research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Single-crystal structure of the spicy capsaicin

crossmark logo

aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by S. Moggach, The University of Western Australia, Australia (Received 3 January 2025; accepted 23 February 2025; online 7 March 2025)

The crystal structure of capsaicin (C18H27NO3), or trans-8-methyl-N-vanillylnon-6-enamide, the natural product responsible for the spiciness of chilli peppers, was determined using low-temperature single-crystal X-ray diffraction. The reported crystal structure is in good agreement with previous determinations based on powder X-ray diffraction data. The localization and free refinement of all H atoms revealed that each capsaicin mol­ecule is hy­dro­gen bonded to four other mol­ecules, with the O—H and N—H groups acting as hy­dro­gen-bond donors, and the C=O group serving as a bifurcated hy­dro­gen-bond acceptor.

1. Introduction

Capsaicin (Scheme 1[link]) [systematic name (E)-N-[(4-hy­droxy-3-meth­oxy­phen­yl)meth­yl]-8-methyl­non-6-enamide; CAS: 404-86-4] is the principal bioactive com­pound from the capsaicinoid family of secondary metabolites found in the fruits of chilli pepper plants, which belong to the genus Capsicum with a very rich diversity of cultivars (Fig. 1[link]). This natural product is primarily responsible for the spiciness or the heat sensation of hot chillies and acts as a potent agonist of the TRPV1 (transient receptor potential vanilloid 1) heat receptor, eliciting the characteristic burning sensation and making it a strong irritant (Caterina et al., 1997[Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. & Julius, D. (1997). Nature, 389, 816-824.]). Chilli peppers have been cultivated for several millennia and are integral to the culinary traditions of many cultures worldwide, with their consumption and popularity continuing to rise (Spence, 2018[Spence, C. (2018). Int. J. Gastron. Food. Sci. 12, 16-21.]; Bosland & Votava, 2012[Bosland, P. W. & Votava, E. J. (2012). Peppers: Vegetable and Spice Capsicums, 2nd ed., Crop Production Science in Horticulture Series. Cambridge, MA, USA: CABI.]). Beyond their culi­nary use, capsaicin and capsaicinoids have garnered attention for their pharmacological properties and diverse biological activity (Srinivasan, 2016[Srinivasan, K. (2016). Crit. Rev. Food Sci. Nutr. 56, 1488-1500.]; Spence, 2018[Spence, C. (2018). Int. J. Gastron. Food. Sci. 12, 16-21.]). The pungency of chillies is qu­anti­fied using the Scoville Heat Scale, where capsaicin is assigned a value of 16 million Scoville Heat Units (SHU), reflecting its extreme potency (Scoville, 1912[Scoville, W. L. (1912). J. Am. Pharm. Assoc. 1, 453-454.]; Collins et al., 1995[Collins, M. D., Wasmund Mayer, L. & Bosland, P. W. (1995). HortScience, 30, 137-139.]; Bosland & Votava, 2012[Bosland, P. W. & Votava, E. J. (2012). Peppers: Vegetable and Spice Capsicums, 2nd ed., Crop Production Science in Horticulture Series. Cambridge, MA, USA: CABI.]). Its unique physiological effects and diverse applications have made capsaicin a subject of extensive research.

[Scheme 1]
[Figure 1]
Figure 1
A colourful variety of capsaicin-containing spicy chilli pepper fruits (Capsicum).

The Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains two previous structure determinations of the capsaicin crystal structure. The oldest entry, with CSD refcode FABVAF (Oliver, 1985[Oliver, J. D. (1985). Am. Crystallogr. Assoc. Abstr. Pap. (Winter), 13, 57.]), reports only the unit-cell parameters, without atomic coordinates. The second entry, FABVAF01, is a structure determination based on synchrotron powder X-ray diffraction (PXRD) data employing simulated annealing (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]); however, the atomic coordinates were not refined, as the model of the capsaicin mol­ecule was constructed using standard bond lengths and angles. The report mentions a single-crystal structure determination, which was used to validate the simulated annealing solution, but the single-crystal data were neither published nor deposited in the CSD. Similarly, unpublished single-crystal data were also used as a reference crystal structure for another structure redetermination of capsaicin via a simulated annealing approach from laboratory monochromatic capillary transmission PXRD data (Florence et al., 2005[Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005). J. Appl. Cryst. 38, 249-259.]).1 Capsaicin has also been employed as a test sample in structure determination from powder diffraction data (Shankland et al., 2013[Shankland, K., Spillman, M. J., Kabova, E. A., Edgeley, D. S. & Shankland, N. (2013). Acta Cryst. C69, 1251-1259.]), utilizing a hybrid Monte Carlo method (Markvardsen et al., 2005[Markvardsen, A. J., Shankland, K., David, W. I. F. & Didlick, G. (2005). J. Appl. Cryst. 38, 107-111.]) and a local minimization approach (Shankland et al., 2010[Shankland, K., Markvardsen, A. J., Rowlatt, C., Shankland, N. & David, W. I. F. (2010). J. Appl. Cryst. 43, 401-406.]). Furthermore, the crystal structure of an α-fluorinated capsaicin derivative (FOSXOB; Winkler et al., 2009[Winkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. Z. & O'Hagan, D. (2009). ChemBioChem, 10, 823-828.]) and a cocrystal of a zinc coordination com­plex with a disordered capsaicin guest mol­ecule (SOLZOM; Orton & Coles, 2024[Orton, J. B. & Coles, S. J. (2024). CSD Communication, CCDC 2339733, https://dx.doi.org/10.5517/ccdc.csd.cc2jjp81.]) were reported. The Protein Data Bank (PDB; Berman et al., 2000[Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242.]) contains several experimentally determined structures of macromolecular com­plexes with capsaicin (PDB entry 4dy) as a ligand, including 7vek (Maharjan et al., 2022[Maharjan, R., Fukuda, Y., Nakayama, T., Nakayama, T., Hamada, H., Ozaki, S.-i. & Inoue, T. (2022). Acta Cryst. D78, 379-389.]), 7lr0 (Nadezhdin et al., 2021[Nadezhdin, K. D., Neuberger, A., Nikolaev, Y. A., Murphy, L. A., Gracheva, E. O., Bagriantsev, S. N. & Sobolevsky, A. I. (2021). Nat. Commun. 12, 2154.]), 7lpa, 7lpb, 7lpd and 7lpe (Kwon et al., 2021[Kwon, D. H., Zhang, F., Suo, Y., Bouvette, J., Borgnia, M. J. & Lee, S.-Y. (2021). Nat. Struct. Mol. Biol. 28, 554-563.]), as well as 2n27 (Hetényi et al., 2016[Hetényi, A., Németh, L., Wéber, E., Szakonyi, G., Winter, Z., Jósvay, K., Bartus, E., Oláh, Z. & Martinek, T. A. (2016). FEBS Lett. 590, 2768-2775.]).

The PXRD crystal structure of capsaicin (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]) has frequently served as a starting point for calculations and as a benchmark in com­putational studies (Alberti et al., 2008[Alberti, A., Galasso, V., Kovač, B., Modelli, A. & Pichierri, F. (2008). J. Phys. Chem. A, 112, 5700-5711.]; Siudem et al., 2017[Siudem, P., Paradowska, K. & Bukowicki, J. (2017). J. Mol. Struct. 1146, 773-781.]; Soriano-Correa et al., 2023[Soriano-Correa, C., Pérez de la Luz, A. & Sainz-Díaz, C. I. (2023). J. Pharm. Sci. 112, 798-807.]).

Single-crystal X-ray diffraction (SCXRD) is considered a `gold standard' (Bond, 2014[Bond, A. D. (2014). Resonance, 19, 1087-1092.]) for the structural elucidation of natural products and continues to provide valuable insights into the crystal structures of naturally occurring crystals, with recent examples of such studies including (+)-cedrol hemihydrate (Chakoumakos & Wang, 2024[Chakoumakos, B. C. & Wang, X. (2024). Acta Cryst. C80, 43-48.]) and calcium (2R,3R)-tartrate tetra­hydrate (Polo et al., 2024[Polo, A., Soriano-Jarabo, A., Rodríguez, R., Macías, R., García-Orduña, P. & Sanz Miguel, P. J. (2024). Acta Cryst. C80, 681-684.]). Increasingly, 3D electron diffraction is gaining prominence in natural product characterization (Delgadillo et al., 2024[Delgadillo, D. A., Burch, J. E., Kim, L. J., de Moraes, L. S., Niwa, K., Williams, J., Tang, M. J., Lavallo, V. G., Khatri Chhetri, B., Jones, C. G., Hernandez Rodriguez, I., Signore, J. A., Marquez, L., Bhanushali, R., Woo, S., Kubanek, J., Quave, C., Tang, Y. & Nelson, H. M. (2024). ACS Cent. Sci. 10, 176-183.]), because it enables crystal structure and absolute configuration determination on nanometer-sized crystallites, as demonstrated by recent studies of beauveriolide I (Gurung et al., 2024[Gurung, K., Šimek, P., Jegorov Jr, A. & Palatinus, L. (2024). Acta Cryst. C80, 56-61.]) and berkecoumarin (Decato et al., 2024[Decato, D., Palatinus, L., Stierle, A. & Stierle, D. (2024). Acta Cryst. C80, 143-147.]).

In this work, the crystal structure of capsaicin was determined using low-temperature single-crystal X-ray diffraction, providing a detailed insight into its mol­ecular geometry, conformation and hy­dro­gen-bonding inter­actions.

2. Experimental

2.1. Single-crystal selection

Capsaicin is a potent irritant and, to minimize exposure to the sample, it was handled as though the com­pound were air sensitive (Motaln et al., 2024[Motaln, K., Gurung, K., Brázda, P., Kokalj, A., Radan, K., Dragomir, M., Žemva, B., Palatinus, L. & Lozinšek, M. (2024). ACS Cent. Sci. 10, 1733-1741.]). The sample of capsaicin was procured from a commercial source (Sigma–Aldrich, ≥95%) and stored in a refrigerator within a nitro­gen-filled glove­box (Vigor SG1200/750E). A small amount of the microcrystalline powder was transferred onto a thin layer of Baysilone-Paste (Bayer-Silicone, mittelviskos) on a watch glass inside the glove­box and covered with a layer of perfluoro­deca­line (Fluoro­chem, 96.0%). A small crystal, measuring 27 µm × 63 µm × 75 µm, was selected under a polarizing microscope and attached to a MiTeGen Dual-Thickness MicroLoop using the Baysilone-Paste.

2.2. X-ray data collection and processing

Low-temperature single-crystal X-ray diffraction data were collected using a Rigaku OD XtaLAB Synergy-S instrument equipped with PhotonJet Ag and Cu microfocus X-ray tubes, a Dectris EIGER2 R CdTe 1M hybrid photon-counting detector and an Oxford Cryosystems Cryostream 800 Plus sample cooler. The crystal was measured at 100 K using Cu Kα radiation (λ = 1.54184 Å). Experimental details on crystal data, data collection, and structure refinement are summarized in Table 1[link]. CrysAlis PRO software (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]) was used for data collection and reduction, and the crystal structure was solved and refined within the OLEX2 program (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) using SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]) and SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), respectively. The measured crystal was an aggregate with two com­ponents; however, due to the presence of only a small fraction of overlapped reflections (<5%), data integration was performed on the major com­ponent (Bear et al., 2023[Bear, J. C., Terzoudis, N. & Cockcroft, J. K. (2023). IUCrJ, 10, 720-728.]). The positions and isotropic displacement parameters (Uiso) of all H atoms were refined freely (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). Mol­ecular graphics were generated using DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Table 1
Experimental details

Crystal data
Chemical formula C18H27NO3
Mr 305.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.2165 (3), 14.7791 (4), 9.4719 (2)
β (°) 94.035 (2)
V3) 1705.89 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.08 × 0.06 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S Dualflex diffractometer with an Eiger2 R CdTe 1M detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.683, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18993, 3508, 2644
Rint 0.054
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.04
No. of reflections 3508
No. of parameters 307
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL2019 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Results and discussion

Capsaicin crystallizes in the monoclinic space group P21/c, with one mol­ecule in the asymmetric unit (Fig. 2[link]) and four mol­ecules in the unit cell (Table 1[link]). The unit-cell parameters determined at 100 K in this study are in good agreement with those obtained previously by powder X-ray diffraction at 100 K (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]; Shankland et al., 2010[Shankland, K., Markvardsen, A. J., Rowlatt, C., Shankland, N. & David, W. I. F. (2010). J. Appl. Cryst. 43, 401-406.]) (Table 2[link]), with observed differences smaller than 0.1%. Similarly, the conformation of the capsaicin mol­ecule observed in the present SCXRD determination and the previous PXRD determination (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]) are very similar, with root-mean-square deviations (RMSDs) for their alignment of 0.162 and 0.276 Å calculated in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), respectively. The most notable conformational differences involve the positions of H atoms and specific C atoms, namely, C11, C12, C15 and C18, which are displaced by 0.31, 0.21, 0.36 and 0.27 Å, respectively (Fig. 3[link]).

Table 2
Comparison of the unit-cell parameters of capsaicin crystal structures derived from previous structural determinations and the present work

CSD refcode FABVAF FABVAF01
Reference Oliver (1985[Oliver, J. D. (1985). Am. Crystallogr. Assoc. Abstr. Pap. (Winter), 13, 57.]) David et al. (1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]) Florence et al. (2005[Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005). J. Appl. Cryst. 38, 249-259.]) Shankland et al. (2010[Shankland, K., Markvardsen, A. J., Rowlatt, C., Shankland, N. & David, W. I. F. (2010). J. Appl. Cryst. 43, 401-406.]) This work
Space group P21/c P21/c P21/c P21/c P21/c
a (Å) 12.380 (4) 12.2234 (1) 12.672 12.224 12.2165 (3)
b (Å) 14.814 (8) 14.7900 (1) 14.980 14.787 14.7791 (4)
c (Å) 9.491 (3) 9.4691 (1) 9.426 9.468 9.4719 (2)
β (°) 93.63 (3) 93.9754 (3) 93.69 93.972 94.035 (2)
V3) 1737.13 1707.30 1785.6 1707.3 1705.89 (8)
T (K) 173 100 Room temperature 100 100
[Figure 2]
Figure 2
The asymmetric unit and selected atom labels of the capsaicin crystal structure, with displacement ellipsoids plotted at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular overlap com­parison of capsaicin mol­ecular conformations from SCXRD crystal structure determination (red; this work) and PXRD simulated annealing (blue; David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]).

In contrast to the typical representation of the capsaicin mol­ecule (Scheme 1[link]), where the 8-methyl­non-6-enamide side chain is depicted pointing away from the benzene ring, the crystal structure reveals that it bends back towards the vanillyl group and lies roughly parallel to the plane of the ring (Fig. 2[link]). Atoms C15 and C16 are positioned 0.913 (5) and 0.612 (6) Å above the benzene-ring plane, respectively. The H16—C16—C15—H15 torsion angle is −66.4 (18)°, placing atom C17 0.825 (6) Å below and atom C18 1.578 (6) Å above the benzene-ring plane. The OH group is oriented parallel to the arene ring, while the methyl group (C7) is displaced by 0.109 (3) Å from the plane of the benzene ring. The dihedral angle between the plane of the amide group [–(O=)CNH–] and that of the benzene ring is 75.9 (4)°. The length of the C=C double bond, which adopts a trans configuration, is 1.325 (2) Å. Bond distances involving heteroatom functional groups [C—OH = 1.363 (2) Å, C—OCH3 = 1.369 (2) Å, O—CH3 = 1.423 (2) Å, C=O = 1.2459 (19) Å, N—CO = 1.334 (2) Å and N—CH2 = 1.452 (2) Å] are within the expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

In the crystal structure, each capsaicin mol­ecule forms hy­dro­gen bonds with four others, with the O—H and N—H groups functioning as hy­dro­gen-bond donors and the C=O group acting as a bifurcated hy­dro­gen-bond acceptor (Table 3[link]). The resulting conjoined tetra­meric hy­dro­gen-bonded rings, described by graph-set notations R42(20) and R44(28) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) (Fig. 4[link]), link the capsaicin mol­ecules into a double layer with a herringbone pattern extending within the bc plane (Fig. 5[link]). The distance between the benzene-ring planes of neighbouring stacked mol­ecules is 3.370 (3) Å in the smaller hy­dro­gen-bonded ring and 4.671 (5) Å in the larger one. The double layers, with the hy­dro­gen-bonded vanillyl and amide groups at the centre and the alkenyl chains on the exterior, are stacked along the crystallographic a direction (Fig. 5[link]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.88 (3) 1.93 (3) 2.7621 (17) 158 (2)
N1—H1⋯O1ii 0.85 (2) 2.13 (2) 2.9769 (18) 175.7 (19)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen-bonding motifs in the crystal structure of capsaicin. H atoms not involved in hy­dro­gen bonding have been omitted for clarity.
[Figure 5]
Figure 5
Packing diagrams and the unit cell of the capsaicin crystal structure viewed along the crystallographic a axis (left) and the crystallographic c axis (right).

4. Conclusion

A low-temperature single-crystal X-ray diffraction study of capsaicin, the natural product responsible for the pungency of chilli peppers, was reported for the first time. The determined crystal structure aligns well with the previous simulated annealing structure solution based on powder X-ray diffraction data. In the present model, all H atoms were precisely localized and refined freely, enabling an accurate description of the hy­dro­gen-bonding inter­actions. Each capsaicin mol­ecule forms hy­dro­gen bonds with four other mol­ecules, with the O—H and N—H groups acting as hy­dro­gen-bond donors, and the C=O group serving as a bifurcated hy­dro­gen-bond acceptor, resulting in the formation of double layers.

Supporting information


Computing details top

(6E)-N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide top
Crystal data top
C18H27NO3F(000) = 664
Mr = 305.40Dx = 1.189 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.2165 (3) ÅCell parameters from 5220 reflections
b = 14.7791 (4) Åθ = 3.6–73.0°
c = 9.4719 (2) ŵ = 0.64 mm1
β = 94.035 (2)°T = 100 K
V = 1705.89 (8) Å3Plank, colourless
Z = 40.08 × 0.06 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy-S Dualflex
diffractometer with an Eiger2 R CdTe 1M detector
3508 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2644 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 13.3333 pixels mm-1θmax = 76.1°, θmin = 3.6°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2024)
k = 1818
Tmin = 0.683, Tmax = 1.000l = 1111
18993 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.8148P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3508 reflectionsΔρmax = 0.20 e Å3
307 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39422 (10)0.19720 (8)0.11809 (11)0.0254 (3)
O20.51027 (10)0.53170 (8)0.24005 (13)0.0286 (3)
O30.72757 (11)0.55919 (9)0.27416 (13)0.0287 (3)
H30.675 (2)0.5923 (17)0.307 (3)0.055 (7)*
N10.45776 (12)0.24880 (10)0.08461 (15)0.0239 (3)
H10.4432 (16)0.2648 (13)0.170 (2)0.030 (5)*
C10.61015 (14)0.33202 (11)0.05079 (16)0.0230 (4)
C20.53676 (14)0.39235 (12)0.10650 (17)0.0242 (4)
H20.4577 (15)0.3816 (12)0.0934 (18)0.022 (5)*
C30.57495 (14)0.46809 (11)0.18172 (16)0.0234 (4)
C40.68774 (14)0.48509 (11)0.20185 (16)0.0242 (4)
C50.76058 (15)0.42518 (12)0.14703 (18)0.0262 (4)
H50.8374 (17)0.4383 (13)0.162 (2)0.031 (5)*
C60.72194 (15)0.34929 (12)0.07186 (18)0.0256 (4)
H60.7740 (15)0.3072 (13)0.033 (2)0.028 (5)*
C70.39533 (15)0.51494 (14)0.2336 (2)0.0306 (4)
H7A0.3643 (16)0.5112 (13)0.134 (2)0.029 (5)*
H7B0.3647 (18)0.5657 (15)0.285 (2)0.039 (6)*
H7C0.3784 (18)0.4561 (15)0.286 (2)0.041 (6)*
C80.57184 (14)0.24788 (12)0.02999 (19)0.0266 (4)
H8A0.5821 (15)0.1939 (14)0.033 (2)0.028 (5)*
H8B0.6209 (16)0.2371 (13)0.112 (2)0.032 (5)*
C90.37700 (14)0.21995 (11)0.00818 (16)0.0225 (3)
C100.26436 (14)0.21276 (12)0.08335 (17)0.0248 (4)
H10A0.2634 (15)0.2476 (12)0.173 (2)0.024 (5)*
H10B0.2546 (15)0.1468 (14)0.1093 (19)0.027 (5)*
C110.17246 (14)0.24340 (12)0.00656 (17)0.0245 (4)
H11A0.1756 (15)0.2051 (13)0.096 (2)0.030 (5)*
H11B0.0976 (16)0.2284 (13)0.045 (2)0.029 (5)*
C120.17693 (15)0.34386 (12)0.04219 (18)0.0258 (4)
H12A0.1737 (16)0.3802 (14)0.049 (2)0.035 (5)*
H12B0.2496 (15)0.3574 (12)0.0974 (19)0.023 (5)*
C130.08175 (15)0.37320 (12)0.12808 (18)0.0270 (4)
H13A0.0773 (15)0.3332 (13)0.216 (2)0.029 (5)*
H13B0.0088 (17)0.3620 (14)0.067 (2)0.036 (5)*
C140.08545 (15)0.47018 (12)0.17305 (18)0.0279 (4)
H140.0938 (16)0.5146 (14)0.099 (2)0.032 (5)*
C150.07414 (15)0.49742 (13)0.30448 (18)0.0290 (4)
H150.0643 (18)0.4499 (15)0.380 (2)0.045 (6)*
C160.07110 (16)0.59276 (13)0.35942 (19)0.0314 (4)
H160.0088 (18)0.6049 (14)0.390 (2)0.039 (6)*
C170.0938 (2)0.66396 (14)0.2505 (2)0.0379 (5)
H17A0.035 (2)0.6610 (16)0.166 (3)0.057 (7)*
H17B0.1730 (19)0.6554 (15)0.216 (2)0.045 (6)*
H17C0.0873 (19)0.7256 (17)0.290 (3)0.054 (7)*
C180.14915 (18)0.60282 (14)0.4923 (2)0.0348 (4)
H18A0.1382 (18)0.5535 (15)0.563 (2)0.042 (6)*
H18B0.229 (2)0.5977 (16)0.467 (2)0.051 (7)*
H18C0.1348 (18)0.6639 (16)0.541 (2)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (6)0.0264 (6)0.0184 (6)0.0004 (5)0.0003 (5)0.0020 (4)
O20.0257 (6)0.0266 (6)0.0338 (6)0.0001 (5)0.0039 (5)0.0086 (5)
O30.0286 (7)0.0276 (7)0.0297 (7)0.0017 (5)0.0012 (5)0.0070 (5)
N10.0277 (8)0.0280 (8)0.0160 (7)0.0004 (6)0.0011 (6)0.0004 (6)
C10.0269 (9)0.0241 (9)0.0180 (7)0.0010 (7)0.0019 (6)0.0011 (6)
C20.0238 (9)0.0255 (9)0.0232 (8)0.0013 (7)0.0023 (7)0.0004 (6)
C30.0260 (8)0.0234 (9)0.0210 (8)0.0025 (7)0.0035 (6)0.0009 (6)
C40.0281 (9)0.0239 (9)0.0204 (8)0.0018 (7)0.0002 (6)0.0007 (6)
C50.0245 (9)0.0299 (9)0.0240 (8)0.0018 (7)0.0004 (7)0.0004 (7)
C60.0274 (9)0.0267 (9)0.0226 (8)0.0045 (7)0.0023 (7)0.0001 (7)
C70.0254 (9)0.0322 (10)0.0349 (10)0.0004 (8)0.0068 (8)0.0055 (8)
C80.0276 (9)0.0255 (9)0.0269 (9)0.0015 (7)0.0033 (7)0.0034 (7)
C90.0304 (9)0.0184 (8)0.0188 (8)0.0015 (7)0.0024 (6)0.0017 (6)
C100.0285 (9)0.0262 (9)0.0194 (8)0.0014 (7)0.0000 (7)0.0013 (7)
C110.0261 (9)0.0264 (9)0.0207 (8)0.0010 (7)0.0002 (7)0.0000 (7)
C120.0302 (9)0.0241 (9)0.0235 (8)0.0001 (7)0.0030 (7)0.0004 (7)
C130.0285 (9)0.0296 (10)0.0228 (8)0.0020 (7)0.0015 (7)0.0011 (7)
C140.0304 (9)0.0295 (10)0.0237 (9)0.0049 (8)0.0001 (7)0.0013 (7)
C150.0287 (9)0.0338 (10)0.0246 (9)0.0013 (8)0.0021 (7)0.0000 (7)
C160.0334 (10)0.0337 (10)0.0271 (9)0.0035 (8)0.0023 (8)0.0027 (7)
C170.0545 (14)0.0304 (10)0.0281 (10)0.0075 (9)0.0023 (9)0.0010 (8)
C180.0423 (12)0.0357 (11)0.0260 (9)0.0024 (9)0.0008 (8)0.0015 (8)
Geometric parameters (Å, º) top
O1—C91.2459 (19)C10—H10B1.01 (2)
O2—C31.369 (2)C10—C111.525 (2)
O2—C71.423 (2)C11—H11A1.02 (2)
O3—H30.88 (3)C11—H11B1.03 (2)
O3—C41.363 (2)C11—C121.523 (2)
N1—H10.85 (2)C12—H12A1.01 (2)
N1—C81.452 (2)C12—H12B1.018 (19)
N1—C91.334 (2)C12—C131.528 (2)
C1—C21.394 (2)C13—H13A1.03 (2)
C1—C61.390 (2)C13—H13B1.04 (2)
C1—C81.517 (2)C13—C141.495 (3)
C2—H20.978 (18)C14—H140.97 (2)
C2—C31.390 (2)C14—C151.325 (2)
C3—C41.400 (2)C15—H151.02 (2)
C4—C51.382 (2)C15—C161.503 (3)
C5—H50.96 (2)C16—H161.05 (2)
C5—C61.393 (2)C16—C171.513 (3)
C6—H60.98 (2)C16—C181.531 (3)
C7—H7A1.00 (2)C17—H17A1.04 (3)
C7—H7B0.98 (2)C17—H17B1.05 (2)
C7—H7C1.03 (2)C17—H17C0.99 (3)
C8—H8A1.00 (2)C18—H18A1.01 (2)
C8—H8B1.02 (2)C18—H18B1.03 (2)
C9—C101.508 (2)C18—H18C1.03 (2)
C10—H10A0.991 (19)
C3—O2—C7117.32 (13)C11—C10—H10B110.1 (11)
C4—O3—H3112.4 (17)C10—C11—H11A108.3 (11)
C8—N1—H1118.3 (13)C10—C11—H11B109.8 (11)
C9—N1—H1119.5 (14)H11A—C11—H11B104.6 (15)
C9—N1—C8122.11 (14)C12—C11—C10113.39 (14)
C2—C1—C8122.10 (15)C12—C11—H11A111.1 (11)
C6—C1—C2118.67 (16)C12—C11—H11B109.3 (11)
C6—C1—C8119.23 (15)C11—C12—H12A109.3 (12)
C1—C2—H2120.2 (11)C11—C12—H12B108.8 (10)
C3—C2—C1120.50 (16)C11—C12—C13112.20 (15)
C3—C2—H2119.3 (11)H12A—C12—H12B108.2 (15)
O2—C3—C2125.27 (15)C13—C12—H12A108.5 (12)
O2—C3—C4114.34 (14)C13—C12—H12B109.8 (10)
C2—C3—C4120.39 (15)C12—C13—H13A110.9 (11)
O3—C4—C3121.71 (15)C12—C13—H13B108.2 (11)
O3—C4—C5119.13 (15)H13A—C13—H13B105.6 (15)
C5—C4—C3119.16 (15)C14—C13—C12114.51 (15)
C4—C5—H5117.6 (12)C14—C13—H13A108.7 (11)
C4—C5—C6120.25 (16)C14—C13—H13B108.6 (11)
C6—C5—H5122.1 (12)C13—C14—H14116.4 (12)
C1—C6—C5121.03 (16)C15—C14—C13123.78 (17)
C1—C6—H6119.0 (11)C15—C14—H14119.8 (12)
C5—C6—H6119.9 (11)C14—C15—H15118.5 (13)
O2—C7—H7A111.0 (11)C14—C15—C16128.08 (17)
O2—C7—H7B104.7 (13)C16—C15—H15113.4 (12)
O2—C7—H7C110.9 (12)C15—C16—H16107.5 (12)
H7A—C7—H7B112.3 (17)C15—C16—C17113.94 (16)
H7A—C7—H7C109.7 (16)C15—C16—C18110.26 (16)
H7B—C7—H7C108.0 (17)C17—C16—H16106.5 (12)
N1—C8—C1115.25 (14)C17—C16—C18111.06 (17)
N1—C8—H8A107.3 (11)C18—C16—H16107.2 (11)
N1—C8—H8B109.3 (11)C16—C17—H17A110.5 (14)
C1—C8—H8A109.3 (11)C16—C17—H17B110.3 (12)
C1—C8—H8B109.4 (11)C16—C17—H17C111.1 (14)
H8A—C8—H8B105.9 (15)H17A—C17—H17B110.6 (18)
O1—C9—N1121.73 (16)H17A—C17—H17C105.2 (19)
O1—C9—C10121.40 (15)H17B—C17—H17C109.2 (18)
N1—C9—C10116.84 (14)C16—C18—H18A111.9 (13)
C9—C10—H10A108.8 (11)C16—C18—H18B110.5 (13)
C9—C10—H10B105.7 (11)C16—C18—H18C109.7 (12)
C9—C10—C11113.50 (14)H18A—C18—H18B105.9 (18)
H10A—C10—H10B107.4 (15)H18A—C18—H18C107.5 (17)
C11—C10—H10A111.0 (11)H18B—C18—H18C111.2 (18)
O1—C9—C10—C1141.9 (2)C7—O2—C3—C25.7 (2)
O2—C3—C4—O30.1 (2)C7—O2—C3—C4175.03 (15)
O2—C3—C4—C5179.88 (14)C8—N1—C9—O15.6 (2)
O3—C4—C5—C6179.54 (15)C8—N1—C9—C10172.11 (14)
N1—C9—C10—C11140.32 (16)C8—C1—C2—C3179.07 (15)
C1—C2—C3—O2179.62 (15)C8—C1—C6—C5179.17 (15)
C1—C2—C3—C40.4 (2)C9—N1—C8—C188.2 (2)
C2—C1—C6—C50.0 (2)C9—C10—C11—C1265.51 (19)
C2—C1—C8—N119.0 (2)C10—C11—C12—C13178.09 (14)
C2—C3—C4—O3179.46 (15)C11—C12—C13—C14176.74 (14)
C2—C3—C4—C50.6 (2)C12—C13—C14—C15130.33 (19)
C3—C4—C5—C60.5 (2)C13—C14—C15—C16176.78 (17)
C4—C5—C6—C10.2 (3)C14—C15—C16—C175.7 (3)
C6—C1—C2—C30.1 (2)C14—C15—C16—C18131.4 (2)
C6—C1—C8—N1161.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.88 (3)1.93 (3)2.7621 (17)158 (2)
N1—H1···O1ii0.85 (2)2.13 (2)2.9769 (18)175.7 (19)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Comparison of the unit-cell parameters of capsaicin crystal structures derived from previous structural determinations and the present work top
CSD refcodeFABVAFFABVAF01---
ReferenceOliver (1985)David et al. (1998)Florence et al. (2005)Shankland et al. (2010)This work
Space groupP21/cP21/cP21/cP21/cP21/c
a (Å)12.380 (4)12.2234 (1)12.67212.22412.2165 (3)
b (Å)14.814 (8)14.7900 (1)14.98014.78714.7791 (4)
c (Å)9.491 (3)9.4691 (1)9.4269.4689.4719 (2)
β (°)93.63 (3)93.9754 (3)93.6993.97294.035 (2)
V3)1737.131707.301785.61707.31705.89 (8)
T (K)173100Room temp.100100
 

Footnotes

1In both articles (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]; Florence et al., 2005[Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005). J. Appl. Cryst. 38, 249-259.]), the unpublished single-crystal data of capsaicin is credited to C. S. Frampton.

Acknowledgements

The author is grateful to Assistant Professor Mirela Dragomir for inspiring his enthusiasm for chilli cultivation and spicy food.

Funding information

Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant No. 950625); Jožef Stefan Institute Director's Fund.

References

First citationAlberti, A., Galasso, V., Kovač, B., Modelli, A. & Pichierri, F. (2008). J. Phys. Chem. A, 112, 5700–5711.  CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBear, J. C., Terzoudis, N. & Cockcroft, J. K. (2023). IUCrJ, 10, 720–728.  CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBond, A. D. (2014). Resonance, 19, 1087–1092.  CrossRef CAS Google Scholar
First citationBosland, P. W. & Votava, E. J. (2012). Peppers: Vegetable and Spice Capsicums, 2nd ed., Crop Production Science in Horticulture Series. Cambridge, MA, USA: CABI.  Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. & Julius, D. (1997). Nature, 389, 816–824.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChakoumakos, B. C. & Wang, X. (2024). Acta Cryst. C80, 43–48.  CSD CrossRef IUCr Journals Google Scholar
First citationCollins, M. D., Wasmund Mayer, L. & Bosland, P. W. (1995). HortScience, 30, 137–139.  CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationDecato, D., Palatinus, L., Stierle, A. & Stierle, D. (2024). Acta Cryst. C80, 143–147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDelgadillo, D. A., Burch, J. E., Kim, L. J., de Moraes, L. S., Niwa, K., Williams, J., Tang, M. J., Lavallo, V. G., Khatri Chhetri, B., Jones, C. G., Hernandez Rodriguez, I., Signore, J. A., Marquez, L., Bhanushali, R., Woo, S., Kubanek, J., Quave, C., Tang, Y. & Nelson, H. M. (2024). ACS Cent. Sci. 10, 176–183.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlorence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005). J. Appl. Cryst. 38, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurung, K., Šimek, P., Jegorov Jr, A. & Palatinus, L. (2024). Acta Cryst. C80, 56–61.  CSD CrossRef IUCr Journals Google Scholar
First citationHetényi, A., Németh, L., Wéber, E., Szakonyi, G., Winter, Z., Jósvay, K., Bartus, E., Oláh, Z. & Martinek, T. A. (2016). FEBS Lett. 590, 2768–2775.  PubMed Google Scholar
First citationKwon, D. H., Zhang, F., Suo, Y., Bouvette, J., Borgnia, M. J. & Lee, S.-Y. (2021). Nat. Struct. Mol. Biol. 28, 554–563.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaharjan, R., Fukuda, Y., Nakayama, T., Nakayama, T., Hamada, H., Ozaki, S.-i. & Inoue, T. (2022). Acta Cryst. D78, 379–389.  CrossRef IUCr Journals Google Scholar
First citationMarkvardsen, A. J., Shankland, K., David, W. I. F. & Didlick, G. (2005). J. Appl. Cryst. 38, 107–111.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMotaln, K., Gurung, K., Brázda, P., Kokalj, A., Radan, K., Dragomir, M., Žemva, B., Palatinus, L. & Lozinšek, M. (2024). ACS Cent. Sci. 10, 1733–1741.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationNadezhdin, K. D., Neuberger, A., Nikolaev, Y. A., Murphy, L. A., Gracheva, E. O., Bagriantsev, S. N. & Sobolevsky, A. I. (2021). Nat. Commun. 12, 2154.  CrossRef PubMed Google Scholar
First citationOliver, J. D. (1985). Am. Crystallogr. Assoc. Abstr. Pap. (Winter), 13, 57.  Google Scholar
First citationOrton, J. B. & Coles, S. J. (2024). CSD Communication, CCDC 2339733, https://dx.doi.org/10.5517/ccdc.csd.cc2jjp81Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolo, A., Soriano-Jarabo, A., Rodríguez, R., Macías, R., García-Orduña, P. & Sanz Miguel, P. J. (2024). Acta Cryst. C80, 681–684.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationScoville, W. L. (1912). J. Am. Pharm. Assoc. 1, 453–454.  CAS Google Scholar
First citationShankland, K., Markvardsen, A. J., Rowlatt, C., Shankland, N. & David, W. I. F. (2010). J. Appl. Cryst. 43, 401–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShankland, K., Spillman, M. J., Kabova, E. A., Edgeley, D. S. & Shankland, N. (2013). Acta Cryst. C69, 1251–1259.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiudem, P., Paradowska, K. & Bukowicki, J. (2017). J. Mol. Struct. 1146, 773–781.  CrossRef CAS Google Scholar
First citationSoriano-Correa, C., Pérez de la Luz, A. & Sainz-Díaz, C. I. (2023). J. Pharm. Sci. 112, 798–807.  CAS PubMed Google Scholar
First citationSpence, C. (2018). Int. J. Gastron. Food. Sci. 12, 16–21.  CrossRef Google Scholar
First citationSrinivasan, K. (2016). Crit. Rev. Food Sci. Nutr. 56, 1488–1500.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. Z. & O'Hagan, D. (2009). ChemBioChem, 10, 823–828.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds