

research papers
High-pressure synthesis of bilayer nickelate Sr3Ni2O5Cl2 with a tetragonal crystal structure
aInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, bGraduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan, cResearch Network and Facility Services Division (RNFS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, and dNagamori Institute of Actuators, Kyoto University of Advanced Science, 18 Gotanda, Yamanouchi, Ukyo 615-8577, Japan
*Correspondence e-mail: yamane.kazuki@nims.go.jp
Motivated by a theoretical prediction of its potential superconductivity under ambient pressure, a novel oxychloride, Sr3Ni2O5Cl2, was synthesized for the first time. This synthesis utilized a high pressure of 10 GPa at 1673 K. Small single crystals were used to determine the and measure the temperature dependence of electrical resistance. The crystal is isostructural with the recently discovered superconductor La3Ni2O7, in line with theoretical expectation.
Keywords: crystal structure; superconductor; perovskite; complex anion; X-ray diffraction; Ruddlesden-Popper; oxychloride; nickel; strontium.
CCDC reference: 2431174
1. Introduction
Recently, La3Ni2O7 has been reported to exhibit superconductivity under pressures exceeding 15 GPa (Sun et al., 2023). Remarkably, the temperature reaches as high as 80 K, comparable to that of high-Tc cuprates. The compound adopts a Ruddlesden–Popper phase structure and the superconductivity occurs in the double layers of NiO2 square lattices like the superconductivity in CuO2 square lattices in the cuprates. These intriguing characteristics have motivated the search for other Ni oxide superconductors (Sakakibara et al., 2024b
; Nagata et al., 2024
; Ueki et al., 2024
), with the hope that one might exhibit superconductivity at ambient pressure. This would achieve a significant breakthrough in the field.
The superconductivity of La3Ni2O7 had been theoretically predicted even before its experimental discovery, as the intercoupling between two square lattices in the double layer is thought to be advantageous for superconductivity (Nakata et al., 2017; Sakakibara et al., 2024a
; Kaneko et al., 2024
). Thus, the key to the occurrence of superconductivity is widely believed to lie in the Ni—Oap—Ni bridging angle (Sun et al., 2023
), where Oap represents the oxygen ion between two Ni ions along the c axis. In fact, the superconductivity appears above the pressure at which the orthorhombic Amam structure transforms into the tetragonal I4/mmm structure (Wang et al., 2024a
, 2024b
). This transformation causes the bridging angle to change from 168 to 180°, presumably enhancing the intercoupling between the two square lattices.
Based on the same theoretical approach used to predict the superconductivity of La3Ni2O7, the previously unreported compound Sr3Ni2O5Cl2 has recently been proposed as a promising candidate for a superconductor under ambient pressure (Ochi et al., 2025). It is expected to exhibit tetragonal I4/mmm symmetry even under ambient pressure, if it exists. Therefore, we decided to synthesize this new Ni oxychloride and successfully obtained a single crystal. In this article, we present the method of synthesis, and electrical resistance measurements for Sr3Ni2O5Cl2.
2. Experimental
2.1. Methods
Single crystals were examined using a scanning electron microscope (SEM, JSM-6010LA, JEOL) equipped with energy-dispersive Kα radiation (λ = 0.71073 Å) and a HyPix2000 detector. A crystal with dimensions of approximately 30 µm × 27 µm × 19 µm was isolated under paraffin oil, then immediately mounted in a dry N2 gas stream to prevent degradation, as the compound is highly air-sensitive. Electrical resistance measurements were performed under various pressures using a diamond anvil cell (DAC) equipped with boron-doped diamond electrodes directly fabricated onto the diamond surface (Matsumoto et al., 2016; Sakakibara et al., 2024b
). Resistance data were obtained with a Physical Property Measurement System (PPMS, Quantum Design).
2.2. Synthesis and crystallization
Single crystals of Sr3Ni2O5Cl2 were synthesized via high-pressure techniques using a stoichiometric mixture (1:1:1:2 molar ratio) of SrO2, SrO, SrCl2 and NiO in a Kawai-type multi-anvil press (Kawai et al., 1970). SrO2 was prepared by precipitation from a reaction between Sr(NO3)2 and H2O2. Specifically, Sr(NO3)2 was dissolved in deionized water that had been pre-degassed by bubbling Ar gas through it to remove dissolved CO2. A 30% aqueous H2O2 solution was then added, followed by aqueous NH3 to induce precipitation. The precipitate was filtered off and dried at 423 K. All steps were carried out in a glove bag filled with argon gas to minimize CO2 exposure. SrO was obtained by thermal decomposition of SrCO3 at 1473 K under flowing argon gas, while SrCl2 was prepared by dehydrating SrCl2·6H2O at 573 K under vacuum. The stoichiometric mixture was sealed in a Pt capsule inside an argon-filled heated to 1673 K at 10 GPa for 2 h in the press and then the temperature was reduced to room temperature by lowering it in 100 K increments, with a 20 min hold at each step, before releasing the pressure. The final product included single crystals with typical dimensions of 50 µm × 50 µm × 30 µm.
3. Results and discussion
Fig. 1 shows the SEM image of a representative crystal. The plate-like morphology is consistent with the layered structure typical of the Ruddlesden–Popper phase, indicating that the crystal readily cleaves along these planes. Notably, the depicted crystal was cleaved using Scotch tape, highlighting the inherent cleavage planes of the material. EDX analysis determined the composition to be Sr3.05(2)Ni2.13(4)OxCl1.81(1), in close agreement with the nominal stoichiometry of the starting materials.
![]() | Figure 1 SEM image of a single crystal of Sr3Ni2O5Cl2. |
The parameters obtained from the SCXRD structure refinements are summarized in Tables 1 and 2
. No significant deviations from full occupancy were observed for any of the atoms. Consequently, the was determined to be isostructural with La3Ni2O7 and Sr3M2O5Cl2 (M = Sc, Fe and Co) (Wang et al., 2024a
, 2024b
; Su et al., 2018
; Leib et al., 1984
; McGlothlin et al., 2000
). Specifically, the compound crystallizes in the Ruddlesden–Popper phase structure, adopting the tetragonal I4/mmm symmetry, with lattice parameters a = 3.83990 (10) and c = 24.2936 (12) Å, as shown in Fig. 2
(a).
|
|
![]() | Figure 2 The crystal structures of (a) Sr3Ni2O5Cl2 and (b) Sr2NiO3Cl (Tsujimoto et al., 2013 ![]() ![]() |
In the structure, there are two oxygen sites, 2a and 8g, referred to as Oap and Oeq, respectively, in this article (Table 2). Oap bridges two Ni atoms along the c axis, while Oeq is located between two Ni atoms in the ab plane. The bond lengths for Ni—Oap, Ni—Oeq and Ni—Cl are 1.8719 (5), 1.9389 (4) and 3.1023 (14) Å, respectively. Based on these bond lengths, we have estimated the valence state of atoms using the bond valence sum (BVS) method (Brown et al., 1985
; Brese et al., 1991
). The BVS parameters of Ni2+—Cl− of 2.02 was used (Brese et al., 1991
), following a previous literature procedure for the related compound Sr2NiO3Cl (Tsujimoto et al., 2013
).
The Ni valence was estimated to be +3.17. Similarly, the valences of Sr1 and Sr2 were estimated from the coordination environments, shown in Fig. 2(d), to be +1.83 and +2.57, respectively. These values are in reasonable agreement with the formal valence expected from the composition, considering that the structure is stabilized only under high-pressure conditions (Ochi et al., 2025
). Another high-pressure phase of Ni oxide Sr2NiO3Cl (Tsujimoto et al., 2013
) also exhibits a larger Sr valence (+2.51) at the Sr2 site, which is surrounded by both O and Cl ions, as shown in Fig. 2
(f). The asymmetry in coordination may account for the higher BVS valences. In contrast, the Ni ions are displaced toward the Oap ions from the centre of the Oeq coordination plane, reducing the Ni—Oeq—Ni bridging angle from 180 to 163.98 (15)° in Sr3Ni2O5Cl2. This value closely matches the theoretical prediction of 162°, further reinforcing the validity of the theoretical calculation.
Interestingly, the Ni—Oap bond length is significantly shorter than the Ni—Oeq bond length. Although this trend is also observed in Sr2NiO3Cl, as shown in Fig. 2(e), it is more pronounced in Sr3Ni2O5Cl2. In fact, the ratio of Ni—Oap to Ni—Oeq is 0.965 in Sr3Ni2O5Cl2, whereas the ratio for Sr2NiO3Cl is 0.975, suggesting stronger covalency between Ni—Oap in Sr3Ni2O5Cl2 than in Sr2NiO3Cl. The larger displacement of the transition-metal cations toward Oap in the double-layered structure, compared to the single-layered structure, may be a common characteristic feature of strontium transition-metal oxychlorides (Hector et al., 2001
; Leib et al., 1984
; Loureiro et al., 2000
). Thus, the highly enhanced vertical interlayer hopping in Sr3Ni2O5Cl2 predicted by theory is presumably attributed to this feature of the strontium transition-metal oxychlorides, being related to the high covalence between the Ni and Oap atoms.
The temperature dependences of electrical resistance under various pressures are shown in Fig. 3. Although the resistance increases with decreasing temperature at 0.2 GPa, which is almost ambient pressure, the compound remains relatively conductive, consistent with the metallic nature predicted by theory. However, no superconductivity is observed down to 2 K. The increase in resistance with decreasing temperature is gradually supressed by applying pressure up to 24 GPa, However, superconductivity does not emerge. The origin of the absence of superconductivity is under investigation.
![]() | Figure 3 Temperature dependence of the electrical resistance of Sr3Ni2O5Cl2 under various pressures. |
Supporting information
CCDC reference: 2431174
https://doi.org/10.1107/S2053229625002281/dg3068sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229625002281/dg3068Isup2.hkl
Sr3Ni2O5Cl2 | Dx = 4.925 Mg m−3 |
Mr = 531.18 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mmm | Cell parameters from 4484 reflections |
a = 3.8399 (1) Å | θ = 3.3–44.7° |
c = 24.2936 (12) Å | µ = 28.06 mm−1 |
V = 358.21 (3) Å3 | T = 301 K |
Z = 2 | Block, metallic black |
F(000) = 488 | 0.03 × 0.03 × 0.02 mm |
Rigaku Synergy Custom DW diffractometer with a HyPix2000 detector | 500 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source | 448 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.065 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 44.9°, θmin = 3.4° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2024) | k = −7→7 |
Tmin = 0.346, Tmax = 0.380 | l = −48→48 |
8872 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.6699P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max = 0.001 |
S = 1.12 | Δρmax = 3.44 e Å−3 |
500 reflections | Δρmin = −1.03 e Å−3 |
18 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni | −0.500000 | −0.500000 | 0.42295 (2) | 0.01226 (11) | |
O1 | −0.500000 | −0.500000 | 0.500000 | 0.0193 (8) | |
O2 | −0.500000 | −1.000000 | 0.41182 (10) | 0.0171 (4) | |
Cl | −0.500000 | −0.500000 | 0.29525 (5) | 0.0208 (2) | |
Sr1 | 0.000000 | 0.000000 | 0.500000 | 0.01719 (12) | |
Sr2 | −1.000000 | −1.000000 | 0.34453 (2) | 0.01499 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.01015 (13) | 0.01015 (13) | 0.0165 (2) | 0.000 | 0.000 | 0.000 |
O1 | 0.0226 (12) | 0.0226 (12) | 0.0128 (17) | 0.000 | 0.000 | 0.000 |
O2 | 0.0156 (8) | 0.0101 (7) | 0.0256 (10) | 0.000 | 0.000 | 0.000 |
Cl | 0.0181 (3) | 0.0181 (3) | 0.0263 (5) | 0.000 | 0.000 | 0.000 |
Sr1 | 0.01381 (13) | 0.01381 (13) | 0.0239 (3) | 0.000 | 0.000 | 0.000 |
Sr2 | 0.01223 (10) | 0.01223 (10) | 0.02051 (19) | 0.000 | 0.000 | 0.000 |
Ni—O1 | 1.8719 (5) | O1—Sr1vi | 2.7152 (1) |
Ni—O2 | 1.9389 (3) | O1—Sr1v | 2.7152 (1) |
Ni—O2i | 1.9389 (4) | O1—Sr1iv | 2.7152 (1) |
Ni—O2ii | 1.9389 (4) | O2—Sr1vi | 2.8766 (18) |
Ni—O2iii | 1.9389 (4) | O2—Sr1iv | 2.8766 (18) |
Ni—Sr1 | 3.2980 (3) | O2—Sr2 | 2.5217 (16) |
Ni—Sr1iv | 3.2980 (3) | O2—Sr2viii | 2.5218 (16) |
Ni—Sr1v | 3.2980 (3) | Cl—Sr2vii | 2.9674 (6) |
Ni—Sr1vi | 3.2980 (3) | Cl—Sr2viii | 2.9674 (6) |
Ni—Sr2 | 3.3169 (4) | Cl—Sr2 | 2.9674 (6) |
Ni—Sr2vii | 3.3169 (4) | Cl—Sr2ix | 3.3956 (13) |
Ni—Sr2viii | 3.3169 (4) | Cl—Sr2iii | 2.9674 (6) |
O1—Sr1 | 2.7152 (1) | ||
O1—Ni—O2 | 98.01 (7) | O1—Sr1—O2xiv | 118.16 (2) |
O1—Ni—O2i | 98.01 (7) | O1vii—Sr1—O2iii | 118.16 (2) |
O1—Ni—O2ii | 98.01 (7) | O1—Sr1—O2ii | 61.84 (2) |
O1—Ni—O2iii | 98.01 (7) | O1iii—Sr1—O2iii | 61.84 (2) |
O1—Ni—Sr1 | 55.417 (8) | O1—Sr1—O2iii | 61.84 (2) |
O1—Ni—Sr1vi | 55.417 (8) | O1iii—Sr1—O2ii | 118.16 (2) |
O1—Ni—Sr1iv | 55.417 (7) | O1—Sr1—O2xiii | 61.84 (2) |
O1—Ni—Sr1v | 55.417 (8) | O1viii—Sr1—O2iii | 118.16 (2) |
O1—Ni—Sr2 | 125.055 (9) | O1viii—Sr1—O2xii | 118.16 (2) |
O1—Ni—Sr2vii | 125.056 (9) | O1vii—Sr1—O2x | 118.16 (2) |
O1—Ni—Sr2viii | 125.056 (9) | O1viii—Sr1—O2xiv | 61.84 (2) |
O2i—Ni—O2ii | 163.98 (15) | O1iii—Sr1—O2x | 61.84 (2) |
O2—Ni—O2i | 88.89 (2) | O1viii—Sr1—O2x | 118.16 (2) |
O2—Ni—O2ii | 88.89 (2) | O1vii—Sr1—O2vii | 61.84 (2) |
O2i—Ni—O2iii | 88.89 (2) | O1—Sr1—O2x | 61.84 (2) |
O2—Ni—O2iii | 163.98 (15) | O1iii—Sr1—O2vii | 118.16 (2) |
O2ii—Ni—O2iii | 88.89 (2) | O1viii—Sr1—O2vii | 61.84 (2) |
O2i—Ni—Sr1v | 60.17 (5) | O1vii—Sr1—O2xiii | 118.16 (2) |
O2—Ni—Sr1 | 130.96 (5) | O1—Sr1—O2xi | 118.16 (2) |
O2ii—Ni—Sr1v | 130.96 (5) | O1iii—Sr1—O2xiii | 118.16 (2) |
O2i—Ni—Sr1 | 130.96 (5) | O1—Sr1—O2vii | 118.16 (2) |
O2—Ni—Sr1vi | 60.17 (5) | O1vii—Sr1—O2xii | 61.84 (2) |
O2ii—Ni—Sr1 | 60.17 (5) | O1iii—Sr1—O2xiv | 118.16 (2) |
O2ii—Ni—Sr1vi | 60.17 (5) | O1iii—Sr1—O2xii | 61.84 (2) |
O2i—Ni—Sr1vi | 130.96 (5) | O1vii—Sr1—O2xiv | 61.84 (2) |
O2iii—Ni—Sr1v | 60.17 (5) | O2xiv—Sr1—O2iii | 180.0 |
O2iii—Ni—Sr1vi | 130.96 (5) | O2xi—Sr1—O2iii | 123.68 (4) |
O2i—Ni—Sr1iv | 60.17 (5) | O2xiv—Sr1—O2xiii | 56.32 (4) |
O2ii—Ni—Sr1iv | 130.96 (5) | O2ii—Sr1—O2xiv | 123.68 (4) |
O2iii—Ni—Sr1iv | 130.96 (5) | O2iii—Sr1—O2vii | 83.74 (7) |
O2—Ni—Sr1iv | 60.17 (5) | O2ii—Sr1—O2iii | 56.32 (4) |
O2—Ni—Sr1v | 130.96 (5) | O2xiv—Sr1—O2xii | 123.68 (4) |
O2iii—Ni—Sr1 | 60.17 (5) | O2iii—Sr1—O2xiii | 123.68 (4) |
O2iii—Ni—Sr2 | 119.55 (6) | O2iii—Sr1—O2xii | 56.32 (4) |
O2—Ni—Sr2 | 49.21 (5) | O2xi—Sr1—O2x | 56.32 (4) |
O2ii—Ni—Sr2 | 119.55 (6) | O2xiii—Sr1—O2xii | 180.0 |
O2—Ni—Sr2vii | 119.55 (6) | O2xiv—Sr1—O2x | 83.74 (7) |
O2i—Ni—Sr2viii | 119.55 (6) | O2iii—Sr1—O2x | 96.26 (7) |
O2i—Ni—Sr2 | 49.21 (5) | O2xi—Sr1—O2xiv | 56.32 (4) |
O2—Ni—Sr2viii | 49.21 (5) | O2xi—Sr1—O2xii | 96.26 (7) |
O2iii—Ni—Sr2viii | 119.55 (6) | O2ii—Sr1—O2xiii | 96.26 (7) |
O2ii—Ni—Sr2viii | 49.21 (5) | O2xi—Sr1—O2vii | 123.68 (4) |
O2i—Ni—Sr2vii | 119.55 (6) | O2xi—Sr1—O2xiii | 83.74 (7) |
O2iii—Ni—Sr2vii | 49.21 (5) | O2ii—Sr1—O2vii | 56.32 (4) |
O2ii—Ni—Sr2vii | 49.21 (5) | O2xiv—Sr1—O2vii | 96.26 (7) |
Sr1v—Ni—Sr1iv | 71.206 (7) | O2xiii—Sr1—O2vii | 123.68 (4) |
Sr1vi—Ni—Sr1iv | 71.206 (7) | O2ii—Sr1—O2x | 123.68 (4) |
Sr1v—Ni—Sr1vi | 110.833 (15) | O2ii—Sr1—O2xii | 83.74 (7) |
Sr1—Ni—Sr1v | 71.206 (7) | O2xii—Sr1—O2vii | 56.32 (4) |
Sr1—Ni—Sr1vi | 71.206 (7) | O2xiii—Sr1—O2x | 56.32 (4) |
Sr1—Ni—Sr1iv | 110.833 (15) | O2x—Sr1—O2vii | 180.0 |
Sr1v—Ni—Sr2vii | 109.027 (3) | O2xii—Sr1—O2x | 123.68 (4) |
Sr1vi—Ni—Sr2viii | 69.639 (7) | O2xi—Sr1—O2ii | 180.0 |
Sr1—Ni—Sr2 | 179.528 (15) | Niv—Sr2—Niiv | 70.737 (9) |
Sr1v—Ni—Sr2 | 109.027 (3) | Nivi—Sr2—Niiv | 70.737 (9) |
Sr1iv—Ni—Sr2 | 69.638 (7) | Ni—Sr2—Niv | 70.737 (9) |
Sr1iv—Ni—Sr2vii | 179.528 (15) | Ni—Sr2—Nivi | 70.737 (9) |
Sr1—Ni—Sr2vii | 69.639 (7) | Niv—Sr2—Nivi | 109.889 (18) |
Sr1—Ni—Sr2viii | 109.027 (3) | Ni—Sr2—Niiv | 109.889 (18) |
Sr1v—Ni—Sr2viii | 179.528 (15) | O2—Sr2—Niiv | 93.92 (4) |
Sr1iv—Ni—Sr2viii | 109.027 (3) | O2—Sr2—Niv | 93.92 (4) |
Sr1vi—Ni—Sr2vii | 109.027 (3) | O2xv—Sr2—Nivi | 35.602 (6) |
Sr1vi—Ni—Sr2 | 109.027 (3) | O2i—Sr2—Nivi | 93.92 (4) |
Sr2—Ni—Sr2viii | 70.737 (9) | O2xv—Sr2—Niv | 93.92 (4) |
Sr2—Ni—Sr2vii | 109.889 (18) | O2i—Sr2—Niiv | 93.92 (4) |
Sr2vii—Ni—Sr2viii | 70.737 (9) | O2v—Sr2—Niiv | 35.602 (6) |
Nix—O1—Ni | 180.0 | O2—Sr2—Ni | 35.602 (6) |
Ni—O1—Sr1iv | 90.0 | O2xv—Sr2—Ni | 93.92 (4) |
Nix—O1—Sr1v | 90.0 | O2xv—Sr2—Niiv | 35.602 (6) |
Nix—O1—Sr1vi | 90.0 | O2v—Sr2—Niv | 35.602 (6) |
Nix—O1—Sr1 | 90.0 | O2i—Sr2—Ni | 35.602 (6) |
Ni—O1—Sr1v | 90.0 | O2v—Sr2—Ni | 93.92 (4) |
Ni—O1—Sr1vi | 90.0 | O2i—Sr2—Niv | 35.602 (6) |
Nix—O1—Sr1iv | 90.0 | O2—Sr2—Nivi | 35.602 (6) |
Ni—O1—Sr1 | 90.0 | O2v—Sr2—Nivi | 93.92 (4) |
Sr1v—O1—Sr1vi | 180.0 | O2v—Sr2—O2 | 99.17 (9) |
Sr1—O1—Sr1vi | 90.0 | O2i—Sr2—O2v | 65.14 (5) |
Sr1iv—O1—Sr1 | 180.0 | O2i—Sr2—O2xv | 99.17 (9) |
Sr1iv—O1—Sr1vi | 90.0 | O2i—Sr2—O2 | 65.14 (5) |
Sr1—O1—Sr1v | 90.0 | O2xv—Sr2—O2 | 65.14 (5) |
Sr1iv—O1—Sr1v | 90.0 | O2xv—Sr2—O2v | 65.14 (5) |
Ni—O2—Nivi | 163.98 (15) | O2v—Sr2—Cl | 138.952 (17) |
Nivi—O2—Sr1vi | 84.04 (6) | O2i—Sr2—Cliv | 138.952 (17) |
Nivi—O2—Sr1iv | 84.04 (6) | O2—Sr2—Cl | 76.64 (4) |
Ni—O2—Sr1iv | 84.04 (6) | O2i—Sr2—Cl | 76.64 (4) |
Ni—O2—Sr1vi | 84.04 (6) | O2v—Sr2—Clv | 76.64 (4) |
Ni—O2—Sr2 | 95.18 (4) | O2v—Sr2—Cliv | 76.64 (4) |
Ni—O2—Sr2viii | 95.18 (4) | O2—Sr2—Cliv | 138.952 (17) |
Nivi—O2—Sr2 | 95.18 (4) | O2xv—Sr2—Cliv | 76.64 (4) |
Nivi—O2—Sr2viii | 95.18 (4) | O2—Sr2—Clvi | 76.64 (4) |
Sr1vi—O2—Sr1iv | 83.74 (7) | O2xv—Sr2—Clvi | 76.64 (4) |
Sr2—O2—Sr1iv | 88.546 (13) | O2i—Sr2—Clv | 76.64 (4) |
Sr2viii—O2—Sr1iv | 172.29 (8) | O2v—Sr2—Clvi | 138.952 (17) |
Sr2—O2—Sr1vi | 172.28 (8) | O2i—Sr2—Clvi | 138.952 (17) |
Sr2viii—O2—Sr1vi | 88.547 (13) | O2xv—Sr2—Clv | 138.952 (17) |
Sr2—O2—Sr2viii | 99.17 (9) | O2xv—Sr2—Cl | 138.952 (17) |
Sr2vii—Cl—Sr2iii | 80.635 (18) | O2—Sr2—Clv | 138.952 (17) |
Sr2iii—Cl—Sr2 | 80.634 (18) | Cliv—Sr2—Ni | 168.74 (3) |
Sr2viii—Cl—Sr2 | 80.634 (18) | Cliv—Sr2—Niiv | 58.85 (2) |
Sr2iii—Cl—Sr2ix | 113.79 (2) | Clvi—Sr2—Niv | 168.74 (3) |
Sr2—Cl—Sr2ix | 113.79 (2) | Cl—Sr2—Nivi | 103.398 (13) |
Sr2vii—Cl—Sr2viii | 80.635 (18) | Clv—Sr2—Niiv | 103.398 (13) |
Sr2iii—Cl—Sr2viii | 132.42 (5) | Cl—Sr2—Niv | 103.398 (13) |
Sr2vii—Cl—Sr2ix | 113.79 (2) | Clvi—Sr2—Niiv | 103.398 (13) |
Sr2vii—Cl—Sr2 | 132.42 (5) | Cliv—Sr2—Niv | 103.398 (13) |
Sr2viii—Cl—Sr2ix | 113.79 (2) | Clv—Sr2—Nivi | 168.74 (3) |
O1vii—Sr1—O1 | 180.0 | Clv—Sr2—Ni | 103.397 (13) |
O1—Sr1—O1iii | 90.0 | Cliv—Sr2—Nivi | 103.398 (13) |
O1—Sr1—O1viii | 90.0 | Clvi—Sr2—Nivi | 58.85 (2) |
O1vii—Sr1—O1viii | 90.0 | Cl—Sr2—Ni | 58.85 (2) |
O1iii—Sr1—O1viii | 180.0 | Cl—Sr2—Niiv | 168.74 (3) |
O1vii—Sr1—O1iii | 90.0 | Clv—Sr2—Niv | 58.85 (2) |
O1vii—Sr1—O2xi | 61.84 (2) | Clvi—Sr2—Ni | 103.397 (13) |
O1—Sr1—O2xii | 118.16 (2) | Clv—Sr2—Clvi | 132.42 (5) |
O1viii—Sr1—O2xi | 118.16 (2) | Cliv—Sr2—Clvi | 80.634 (18) |
O1vii—Sr1—O2ii | 118.16 (2) | Cl—Sr2—Clv | 80.634 (18) |
O1iii—Sr1—O2xi | 61.84 (2) | Cl—Sr2—Clvi | 80.634 (18) |
O1viii—Sr1—O2ii | 61.84 (2) | Cliv—Sr2—Clv | 80.634 (18) |
O1viii—Sr1—O2xiii | 61.84 (2) | Cliv—Sr2—Cl | 132.42 (5) |
O2—Ni—O1—Sr1iv | −45.0 | Sr1iv—Ni—O1—Sr1vi | 90.0 |
O2—Ni—O1—Sr1v | −135.0 | Sr1vi—Ni—O1—Sr1v | 180.0 |
O2iii—Ni—O1—Sr1iv | 135.0 | Sr1—Ni—O1—Sr1vi | −90.0 |
O2—Ni—O1—Sr1 | 135.0 | Sr1v—Ni—O1—Sr1 | −90.0 |
O2ii—Ni—O1—Sr1iv | −135.0 | Sr1—Ni—O1—Sr1v | 90.0 |
O2iii—Ni—O1—Sr1 | −45.0 | Sr1vi—Ni—O1—Sr1iv | −90.0 |
O2—Ni—O1—Sr1vi | 45.0 | Sr1iv—Ni—O1—Sr1 | 180.0 |
O2iii—Ni—O1—Sr1vi | −135.0 | Sr1vi—Ni—O1—Sr1 | 90.0 |
O2i—Ni—O1—Sr1v | −45.0 | Sr2vii—Ni—O1—Sr1v | 90.0 |
O2i—Ni—O1—Sr1 | −135.0 | Sr2viii—Ni—O1—Sr1iv | −90.0 |
O2ii—Ni—O1—Sr1v | 135.0 | Sr2viii—Ni—O1—Sr1v | 180.0 |
O2iii—Ni—O1—Sr1v | 45.0 | Sr2vii—Ni—O1—Sr1 | 0.0 |
O2i—Ni—O1—Sr1iv | 45.0 | Sr2vii—Ni—O1—Sr1vi | −90.0 |
O2ii—Ni—O1—Sr1 | 45.0 | Sr2—Ni—O1—Sr1 | 180.0 |
O2i—Ni—O1—Sr1vi | 135.0 | Sr2vii—Ni—O1—Sr1iv | 180.0 |
O2ii—Ni—O1—Sr1vi | −45.0 | Sr2—Ni—O1—Sr1vi | 90.0 |
Sr1—Ni—O1—Sr1iv | 180.0 | Sr2viii—Ni—O1—Sr1vi | 0.0 |
Sr1iv—Ni—O1—Sr1v | −90.0 | Sr2viii—Ni—O1—Sr1 | 90.0 |
Sr1v—Ni—O1—Sr1vi | 180.0 | Sr2—Ni—O1—Sr1v | −90.0 |
Sr1v—Ni—O1—Sr1iv | 90.0 | Sr2—Ni—O1—Sr1iv | 0.0 |
Symmetry codes: (i) −y−2, x, z; (ii) −y−1, x, z; (iii) x, y+1, z; (iv) x−1, y−1, z; (v) x−1, y, z; (vi) x, y−1, z; (vii) x+1, y+1, z; (viii) x+1, y, z; (ix) −x−3/2, −y−3/2, −z+1/2; (x) −x−1, −y−1, −z+1; (xi) y+1, −x, −z+1; (xii) −y−1, x+1, z; (xiii) y+1, −x−1, −z+1; (xiv) −x, −y−1, −z+1; (xv) −y−2, x−1, z. |
Atom | WP | Occ. | x | y | z | Uiso | U11 | U22 | U33 |
Sr1 | 2a | 1 | 0 | 0 | 0.5 | 0.01719 (12) | 0.01381 (13) | = U11 | 0.0239 (3) |
Sr2 | 4e | 1 | 0 | 0 | 0.34453 (2) | 0.01499 (10) | 0.01223 (10) | = U11 | 0.02051 (19) |
Ni | 4e | 1 | 0 | 0 | 0.07705 (2) | 0.01226 (11) | 0.01015 (13) | = U11 | 0.01650 (2) |
Oap | 2a | 1 | 0 | 0 | 0 | 0.0193 (8) | 0.02260 (12) | = U11 | 0.01280 (17) |
Oeq | 8g | 1 | 0 | 0.5 | 0.08818 (10) | 0.0171 (4) | 0.0156 (8) | 0.0101 (7) | 0.0256 (10) |
Cl | 4e | 1 | 0 | 0 | 0.24750 (5) | 0.0208 (2) | 0.0181 (3) | = U11 | 0.0263 (5) |
Notes: (*) U12 = U13 = U23 = 0. |
Acknowledgements
We thank Professors Masayuki Ochi (Osaka University), Hirofumi Sakakibara (Tottori University), Hidetomo Usui (Shimane Univsity) and Kazuhiko Kuroki (Osaka University) for fruitful discussions. This work is supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan, and JSPS KAKENHI.
Conflict of interest
The authors declare no competing interests.
Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
Funding information
Funding for this research was provided by: World Premier International Research Center Initiative (grant No. JP20H05644); JSPS KAKENHI (grant No. JP24K01333).
References
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hector, A. L., Hutchings, J. A., Needs, R. L., Thomas, M. F. & Weller, M. T. (2001). J. Mater. Chem. 11, 527–532. CrossRef ICSD CAS Google Scholar
Kaneko, T., Sakakibara, H., Ochi, M. & Kuroki, K. (2024). Phys. Rev. B, 109, 045154. CrossRef Google Scholar
Kawai, N. & Endo, S. (1970). Rev. Sci. Instrum. 41, 1178–1181. CrossRef CAS Google Scholar
Leib, W. & Müller–Buschbaum, Hk. (1984). Z. Anorg. Allg. Chem. 518, 115–119. CrossRef ICSD CAS Google Scholar
Loureiro, S. M., Felser, C., Huang, Q. & Cava, R. J. (2000). Chem. Mater. 12, 3181–3185. CrossRef ICSD CAS Google Scholar
Matsumoto, R., Sasama, Y., Fujioka, M., Irifune, T., Tanaka, M., Yamaguchi, T., Takeya, H. & Takano, Y. (2016). Rev. Sci. Instrum. 87, 076103. CrossRef PubMed Google Scholar
McGlothlin, N., Ho, D. & Cava, R. J. (2000). Mater. Res. Bull. 35, 1035–1043. CrossRef ICSD CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nagata, H., Sakurai, H., Ueki, Y., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). J. Phys. Soc. Jpn, 93, 095003. CrossRef Google Scholar
Nakata, M., Ogura, D., Usui, H. & Kuroki, K. (2017). Phys. Rev. B, 95, 214509. CrossRef Google Scholar
Ochi, M., Sakakibara, H., Usui, H. & Kuroki, K. (2025). Phys. Rev. B, 111, 064511. CrossRef Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Google Scholar
Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. (2024a). Phys. Rev. Lett. 132, 106002. CrossRef PubMed Google Scholar
Sakakibara, H., Ochi, M., Nagata, H., Ueki, Y., Sakurai, H., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M., Takano, Y. & Kuroki, K. (2024b). Phys. Rev. B, 109, 144511. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Su, Y., Tsujimoto, Y., Fujii, K., Tatsuta, M., Oka, K., Yashima, M., Ogino, H. & Yamaura, K. (2018). Inorg. Chem. 57, 5615–5623. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Sun, H., Huo, M., Hu, X., Li, J., Liu, Z., Han, Y., Tang, L., Mao, Z., Yang, P., Wang, B., Cheng, J., Yao, D. X., Zhang, G. M. & Wang, M. (2023). Nature, 621, 493–498. CrossRef CAS PubMed Google Scholar
Tsujimoto, Y., Yamaura, K. & Uchikoshi, T. (2013). Inorg. Chem. 52, 10211–10216. CrossRef ICSD CAS PubMed Google Scholar
Ueki, Y., Sakurai, H., Nagata, H., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). arXiv preprint arXiv:2408.04970. Google Scholar
Wang, L., Li, Y., Xie, S. Y., Liu, F., Sun, H., Huang, C., Gao, Y., Nakagawa, T., Fu, B., Dong, B., Cao, Z., Yu, R., Kawaguchi, S. I., Kadobayashi, H., Wang, M., Jin, C., Mao, H. K. & Liu, H. (2024a). J. Am. Chem. Soc. 146, 7506–7514. CrossRef ICSD CAS PubMed Google Scholar
Wang, N., Wang, G., Shen, X., Hou, J., Luo, J., Ma, X., Yang, H., Shi, L., Dou, J., Feng, J., Yang, J., Shi, Y., Ren, Z., Ma, H., Yang, P., Liu, Y., Liu, Y., Zhang, H., Dong, X., Wang, Y., Jiang, K., Hu, J., Nagasaki, S., Kitagawa, K., Calder, S., Yan, J., Sun, J., Wang, B., Zhou, R., Uwatoko, Y. & Cheng, J. (2024b). Nature, 634, 579–584. CrossRef CAS PubMed Google Scholar
This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.