

research papers
Single-crystal structure of the spicy capsaicin
aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The 18H27NO3), or trans-8-methyl-N-vanillylnon-6-enamide, the natural product responsible for the spiciness of chilli peppers, was determined using low-temperature single-crystal X-ray diffraction. The reported is in good agreement with previous determinations based on powder X-ray diffraction data. The localization and free of all H atoms revealed that each capsaicin molecule is hydrogen bonded to four other molecules, with the O—H and N—H groups acting as hydrogen-bond donors, and the C=O group serving as a bifurcated hydrogen-bond acceptor.
of capsaicin (CKeywords: capsaicin; capsaicinoid; Capsicum; crystal structure; single-crystal X-ray diffraction; natural product.
CCDC reference: 2426261
1. Introduction
Capsaicin (Scheme 1) [systematic name (E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide; CAS: 404-86-4] is the principal bioactive compound from the capsaicinoid family of found in the fruits of chilli pepper plants, which belong to the genus Capsicum with a very rich diversity of cultivars (Fig. 1
). This natural product is primarily responsible for the spiciness or the heat sensation of hot chillies and acts as a potent agonist of the TRPV1 (transient receptor potential vanilloid 1) heat receptor, eliciting the characteristic burning sensation and making it a strong irritant (Caterina et al., 1997
). Chilli peppers have been cultivated for several millennia and are integral to the culinary traditions of many cultures worldwide, with their consumption and popularity continuing to rise (Spence, 2018
; Bosland & Votava, 2012
). Beyond their culinary use, capsaicin and capsaicinoids have garnered attention for their pharmacological properties and diverse biological activity (Srinivasan, 2016
; Spence, 2018
). The pungency of chillies is quantified using the Scoville Heat Scale, where capsaicin is assigned a value of 16 million Scoville Heat Units (SHU), reflecting its extreme potency (Scoville, 1912
; Collins et al., 1995
; Bosland & Votava, 2012
). Its unique physiological effects and diverse applications have made capsaicin a subject of extensive research.
![]() | Figure 1 A colourful variety of capsaicin-containing spicy chilli pepper fruits (Capsicum). |
The Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016) contains two previous structure determinations of the capsaicin The oldest entry, with CSD refcode FABVAF (Oliver, 1985
), reports only the unit-cell parameters, without atomic coordinates. The second entry, FABVAF01, is a based on synchrotron powder X-ray diffraction (PXRD) data employing simulated annealing (David et al., 1998
); however, the atomic coordinates were not refined, as the model of the capsaicin molecule was constructed using standard bond lengths and angles. The report mentions a single-crystal which was used to validate the simulated annealing solution, but the single-crystal data were neither published nor deposited in the CSD. Similarly, unpublished single-crystal data were also used as a reference for another structure redetermination of capsaicin via a simulated annealing approach from laboratory monochromatic capillary transmission PXRD data (Florence et al., 2005
).1 Capsaicin has also been employed as a test sample in from powder diffraction data (Shankland et al., 2013
), utilizing a hybrid Monte Carlo method (Markvardsen et al., 2005
) and a local minimization approach (Shankland et al., 2010
). Furthermore, the of an α-fluorinated capsaicin derivative (FOSXOB; Winkler et al., 2009
) and a cocrystal of a zinc coordination complex with a disordered capsaicin guest molecule (SOLZOM; Orton & Coles, 2024
) were reported. The Protein Data Bank (PDB; Berman et al., 2000
) contains several experimentally determined structures of macromolecular complexes with capsaicin (PDB entry 4dy) as a ligand, including 7vek (Maharjan et al., 2022
), 7lr0 (Nadezhdin et al., 2021
), 7lpa, 7lpb, 7lpd and 7lpe (Kwon et al., 2021
), as well as 2n27 (Hetényi et al., 2016
).
The PXRD et al., 1998) has frequently served as a starting point for calculations and as a benchmark in computational studies (Alberti et al., 2008
; Siudem et al., 2017
; Soriano-Correa et al., 2023
).
Single-crystal X-ray diffraction (SCXRD) is considered a `gold standard' (Bond, 2014) for the structural elucidation of natural products and continues to provide valuable insights into the crystal structures of naturally occurring crystals, with recent examples of such studies including (+)-cedrol hemihydrate (Chakoumakos & Wang, 2024
) and calcium (2R,3R)-tartrate tetrahydrate (Polo et al., 2024
). Increasingly, 3D electron diffraction is gaining prominence in natural product characterization (Delgadillo et al., 2024
), because it enables and determination on nanometer-sized crystallites, as demonstrated by recent studies of beauveriolide I (Gurung et al., 2024
) and berkecoumarin (Decato et al., 2024
).
In this work, the
of capsaicin was determined using low-temperature single-crystal X-ray diffraction, providing a detailed insight into its molecular geometry, conformation and hydrogen-bonding interactions.2. Experimental
2.1. Single-crystal selection
Capsaicin is a potent irritant and, to minimize exposure to the sample, it was handled as though the compound were air sensitive (Motaln et al., 2024). The sample of capsaicin was procured from a commercial source (Sigma–Aldrich, ≥95%) and stored in a refrigerator within a nitrogen-filled glovebox (Vigor SG1200/750E). A small amount of the microcrystalline powder was transferred onto a thin layer of Baysilone-Paste (Bayer-Silicone, mittelviskos) on a watch glass inside the glovebox and covered with a layer of perfluorodecaline (Fluorochem, 96.0%). A small crystal, measuring 27 µm × 63 µm × 75 µm, was selected under a polarizing microscope and attached to a MiTeGen Dual-Thickness MicroLoop using the Baysilone-Paste.
2.2. X-ray data collection and processing
Low-temperature single-crystal X-ray diffraction data were collected using a Rigaku OD XtaLAB Synergy-S instrument equipped with PhotonJet Ag and Cu microfocus X-ray tubes, a Dectris EIGER2 R CdTe 1M hybrid photon-counting detector and an Oxford Cryosystems Cryostream 800 Plus sample cooler. The crystal was measured at 100 K using Cu Kα radiation (λ = 1.54184 Å). Experimental details on crystal data, data collection, and structure are summarized in Table 1. CrysAlis PRO software (Rigaku OD, 2024
) was used for data collection and reduction, and the was solved and refined within the OLEX2 program (Dolomanov et al., 2009
) using SUPERFLIP (Palatinus & Chapuis, 2007
; Palatinus & van der Lee, 2008
; Palatinus et al., 2012
) and SHELXL (Sheldrick, 2015
), respectively. The measured crystal was an aggregate with two components; however, due to the presence of only a small fraction of overlapped reflections (<5%), data integration was performed on the major component (Bear et al., 2023
). The positions and isotropic displacement parameters (Uiso) of all H atoms were refined freely (Cooper et al., 2010
). Molecular graphics were generated using DIAMOND (Brandenburg, 2018
).
|
3. Results and discussion
Capsaicin crystallizes in the monoclinic P21/c, with one molecule in the (Fig. 2) and four molecules in the (Table 1
). The unit-cell parameters determined at 100 K in this study are in good agreement with those obtained previously by powder X-ray diffraction at 100 K (David et al., 1998
; Shankland et al., 2010
) (Table 2
), with observed differences smaller than 0.1%. Similarly, the conformation of the capsaicin molecule observed in the present SCXRD determination and the previous PXRD determination (David et al., 1998
) are very similar, with root-mean-square deviations (RMSDs) for their alignment of 0.162 and 0.276 Å calculated in Mercury (Macrae et al., 2020
) and OLEX2 (Dolomanov et al., 2009
), respectively. The most notable conformational differences involve the positions of H atoms and specific C atoms, namely, C11, C12, C15 and C18, which are displaced by 0.31, 0.21, 0.36 and 0.27 Å, respectively (Fig. 3
).
|
![]() | Figure 2 The asymmetric unit and selected atom labels of the capsaicin crystal structure, with displacement ellipsoids plotted at the 50% probability level. |
![]() | Figure 3 Molecular overlap comparison of capsaicin molecular conformations from SCXRD crystal structure determination (red; this work) and PXRD simulated annealing (blue; David et al., 1998 ![]() |
In contrast to the typical representation of the capsaicin molecule (Scheme 1), where the 8-methylnon-6-enamide side chain is depicted pointing away from the benzene ring, the reveals that it bends back towards the vanillyl group and lies roughly parallel to the plane of the ring (Fig. 2
). Atoms C15 and C16 are positioned 0.913 (5) and 0.612 (6) Å above the benzene-ring plane, respectively. The H16—C16—C15—H15 torsion angle is −66.4 (18)°, placing atom C17 0.825 (6) Å below and atom C18 1.578 (6) Å above the benzene-ring plane. The OH group is oriented parallel to the arene ring, while the methyl group (C7) is displaced by 0.109 (3) Å from the plane of the benzene ring. The dihedral angle between the plane of the amide group [–(O=)CNH–] and that of the benzene ring is 75.9 (4)°. The length of the C=C double bond, which adopts a trans configuration, is 1.325 (2) Å. Bond distances involving heteroatom functional groups [C—OH = 1.363 (2) Å, C—OCH3 = 1.369 (2) Å, O—CH3 = 1.423 (2) Å, C=O = 1.2459 (19) Å, N—CO = 1.334 (2) Å and N—CH2 = 1.452 (2) Å] are within the expected ranges (Allen et al., 1987
).
In the ). The resulting conjoined tetrameric hydrogen-bonded rings, described by graph-set notations R42(20) and R44(28) (Etter, 1990
) (Fig. 4
), link the capsaicin molecules into a double layer with a herringbone pattern extending within the bc plane (Fig. 5
). The distance between the benzene-ring planes of neighbouring stacked molecules is 3.370 (3) Å in the smaller hydrogen-bonded ring and 4.671 (5) Å in the larger one. The double layers, with the hydrogen-bonded vanillyl and amide groups at the centre and the alkenyl chains on the exterior, are stacked along the crystallographic a direction (Fig. 5
).
|
![]() | Figure 4 Hydrogen-bonding motifs in the crystal structure of capsaicin. H atoms not involved in hydrogen bonding have been omitted for clarity. |
![]() | Figure 5 Packing diagrams and the unit cell of the capsaicin crystal structure viewed along the crystallographic a axis (left) and the crystallographic c axis (right). |
4. Conclusion
A low-temperature single-crystal X-ray diffraction study of capsaicin, the natural product responsible for the pungency of chilli peppers, was reported for the first time. The determined
aligns well with the previous simulated annealing structure solution based on powder X-ray diffraction data. In the present model, all H atoms were precisely localized and refined freely, enabling an accurate description of the hydrogen-bonding interactions. Each capsaicin molecule forms hydrogen bonds with four other molecules, with the O—H and N—H groups acting as hydrogen-bond donors, and the C=O group serving as a bifurcated hydrogen-bond acceptor, resulting in the formation of double layers.Supporting information
CCDC reference: 2426261
https://doi.org/10.1107/S2053229625001706/oc3025sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229625001706/oc3025Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229625001706/oc3025Isup3.cml
C18H27NO3 | F(000) = 664 |
Mr = 305.40 | Dx = 1.189 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.2165 (3) Å | Cell parameters from 5220 reflections |
b = 14.7791 (4) Å | θ = 3.6–73.0° |
c = 9.4719 (2) Å | µ = 0.64 mm−1 |
β = 94.035 (2)° | T = 100 K |
V = 1705.89 (8) Å3 | Plank, colourless |
Z = 4 | 0.08 × 0.06 × 0.03 mm |
Rigaku XtaLAB Synergy-S Dualflex diffractometer with an Eiger2 R CdTe 1M detector | 3508 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2644 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.054 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 76.1°, θmin = 3.6° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2024) | k = −18→18 |
Tmin = 0.683, Tmax = 1.000 | l = −11→11 |
18993 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.8148P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3508 reflections | Δρmax = 0.20 e Å−3 |
307 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.39422 (10) | 0.19720 (8) | 0.11809 (11) | 0.0254 (3) | |
O2 | 0.51027 (10) | 0.53170 (8) | 0.24005 (13) | 0.0286 (3) | |
O3 | 0.72757 (11) | 0.55919 (9) | 0.27416 (13) | 0.0287 (3) | |
H3 | 0.675 (2) | 0.5923 (17) | 0.307 (3) | 0.055 (7)* | |
N1 | 0.45776 (12) | 0.24880 (10) | −0.08461 (15) | 0.0239 (3) | |
H1 | 0.4432 (16) | 0.2648 (13) | −0.170 (2) | 0.030 (5)* | |
C1 | 0.61015 (14) | 0.33202 (11) | 0.05079 (16) | 0.0230 (4) | |
C2 | 0.53676 (14) | 0.39235 (12) | 0.10650 (17) | 0.0242 (4) | |
H2 | 0.4577 (15) | 0.3816 (12) | 0.0934 (18) | 0.022 (5)* | |
C3 | 0.57495 (14) | 0.46809 (11) | 0.18172 (16) | 0.0234 (4) | |
C4 | 0.68774 (14) | 0.48509 (11) | 0.20185 (16) | 0.0242 (4) | |
C5 | 0.76058 (15) | 0.42518 (12) | 0.14703 (18) | 0.0262 (4) | |
H5 | 0.8374 (17) | 0.4383 (13) | 0.162 (2) | 0.031 (5)* | |
C6 | 0.72194 (15) | 0.34929 (12) | 0.07186 (18) | 0.0256 (4) | |
H6 | 0.7740 (15) | 0.3072 (13) | 0.033 (2) | 0.028 (5)* | |
C7 | 0.39533 (15) | 0.51494 (14) | 0.2336 (2) | 0.0306 (4) | |
H7A | 0.3643 (16) | 0.5112 (13) | 0.134 (2) | 0.029 (5)* | |
H7B | 0.3647 (18) | 0.5657 (15) | 0.285 (2) | 0.039 (6)* | |
H7C | 0.3784 (18) | 0.4561 (15) | 0.286 (2) | 0.041 (6)* | |
C8 | 0.57184 (14) | 0.24788 (12) | −0.02999 (19) | 0.0266 (4) | |
H8A | 0.5821 (15) | 0.1939 (14) | 0.033 (2) | 0.028 (5)* | |
H8B | 0.6209 (16) | 0.2371 (13) | −0.112 (2) | 0.032 (5)* | |
C9 | 0.37700 (14) | 0.21995 (11) | −0.00818 (16) | 0.0225 (3) | |
C10 | 0.26436 (14) | 0.21276 (12) | −0.08335 (17) | 0.0248 (4) | |
H10A | 0.2634 (15) | 0.2476 (12) | −0.173 (2) | 0.024 (5)* | |
H10B | 0.2546 (15) | 0.1468 (14) | −0.1093 (19) | 0.027 (5)* | |
C11 | 0.17246 (14) | 0.24340 (12) | 0.00656 (17) | 0.0245 (4) | |
H11A | 0.1756 (15) | 0.2051 (13) | 0.096 (2) | 0.030 (5)* | |
H11B | 0.0976 (16) | 0.2284 (13) | −0.045 (2) | 0.029 (5)* | |
C12 | 0.17693 (15) | 0.34386 (12) | 0.04219 (18) | 0.0258 (4) | |
H12A | 0.1737 (16) | 0.3802 (14) | −0.049 (2) | 0.035 (5)* | |
H12B | 0.2496 (15) | 0.3574 (12) | 0.0974 (19) | 0.023 (5)* | |
C13 | 0.08175 (15) | 0.37320 (12) | 0.12808 (18) | 0.0270 (4) | |
H13A | 0.0773 (15) | 0.3332 (13) | 0.216 (2) | 0.029 (5)* | |
H13B | 0.0088 (17) | 0.3620 (14) | 0.067 (2) | 0.036 (5)* | |
C14 | 0.08545 (15) | 0.47018 (12) | 0.17305 (18) | 0.0279 (4) | |
H14 | 0.0938 (16) | 0.5146 (14) | 0.099 (2) | 0.032 (5)* | |
C15 | 0.07414 (15) | 0.49742 (13) | 0.30448 (18) | 0.0290 (4) | |
H15 | 0.0643 (18) | 0.4499 (15) | 0.380 (2) | 0.045 (6)* | |
C16 | 0.07110 (16) | 0.59276 (13) | 0.35942 (19) | 0.0314 (4) | |
H16 | −0.0088 (18) | 0.6049 (14) | 0.390 (2) | 0.039 (6)* | |
C17 | 0.0938 (2) | 0.66396 (14) | 0.2505 (2) | 0.0379 (5) | |
H17A | 0.035 (2) | 0.6610 (16) | 0.166 (3) | 0.057 (7)* | |
H17B | 0.1730 (19) | 0.6554 (15) | 0.216 (2) | 0.045 (6)* | |
H17C | 0.0873 (19) | 0.7256 (17) | 0.290 (3) | 0.054 (7)* | |
C18 | 0.14915 (18) | 0.60282 (14) | 0.4923 (2) | 0.0348 (4) | |
H18A | 0.1382 (18) | 0.5535 (15) | 0.563 (2) | 0.042 (6)* | |
H18B | 0.229 (2) | 0.5977 (16) | 0.467 (2) | 0.051 (7)* | |
H18C | 0.1348 (18) | 0.6639 (16) | 0.541 (2) | 0.046 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0313 (6) | 0.0264 (6) | 0.0184 (6) | −0.0004 (5) | 0.0003 (5) | 0.0020 (4) |
O2 | 0.0257 (6) | 0.0266 (6) | 0.0338 (6) | 0.0001 (5) | 0.0039 (5) | −0.0086 (5) |
O3 | 0.0286 (7) | 0.0276 (7) | 0.0297 (7) | −0.0017 (5) | 0.0012 (5) | −0.0070 (5) |
N1 | 0.0277 (8) | 0.0280 (8) | 0.0160 (7) | −0.0004 (6) | 0.0011 (6) | 0.0004 (6) |
C1 | 0.0269 (9) | 0.0241 (9) | 0.0180 (7) | 0.0010 (7) | 0.0019 (6) | 0.0011 (6) |
C2 | 0.0238 (9) | 0.0255 (9) | 0.0232 (8) | −0.0013 (7) | 0.0023 (7) | 0.0004 (6) |
C3 | 0.0260 (8) | 0.0234 (9) | 0.0210 (8) | 0.0025 (7) | 0.0035 (6) | −0.0009 (6) |
C4 | 0.0281 (9) | 0.0239 (9) | 0.0204 (8) | −0.0018 (7) | −0.0002 (6) | 0.0007 (6) |
C5 | 0.0245 (9) | 0.0299 (9) | 0.0240 (8) | 0.0018 (7) | 0.0004 (7) | 0.0004 (7) |
C6 | 0.0274 (9) | 0.0267 (9) | 0.0226 (8) | 0.0045 (7) | 0.0023 (7) | −0.0001 (7) |
C7 | 0.0254 (9) | 0.0322 (10) | 0.0349 (10) | 0.0004 (8) | 0.0068 (8) | −0.0055 (8) |
C8 | 0.0276 (9) | 0.0255 (9) | 0.0269 (9) | 0.0015 (7) | 0.0033 (7) | −0.0034 (7) |
C9 | 0.0304 (9) | 0.0184 (8) | 0.0188 (8) | 0.0015 (7) | 0.0024 (6) | −0.0017 (6) |
C10 | 0.0285 (9) | 0.0262 (9) | 0.0194 (8) | −0.0014 (7) | 0.0000 (7) | −0.0013 (7) |
C11 | 0.0261 (9) | 0.0264 (9) | 0.0207 (8) | −0.0010 (7) | 0.0002 (7) | 0.0000 (7) |
C12 | 0.0302 (9) | 0.0241 (9) | 0.0235 (8) | −0.0001 (7) | 0.0030 (7) | 0.0004 (7) |
C13 | 0.0285 (9) | 0.0296 (10) | 0.0228 (8) | 0.0020 (7) | 0.0015 (7) | 0.0011 (7) |
C14 | 0.0304 (9) | 0.0295 (10) | 0.0237 (9) | 0.0049 (8) | 0.0001 (7) | 0.0013 (7) |
C15 | 0.0287 (9) | 0.0338 (10) | 0.0246 (9) | 0.0013 (8) | 0.0021 (7) | 0.0000 (7) |
C16 | 0.0334 (10) | 0.0337 (10) | 0.0271 (9) | 0.0035 (8) | 0.0023 (8) | −0.0027 (7) |
C17 | 0.0545 (14) | 0.0304 (10) | 0.0281 (10) | 0.0075 (9) | −0.0023 (9) | −0.0010 (8) |
C18 | 0.0423 (12) | 0.0357 (11) | 0.0260 (9) | −0.0024 (9) | 0.0008 (8) | −0.0015 (8) |
O1—C9 | 1.2459 (19) | C10—H10B | 1.01 (2) |
O2—C3 | 1.369 (2) | C10—C11 | 1.525 (2) |
O2—C7 | 1.423 (2) | C11—H11A | 1.02 (2) |
O3—H3 | 0.88 (3) | C11—H11B | 1.03 (2) |
O3—C4 | 1.363 (2) | C11—C12 | 1.523 (2) |
N1—H1 | 0.85 (2) | C12—H12A | 1.01 (2) |
N1—C8 | 1.452 (2) | C12—H12B | 1.018 (19) |
N1—C9 | 1.334 (2) | C12—C13 | 1.528 (2) |
C1—C2 | 1.394 (2) | C13—H13A | 1.03 (2) |
C1—C6 | 1.390 (2) | C13—H13B | 1.04 (2) |
C1—C8 | 1.517 (2) | C13—C14 | 1.495 (3) |
C2—H2 | 0.978 (18) | C14—H14 | 0.97 (2) |
C2—C3 | 1.390 (2) | C14—C15 | 1.325 (2) |
C3—C4 | 1.400 (2) | C15—H15 | 1.02 (2) |
C4—C5 | 1.382 (2) | C15—C16 | 1.503 (3) |
C5—H5 | 0.96 (2) | C16—H16 | 1.05 (2) |
C5—C6 | 1.393 (2) | C16—C17 | 1.513 (3) |
C6—H6 | 0.98 (2) | C16—C18 | 1.531 (3) |
C7—H7A | 1.00 (2) | C17—H17A | 1.04 (3) |
C7—H7B | 0.98 (2) | C17—H17B | 1.05 (2) |
C7—H7C | 1.03 (2) | C17—H17C | 0.99 (3) |
C8—H8A | 1.00 (2) | C18—H18A | 1.01 (2) |
C8—H8B | 1.02 (2) | C18—H18B | 1.03 (2) |
C9—C10 | 1.508 (2) | C18—H18C | 1.03 (2) |
C10—H10A | 0.991 (19) | ||
C3—O2—C7 | 117.32 (13) | C11—C10—H10B | 110.1 (11) |
C4—O3—H3 | 112.4 (17) | C10—C11—H11A | 108.3 (11) |
C8—N1—H1 | 118.3 (13) | C10—C11—H11B | 109.8 (11) |
C9—N1—H1 | 119.5 (14) | H11A—C11—H11B | 104.6 (15) |
C9—N1—C8 | 122.11 (14) | C12—C11—C10 | 113.39 (14) |
C2—C1—C8 | 122.10 (15) | C12—C11—H11A | 111.1 (11) |
C6—C1—C2 | 118.67 (16) | C12—C11—H11B | 109.3 (11) |
C6—C1—C8 | 119.23 (15) | C11—C12—H12A | 109.3 (12) |
C1—C2—H2 | 120.2 (11) | C11—C12—H12B | 108.8 (10) |
C3—C2—C1 | 120.50 (16) | C11—C12—C13 | 112.20 (15) |
C3—C2—H2 | 119.3 (11) | H12A—C12—H12B | 108.2 (15) |
O2—C3—C2 | 125.27 (15) | C13—C12—H12A | 108.5 (12) |
O2—C3—C4 | 114.34 (14) | C13—C12—H12B | 109.8 (10) |
C2—C3—C4 | 120.39 (15) | C12—C13—H13A | 110.9 (11) |
O3—C4—C3 | 121.71 (15) | C12—C13—H13B | 108.2 (11) |
O3—C4—C5 | 119.13 (15) | H13A—C13—H13B | 105.6 (15) |
C5—C4—C3 | 119.16 (15) | C14—C13—C12 | 114.51 (15) |
C4—C5—H5 | 117.6 (12) | C14—C13—H13A | 108.7 (11) |
C4—C5—C6 | 120.25 (16) | C14—C13—H13B | 108.6 (11) |
C6—C5—H5 | 122.1 (12) | C13—C14—H14 | 116.4 (12) |
C1—C6—C5 | 121.03 (16) | C15—C14—C13 | 123.78 (17) |
C1—C6—H6 | 119.0 (11) | C15—C14—H14 | 119.8 (12) |
C5—C6—H6 | 119.9 (11) | C14—C15—H15 | 118.5 (13) |
O2—C7—H7A | 111.0 (11) | C14—C15—C16 | 128.08 (17) |
O2—C7—H7B | 104.7 (13) | C16—C15—H15 | 113.4 (12) |
O2—C7—H7C | 110.9 (12) | C15—C16—H16 | 107.5 (12) |
H7A—C7—H7B | 112.3 (17) | C15—C16—C17 | 113.94 (16) |
H7A—C7—H7C | 109.7 (16) | C15—C16—C18 | 110.26 (16) |
H7B—C7—H7C | 108.0 (17) | C17—C16—H16 | 106.5 (12) |
N1—C8—C1 | 115.25 (14) | C17—C16—C18 | 111.06 (17) |
N1—C8—H8A | 107.3 (11) | C18—C16—H16 | 107.2 (11) |
N1—C8—H8B | 109.3 (11) | C16—C17—H17A | 110.5 (14) |
C1—C8—H8A | 109.3 (11) | C16—C17—H17B | 110.3 (12) |
C1—C8—H8B | 109.4 (11) | C16—C17—H17C | 111.1 (14) |
H8A—C8—H8B | 105.9 (15) | H17A—C17—H17B | 110.6 (18) |
O1—C9—N1 | 121.73 (16) | H17A—C17—H17C | 105.2 (19) |
O1—C9—C10 | 121.40 (15) | H17B—C17—H17C | 109.2 (18) |
N1—C9—C10 | 116.84 (14) | C16—C18—H18A | 111.9 (13) |
C9—C10—H10A | 108.8 (11) | C16—C18—H18B | 110.5 (13) |
C9—C10—H10B | 105.7 (11) | C16—C18—H18C | 109.7 (12) |
C9—C10—C11 | 113.50 (14) | H18A—C18—H18B | 105.9 (18) |
H10A—C10—H10B | 107.4 (15) | H18A—C18—H18C | 107.5 (17) |
C11—C10—H10A | 111.0 (11) | H18B—C18—H18C | 111.2 (18) |
O1—C9—C10—C11 | 41.9 (2) | C7—O2—C3—C2 | 5.7 (2) |
O2—C3—C4—O3 | 0.1 (2) | C7—O2—C3—C4 | −175.03 (15) |
O2—C3—C4—C5 | −179.88 (14) | C8—N1—C9—O1 | 5.6 (2) |
O3—C4—C5—C6 | −179.54 (15) | C8—N1—C9—C10 | −172.11 (14) |
N1—C9—C10—C11 | −140.32 (16) | C8—C1—C2—C3 | 179.07 (15) |
C1—C2—C3—O2 | 179.62 (15) | C8—C1—C6—C5 | −179.17 (15) |
C1—C2—C3—C4 | 0.4 (2) | C9—N1—C8—C1 | −88.2 (2) |
C2—C1—C6—C5 | 0.0 (2) | C9—C10—C11—C12 | 65.51 (19) |
C2—C1—C8—N1 | 19.0 (2) | C10—C11—C12—C13 | 178.09 (14) |
C2—C3—C4—O3 | 179.46 (15) | C11—C12—C13—C14 | 176.74 (14) |
C2—C3—C4—C5 | −0.6 (2) | C12—C13—C14—C15 | −130.33 (19) |
C3—C4—C5—C6 | 0.5 (2) | C13—C14—C15—C16 | −176.78 (17) |
C4—C5—C6—C1 | −0.2 (3) | C14—C15—C16—C17 | −5.7 (3) |
C6—C1—C2—C3 | −0.1 (2) | C14—C15—C16—C18 | −131.4 (2) |
C6—C1—C8—N1 | −161.81 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.88 (3) | 1.93 (3) | 2.7621 (17) | 158 (2) |
N1—H1···O1ii | 0.85 (2) | 2.13 (2) | 2.9769 (18) | 175.7 (19) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+1/2, z−1/2. |
CSD refcode | FABVAF | FABVAF01 | - | - | - |
Reference | Oliver (1985) | David et al. (1998) | Florence et al. (2005) | Shankland et al. (2010) | This work |
Space group | P21/c | P21/c | P21/c | P21/c | P21/c |
a (Å) | 12.380 (4) | 12.2234 (1) | 12.672 | 12.224 | 12.2165 (3) |
b (Å) | 14.814 (8) | 14.7900 (1) | 14.980 | 14.787 | 14.7791 (4) |
c (Å) | 9.491 (3) | 9.4691 (1) | 9.426 | 9.468 | 9.4719 (2) |
β (°) | 93.63 (3) | 93.9754 (3) | 93.69 | 93.972 | 94.035 (2) |
V (Å3) | 1737.13 | 1707.30 | 1785.6 | 1707.3 | 1705.89 (8) |
T (K) | 173 | 100 | Room temp. | 100 | 100 |
Footnotes
1In both articles (David et al., 1998; Florence et al., 2005
), the unpublished single-crystal data of capsaicin is credited to C. S. Frampton.
Acknowledgements
The author is grateful to Assistant Professor Mirela Dragomir for inspiring his enthusiasm for chilli cultivation and spicy food.
Funding information
Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant No. 950625); Jožef Stefan Institute Director's Fund.
References
Alberti, A., Galasso, V., Kovač, B., Modelli, A. & Pichierri, F. (2008). J. Phys. Chem. A, 112, 5700–5711. CrossRef PubMed CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bear, J. C., Terzoudis, N. & Cockcroft, J. K. (2023). IUCrJ, 10, 720–728. CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Bond, A. D. (2014). Resonance, 19, 1087–1092. CrossRef CAS Google Scholar
Bosland, P. W. & Votava, E. J. (2012). Peppers: Vegetable and Spice Capsicums, 2nd ed., Crop Production Science in Horticulture Series. Cambridge, MA, USA: CABI. Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. & Julius, D. (1997). Nature, 389, 816–824. CrossRef CAS PubMed Web of Science Google Scholar
Chakoumakos, B. C. & Wang, X. (2024). Acta Cryst. C80, 43–48. CSD CrossRef IUCr Journals Google Scholar
Collins, M. D., Wasmund Mayer, L. & Bosland, P. W. (1995). HortScience, 30, 137–139. CrossRef CAS Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932. Web of Science CSD CrossRef Google Scholar
Decato, D., Palatinus, L., Stierle, A. & Stierle, D. (2024). Acta Cryst. C80, 143–147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Delgadillo, D. A., Burch, J. E., Kim, L. J., de Moraes, L. S., Niwa, K., Williams, J., Tang, M. J., Lavallo, V. G., Khatri Chhetri, B., Jones, C. G., Hernandez Rodriguez, I., Signore, J. A., Marquez, L., Bhanushali, R., Woo, S., Kubanek, J., Quave, C., Tang, Y. & Nelson, H. M. (2024). ACS Cent. Sci. 10, 176–183. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A., Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005). J. Appl. Cryst. 38, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurung, K., Šimek, P., Jegorov Jr, A. & Palatinus, L. (2024). Acta Cryst. C80, 56–61. CSD CrossRef IUCr Journals Google Scholar
Hetényi, A., Németh, L., Wéber, E., Szakonyi, G., Winter, Z., Jósvay, K., Bartus, E., Oláh, Z. & Martinek, T. A. (2016). FEBS Lett. 590, 2768–2775. PubMed Google Scholar
Kwon, D. H., Zhang, F., Suo, Y., Bouvette, J., Borgnia, M. J. & Lee, S.-Y. (2021). Nat. Struct. Mol. Biol. 28, 554–563. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maharjan, R., Fukuda, Y., Nakayama, T., Nakayama, T., Hamada, H., Ozaki, S.-i. & Inoue, T. (2022). Acta Cryst. D78, 379–389. CrossRef IUCr Journals Google Scholar
Markvardsen, A. J., Shankland, K., David, W. I. F. & Didlick, G. (2005). J. Appl. Cryst. 38, 107–111. Web of Science CrossRef IUCr Journals Google Scholar
Motaln, K., Gurung, K., Brázda, P., Kokalj, A., Radan, K., Dragomir, M., Žemva, B., Palatinus, L. & Lozinšek, M. (2024). ACS Cent. Sci. 10, 1733–1741. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Nadezhdin, K. D., Neuberger, A., Nikolaev, Y. A., Murphy, L. A., Gracheva, E. O., Bagriantsev, S. N. & Sobolevsky, A. I. (2021). Nat. Commun. 12, 2154. CrossRef PubMed Google Scholar
Oliver, J. D. (1985). Am. Crystallogr. Assoc. Abstr. Pap. (Winter), 13, 57. Google Scholar
Orton, J. B. & Coles, S. J. (2024). CSD Communication, CCDC 2339733, https://dx.doi.org/10.5517/ccdc.csd.cc2jjp81. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Polo, A., Soriano-Jarabo, A., Rodríguez, R., Macías, R., García-Orduña, P. & Sanz Miguel, P. J. (2024). Acta Cryst. C80, 681–684. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Scoville, W. L. (1912). J. Am. Pharm. Assoc. 1, 453–454. CAS Google Scholar
Shankland, K., Markvardsen, A. J., Rowlatt, C., Shankland, N. & David, W. I. F. (2010). J. Appl. Cryst. 43, 401–406. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shankland, K., Spillman, M. J., Kabova, E. A., Edgeley, D. S. & Shankland, N. (2013). Acta Cryst. C69, 1251–1259. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siudem, P., Paradowska, K. & Bukowicki, J. (2017). J. Mol. Struct. 1146, 773–781. CrossRef CAS Google Scholar
Soriano-Correa, C., Pérez de la Luz, A. & Sainz-Díaz, C. I. (2023). J. Pharm. Sci. 112, 798–807. CAS PubMed Google Scholar
Spence, C. (2018). Int. J. Gastron. Food. Sci. 12, 16–21. CrossRef Google Scholar
Srinivasan, K. (2016). Crit. Rev. Food Sci. Nutr. 56, 1488–1500. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winkler, M., Moraux, T., Khairy, H. A., Scott, R. H., Slawin, A. M. Z. & O'Hagan, D. (2009). ChemBioChem, 10, 823–828. CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.