculations have been performed with the program VaList (Wills, 2010[Wills, A. (2010). VaList. http://fermat.chem.ucl.ac.uk/spaces/willsgroup/software/.]) using the parameter sets of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for Ca—O and Rb—O inter­actions, as well as Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for the Si—O bonds. For the illustration of the three-dimensional representation surface of the thermal expansion tensor, the program WinTensor was employed (Kaminsky, 2014[Kaminsky, W. (2014). WinTensor. Version 1.5 for Windows. http://cad4.cpac.washington.edu/WinTensorhome/WinTensor.htm.]).

Table 2
Atomic coordinates (×104, origin choice 2 of space group Pmmn) and equivalent isotropic displacement parameters (Å2 × 103) for Rb2Ca2Si2O7

First line 15 °C and second line −80 °C. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. M1 and M2 are exclusively occupied by rubidium, while M4 and M5 represent pure Ca sites. M3 is a mixed Rb–Ca position, with a population of 50% rubidium and 50% calcium.

Atom Wyckoff site Site symmetry x y z Ueq
M1 4e m.. 7500 1049 (1) 854 (1) 18 (1)
      7500 1048 (1) 853 (1) 14 (1)
M2 2a mm2 2500 2500 2585 (1) 16 (1)
      2500 2500 2588 (1) 12 (1)
M3 4e m.. 2500 980 (1) 5869 (1) 21 (1)
      2500 980 (1) 5869 (1) 21 (1)
M4 2b mm2 7500 2500 7494 (2) 10 (1)
      7500 2500 7492 (2) 8 (1)
M5 4e m.. 2500 5106 (1) 2489 (1) 10 (1)
      2500 5108 (1) 2489 (1) 9 (1)
Si1 4e m.. 7500 1362 (1) 4187 (2) 15 (1)
      7500 1362 (1) 4186 (2) 14 (1)
Si2 4e m.. 2500 1396 (1) 9193 (2) 9 (1)
      2500 1396 (1) 9192 (2) 8 (1)
O1 8g 1 181 (5) 1274 (2) 8280 (3) 23 (1)
      183 (5) 1274 (2) 8280 (3) 21 (1)
O2 4e m.. 2500 734 (3) 10515 (4) 19 (1)
      2500 732 (3) 10520 (4) 16 (1)
O3 2a mm2 2500 2500 9820 (7) 26 (2)
      2500 2500 9825 (6) 22 (2)
O4 8g 1 5246 (7) 822 (3) 3605 (4) 44 (1)
      5242 (7) 821 (3) 3604 (4) 43 (1)
O5 2b mm2 7500 2500 3599 (6) 14 (1)
      7500 2500 3598 (6) 12 (1)
O6 4e m.. 7500 1355 (3) 5789 (4) 35 (1)
      7500 1361 (3) 5793 (5) 32 (1)

Table 3
Anisotropic displacement parameters (Å2 × 103) for Rb2Ca2Si2O7

The anisotropic displacement factor exponent takes the form: −2π2[h2a*2U11 + ⋯ + 2hka*b*U12]. First line 15 °C and second line −80 °C.

  U11 U22 U33 U23 U13 U12
M1 14 (1) 26 (1) 13 (1) 0 (1) 0 0
  11 (1) 20 (1) 10 (1) 0 (1) 0 0
M2 18 (1) 14 (1) 16 (1) 0 0 0
  14 (1) 10 (1) 13 (1) 0 0 0
M3 18 (1) 41 (1) 13 (1) −7 (1) 0 0
  16 (1) 35 (1) 11 (1) −7 (1) 0 0
M4 13 (1) 7 (1) 11 (1) 0 0 0
  10 (1) 5 (1) 9 (1) 0 0 0
M5 13 (1) 7 (1) 10 (1) 0 (1) 0 0
  12 (1) 6 (1) 9 (1) 0 (1) 0 0
Si1 22 (1) 11 (1) 12 (1) 0 (1) 0 0
  21 (1) 10 (1) 11 (1) 0 (1) 0 0
Si2 9 (1) 7 (1) 12 (1) 2(1) 0 0
  7 (1) 6 (1) 11 (1) 2(1) 0 0
O1 17 (2) 21 (2) 32 (2) 7 (1) −11 (1) −7 (1)
  14 (2) 19 (2) 31 (2) 8(1) −11 (1) −7 (1)
O2 20 (2) 18 (2) 19 (2) 7(2) 0 0
  17 (2) 14 (2) 19 (2) 6(2) 0 0
O3 43 (4) 15 (3) 21 (3) 0 0 0
  40 (4) 10 (3) 15 (3) 0 0 0
O4 53 (3) 32 (2) 46 (2) 5 (2) −25 (2) −18 (2)
  50 (3) 28 (2) 50 (2) 5 (2) −25 (2) −16 (2)
O5 21 (3) 13 (3) 9 (3) 0 0 0
  20 (3) 10 (3) 6 (3) 0 0 0
O6 76 (4) 17 (2) 11 (2) 0(2) 0 0
  70 (4) 12 (2) 15 (2) −1 (2) 0 0

Table 4
Selected bond lengths up to 3.2 Å and bond angles (°) for Rb2Ca2Si2O7

For the tetra­hedra and octa­hedra, the distortion parameters QE (quadratic elongation) and AV (angle variance) have been calculated.

15 °C   −80 °C  
M1—O2i 2.819 (4) M1—O2i 2.815 (4)
M1—O2ii 2.9206 (9) M1—O2ii 2.9160 (9)
M1—O2iii 2.9206 (9) M1—O2iii 2.9160 (9)
M1—O1iv 2.999 (3) M1—O1iv 2.997 (3)
M1—O1iii 2.999 (3) M1—O1iii 2.997 (3)
M1—O4v 3.039 (4) M1—O4 3.037 (4)
M1—O4 3.039 (4) M1—O4v 3.037 (4)
<M1—O> 2.962 <M1—O> 2.959
M2—O3ii 2.746 (7) M2—O3ii 2.742 (6)
M2—O4vi 2.985 (4) M2—O4vi 2.980 (4)
M2—O4vii 2.985 (4) M2—O4vii 2.980 (4)
M2—O4viii 2.985 (4) M2—O4 2.980 (4)
M2—O4 2.985 (4) M2—O4viii 2.980 (4)
M2—O5 3.0401 (19) M2—O5 3.0343 (19)
M2—O5ix 3.0401 (19) M2—O5ix 3.0343 (19)
M2—O2ii 3.196 (4) M2—O2ii 3.193 (4)
M2—O2x 3.196 (4) M2—O2x 3.193 (4)
<M2—O> 3.018 <M2—O> 3.013
M3—O4viii 2.754 (5) M3—O4vii 2.752 (5)
M3—O4 2.754 (5) M3—O4 2.752 (5)
M3—O1viii 2.770 (4) M3—O1vii 2.765 (4)
M3—O1 2.770 (4) M3—O1 2.765 (4)
M3—O4xii 2.860 (4) M3—O4xii 2.855 (4)
M3—O4i 2.860 (4) M3—O4i 2.855 (4)
M3—O6 2.9160 (9) M3—O6 2.9131 (9)
M3—O6ix 2.9160 (9) M3—O6ix 2.9131 (9)
<M3—O> 2.825 <M3—O> 2.821
M4—O6 2.320 (5) M4—O6 2.308 (5)
M4—O6xi 2.320 (5) M4—O6xi 2.308 (5)
M4—O1xiii 2.421 (3) M4—O1xiii 2.419 (3)
M4—O1vii 2.421 (3) M4—O1vii 2.419 (3)
M4—O1viii 2.421 (3) M4—O1xiv 2.419 (3)
M4—O1xiv 2.421 (3) M4—O1viii 2.419 (3)
<M4—O> 2.387 <M4—O> 2.382
M5—O2x 2.279 (4) M5—O2x 2.274 (4)
M5—O4vii 2.317 (4) M5—O4viii 2.312 (4)
M5—O4vi 2.317 (4) M5—O4vi 2.312 (4)
M5—O1xix 2.359 (3) M5—O1xix 2.355 (3)
M5—O1xx 2.359 (3) M5—O1xx 2.355 (3)
M5—O6xxi 2.435 (5) M5—O6xxi 2.431 (5)
<M5—O> 2.345 <M5—O> 2.340
QE = 1.020 AV = 69.94 QE = 1.020 AV = 70.19
Si1—O6 1.591 (5) Si1—O6 1.595 (5)
Si1—O4 1.601 (4) Si1—O4 1.602 (4)
Si1—O4v 1.601 (4) Si1—O4v 1.602 (4)
Si1—O5 1.681 (2) Si1—O5 1.679 (2)
<Si1—O> 1.618 <Si1—O> 1.620
QE = 1.001 AV = 2.51 QE = 1.001 AV = 2.48
Si2—O2 1.602 (4) Si2—O2 1.606 (4)
Si2—O1 1.619 (3) Si2—O1 1.615 (3)
Si2—O1viii 1.619 (3) Si2—O1vii 1.615 (3)
Si2—O3 1.651 (3) Si2—O3 1.652 (3)
<Si2—O> 1.622 <Si2—O> 1.622
QE = 1.004 AV = 16.51 QE = 1.004 AV = 17.44
       
O—Ca—O angles      
O6—M4—O6xi 86.2 (2) O6—M4—O6xi 86.2 (2)
O6—M4—O1xiii 135.66 (10) O6—M4—O1xiii 135.64 (10)
O6xiM4—O1xiii 75.89 (12) O6xiM4—O1xiii 75.93 (12)
O6—M4—O1vii 135.66 (10) O6—M4—O1vii 75.93 (12)
O6xiM4—O1vii 75.89 (12) O6xiM4—O1vii 135.64 (10)
O1xiiiM4—O1vii 78.88 (14) O1xiiiM4—O1vii 142.31 (18)
O6—M4—O1viii 75.89 (12) O6—M4—O1xiv 75.93 (12)
O6xiM4—O1viii 135.66 (10) O6xiM4—O1xiv 135.64 (10)
O1xiiiM4—O1viii 142.33 (18) O1xiiiM4—O1xiv 89.08 (14)
O1viiM4—O1viii 89.11 (14) O1viiM4—O1xiv 78.90 (14)
O6—M4—O1xiv 75.89 (12) O6—M4—O1viii 135.64 (10)
O6xiM4—O1xiv 135.66 (10) O6xiM4—O1viii 75.93 (12)
O1xiiiM4—O1xiv 89.11 (14) O1xiiiM4—O1viii 78.90 (14)
O1viiM4—O1xiv 142.33 (18) O1viiM4—O1viii 89.08 (14)
O1viiiM4—O1xiv 78.88 (14) O1xivM4—O1viii 142.31 (18)
       
O2xM5—O4vii 97.40 (13) O2xM5—O4viii 97.30 (13)
O2xM5—O4vi 97.40 (13) O2xM5—O4vi 97.30 (13)
O4viiM5—O4vi 85.7 (2) O4viiiM5—O4vi 85.6 (2)
O2xM5—O1xix 94.14 (12) O2xM5—O1xix 94.14 (12)
O4viiM5—O1xix 168.20 (13) O4viiiM5—O1xix 168.32 (13)
O4viM5—O1xix 95.30 (14) O4viM5—O1xix 95.29 (14)
O2xM5—O1xx 94.14 (12) O2xM5—O1xx 94.14 (12)
O4viiM5—O1xx 95.30 (14) O4viiiM5—O1xx 95.29 (14)
O4viM5—O1xx 168.20 (13) O4viM5—O1xx 168.32 (13)
O1xixM5—O1xx 81.37 (16) O1xixM5—O1xx 81.50 (16)
O2xM5—O6xxi 165.38 (16) O2xM5—O6xxi 165.29 (16)
O4viiM5—O6xxi 93.30 (13) O4viiiM5—O6xxi 93.48 (13)
O4viM5—O6xxi 93.30 (13) O4viM5—O6xxi 93.48 (13)
O1xixM5—O6xxi 74.91 (11) O1xixM5—O6xxi 74.85 (11)
O1xxM5—O6xxi 74.91 (11) O1xxM5—O6xxi 74.85 (11)
       
O—Si—O angles      
O6—Si1—O4 110.99 (19) O6—Si1—O4 111.10 (19)
O6—Si1—O4v 110.99 (19) O6—Si1—O4v 111.10 (19)
O4—Si1—O4v 107.7 (3) O4—Si1—O4v 107.6 (3)
O6—Si1—O5 110.6 (3) O6—Si1—O5 110.4 (3)
O4—Si1—O5 108.21 (18) O4—Si1—O5 108.26 (18)
O4v—Si1—O5 108.21 (18) O4v—Si1—O5 108.26 (18)
<O—Si1—O> 109.45 <O—Si1—O> 109.45
       
O2—Si2—O1 113.52 (14) O2—Si2—O1 113.58 (14)
O2—Si2—O1viii 113.52 (14) O2—Si2—O1vii 113.58 (14)
O1—Si2—O1viii 110.5 (3) O1—Si2—O1vii 110.5 (3)
O2—Si2—O3 102.8 (3) O2—Si2—O3 102.5 (3)
O1—Si2—O3 107.96 (17) O1—Si2—O3 108.05 (16)
O1viii—Si2—O3 107.96 (17) O1vii—Si2—O3 108.05 (17)
<O—Si2—O> 109.38 <O—Si2—O> 109.38
       
Si—O—Si angles      
Si2vii—O3—Si2 135.7 (4) Si2—O3—Si2viii 135.3 (4)
Si1xi—O5—Si1 139.4 (4) Si1xi—O5—Si1 139.3 (4)
Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x, y, z − 1; (iii) x + 1, y, z − 1; (iv) −x + [{1\over 2}], y, z − 1; (v) −x + [{3\over 2}], y, z; (vi) x, −y + [{1\over 2}], z; (vii) −x + [{1\over 2}], −y + [{1\over 2}], z; (viii) −x + [{1\over 2}], y, z; (ix) x − 1, y, z; (x) −x + [{1\over 2}], −y + [{1\over 2}], z − 1; (xi) −x + [{3\over 2}], −y + [{1\over 2}], z; (xii) x − [{1\over 2}], −y, −z + 1; (xiii) x + 1, −y + [{1\over 2}], z; (xiv) x + 1, y, z; (xix) x + [{1\over 2}], y + [{1\over 2}], −z + 1; (xx) −x, y + [{1\over 2}], −z + 1; (xxi) x − [{1\over 2}], y + [{1\over 2}], −z + 1.

2.3. Crystal structure

The crystal structure is based on [Si2O7]6− anions and can be classified as a sorosilicate (Liebau, 1985[Liebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.]). The unit cell con­tains a total of two symmetrically independent bi­tetra­hedral units. Both silicate anions exhibit point-group symmetry m or Cs (see Fig. 1[link]). Charge com­pensation within the structure is achieved by monovalent rubidium and divalent calcium cations, which are distributed among a total of five different positions (M1–M5). Bond distance considerations indicated that M1 and M2 are pure rubidium sites, while M4 and M5 are occupied by calcium ions. Indeed, the results of the site-population refinements pointed to full occupancy with the respective two cation species. Conversely, M3 was identified as a mixed cation position, with a population of 51 (2)% Rb and 49 (2)% Ca. Therefore, we finally assumed a 1:1 ratio of rubidium and calcium on the M3 site, leading to a charge-neutral chemical com­position of Rb2Ca2Si2O7. Taking into account the initial com­position of the starting material, it can be concluded that the glass phase is enriched in Rb2O com­pared to the crystalline samples.

[Figure 1]
Figure 1
Side view of a single [Si2O7]6− unit. Displacement ellipsoids are shown at the 80% probability level. Colour key: O atoms are red and Si atoms are blue.

It is important to note that all geometrical parameters presented in this paragraph have been derived from the refinement of the data set collected at 15 °C. The Si—O bond distances within the two silicate dimers cover a considerable range, spanning from 1.591 (5) to 1.681 (2) Å. However, this variation aligns with the anti­cipated trends for [Si2O7]6− groups com­prising one bridging and three terminal O atoms. The distances between the Si atoms and the terminal O atoms are notably shorter (average of both dimers = 1.599 Å) than the corresponding bond lengths to the bridging O atoms (average of the dimers = 1.680 Å). The observed shortening of the mean Si—O(terminal) bond distance by 0.081 Å can be attributed to the stronger attraction between the O and Si atoms than between the O atoms and the rubidium/calcium cations present in the structure. The distortion of the tetra­hedra is also reflected in the O—Si—O angles, which range from 102.8 (3) to 113.52 (14)°, respectively. Nevertheless, the mean O—Si—O angles are in close proximity to the ideal values for an ideal tetra­hedron (see Table 4[link]). The degree of tetra­hedral distortion can be qu­anti­fied using the following two parameters: quadratic elongation (QE) and angle vari­ance (AV) (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The numerical values for these parameters are also provided in Table 4[link]. In fact, the distortions of both the crystallographically independent [Si2O7]6− units are relatively minor, with the tetra­hedra around Si1 showing the least strain. Moreover, due to the point-group symmetry m, the silicate dimers display an eclipsed conformation. The Si—O—Si bond angles deviate from linearity, exhibiting significantly smaller values of 135.7 (4) and 139.4 (4)°. In particular, the second value is close to 140°, which is postulated to correspond to an unstrained Si—O—Si angle (Liebau, 1985[Liebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.]).

The Ca positions (M4 and M5) are coordinated by six oxygen ligands that form distorted octa­hedra (around M5) and trigonal prisms (around M4). Each trigonal prism shares opposing faces with two adjacent octa­hedra (see Fig. 2[link]). The resulting tripolyhedral cluster has point-group symmetry m. Neighbouring clusters are linked by rubidium cations located at the M2 position. They are coordinated by nine O atoms, forming a highly elongated tricapped trigonal prism. Again, linkage is provided by shared faces, but this time between M5O6 and M2O9 polyhedra. Consequently, linear rod-like building blocks are obtained, that run parallel to the b axis (see Fig. 3[link]). The [Si2O7]6− groups serve to connect adjacent rods. Each dimer shares common oxygen anions with (i) a single trigonal prism around M4 and (ii) several surrounding M2O9 groups. Finally, the Rb and/or Ca atoms on the M1 and M3 positions com­plete the structure, occupying cavities above and below the silicate dimers. They are bonded to seven and eight O atoms, respectively, forming more irregular coordination polyhedra. A projection of the whole structure parallel to [100] is given in Fig. 4[link].

[Figure 2]
Figure 2
Side view of a single trimer con­taining two octa­hedra and a central trigonal prism. Displacement ellipsoids are drawn at the 80% probability level. Colour key: O atoms are red and Ca atoms are orange.
[Figure 3]
Figure 3
Side view of a single rod-like building element. Rb atoms occupying M2 are shown in green and are coordinated by nine O atoms in the form of a tricapped trigonal prism. O atoms are presented in red.
[Figure 4]
Figure 4
Projection of the whole crystal structure of Rb2Ca2Si2O7 along [100]. Potassium and calcium cations are illustrated in green and orange, respectively. O atoms are shown in red. The sizes of the two-coloured segments of the M3 site are the percentages determined from the site-occupancy refinements.

With the exception of the M3 site, the BVS calculations for the various cation positions yielded values that were close to the formal charges of the ions, assuming full occupancy with a single cation species: M1 1.129, M2 1.243, M4 1.942, M5 2.182, Si1 4.078 and Si2 4.019 (all data in valence units, v.u.). In the case of M3, however, a pronounced overbonding (1.778 v.u. for Rb) or underbonding (0.800 v.u. for Ca) was observed. This outcome provides further evidence for a mixed Rb/Ca occupancy. Notably, BVS calculations can permit an independent, though typically rather rough estimation, of the contents of two distinct atom types sharing the same position (Brown, 2016[Brown, I. D. (2016). The Chemical bond in Inorganic Chemistry: The Bond Valence Model, 2nd ed., p. 315. Oxford University Press.]). The concentrations obtained using the corresponding bond-valence parameters in combination with the M3—O bond distances determined at 15 °C are as follows: 61% Rb and 39% Ca. This result is deemed to be in sufficiently good agreement with the percentages determined from the site-population refinements.

2.4. Thermal expansion

The two sets of lattice parameters determined at −80 and 15 °C were employed to calculate the average thermal expansion tensor αij for the specified tem­per­a­ture inter­val from the thermal strain tensor ɛij and the relationship [ \alpha_{ij}&nbsp;= {{\varepsilon_{ij}}\over{\Delta T}}]. Due to the ortho­rhom­bic symmetry restrictions, the off-diagonal terms of the symmetric second-rank tensor ɛij with ij must be strictly zero. The remaining three com­ponents can be obtained from the following expressions: ɛ11 = [ {{a}\over{a_0}} - 1], ɛ22 = [ {{b}\over{b_0}} - 1] and ɛ33 = [ {{c}\over{c_0}} - 1]. Notably, the lattice parameters with the suffix `zero' pertain to the low-tem­per­a­ture data. In consequence, the thermal expansion tensor has the following form:

[ \alpha_{ij}&nbsp;= \left( \matrix{ {15 \ (1)} & {0} & {0} \cr {0} & {13 \ (1)} & {0} \cr {0} & {0} & {10\ (1)} \cr } \right) \times 10^{-6}]

From the com­parison of the numerical values it is obvious that the thermal expansion is not extremely anisotropic. The largest (α11) and the smallest (α33) value differ by only a factor of 1.5. The expansion along [010], that is, along the rod-like building blocks of the crystal structure, is observed to have an inter­mediate value which is equivalent to the average of α11 and α33 within one standard deviation. By plotting the values of the thermal expansion tensor as a function of all directions one obtains a convenient geometric representation of the anisotropic behaviour of the tensor in the form of a surface in three-dimensional space (Fig. 5[link]). The corresponding two-dimensional sections (ab, bc and ac) are presented in Fig. S1 of the supporting information.

[Figure 5]
Figure 5
Three-dimensional representation surface of the average thermal expansion tensor of Rb2Ca2Si2O7 in the tem­per­a­ture inter­val between −80 and 15 °C.

3. Discussion

It is somewhat unexpected to find that the M3 site is occupied by both rubidium and calcium. Indeed, the two cations differ considerably concerning their ionic radii: r(Rb+,[8]) = 1.61 Å and r(Ca2+,[8]) = 1.12 Å (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In the only other structurally characterized rubidium calcium silicate, Rb2Ca2Si3O9, the two non­tetra­hedrally coordinated cation species are well ordered (Kahlenberg et al., 2016[Kahlenberg, V., Müllner, M., Schmidmair, D., Perfler, L. & Többens, D. (2016). Z. Kristallogr. 231, 209-217.]). To exclude the possibility that the observation of a mixed population is an artifact due to an incorrect unit cell and/or symmetry, several additional tests were performed.

First, the frequency distributions of the experimentally determined Bragg peak positions when projected onto the a, b and c axes were com­puted and the corresponding maxima along these lines were visualized. Secondly, precession-type reconstructions of reciprocal space were calculated for the zero, first and second layers of reciprocal space for each of the three symmetry directions of the ortho­rhom­bic crystal system. Neither method yielded any indication of additional reflections requiring a larger cell. In other words, it can be excluded that our model corresponds to an average structure.

Finally, it was tested whether the unit cell was correct, but the structure was described in a symmetry that was too high. Indeed, a reduction in symmetry could allow for the possibility of cation ordering among the four symmetry-equivalent positions belonging to the Wyckoff position 4e of the M3 site. In the light of the aforementioned observed systematic absences, which clearly indicated the presence of an n-glide plane perpendicular to [001], the following translationengleiche subgroups of Pmmn were considered for a potential symmetry reduction: P21mn, P112/n, Pm21n and P11n. Notably, only a description in one of the latter two space groups involves a Wyckoff splitting of the 4e position, which is a prerequisite for cation ordering. Therefore, the model in Pmmn was transformed for each of the two relevant acentric subgroups and the refinement calculations were repeated. In both instances, instabilities of the refinements were recognized, which can be attributed to the presence of significant correlations between the coordinates and displacement parameters of those atom pairs, which were previously coupled by the centres of inversion present in Pmmn. Consequently, the refinements were restarted using adapted models in the low-symmetry space groups, wherein the atomic coordinates of all atoms except those of the former M3 site were constrained manually to conform to centrosymmetric structures. Despite the expected successful resolution of the correlation issue, the Rb and Ca ions demonstrated no tendency to order among the new sets of sites obtained from the Wyckoff splitting of the former M3 position. In conclusion, we found no evidence to suggest that the distribution of the rubidium and calcium on M3 is not statistically random.

The c/a ratio of the ortho­rhom­bic lattice parameters had a value close to [\sqrt{3}], which is characteristic of an orthohexa­gonal cell. Although there is no doubt that the actual symmetry of Rb2Ca2Si2O7 is only ortho­rhom­bic, this observation prompted us to check for potential pseudosymmetry using the program PSEUDO, implemented in the Bilbao Crystallographic Server (Capillas et al., 2011[Capillas, C., Tasci, E. S., de la Flor, G., Orobengoa, D., Perez-Mato, J. M. & Aroyo, M. I. (2011). Z. Kristallogr. 226, 186-196.]). Relative coordinates of all atoms were used, without distingushing between the various cation species present on the M sites. The search involving minimal supergroups was successful and indicated that the structure can be derived from an aristotype or the parent structure in G = P63/mmc with a′ = 5.7352 and c′ = 13.8532 Å, provided that an inter­mediate step to Z = Cmcm is introduced and atomic shifts up to 1 Å are permitted. The 4 × 4 transformation matrix leading directly from parent structure to the structure in H = Pmmn is as follows:

[ \left( \matrix{ {1} & {\ \ 0} & {-1} & {0} \cr {1} & {\ \ 0} & {\ \ 1} & {-0.5} \cr {0} & {-1} & {\ \ 0} & {0} \cr {0} & {\ \ 0} & {\ \ 0} & {1} \cr } \right)]

In the hexa­gonal aristotype, the sites M1 and M3, as well as M2 and M4, are symmetrically equivalent (Wyckoff positions 4f and 2b of P63/mmc, respectively). M5 (in 2a) corresponds to a third non­tetra­hedrally coordinated cation position. Moreover, the asymmetric unit of the P63/mmc structure con­tains a single Si atom (in 4f) and two O atoms (in 12k and 2d), that is, all [Si2O7] dimers in the unit cell are coupled by symmetry. Notably, the aristotype is isostructural with K3ScSi2O7 (Napper et al., 2004[Napper, J. D., Layland, R. C., Smith, M. D. & Loye, H. (2004). J. Chem. Crystallogr. 34, 347-351.]). In this pyrosilicate, the Sc atoms occupy the octa­hedrally coordinated positions, while the potassium ions are located in the centres of the trigonal prisms.

With respect to the atomic coordinates, the symmetry break from the parent structure can be explained with the onset of several distortion modes, whose symmetry properties are given by the irreducible representations (irreps) of the space group P63/mmc of the aristotype. The corresponding mode analysis was performed using the program AMPLIMODES (Orobengoa et al., 2009[Orobengoa, D., Capillas, C., Aroyo, M. I. & Perez-Mato, J. M. (2009). J. Appl. Cryst. 42, 820-833.]). The observed symmetry reduction requires the irrep M4 associated with the point M ([1 \over 2] 0 0) of the first Brillouin zone, as well as the zone-center irrep Γ5+. Furthermore, the fully symmetrical Γ1+ distortion is also allowed that retains the symmetry of the aristotype.

Using the crystallographic data, a reference structure was calculated in a first step representing the aristotype, but expressed in the low-symmetry space group Pmmn. From the com­parison of the reference structure with the actual model in Pmmn the resulting displacement field can be obtained, which is defined by the individual displacement vectors u for the atoms in the asymmetric unit of the reference structure. It defines the displacive distortions relating both structures. A detailed analysis of the shifts revealed that the O atoms are distinctly more affected. Their absolute values for the shifts vary between 0.345 and 0.649 Å. The Si atoms and most of the M sites show considerably smaller displacements. An exception, however, is the M5 position, which is displaced by about 0.147 Å. The average shift of all corresponding atom pairs in both structures has a value of 0.249 Å.

In the next step of mode analysis, the absolute amplitudes for the three individual com­ponents of the global distortions were calculated. Notably, the amplitudes were normalized with respect to the primitive unit cell of the high-symmetry structure. The relevant values are 1.61 (8) (for M4), 0.147 (6) (for Γ5+) and 0.02 (8) Å (for Γ1+), indicating that the onset of the M4 distortion triggers the symmetry break. Finally, for each involved irrep the corresponding polarization vector was obtained. The actual distortion of a specific mode can then be obtained by multiplying the com­ponents of the polarization vector with the amplitudes mentioned above. In order to obtain a concise graphical overview of the distortion fields, individual displacements of the most affected atoms O1 to O5 belonging to the [Si2O7]6− groups calculated for the dominant M4 representation only have been visualized using the program VESTA3 (see Fig. S2 in the supporting information).

To date, four alkali alkaline-earth silicates with the general formula A2Ca2Si2O7 have been the subject of structural investigations. With the exception of Na2Ca2Si2O7, which is a mixed anion silicate con­taining insular [SiO4] tetra­hedra and [Si3O10] trimers in a 1:1 ratio (Kahlenberg & Hösch 2002[Kahlenberg, V. & Hösch, A. (2002). Z. Kristallogr. 217, 155-163.]), the corresponding lithium, potassium and rubidium com­pounds are characterized by [Si2O7]6− units. Li2Ca2Si2O7 represents a unique structure type (Kahlenberg et al., 2015[Kahlenberg, V., Brunello, E., Hejny, C., Krüger, H., Schmidmair, D., Tribus, M. & Többens, D. (2015). J. Solid State Chem. 225, 155-167.]) and can be rationalized as a three-dimensional framework structure based on corner-sharing [LiO4] and [SiO4] tetra­hedra, in­cluding an O[3]-type bridging oxygen node linking three adjacent tetra­hedra. While the lithium calcium disilicate and the com­pound under investigation exhibit no closer structural relationship, K2Ca2Si2O7 (space group P63/m) and Rb2Ca2Si2O7 can be derived from the condensation of the same type of rod-like elements that have been introduced in Section 2.3[link]. In more detail, both com­pounds can be considered as derivative structures of the same aristotype. However, the distortion patterns resulting in the hexa­gonal potassium and the ortho­rhom­bic rubidium phase are different. Fig. 6[link] illustrates the differences between the parent structure, the two above-mentioned less-symmetric alkali alkaline-earth silicates, as well as related Na3ScSi2O7 (Skrzat et al., 1969[Skrzat, Z. M., Simonov, V. I. & Belov, N. V. (1969). Dokl. Akad. Nauk SSSR, 184, 337-340.]), by showing a 6.5 Å wide slab for each structure that con­tains a sequence of four consecutive rods linked by [Si2O7]6− units. For the sake of clarity, the structures have been simplified slightly. In fact, some of the coordination polyhedra are shown as distorted trigonal prisms, although in some cases there are additional O atoms capping two or three of the prismatic faces that actually do belong to the coordination sphere.

[Figure 6]
Figure 6
Structural differences within a 6.5 Å wide slab con­taining a sequence of four rods between (a) the aristotype, view along [120] (P63/mmc, a = 5.6065 and c = 13.6420 Å), (b) K2Ca2Si2O7, view along [110] (P63/m, a = 9.8020 and c = 13.8781 Å), (c) Rb2Ca2Si2O7, view along [001] (Pmmn, a = 5.7363, b = 13.8532 and c = 9.9330 Å), and (d) Na3ScSi2O7, view along [1[\overline 1]0] (Pbnm, a = 5.3540, b = 9.3470 and c = 13.0890 Å). Different colours simply highlight the various coordination polyhedra, but do not provide any information about their occupation with different cation species.

4. Conclusion

The current crystal structure is an inter­esting example of the substitution of two cation species with very different ionic radii. For several potassium–calcium silicates, including K2Ca2Si2O7, the replacement of calcium by the substanti­ally larger potassium ion has been reported previously. However, the evidence in these cases was based solely on bond-valence calculations, as the two cation types are isoelectronic with 19 electrons each and thus cannot be discriminated from each other using direct site-population refinements by X-ray diffraction data. Conversely, in the case of Rb2Ca2Si2O7, the ion types differ significantly from each other in terms of the number of electrons, thereby rendering diffraction methods a viable additional evidence for a substitution of Rb with Ca. It is noteworthy that the discrepancy between the respective values of the radii for eight-coordinated potassium and rubidium is a mere 6% (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

As mentioned in the Introduction, the crystalline com­pounds of the rubidium–calcium and caesium–calcium silicate groups have been studied only rudimentarily, if at all. This opens up new possibilities for systematic crystal chemical investigations of the influence of the size of the alkali cations on the formation of certain structure types. As Liebau (1985[Liebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.]) demonstrated in his seminal book on oxosilicates, correlations between the radii of the non­tetra­hedrally coordinated cations and various structural aspects, including, among others, ring sizes or chain periodicities in phyllo- and inosilicates, could be deciphered. However, this requires that the data set under consideration con­tains a sufficiently large number of representatives. Of particular inter­est, of course, are com­pounds with equal proportions of the various monovalent, divalent and tetra­valent cation types in the formula unit, such as the family of A2Ca2Si2O7 com­pounds. In order to obtain a com­prehensive crystallographic understanding of the com­pounds belonging to this general com­position, it is necessary to ascertain the structure of the missing Cs phase. This objective is currently being pursued through synthesis experiments.

The present work is a first contribution to a project that will investigate structural relationships systematically and at the same time provide new information on phase equilibria in the Rb2O–CaO–SiO2 and Cs2O–CaO–SiO2 systems.

Supporting information


Computing details top

Dirubidium dicalcium pyrosilicate (RT) top
Crystal data top
Rb2Ca2Si2O7Dx = 3.528 Mg m3
Mr = 419.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PmmnCell parameters from 2256 reflections
a = 5.7363 (6) Åθ = 5.0–29.5°
b = 13.8532 (12) ŵ = 14 mm1
c = 9.933 (1) ÅT = 288 K
V = 789.34 (13) Å3Thin plate, colourless
Z = 40.32 × 0.1 × 0.04 mm
F(000) = 792
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
931 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.3575 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 77
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2020), based on expressions derived by Clark & Reid (1995)]
k = 1717
Tmin = 0.121, Tmax = 0.678l = 1212
10834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0295P)2 + 3.6732P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.86 e Å3
931 reflectionsΔρmin = 0.70 e Å3
78 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0100 (5)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.750.10486 (5)0.08538 (6)0.0178 (2)
Rb20.250.250.25846 (8)0.0159 (2)
Rb30.250.09802 (7)0.58685 (8)0.0243 (3)0.5
Ca30.250.09802 (7)0.58685 (8)0.0243 (3)0.5
Ca40.750.250.74935 (15)0.0101 (4)
Ca50.250.51058 (8)0.24873 (11)0.0102 (3)
Si10.750.13621 (12)0.41868 (17)0.0149 (4)
Si20.250.13963 (11)0.91931 (16)0.0093 (3)
O10.0181 (5)0.1274 (2)0.8280 (3)0.0233 (8)
O20.250.0734 (3)1.0515 (4)0.0188 (10)
O30.250.250.9820 (7)0.0262 (15)
O40.5246 (7)0.0822 (3)0.3605 (4)0.0439 (11)
O50.750.250.3599 (6)0.0143 (12)
O60.750.1355 (3)0.5789 (4)0.0347 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0143 (3)0.0261 (4)0.0128 (3)000.0002 (2)
Rb20.0178 (5)0.0137 (4)0.0162 (4)000
Rb30.0181 (4)0.0413 (6)0.0134 (4)000.0074 (4)
Ca30.0181 (4)0.0413 (6)0.0134 (4)000.0074 (4)
Ca40.0125 (8)0.0069 (7)0.0109 (8)000
Ca50.0133 (6)0.0073 (5)0.0099 (6)000.0001 (4)
Si10.0224 (9)0.0107 (8)0.0116 (8)000.0001 (6)
Si20.0085 (7)0.0075 (7)0.0118 (8)000.0024 (6)
O10.0171 (16)0.0207 (16)0.0320 (19)0.0073 (13)0.0110 (14)0.0074 (13)
O20.020 (2)0.018 (2)0.019 (2)000.0074 (18)
O30.043 (4)0.015 (3)0.021 (3)000
O40.053 (3)0.032 (2)0.046 (2)0.0184 (19)0.025 (2)0.0047 (17)
O50.021 (3)0.013 (3)0.009 (3)000
O60.076 (4)0.017 (2)0.011 (2)000.0002 (18)
Geometric parameters (Å, º) top
Rb1—O2i2.819 (4)Si1—O41.601 (4)
Rb1—O2ii2.9206 (9)Si1—O4v1.601 (4)
Rb1—O2iii2.9206 (9)Si1—O51.681 (2)
Rb1—O1iv2.999 (3)Si2—O21.602 (4)
Rb1—O1iii2.999 (3)Si2—O11.619 (3)
Rb1—O4v3.039 (4)Si2—O1viii1.619 (3)
Rb1—O43.039 (4)Si2—O31.651 (3)
Rb1—O53.388 (4)O1—Si21.619 (3)
Rb2—O3ii2.746 (7)O1—Ca5xviii2.359 (3)
Rb2—O4vi2.985 (4)O1—Ca4ix2.421 (3)
Rb2—O4vii2.985 (4)O1—Rb32.770 (4)
Rb2—O4viii2.985 (4)O1—Rb1xix2.999 (3)
Rb2—O42.985 (4)O2—Si21.602 (4)
Rb2—O53.0401 (19)O2—Ca5xx2.279 (4)
Rb2—O5ix3.0401 (19)O2—Rb1i2.819 (4)
Rb2—O2ii3.196 (4)O2—Rb1xxi2.9206 (9)
Rb2—O2x3.196 (4)O2—Rb1xix2.9206 (9)
Rb3—O4viii2.754 (5)O2—Rb2xxi3.196 (4)
Rb3—O42.754 (5)O3—Si2vii1.651 (3)
Rb3—O1viii2.770 (4)O3—Si21.651 (3)
Rb3—O12.770 (4)O3—Rb2xxi2.746 (7)
Rb3—O4xi2.860 (4)O4—Si11.601 (4)
Rb3—O4i2.860 (4)O4—Ca5vii2.317 (4)
Rb3—O62.9160 (9)O4—Rb32.754 (5)
Rb3—O6ix2.9160 (9)O4—Rb3i2.860 (4)
Ca4—O62.320 (5)O4—Rb22.985 (4)
Ca4—O6xii2.320 (5)O4—Rb13.039 (4)
Ca4—O1xiii2.421 (3)O5—Si1xii1.681 (2)
Ca4—O1vii2.421 (3)O5—Si11.681 (2)
Ca4—O1viii2.421 (3)O5—Rb2xiv3.0401 (19)
Ca4—O1xiv2.421 (3)O5—Rb23.0401 (19)
Ca5—O2x2.279 (4)O5—Rb1xii3.388 (4)
Ca5—O4vii2.317 (4)O5—Rb13.388 (4)
Ca5—O4vi2.317 (4)O6—Si11.591 (4)
Ca5—O1xv2.359 (3)O6—Ca42.320 (5)
Ca5—O1xvi2.359 (3)O6—Ca5xxii2.435 (5)
Ca5—O6xvii2.435 (5)O6—Rb3xiv2.9160 (9)
Si1—O61.591 (5)O6—Rb32.9160 (9)
O2i—Rb1—O2ii79.25 (8)O1viii—Rb3—O4xi100.79 (11)
O2i—Rb1—O2iii79.25 (8)O1—Rb3—O4xi75.71 (10)
O2ii—Rb1—O2iii158.25 (17)O4viii—Rb3—O4i109.79 (8)
O2i—Rb1—O1iv71.35 (9)O4—Rb3—O4i79.71 (12)
O2ii—Rb1—O1iv54.11 (10)O1viii—Rb3—O4i75.71 (10)
O2iii—Rb1—O1iv114.88 (10)O1—Rb3—O4i100.79 (11)
O2i—Rb1—O1iii71.35 (9)O4xi—Rb3—O4i53.74 (16)
O2ii—Rb1—O1iii114.88 (10)O4viii—Rb3—O6123.68 (12)
O2iii—Rb1—O1iii54.11 (10)O4—Rb3—O655.20 (12)
O1iv—Rb1—O1iii61.69 (11)O1viii—Rb3—O661.64 (11)
O2i—Rb1—O4v110.08 (10)O1—Rb3—O6118.01 (11)
O2ii—Rb1—O4v120.40 (11)O4xi—Rb3—O6127.25 (12)
O2iii—Rb1—O4v70.77 (11)O4i—Rb3—O673.50 (12)
O1iv—Rb1—O4v174.31 (9)O4viii—Rb3—O6ix55.20 (12)
O1iii—Rb1—O4v123.98 (9)O4—Rb3—O6ix123.68 (12)
O2i—Rb1—O4110.08 (10)O1viii—Rb3—O6ix118.01 (11)
O2ii—Rb1—O470.77 (11)O1—Rb3—O6ix61.64 (11)
O2iii—Rb1—O4120.40 (11)O4xi—Rb3—O6ix73.50 (12)
O1iv—Rb1—O4123.98 (9)O4i—Rb3—O6ix127.25 (12)
O1iii—Rb1—O4174.31 (9)O6—Rb3—O6ix159.22 (18)
O4v—Rb1—O450.35 (14)O6—Ca4—O6xii86.2 (2)
O3ii—Rb2—O4vi109.85 (8)O6—Ca4—O1xiii135.66 (10)
O3ii—Rb2—O4vii109.85 (8)O6xii—Ca4—O1xiii75.89 (12)
O4vi—Rb2—O4vii63.71 (15)O6—Ca4—O1vii135.66 (10)
O3ii—Rb2—O4viii109.85 (8)O6xii—Ca4—O1vii75.89 (12)
O4vi—Rb2—O4viii140.29 (17)O1xiii—Ca4—O1vii78.88 (14)
O4vii—Rb2—O4viii102.26 (13)O6—Ca4—O1viii75.89 (12)
O3ii—Rb2—O4109.85 (8)O6xii—Ca4—O1viii135.66 (10)
O4vi—Rb2—O4102.26 (13)O1xiii—Ca4—O1viii142.33 (18)
O4vii—Rb2—O4140.29 (17)O1vii—Ca4—O1viii89.11 (14)
O4viii—Rb2—O463.71 (15)O6—Ca4—O1xiv75.89 (12)
O3ii—Rb2—O5109.36 (10)O6xii—Ca4—O1xiv135.66 (10)
O4vi—Rb2—O552.37 (7)O1xiii—Ca4—O1xiv89.11 (14)
O4vii—Rb2—O5112.66 (10)O1vii—Ca4—O1xiv142.33 (18)
O4viii—Rb2—O5112.66 (10)O1viii—Ca4—O1xiv78.88 (14)
O4—Rb2—O552.37 (7)O2x—Ca5—O4vii97.40 (13)
O3ii—Rb2—O5ix109.36 (10)O2x—Ca5—O4vi97.40 (13)
O4vi—Rb2—O5ix112.66 (10)O4vii—Ca5—O4vi85.7 (2)
O4vii—Rb2—O5ix52.37 (7)O2x—Ca5—O1xv94.14 (12)
O4viii—Rb2—O5ix52.37 (7)O4vii—Ca5—O1xv168.20 (13)
O4—Rb2—O5ix112.66 (10)O4vi—Ca5—O1xv95.30 (14)
O5—Rb2—O5ix141.3 (2)O2x—Ca5—O1xvi94.14 (12)
O3ii—Rb2—O2ii49.96 (7)O4vii—Ca5—O1xvi95.30 (14)
O4vi—Rb2—O2ii144.54 (9)O4vi—Ca5—O1xvi168.20 (13)
O4vii—Rb2—O2ii144.54 (9)O1xv—Ca5—O1xvi81.37 (16)
O4viii—Rb2—O2ii67.82 (10)O2x—Ca5—O6xvii165.38 (16)
O4—Rb2—O2ii67.82 (10)O4vii—Ca5—O6xvii93.30 (13)
O5—Rb2—O2ii102.31 (6)O4vi—Ca5—O6xvii93.30 (13)
O5ix—Rb2—O2ii102.31 (6)O1xv—Ca5—O6xvii74.91 (11)
O3ii—Rb2—O2x49.96 (7)O1xvi—Ca5—O6xvii74.91 (11)
O4vi—Rb2—O2x67.82 (10)O6—Si1—O4110.99 (19)
O4vii—Rb2—O2x67.82 (10)O6—Si1—O4v110.99 (19)
O4viii—Rb2—O2x144.54 (9)O4—Si1—O4v107.7 (3)
O4—Rb2—O2x144.54 (9)O6—Si1—O5110.6 (3)
O5—Rb2—O2x102.31 (6)O4—Si1—O5108.21 (18)
O5ix—Rb2—O2x102.31 (6)O4v—Si1—O5108.21 (18)
O2ii—Rb2—O2x99.92 (15)O2—Si2—O1113.52 (14)
O4viii—Rb3—O469.79 (16)O2—Si2—O1viii113.52 (14)
O4viii—Rb3—O1viii172.90 (10)O1—Si2—O1viii110.5 (3)
O4—Rb3—O1viii116.29 (9)O2—Si2—O3102.8 (3)
O4viii—Rb3—O1116.29 (9)O1—Si2—O3107.96 (17)
O4—Rb3—O1172.90 (10)O1viii—Si2—O3107.96 (17)
O1viii—Rb3—O157.39 (12)Si2vii—O3—Si2135.7 (4)
O4viii—Rb3—O4xi79.71 (12)Si1xii—O5—Si1139.4 (4)
O4—Rb3—O4xi109.79 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1/2, y, z1; (v) x+3/2, y, z; (vi) x, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y, z; (ix) x1, y, z; (x) x+1/2, y+1/2, z1; (xi) x1/2, y, z+1; (xii) x+3/2, y+1/2, z; (xiii) x+1, y+1/2, z; (xiv) x+1, y, z; (xv) x+1/2, y+1/2, z+1; (xvi) x, y+1/2, z+1; (xvii) x1/2, y+1/2, z+1; (xviii) x1/2, y1/2, z+1; (xix) x1, y, z+1; (xx) x+1/2, y+1/2, z+1; (xxi) x, y, z+1; (xxii) x+1/2, y1/2, z+1.
Dirubidium dicalcium pyrosilicate (LT) top
Crystal data top
Rb2Ca2Si2O7Dx = 3.541 Mg m3
Mr = 419.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PmmnCell parameters from 2430 reflections
a = 5.7281 (6) Åθ = 5.0–30.4°
b = 13.8361 (13) ŵ = 14.05 mm1
c = 9.9233 (11) ÅT = 193 K
V = 786.47 (14) Å3Thin plate, colourless
Z = 40.32 × 0.1 × 0.04 mm
F(000) = 792
Data collection top
Rigaku Xcalibur Ruby Gemini ultra
diffractometer
929 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10.3575 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 77
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2020), based on expressions derived by Clark & Reid (1995)]
k = 1717
Tmin = 0.109, Tmax = 0.675l = 1212
10870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.018P)2 + 4.8532P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.93 e Å3
929 reflectionsΔρmin = 0.75 e Å3
78 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0075 (4)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.750.10480 (4)0.08531 (6)0.0138 (2)
Rb20.250.250.25884 (8)0.0124 (2)
Rb30.250.09799 (7)0.58693 (8)0.0206 (2)0.5
Ca30.250.09799 (7)0.58693 (8)0.0206 (2)0.5
Ca40.750.250.74921 (15)0.0080 (4)
Ca50.250.51081 (8)0.24885 (11)0.0088 (3)
Si10.750.13623 (12)0.41858 (17)0.0137 (4)
Si20.250.13959 (11)0.91918 (16)0.0078 (3)
O10.0183 (5)0.1274 (2)0.8280 (3)0.0211 (7)
O20.250.0732 (3)1.0520 (4)0.0165 (9)
O30.250.250.9825 (6)0.0220 (15)
O40.5242 (7)0.0821 (3)0.3604 (4)0.0425 (11)
O50.750.250.3598 (6)0.0119 (12)
O60.750.1361 (3)0.5793 (5)0.0323 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0107 (3)0.0204 (3)0.0104 (3)000.0001 (2)
Rb20.0141 (4)0.0100 (4)0.0130 (4)000
Rb30.0161 (4)0.0345 (5)0.0113 (4)000.0071 (4)
Ca30.0161 (4)0.0345 (5)0.0113 (4)000.0071 (4)
Ca40.0099 (8)0.0046 (7)0.0094 (8)000
Ca50.0117 (6)0.0059 (5)0.0088 (6)000.0001 (4)
Si10.0208 (9)0.0096 (8)0.0107 (8)000.0003 (6)
Si20.0070 (7)0.0055 (7)0.0110 (8)000.0022 (6)
O10.0137 (15)0.0189 (15)0.0307 (19)0.0071 (13)0.0112 (14)0.0077 (14)
O20.017 (2)0.014 (2)0.019 (2)000.0059 (18)
O30.040 (4)0.010 (3)0.015 (3)000
O40.050 (3)0.0280 (19)0.050 (2)0.0163 (19)0.025 (2)0.0048 (18)
O50.020 (3)0.010 (3)0.006 (3)000
O60.070 (4)0.012 (2)0.015 (2)000.0008 (18)
Geometric parameters (Å, º) top
Rb1—O2i2.815 (4)Si1—O4v1.602 (4)
Rb1—O2ii2.9160 (9)Si1—O51.679 (2)
Rb1—O2iii2.9160 (9)Si2—O21.606 (4)
Rb1—O1iv2.997 (3)Si2—O11.615 (3)
Rb1—O1iii2.997 (3)Si2—O1vii1.615 (3)
Rb1—O43.037 (4)Si2—O31.652 (3)
Rb1—O4v3.037 (4)O1—Si21.615 (3)
Rb1—O53.385 (4)O1—Ca5xviii2.355 (3)
Rb2—O3ii2.742 (6)O1—Ca4ix2.419 (3)
Rb2—O4vi2.980 (4)O1—Rb32.765 (4)
Rb2—O4vii2.980 (4)O1—Rb1xix2.997 (3)
Rb2—O42.980 (4)O2—Si21.606 (4)
Rb2—O4viii2.980 (4)O2—Ca5xx2.274 (4)
Rb2—O53.0343 (19)O2—Rb1i2.815 (4)
Rb2—O5ix3.0343 (19)O2—Rb1xxi2.9160 (9)
Rb2—O2ii3.193 (4)O2—Rb1xix2.9160 (9)
Rb2—O2x3.193 (4)O2—Rb2xxi3.193 (4)
Rb3—O4vii2.752 (5)O3—Si2viii1.652 (3)
Rb3—O42.752 (5)O3—Si21.652 (3)
Rb3—O1vii2.765 (4)O3—Rb2xxi2.742 (6)
Rb3—O12.765 (4)O4—Si11.603 (4)
Rb3—O4xi2.855 (4)O4—Ca5viii2.312 (4)
Rb3—O4i2.855 (4)O4—Ca3i2.855 (4)
Rb3—O62.9131 (9)O4—Rb32.752 (5)
Rb3—O6ix2.9131 (9)O4—Rb3i2.855 (4)
Ca4—O62.308 (5)O4—Rb22.980 (4)
Ca4—O6xii2.308 (5)O4—Rb13.037 (5)
Ca4—O1xiii2.419 (3)O5—Si1xii1.679 (2)
Ca4—O1vii2.419 (3)O5—Si11.679 (2)
Ca4—O1xiv2.419 (3)O5—Rb2xiv3.0343 (19)
Ca4—O1viii2.419 (3)O5—Rb23.0343 (19)
Ca5—O2x2.274 (4)O5—Rb1xii3.385 (4)
Ca5—O4viii2.312 (4)O5—Rb13.385 (4)
Ca5—O4vi2.312 (4)O6—Si11.595 (5)
Ca5—O1xv2.355 (3)O6—Ca42.308 (4)
Ca5—O1xvi2.355 (3)O6—Ca5xxii2.431 (5)
Ca5—O6xvii2.431 (5)O6—Rb3xiv2.9131 (9)
Si1—O61.595 (5)O6—Rb32.9131 (9)
Si1—O41.602 (4)
O2i—Rb1—O2ii79.29 (8)O1vii—Rb3—O4xi100.79 (11)
O2i—Rb1—O2iii79.29 (8)O1—Rb3—O4xi75.67 (10)
O2ii—Rb1—O2iii158.35 (17)O4vii—Rb3—O4i109.78 (8)
O2i—Rb1—O1iv71.27 (9)O4—Rb3—O4i79.70 (12)
O2ii—Rb1—O1iv54.21 (10)O1vii—Rb3—O4i75.67 (10)
O2iii—Rb1—O1iv115.00 (10)O1—Rb3—O4i100.79 (11)
O2i—Rb1—O1iii71.27 (9)O4xi—Rb3—O4i53.86 (16)
O2ii—Rb1—O1iii115.00 (10)O4vii—Rb3—O6123.69 (12)
O2iii—Rb1—O1iii54.21 (10)O4—Rb3—O655.40 (12)
O1iv—Rb1—O1iii61.71 (11)O1vii—Rb3—O661.57 (11)
O2i—Rb1—O4110.14 (10)O1—Rb3—O6117.88 (11)
O2ii—Rb1—O470.62 (11)O4xi—Rb3—O6127.43 (12)
O2iii—Rb1—O4120.31 (11)O4i—Rb3—O673.58 (12)
O1iv—Rb1—O4123.94 (9)O4vii—Rb3—O6ix55.39 (12)
O1iii—Rb1—O4174.34 (10)O4—Rb3—O6ix123.69 (12)
O2i—Rb1—O4v110.14 (10)O1vii—Rb3—O6ix117.88 (11)
O2ii—Rb1—O4v120.31 (11)O1—Rb3—O6ix61.57 (11)
O2iii—Rb1—O4v70.62 (11)O4xi—Rb3—O6ix73.58 (12)
O1iv—Rb1—O4v174.34 (10)O4i—Rb3—O6ix127.43 (12)
O1iii—Rb1—O4v123.94 (9)O6—Rb3—O6ix158.94 (18)
O4—Rb1—O4v50.41 (15)O6—Ca4—O6xii86.2 (2)
O3ii—Rb2—O4vi109.76 (9)O6—Ca4—O1xiii135.64 (10)
O3ii—Rb2—O4vii109.76 (9)O6xii—Ca4—O1xiii75.93 (12)
O4vi—Rb2—O4vii140.49 (17)O6—Ca4—O1vii75.93 (12)
O3ii—Rb2—O4109.76 (9)O6xii—Ca4—O1vii135.64 (10)
O4vi—Rb2—O4102.46 (14)O1xiii—Ca4—O1vii142.31 (18)
O4vii—Rb2—O463.62 (15)O6—Ca4—O1xiv75.93 (12)
O3ii—Rb2—O4viii109.76 (8)O6xii—Ca4—O1xiv135.64 (10)
O4vi—Rb2—O4viii63.62 (15)O1xiii—Ca4—O1xiv89.08 (14)
O4vii—Rb2—O4viii102.46 (14)O1vii—Ca4—O1xiv78.90 (14)
O4—Rb2—O4viii140.49 (17)O6—Ca4—O1viii135.64 (10)
O3ii—Rb2—O5109.28 (10)O6xii—Ca4—O1viii75.93 (12)
O4vi—Rb2—O552.47 (7)O1xiii—Ca4—O1viii78.90 (14)
O4vii—Rb2—O5112.70 (10)O1vii—Ca4—O1viii89.08 (14)
O4—Rb2—O552.47 (7)O1xiv—Ca4—O1viii142.31 (18)
O4viii—Rb2—O5112.70 (10)O2x—Ca5—O4viii97.30 (13)
O3ii—Rb2—O5ix109.28 (10)O2x—Ca5—O4vi97.30 (13)
O4vi—Rb2—O5ix112.70 (10)O4viii—Ca5—O4vi85.6 (2)
O4vii—Rb2—O5ix52.47 (7)O2x—Ca5—O1xv94.14 (12)
O4—Rb2—O5ix112.70 (10)O4viii—Ca5—O1xv168.32 (13)
O4viii—Rb2—O5ix52.47 (7)O4vi—Ca5—O1xv95.29 (14)
O5—Rb2—O5ix141.4 (2)O2x—Ca5—O1xvi94.14 (12)
O3ii—Rb2—O2ii49.99 (7)O4viii—Ca5—O1xvi95.29 (14)
O4vi—Rb2—O2ii144.54 (9)O4vi—Ca5—O1xvi168.32 (13)
O4vii—Rb2—O2ii67.67 (10)O1xv—Ca5—O1xvi81.50 (16)
O4—Rb2—O2ii67.67 (10)O2x—Ca5—O6xvii165.29 (16)
O4viii—Rb2—O2ii144.54 (9)O4viii—Ca5—O6xvii93.48 (13)
O5—Rb2—O2ii102.26 (6)O4vi—Ca5—O6xvii93.48 (13)
O5ix—Rb2—O2ii102.26 (6)O1xv—Ca5—O6xvii74.85 (11)
O3ii—Rb2—O2x49.99 (7)O1xvi—Ca5—O6xvii74.85 (11)
O4vi—Rb2—O2x67.67 (10)O6—Si1—O4111.10 (19)
O4vii—Rb2—O2x144.54 (9)O6—Si1—O4v111.10 (19)
O4—Rb2—O2x144.54 (9)O4—Si1—O4v107.6 (3)
O4viii—Rb2—O2x67.67 (10)O6—Si1—O5110.4 (3)
O5—Rb2—O2x102.26 (6)O4—Si1—O5108.26 (18)
O5ix—Rb2—O2x102.26 (6)O4v—Si1—O5108.26 (18)
O2ii—Rb2—O2x99.98 (15)O2—Si2—O1113.58 (14)
O4vii—Rb3—O469.62 (16)O2—Si2—O1vii113.58 (14)
O4vii—Rb3—O1vii172.97 (10)O1—Si2—O1vii110.5 (3)
O4—Rb3—O1vii116.39 (10)O2—Si2—O3102.5 (3)
O4vii—Rb3—O1116.39 (10)O1—Si2—O3108.05 (16)
O4—Rb3—O1172.97 (10)O1vii—Si2—O3108.05 (17)
O1vii—Rb3—O157.36 (12)Si2—O3—Si2viii135.3 (4)
O4vii—Rb3—O4xi79.70 (12)Si1xii—O5—Si1139.3 (4)
O4—Rb3—O4xi109.78 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1/2, y, z1; (v) x+3/2, y, z; (vi) x, y+1/2, z; (vii) x+1/2, y, z; (viii) x+1/2, y+1/2, z; (ix) x1, y, z; (x) x+1/2, y+1/2, z1; (xi) x1/2, y, z+1; (xii) x+3/2, y+1/2, z; (xiii) x+1, y+1/2, z; (xiv) x+1, y, z; (xv) x+1/2, y+1/2, z+1; (xvi) x, y+1/2, z+1; (xvii) x1/2, y+1/2, z+1; (xviii) x1/2, y1/2, z+1; (xix) x1, y, z+1; (xx) x+1/2, y+1/2, z+1; (xxi) x, y, z+1; (xxii) x+1/2, y1/2, z+1.
Atomic coordinates (× 104, origin choice 2 of space group Pmmn) and equivalent isotropic displacement parameters (Å2 × 103) for Rb2Ca2Si2O7. First line: 15 °C, second line: -80 °C. Ueq is defined as one third of the trace of the orthogonalised Uij tensor. M1 and M2 are exclusively occupied by rubidium, while M4 and M5 represent pure Ca sites. M3 is a mixed Rb–Ca position, with a population of 50% rubidium and 50% calcium top
AtomWyckoff siteSite symmetryxyzUeq
M14em..75001049 (1)854 (1)18 (1)
75001048 (1)853 (1)14 (1)
M22amm2250025002585 (1)16 (1)
250025002588 (1)12 (1)
M34em..2500980 (1)5869 (1)21 (1)
2500980 (1)5869 (1)21 (1)
M42bmm2750025007494 (2)10 (1)
750025007492 (2)8(1)
M54em..25005106 (1)2489 (1)10 (1)
25005108 (1)2489 (1)9(1)
Si14em..75001362 (1)4187 (2)15 (1)
75001362 (1)4186 (2)14 (1)
Si24em..25001396 (1)9193 (2)9(1)
25001396 (1)9192 (2)8(1)
O18g1181 (5)1274 (2)8280 (3)23 (1)
183 (5)1274 (2)8280 (3)21 (1)
O24em..2500734 (3)10515 (4)19 (1)
2500732 (3)10520 (4)16 (1)
O32amm2250025009820 (7)26 (2)
250025009825 (6)22 (2)
O48g15246 (7)822 (3)3605 (4)44 (1)
5242 (7)821 (3)3604 (4)43 (1)
O52bmm2750025003599 (6)14 (1)
750025003598 (6)12 (1)
O64em..75001355 (3)5789 (4)35 (1)
75001361 (3)5793 (5)32 (1)
Selected bond lengths up to 3.2 Å and bond angles (°) for Rb2Ca2Si2O7. For the tetrahedra and octahedra, the distortion parameters QE (quadratic elongation) and AV (angle variance) have been calculated. top
15 °C-80 °C
M1—O2i2.819 (4)M1—O2i2.815 (4)
M1—O2ii2.9206 (9)M1—O2ii2.9160 (9)
M1—O2iii2.9206 (9)M1—O2iii2.9160 (9)
M1—O1iv2.999 (3)M1—O1iv2.997 (3)
M1—O1iii2.999 (3)M1—O1iii2.997 (3)
M1—O4v3.039 (4)M1—O43.037 (4)
M1—O43.039 (4)M1—O4v3.037 (4)
<M1—O> = 2.962<M1—O> = 2.959
M2—O3ii2.746 (7)M2—O3ii2.742 (6)
M2—O4vi2.985 (4)M2—O4vi2.980 (4)
M2—O4vii2.985 (4)M2—O4vii2.980 (4)
M2—O4viii2.985 (4)M2—O42.980 (4)
M2—O42.985 (4)M2—O4viii2.980 (4)
M2—O53.0401 (19)M2—O53.0343 (19)
M2—O5ix3.0401 (19)M2—O5ix3.0343 (19)
M2—O2ii3.196 (4)M2—O2ii3.193 (4)
M2—O2x3.196 (4)M2—O2x3.193 (4)
<M2—O> = 3.018<M2—O> = 3.013
M3—O4viii2.754 (5)M3—O4vii2.752 (5)
M3—O42.754 (5)M3—O42.752 (5)
M3—O1viii2.770 (4)M3—O1vii2.765 (4)
M3—O12.770 (4)M3—O12.765 (4)
M3—O4xii2.860 (4)M3—O4xii2.855 (4)
M3—O4i2.860 (4)M3—O4i2.855 (4)
M3—O62.9160 (9)M3—O62.9131 (9)
M3—O6ix2.9160 (9)M3—O6ix2.9131 (9)
<M3—O> = 2.825<M3—O> = 2.821
M4—O62.320 (5)M4—O62.308 (5)
M4—O6xi2.320 (5)M4—O6xi2.308 (5)
M4—O1xiii2.421 (3)M4—O1xiii2.419 (3)
M4—O1vii2.421 (3)M4—O1vii2.419 (3)
M4—O1viii2.421 (3)M4—O1xiv2.419 (3)
M4—O1xiv2.421 (3)M4—O1viii2.419 (3)
<M4—O> 2.387<M4—O> 2.382
M5—O2x2.279 (4)M5—O2x2.274 (4)
M5—O4vii2.317 (4)M5—O4viii2.312 (4)
M5—O4vi2.317 (4)M5—O4vi2.312 (4)
M5—O1xix2.359 (3)M5—O1xix2.355 (3)
M5—O1xx2.359 (3)M5—O1xx2.355 (3)
M5—O6xxi2.435 (5)M5—O6xxi2.431 (5)
<M5—O> = 2.345<M5—O> = 2.340
QE = 1.020AV = 69.94QE = 1.020AV = 70.19
Si1—O61.591 (5)Si1—O61.595 (5)
Si1—O41.601 (4)Si1—O41.602 (4)
Si1—O4v1.601 (4)Si1—O4v1.602 (4)
Si1—O51.681 (2)Si1—O51.679 (2)
<Si1—O> = 1.618<Si1—O> = 1.620
QE = 1.001AV = 2.51QE = 1.001AV = 2.48
Si2—O21.602 (4)Si2—O21.606 (4)
Si2—O11.619 (3)Si2—O11.615 (3)
Si2—O1viii1.619 (3)Si2—O1vii1.615 (3)
Si2—O31.651 (3)Si2—O31.652 (3)
<Si2—O> = 1.622<Si2—O> = 1.622
QE = 1.004AV = 16.51QE = 1.004AV = 17.44
O—Ca—O angles
O6—M4—O6xi86.2 (2)O6—M4—O6xi86.2 (2)
O6—M4—O1xiii135.66 (10)O6—M4—O1xiii135.64 (10)
O6xiM4—O1xiii75.89 (12)O6xiM4—O1xiii75.93 (12)
O6—M4—O1vii135.66 (10)O6—M4—O1vii75.93 (12)
O6xiM4—O1vii75.89 (12)O6xiM4—O1vii135.64 (10)
O1xiiiM4—O1vii78.88 (14)O1xiiiM4—O1vii142.31 (18)
O6—M4—O1viii75.89 (12)O6—M4—O1xiv75.93 (12)
O6xiM4—O1viii135.66 (10)O6xiM4—O1xiv135.64 (10)
O1xiiiM4—O1viii142.33 (18)O1xiiiM4—O1xiv89.08 (14)
O1viiM4—O1viii89.11 (14)O1viiM4—O1xiv78.90 (14)
O6—M4—O1xiv75.89 (12)O6—M4—O1viii135.64 (10)
O6xiM4—O1xiv135.66 (10)O6xiM4—O1viii75.93 (12)
O1xiiiM4—O1xiv89.11 (14)O1xiiiM4—O1viii78.90 (14)
O1viiM4—O1xiv142.33 (18)O1viiM4—O1viii89.08 (14)
O1viiiM4—O1xiv78.88 (14)O1xivM4—O1viii142.31 (18)
O2xM5—O4vii97.40 (13)O2xM5—O4viii97.30 (13)
O2xM5—O4vi97.40 (13)O2xM5—O4vi97.30 (13)
O4viiM5—O4vi85.7 (2)O4viiiM5—O4vi85.6 (2)
O2xM5—O1xix94.14 (12)O2xM5—O1xix94.14 (12)
O4viiM5—O1xix168.20 (13)O4viiiM5—O1xix168.32 (13)
O4viM5—O1xix95.30 (14)O4viM5—O1xix95.29 (14)
O2xM5—O1xx94.14 (12)O2xM5—O1xx94.14 (12)
O4viiM5—O1xx95.30 (14)O4viiiM5—O1xx95.29 (14)
O4viM5—O1xx168.20 (13)O4viM5—O1xx168.32 (13)
O1xixM5—O1xx81.37 (16)O1xixM5—O1xx81.50 (16)
O2xM5—O6xxi165.38 (16)O2xM5—O6xxi165.29 (16)
O4viiM5—O6xxi93.30 (13)O4viiiM5—O6xxi93.48 (13)
O4viM5—O6xxi93.30 (13)O4viM5—O6xxi93.48 (13)
O1xixM5—O6xxi74.91 (11)O1xixM5—O6xxi74.85 (11)
O1xxM5—O6xxi74.91 (11)O1xxM5—O6xxi74.85 (11)
O—Si—O angles
O6—Si1—O4110.99 (19)O6—Si1—O4111.10 (19)
O6—Si1—O4v110.99 (19)O6—Si1—O4v111.10 (19)
O4—Si1—O4v107.7 (3)O4—Si1—O4v107.6 (3)
O6—Si1—O5110.6 (3)O6—Si1—O5110.4 (3)
O4—Si1—O5108.21 (18)O4—Si1—O5108.26 (18)
O4v—Si1—O5108.21 (18)O4v—Si1—O5108.26 (18)
<O—Si1—O>109.45<O—Si1—O>109.45
O2—Si2—O1113.52 (14)O2—Si2—O1113.58 (14)
O2—Si2—O1viii113.52 (14)O2—Si2—O1vii113.58 (14)
O1—Si2—O1viii110.5 (3)O1—Si2—O1vii110.5 (3)
O2—Si2—O3102.8 (3)O2—Si2—O3102.5 (3)
O1—Si2—O3107.96 (17)O1—Si2—O3108.05 (16)
O1viii—Si2—O3107.96 (17)O1vii—Si2—O3108.05 (17)
<O—Si2—O>109.38<O—Si2—O>109.38
Si—O—Si angles
Si2vii—O3—Si2135.7 (4)Si2—O3—Si2viii135.3 (4)
Si1xi—O5—Si1139.4 (4)Si1xi—O5—Si1139.3 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) x+1, y, z-1; (iv) -x+1/2, y, z-1; (v) -x+3/2, y, z; (vi) x, -y+1/2, z; (vii) -x+1/2, -y+1/2, z; (viii) -x+1/2, y, z; (ix) x-1, y, z; (x) -x+1/2, -y+1/2, z-1; (xi) -x+3/2, -y+1/2, z; (xii) x-1/2, -y, -z+1; (xiii) x+1, -y+1/2, z; (xiv) x+1, y, z; (xix) x+1/2, y+1/2, -z+1; (xx) -x, y+1/2, -z+1; (xxi) x-1/2, y+1/2, -z+1.
Anisotropic displacement parameters (Å2 × 103) for Rb2Ca2Si2O7. The anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11 + ··· + 2hka*b*U12]. First line 15 °C and second line -80 °C. top
U11U22U33U23U13U12
M114 (1)26 (1)13 (1)0(1)00
11 (1)20 (1)10 (1)0(1)00
M218 (1)14 (1)16 (1)000
14 (1)10 (1)13 (1)000
M318 (1)41 (1)13 (1)-7(1)00
16 (1)35 (1)11 (1)-7(1)00
M413 (1)7(1)11 (1)000
10 (1)5(1)9(1)000
M513 (1)7(1)10 (1)0(1)00
12 (1)6(1)9(1)0(1)00
Si122 (1)11 (1)12 (1)0(1)00
21 (1)10 (1)11 (1)0(1)00
Si29(1)7(1)12 (1)2(1)00
7(1)6(1)11 (1)2(1)00
O117 (2)21 (2)32 (2)7(1)-11 (1)-7(1)
14 (2)19 (2)31 (2)8(1)-11 (1)-7(1)
O220 (2)18 (2)19 (2)7(2)00
17 (2)14 (2)19 (2)6(2)00
O343 (4)15 (3)21 (3)000
40 (4)10 (3)15 (3)000
O453 (3)32 (2)46 (2)5(2)-25 (2)-18 (2)
50 (3)28 (2)50 (2)5(2)-25 (2)-16 (2)
O521 (3)13 (3)9(3)000
20 (3)10 (3)6(3)000
O676 (4)17 (2)11 (2)0(2)00
70 (4)12 (2)15 (2)-1(2)00
 

References

First citationAl-Harbi, O. A. (2007). Eur. J. Glass. Sci. Technol. A48, 35–40.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2016). The Chemical bond in Inorganic Chemistry: The Bond Valence Model, 2nd ed., p. 315. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationButt, H., Knowles, K. M., Montelongo, Y., Amaratunga, G. A. J. & Wilkinson, T. D. (2014). ACS Nano, 8, 2929–2935.  CrossRef CAS PubMed Google Scholar
First citationCapillas, C., Tasci, E. S., de la Flor, G., Orobengoa, D., Perez-Mato, J. M. & Aroyo, M. I. (2011). Z. Kristallogr. 226, 186–196.  Web of Science CrossRef CAS Google Scholar
First citationChen, M. & Zhao, B. (2016). Fuel, 180, 638–644.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHellenbrandt, M. (2004). Crystallogr. Rev. 10, 17–22.  CrossRef CAS Google Scholar
First citationHolland, A. J. & Preston, E. (1938). J. Soc. Glass Technol. 21, 395–408.  Google Scholar
First citationKahlenberg, V. (2023). Miner. Petrol. 117, 293–306.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKahlenberg, V., Brunello, E., Hejny, C., Krüger, H., Schmidmair, D., Tribus, M. & Többens, D. (2015). J. Solid State Chem. 225, 155–167.  CrossRef ICSD CAS Google Scholar
First citationKahlenberg, V., Girtler, D., Arroyabe, E., Kaindl, R. & Többens, D. (2010). Miner. Petrol. 100, 1–9.  CrossRef ICSD CAS Google Scholar
First citationKahlenberg, V. & Hösch, A. (2002). Z. Kristallogr. 217, 155–163.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKahlenberg, V., Müllner, M., Schmidmair, D., Perfler, L. & Többens, D. (2016). Z. Kristallogr. 231, 209–217.  CrossRef ICSD CAS Google Scholar
First citationKaminsky, W. (2014). WinTensor. Version 1.5 for Windows. http://cad4.cpac.washington.edu/WinTensorhome/WinTensor.htm.  Google Scholar
First citationKim, J. S., Song, H. J., Roh, H. S., Yim, D. K., Noh, J. H. & Hong, K. S. (2012). Mater. Lett. 79, 112–115.  CrossRef CAS Google Scholar
First citationLiebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.  Google Scholar
First citationLiu, H., Hildebrandt, E., Krammer, H., Kahlenberg, V., Krüger, H. & Schottenberger, H. (2021). J. Am. Ceram. Soc. 104, 6678–6695.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q., Liu, Y., Ding, Y., Peng, Z., Yu, Q., Tian, X. & Dong, G. (2014). J. Sol-Gel Sci. Technol. 71, 276–282.  CrossRef CAS Google Scholar
First citationMitchell, R. H. & Dawson, J. B. (2012). Lithos, 152, 40–46.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorey, G. W. & Bowen, N. L. (1925). J. Glass Technol. Soc. 9, 226–264.  CAS Google Scholar
First citationNapper, J. D., Layland, R. C., Smith, M. D. & Loye, H. (2004). J. Chem. Crystallogr. 34, 347–351.  CrossRef ICSD CAS Google Scholar
First citationOlanders, B. & Steenari, B. M. (1995). Biomass Bioenergy, 8, 105–115.  CrossRef CAS Google Scholar
First citationOrobengoa, D., Capillas, C., Aroyo, M. I. & Perez-Mato, J. M. (2009). J. Appl. Cryst. 42, 820–833.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParauha, Y. R., Halwar, D. K. & Dhoble, S. J. (2022). Displays, 75, 102304.  CrossRef Google Scholar
First citationPrince, E. (2004). Editor. International Tables for X-ray Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, 3rd ed. Dordrecht: Springer.  Google Scholar
First citationReddy, P. M., Lakshmi, R., Dass, F. P. & Sasikumar, S. (2014). Sci. Eng. Compos. Mater. 23, 375–380.  CrossRef Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSantoso, I., Riihimäki, M., Sibarani, D., Taskinen, P., Hupa, L., Paek, M. K. & Lindberg, D. (2022). J. Eur. Ceram. Soc. 42, 2449–2463.  CrossRef CAS Google Scholar
First citationSantoso, I., Taskinen, P., Jokilaakso, A., Paek, M.-K. & Lindberg, D. (2020). Fuel, 265, 116894.  CrossRef Google Scholar
First citationSegnit, E. R. (1953). Am. J. Sci. 251, 586–601.  CrossRef CAS Google Scholar
First citationShahid, K. A. & Glasser, F. P. (1971). Phys. Chem. Glasses, 12, 50–57.  CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShelby, J. E. (2009). Glass Science and Technology, 2nd ed., p. 291. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkrzat, Z. M., Simonov, V. I. & Belov, N. V. (1969). Dokl. Akad. Nauk SSSR, 184, 337–340.  CAS Google Scholar
First citationVarshneya, A. K. (1994). Fundamentals of Inorganic Glasses, p. 570. London: Academic Press.  Google Scholar
First citationWeidendorfer, D., Schmidt, M. W. & Mattsson, H. B. (2016). Contrib. Mineral. Petrol. 171, 43.  CrossRef Google Scholar
First citationWest, A. R. (1978). J. Am. Ceram. Soc. 61, 152–155.  CrossRef CAS Google Scholar
First citationWilliamson, J. & Glasser, F. P. (1965). Science, 148, 1589–1591.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWills, A. (2010). VaList. http://fermat.chem.ucl.ac.uk/spaces/willsgroup/software/Google Scholar
First citationWu, Q., Zhao, Q., Zheng, P., Chen, W., Xiang, D., He, Z., Huang, Q., Ding, J. & Zhou, J. (2020). Ceram. Int. 46, 2845–2852.  CrossRef CAS Google Scholar
First citationZandi Karimi, A., Rezabeigi, E. & Drew, R. A. L. (2018). J. Non-Cryst. Solids, 502, 176–183.  CrossRef CAS Google Scholar
First citationZhang, Z., Xiao, Y., Voncken, J., Yang, Y., Boom, R., Wang, N. & Zou, Z. (2011). J. Am. Ceram. Soc. 94, 3088–3093.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds