research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

High-pressure synthesis of bilayer nickelate Sr3Ni2O5Cl2 with a tetra­gonal crystal structure

crossmark logo

aInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, bGraduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan, cResearch Network and Facility Services Division (RNFS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, and dNagamori Institute of Actuators, Kyoto University of Advanced Science, 18 Gotanda, Yamanouchi, Ukyo 615-8577, Japan
*Correspondence e-mail: yamane.kazuki@nims.go.jp

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil (Received 13 December 2024; accepted 13 March 2025; online 4 April 2025)

Motivated by a theoretical prediction of its potential superconductivity under ambient pressure, a novel oxychloride, Sr3Ni2O5Cl2, was synthesized for the first time. This synthesis utilized a high pressure of 10 GPa at 1673 K. Small single crystals were used to determine the crystal structure and measure the tem­per­a­ture dependence of electrical resistance. The crystal is isostructural with the recently discovered superconductor La3Ni2O7, in line with theoretical expectation.

1. Introduction

Recently, La3Ni2O7 has been reported to exhibit super­con­duc­tivity under pressures exceeding 15 GPa (Sun et al., 2023[Sun, H., Huo, M., Hu, X., Li, J., Liu, Z., Han, Y., Tang, L., Mao, Z., Yang, P., Wang, B., Cheng, J., Yao, D. X., Zhang, G. M. & Wang, M. (2023). Nature, 621, 493-498.]). Remarkably, the superconducting transition tem­per­a­ture reaches as high as 80 K, com­parable to that of high-Tc cuprates. The com­pound adopts a Ruddlesden–Popper phase structure and the superconductivity occurs in the double layers of NiO2 square lattices like the superconductivity in CuO2 square lattices in the cuprates. These intriguing characteristics have motivated the search for other Ni oxide superconductors (Sakakibara et al., 2024b[Sakakibara, H., Ochi, M., Nagata, H., Ueki, Y., Sakurai, H., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M., Takano, Y. & Kuroki, K. (2024b). Phys. Rev. B, 109, 144511.]; Nagata et al., 2024[Nagata, H., Sakurai, H., Ueki, Y., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). J. Phys. Soc. Jpn, 93, 095003.]; Ueki et al., 2024[Ueki, Y., Sakurai, H., Nagata, H., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). arXiv preprint arXiv:2408.04970.]), with the hope that one might exhibit superconductivity at ambient pressure. This would achieve a significant breakthrough in the field.

The superconductivity of La3Ni2O7 had been theoretically predicted even before its experimental discovery, as the inter­coupling between two square lattices in the double layer is thought to be advantageous for superconductivity (Nakata et al., 2017[Nakata, M., Ogura, D., Usui, H. & Kuroki, K. (2017). Phys. Rev. B, 95, 214509.]; Sakakibara et al., 2024a[Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. (2024a). Phys. Rev. Lett. 132, 106002.]; Kaneko et al., 2024[Kaneko, T., Sakakibara, H., Ochi, M. & Kuroki, K. (2024). Phys. Rev. B, 109, 045154.]). Thus, the key to the occurrence of superconductivity is widely believed to lie in the Ni—Oap—Ni bridging angle (Sun et al., 2023[Sun, H., Huo, M., Hu, X., Li, J., Liu, Z., Han, Y., Tang, L., Mao, Z., Yang, P., Wang, B., Cheng, J., Yao, D. X., Zhang, G. M. & Wang, M. (2023). Nature, 621, 493-498.]), where Oap represents the oxygen ion between two Ni ions along the c axis. In fact, the superconductivity appears above the pressure at which the ortho­rhom­bic Amam structure transforms into the tetra­gonal I4/mmm structure (Wang et al., 2024a[Wang, L., Li, Y., Xie, S. Y., Liu, F., Sun, H., Huang, C., Gao, Y., Nakagawa, T., Fu, B., Dong, B., Cao, Z., Yu, R., Kawaguchi, S. I., Kadobayashi, H., Wang, M., Jin, C., Mao, H. K. & Liu, H. (2024a). J. Am. Chem. Soc. 146, 7506-7514.], 2024b[Wang, N., Wang, G., Shen, X., Hou, J., Luo, J., Ma, X., Yang, H., Shi, L., Dou, J., Feng, J., Yang, J., Shi, Y., Ren, Z., Ma, H., Yang, P., Liu, Y., Liu, Y., Zhang, H., Dong, X., Wang, Y., Jiang, K., Hu, J., Nagasaki, S., Kitagawa, K., Calder, S., Yan, J., Sun, J., Wang, B., Zhou, R., Uwatoko, Y. & Cheng, J. (2024b). Nature, 634, 579-584.]). This transformation causes the bridging angle to change from 168 to 180°, presumably enhancing the inter­coupling between the two square lattices.

Based on the same theoretical approach used to predict the superconductivity of La3Ni2O7, the previously unreported com­pound Sr3Ni2O5Cl2 has recently been proposed as a promising candidate for a superconductor under ambient pressure (Ochi et al., 2025[Ochi, M., Sakakibara, H., Usui, H. & Kuroki, K. (2025). Phys. Rev. B, 111, 064511.]). It is expected to exhibit tetra­gonal I4/mmm symmetry even under ambient pressure, if it exists. Therefore, we decided to synthesize this new Ni oxychloride and successfully obtained a single crystal. In this article, we present the method of synthesis, crystal structure and electrical resistance measurements for Sr3Ni2O5Cl2.

2. Experimental

2.1. Methods

Single crystals were examined using a scanning electron micro­scope (SEM, JSM-6010LA, JEOL) equipped with en­er­gy-dispersive X-ray spectroscopy (EDX) for elemental analysis. The com­positional error in the EDX measurements was determined by measuring the same location of the crystal multiple times and calculating the standard deviation from the statistical distribution. Single-crystal X-ray diffraction (SCXRD) data were collected at 300 K using a Rigaku Synergy Custom DW single-crystal diffractometer with VariMax confocal optics for Mo Kα radiation (λ = 0.71073 Å) and a HyPix2000 detector. A crystal with dimensions of approximately 30 µm × 27 µm × 19 µm was isolated under paraffin oil, then immediately mounted in a dry N2 gas stream to prevent degradation, as the com­pound is highly air-sensitive. Electrical resistance measurements were performed under various pres­sures using a diamond anvil cell (DAC) equipped with boron-doped diamond electrodes directly fabricated onto the diamond surface (Matsumoto et al., 2016[Matsumoto, R., Sasama, Y., Fujioka, M., Irifune, T., Tanaka, M., Yamaguchi, T., Takeya, H. & Takano, Y. (2016). Rev. Sci. Instrum. 87, 076103.]; Sakakibara et al., 2024b[Sakakibara, H., Ochi, M., Nagata, H., Ueki, Y., Sakurai, H., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M., Takano, Y. & Kuroki, K. (2024b). Phys. Rev. B, 109, 144511.]). Resistance data were obtained with a Physical Property Measurement System (PPMS, Quantum Design).

2.2. Synthesis and crystallization

Single crystals of Sr3Ni2O5Cl2 were synthesized via high-pressure techniques using a stoichiometric mixture (1:1:1:2 molar ratio) of SrO2, SrO, SrCl2 and NiO in a Kawai-type multi-anvil press (Kawai et al., 1970[Kawai, N. & Endo, S. (1970). Rev. Sci. Instrum. 41, 1178-1181.]). SrO2 was prepared by precipitation from a reaction between Sr(NO3)2 and H2O2. Specifically, Sr(NO3)2 was dis­solved in deionized water that had been pre-degassed by bubbling Ar gas through it to remove dis­solved CO2. A 30% aqueous H2O2 solution was then added, followed by aqueous NH3 to induce precipitation. The precipitate was filtered off and dried at 423 K. All steps were carried out in a glove bag filled with argon gas to minimize CO2 exposure. SrO was obtained by thermal decom­position of SrCO3 at 1473 K under flowing argon gas, while SrCl2 was prepared by dehydrating SrCl2·6H2O at 573 K under vacuum. The stoichiometric mixture was sealed in a Pt capsule inside an argon-filled glove box, heated to 1673 K at 10 GPa for 2 h in the press and then the tem­per­a­ture was reduced to room tem­per­a­ture by lowering it in 100 K increments, with a 20 min hold at each step, before releasing the pressure. The final product included single crystals with typical dimensions of 50 µm × 50 µm × 30 µm.

3. Results and discussion

Fig. 1[link] shows the SEM image of a representative crystal. The plate-like morphology is consistent with the layered structure typical of the Ruddlesden–Popper phase, indicating that the crystal readily cleaves along these planes. Notably, the depicted crystal was cleaved using Scotch tape, highlighting the inherent cleavage planes of the material. EDX analysis determined the com­position to be Sr3.05(2)Ni2.13(4)OxCl1.81(1), in close agreement with the nominal stoichiometry of the starting materials.

[Figure 1]
Figure 1
SEM image of a single crystal of Sr3Ni2O5Cl2.

The parameters obtained from the SCXRD structure refinements are summarized in Tables 1[link] and 2[link]. No significant deviations from full occupancy were observed for any of the atoms. Consequently, the crystal structure was determined to be isostructural with La3Ni2O7 and Sr3M2O5Cl2 (M = Sc, Fe and Co) (Wang et al., 2024a[Wang, L., Li, Y., Xie, S. Y., Liu, F., Sun, H., Huang, C., Gao, Y., Nakagawa, T., Fu, B., Dong, B., Cao, Z., Yu, R., Kawaguchi, S. I., Kadobayashi, H., Wang, M., Jin, C., Mao, H. K. & Liu, H. (2024a). J. Am. Chem. Soc. 146, 7506-7514.], 2024b[Wang, N., Wang, G., Shen, X., Hou, J., Luo, J., Ma, X., Yang, H., Shi, L., Dou, J., Feng, J., Yang, J., Shi, Y., Ren, Z., Ma, H., Yang, P., Liu, Y., Liu, Y., Zhang, H., Dong, X., Wang, Y., Jiang, K., Hu, J., Nagasaki, S., Kitagawa, K., Calder, S., Yan, J., Sun, J., Wang, B., Zhou, R., Uwatoko, Y. & Cheng, J. (2024b). Nature, 634, 579-584.]; Su et al., 2018[Su, Y., Tsujimoto, Y., Fujii, K., Tatsuta, M., Oka, K., Yashima, M., Ogino, H. & Yamaura, K. (2018). Inorg. Chem. 57, 5615-5623.]; Leib et al., 1984[Leib, W. & Müller-Buschbaum, Hk. (1984). Z. Anorg. Allg. Chem. 518, 115-119.]; McGlothlin et al., 2000[McGlothlin, N., Ho, D. & Cava, R. J. (2000). Mater. Res. Bull. 35, 1035-1043.]). Specifically, the com­pound crystallizes in the Ruddlesden–Popper phase structure, adopting the tetra­gonal I4/mmm symmetry, with lattice parameters a = 3.83990 (10) and c = 24.2936 (12) Å, as shown in Fig. 2[link](a).

Table 1
Experimental details

Crystal data
Chemical formula Sr3Ni2O5Cl2
Mr 531.18
Crystal system, space group Tetragonal, I4/mmm
Temperature (K) 301
a, c (Å) 3.8399 (1), 24.2936 (12)
V3) 358.21 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 28.06
Crystal size (mm) 0.03 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku Synergy Custom DW diffractometer with a HyPix2000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.346, 0.380
No. of measured, independent and observed [I > 2σ(I)] reflections 8872, 500, 448
Rint 0.065
(sin θ/λ)max−1) 0.992
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.12
No. of reflections 500
No. of parameters 18
Δρmax, Δρmin (e Å−3) 3.44, −1.03
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Table 2
Wyckoff positions (WP), occupancy (Occ), fractional atomic coordinates and isotropic and anisotropic atomic displacement parameters (Å2) of Sr3Ni2O5Cl2

Atom WP Occ x y z Uiso U11 U22 U33
Sr1 2a 1 0 0 0.5 0.01719 (12) 0.01381 (13) = U11 0.0239 (3)
Sr2 4e 1 0 0 0.34453 (2) 0.01499 (10) 0.01223 (10) = U11 0.02051 (19)
Ni 4e 1 0 0 0.07705 (2) 0.01226 (11) 0.01015 (13) = U11 0.01650 (2)
Oap 2a 1 0 0 0 0.0193 (8) 0.02260 (12) = U11 0.01280 (17)
Oeq 8g 1 0 0.5 0.08818 (10) 0.0171 (4) 0.0156 (8) 0.0101 (7) 0.0256 (10)
Cl 4e 1 0 0 0.24750 (5) 0.0208 (2) 0.0181 (3) = U11 0.0263 (5)
Notes: (*) U12 = U13 = U23 = 0.
[Figure 2]
Figure 2
The crystal structures of (a) Sr3Ni2O5Cl2 and (b) Sr2NiO3Cl (Tsujimoto et al., 2013[Tsujimoto, Y., Yamaura, K. & Uchikoshi, T. (2013). Inorg. Chem. 52, 10211-10216.]), and local coordination environments around (c) an Ni site and (d) Sr sites in the former com­pound and (e)/(f) those in the latter com­pound. The boxes in panels (a) and (b) represent unit cells. These figures were created with VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

In the structure, there are two oxygen sites, 2a and 8g, referred to as Oap and Oeq, respectively, in this article (Table 2[link]). Oap bridges two Ni atoms along the c axis, while Oeq is located between two Ni atoms in the ab plane. The bond lengths for Ni—Oap, Ni—Oeq and Ni—Cl are 1.8719 (5), 1.9389 (4) and 3.1023 (14) Å, respectively. Based on these bond lengths, we have estimated the valence state of atoms using the bond valence sum (BVS) method (Brown et al., 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese et al., 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The BVS parameters of Ni2+—Cl of 2.02 was used (Brese et al., 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), following a previous literature procedure for the related com­pound Sr2NiO3Cl (Tsujimoto et al., 2013[Tsujimoto, Y., Yamaura, K. & Uchikoshi, T. (2013). Inorg. Chem. 52, 10211-10216.]).

The Ni valence was estimated to be +3.17. Similarly, the valences of Sr1 and Sr2 were estimated from the coordination environments, shown in Fig. 2[link](d), to be +1.83 and +2.57, respectively. These values are in reasonable agreement with the formal valence expected from the com­position, considering that the structure is stabilized only under high-pressure conditions (Ochi et al., 2025[Ochi, M., Sakakibara, H., Usui, H. & Kuroki, K. (2025). Phys. Rev. B, 111, 064511.]). Another high-pressure phase of Ni oxide Sr2NiO3Cl (Tsujimoto et al., 2013[Tsujimoto, Y., Yamaura, K. & Uchikoshi, T. (2013). Inorg. Chem. 52, 10211-10216.]) also exhibits a larger Sr valence (+2.51) at the Sr2 site, which is surrounded by both O and Cl ions, as shown in Fig. 2[link](f). The asymmetry in coordination may account for the higher BVS valences. In contrast, the Ni ions are displaced toward the Oap ions from the centre of the Oeq coordination plane, reducing the Ni—Oeq—Ni bridging angle from 180 to 163.98 (15)° in Sr3Ni2O5Cl2. This value closely matches the theoretical prediction of 162°, further reinforcing the validity of the theoretical calculation.

Inter­estingly, the Ni—Oap bond length is significantly shorter than the Ni—Oeq bond length. Although this trend is also observed in Sr2NiO3Cl, as shown in Fig. 2[link](e), it is more pronounced in Sr3Ni2O5Cl2. In fact, the ratio of Ni—Oap to Ni—Oeq is 0.965 in Sr3Ni2O5Cl2, whereas the ratio for Sr2NiO3Cl is 0.975, suggesting stronger covalency between Ni—Oap in Sr3Ni2O5Cl2 than in Sr2NiO3Cl. The larger displacement of the transition-metal cations toward Oap in the double-layered structure, com­pared to the single-layered structure, may be a common characteristic feature of strontium transition-metal oxychlorides (Hector et al., 2001[Hector, A. L., Hutchings, J. A., Needs, R. L., Thomas, M. F. & Weller, M. T. (2001). J. Mater. Chem. 11, 527-532.]; Leib et al., 1984[Leib, W. & Müller-Buschbaum, Hk. (1984). Z. Anorg. Allg. Chem. 518, 115-119.]; Loureiro et al., 2000[Loureiro, S. M., Felser, C., Huang, Q. & Cava, R. J. (2000). Chem. Mater. 12, 3181-3185.]). Thus, the highly enhanced vertical inter­layer hop­ping in Sr3Ni2O5Cl2 predicted by theory is presumably attributed to this feature of the strontium transition-metal oxy­chlorides, being related to the high covalence between the Ni and Oap atoms.

The tem­per­a­ture dependences of electrical resistance under various pressures are shown in Fig. 3[link]. Although the resistance increases with decreasing tem­per­a­ture at 0.2 GPa, which is almost ambient pressure, the com­pound remains relatively conductive, consistent with the metallic nature predicted by theory. However, no superconductivity is observed down to 2 K. The increase in resistance with decreasing tem­per­a­ture is gradually supressed by applying pressure up to 24 GPa, How­ever, superconductivity does not emerge. The origin of the absence of superconductivity is under investigation.

[Figure 3]
Figure 3
Temperature dependence of the electrical resistance of Sr3Ni2O5Cl2 under various pressures.

Supporting information


Computing details top

Tristrontium dinickel pentaoxide dichloride top
Crystal data top
Sr3Ni2O5Cl2Dx = 4.925 Mg m3
Mr = 531.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 4484 reflections
a = 3.8399 (1) Åθ = 3.3–44.7°
c = 24.2936 (12) ŵ = 28.06 mm1
V = 358.21 (3) Å3T = 301 K
Z = 2Block, metallic black
F(000) = 4880.03 × 0.03 × 0.02 mm
Data collection top
Rigaku Synergy Custom DW
diffractometer with a HyPix2000 detector
500 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source448 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.065
Detector resolution: 10.0000 pixels mm-1θmax = 44.9°, θmin = 3.4°
ω scansh = 77
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2024)
k = 77
Tmin = 0.346, Tmax = 0.380l = 4848
8872 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.6699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.12Δρmax = 3.44 e Å3
500 reflectionsΔρmin = 1.03 e Å3
18 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.5000000.5000000.42295 (2)0.01226 (11)
O10.5000000.5000000.5000000.0193 (8)
O20.5000001.0000000.41182 (10)0.0171 (4)
Cl0.5000000.5000000.29525 (5)0.0208 (2)
Sr10.0000000.0000000.5000000.01719 (12)
Sr21.0000001.0000000.34453 (2)0.01499 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01015 (13)0.01015 (13)0.0165 (2)0.0000.0000.000
O10.0226 (12)0.0226 (12)0.0128 (17)0.0000.0000.000
O20.0156 (8)0.0101 (7)0.0256 (10)0.0000.0000.000
Cl0.0181 (3)0.0181 (3)0.0263 (5)0.0000.0000.000
Sr10.01381 (13)0.01381 (13)0.0239 (3)0.0000.0000.000
Sr20.01223 (10)0.01223 (10)0.02051 (19)0.0000.0000.000
Geometric parameters (Å, º) top
Ni—O11.8719 (5)O1—Sr1vi2.7152 (1)
Ni—O21.9389 (3)O1—Sr1v2.7152 (1)
Ni—O2i1.9389 (4)O1—Sr1iv2.7152 (1)
Ni—O2ii1.9389 (4)O2—Sr1vi2.8766 (18)
Ni—O2iii1.9389 (4)O2—Sr1iv2.8766 (18)
Ni—Sr13.2980 (3)O2—Sr22.5217 (16)
Ni—Sr1iv3.2980 (3)O2—Sr2viii2.5218 (16)
Ni—Sr1v3.2980 (3)Cl—Sr2vii2.9674 (6)
Ni—Sr1vi3.2980 (3)Cl—Sr2viii2.9674 (6)
Ni—Sr23.3169 (4)Cl—Sr22.9674 (6)
Ni—Sr2vii3.3169 (4)Cl—Sr2ix3.3956 (13)
Ni—Sr2viii3.3169 (4)Cl—Sr2iii2.9674 (6)
O1—Sr12.7152 (1)
O1—Ni—O298.01 (7)O1—Sr1—O2xiv118.16 (2)
O1—Ni—O2i98.01 (7)O1vii—Sr1—O2iii118.16 (2)
O1—Ni—O2ii98.01 (7)O1—Sr1—O2ii61.84 (2)
O1—Ni—O2iii98.01 (7)O1iii—Sr1—O2iii61.84 (2)
O1—Ni—Sr155.417 (8)O1—Sr1—O2iii61.84 (2)
O1—Ni—Sr1vi55.417 (8)O1iii—Sr1—O2ii118.16 (2)
O1—Ni—Sr1iv55.417 (7)O1—Sr1—O2xiii61.84 (2)
O1—Ni—Sr1v55.417 (8)O1viii—Sr1—O2iii118.16 (2)
O1—Ni—Sr2125.055 (9)O1viii—Sr1—O2xii118.16 (2)
O1—Ni—Sr2vii125.056 (9)O1vii—Sr1—O2x118.16 (2)
O1—Ni—Sr2viii125.056 (9)O1viii—Sr1—O2xiv61.84 (2)
O2i—Ni—O2ii163.98 (15)O1iii—Sr1—O2x61.84 (2)
O2—Ni—O2i88.89 (2)O1viii—Sr1—O2x118.16 (2)
O2—Ni—O2ii88.89 (2)O1vii—Sr1—O2vii61.84 (2)
O2i—Ni—O2iii88.89 (2)O1—Sr1—O2x61.84 (2)
O2—Ni—O2iii163.98 (15)O1iii—Sr1—O2vii118.16 (2)
O2ii—Ni—O2iii88.89 (2)O1viii—Sr1—O2vii61.84 (2)
O2i—Ni—Sr1v60.17 (5)O1vii—Sr1—O2xiii118.16 (2)
O2—Ni—Sr1130.96 (5)O1—Sr1—O2xi118.16 (2)
O2ii—Ni—Sr1v130.96 (5)O1iii—Sr1—O2xiii118.16 (2)
O2i—Ni—Sr1130.96 (5)O1—Sr1—O2vii118.16 (2)
O2—Ni—Sr1vi60.17 (5)O1vii—Sr1—O2xii61.84 (2)
O2ii—Ni—Sr160.17 (5)O1iii—Sr1—O2xiv118.16 (2)
O2ii—Ni—Sr1vi60.17 (5)O1iii—Sr1—O2xii61.84 (2)
O2i—Ni—Sr1vi130.96 (5)O1vii—Sr1—O2xiv61.84 (2)
O2iii—Ni—Sr1v60.17 (5)O2xiv—Sr1—O2iii180.0
O2iii—Ni—Sr1vi130.96 (5)O2xi—Sr1—O2iii123.68 (4)
O2i—Ni—Sr1iv60.17 (5)O2xiv—Sr1—O2xiii56.32 (4)
O2ii—Ni—Sr1iv130.96 (5)O2ii—Sr1—O2xiv123.68 (4)
O2iii—Ni—Sr1iv130.96 (5)O2iii—Sr1—O2vii83.74 (7)
O2—Ni—Sr1iv60.17 (5)O2ii—Sr1—O2iii56.32 (4)
O2—Ni—Sr1v130.96 (5)O2xiv—Sr1—O2xii123.68 (4)
O2iii—Ni—Sr160.17 (5)O2iii—Sr1—O2xiii123.68 (4)
O2iii—Ni—Sr2119.55 (6)O2iii—Sr1—O2xii56.32 (4)
O2—Ni—Sr249.21 (5)O2xi—Sr1—O2x56.32 (4)
O2ii—Ni—Sr2119.55 (6)O2xiii—Sr1—O2xii180.0
O2—Ni—Sr2vii119.55 (6)O2xiv—Sr1—O2x83.74 (7)
O2i—Ni—Sr2viii119.55 (6)O2iii—Sr1—O2x96.26 (7)
O2i—Ni—Sr249.21 (5)O2xi—Sr1—O2xiv56.32 (4)
O2—Ni—Sr2viii49.21 (5)O2xi—Sr1—O2xii96.26 (7)
O2iii—Ni—Sr2viii119.55 (6)O2ii—Sr1—O2xiii96.26 (7)
O2ii—Ni—Sr2viii49.21 (5)O2xi—Sr1—O2vii123.68 (4)
O2i—Ni—Sr2vii119.55 (6)O2xi—Sr1—O2xiii83.74 (7)
O2iii—Ni—Sr2vii49.21 (5)O2ii—Sr1—O2vii56.32 (4)
O2ii—Ni—Sr2vii49.21 (5)O2xiv—Sr1—O2vii96.26 (7)
Sr1v—Ni—Sr1iv71.206 (7)O2xiii—Sr1—O2vii123.68 (4)
Sr1vi—Ni—Sr1iv71.206 (7)O2ii—Sr1—O2x123.68 (4)
Sr1v—Ni—Sr1vi110.833 (15)O2ii—Sr1—O2xii83.74 (7)
Sr1—Ni—Sr1v71.206 (7)O2xii—Sr1—O2vii56.32 (4)
Sr1—Ni—Sr1vi71.206 (7)O2xiii—Sr1—O2x56.32 (4)
Sr1—Ni—Sr1iv110.833 (15)O2x—Sr1—O2vii180.0
Sr1v—Ni—Sr2vii109.027 (3)O2xii—Sr1—O2x123.68 (4)
Sr1vi—Ni—Sr2viii69.639 (7)O2xi—Sr1—O2ii180.0
Sr1—Ni—Sr2179.528 (15)Niv—Sr2—Niiv70.737 (9)
Sr1v—Ni—Sr2109.027 (3)Nivi—Sr2—Niiv70.737 (9)
Sr1iv—Ni—Sr269.638 (7)Ni—Sr2—Niv70.737 (9)
Sr1iv—Ni—Sr2vii179.528 (15)Ni—Sr2—Nivi70.737 (9)
Sr1—Ni—Sr2vii69.639 (7)Niv—Sr2—Nivi109.889 (18)
Sr1—Ni—Sr2viii109.027 (3)Ni—Sr2—Niiv109.889 (18)
Sr1v—Ni—Sr2viii179.528 (15)O2—Sr2—Niiv93.92 (4)
Sr1iv—Ni—Sr2viii109.027 (3)O2—Sr2—Niv93.92 (4)
Sr1vi—Ni—Sr2vii109.027 (3)O2xv—Sr2—Nivi35.602 (6)
Sr1vi—Ni—Sr2109.027 (3)O2i—Sr2—Nivi93.92 (4)
Sr2—Ni—Sr2viii70.737 (9)O2xv—Sr2—Niv93.92 (4)
Sr2—Ni—Sr2vii109.889 (18)O2i—Sr2—Niiv93.92 (4)
Sr2vii—Ni—Sr2viii70.737 (9)O2v—Sr2—Niiv35.602 (6)
Nix—O1—Ni180.0O2—Sr2—Ni35.602 (6)
Ni—O1—Sr1iv90.0O2xv—Sr2—Ni93.92 (4)
Nix—O1—Sr1v90.0O2xv—Sr2—Niiv35.602 (6)
Nix—O1—Sr1vi90.0O2v—Sr2—Niv35.602 (6)
Nix—O1—Sr190.0O2i—Sr2—Ni35.602 (6)
Ni—O1—Sr1v90.0O2v—Sr2—Ni93.92 (4)
Ni—O1—Sr1vi90.0O2i—Sr2—Niv35.602 (6)
Nix—O1—Sr1iv90.0O2—Sr2—Nivi35.602 (6)
Ni—O1—Sr190.0O2v—Sr2—Nivi93.92 (4)
Sr1v—O1—Sr1vi180.0O2v—Sr2—O299.17 (9)
Sr1—O1—Sr1vi90.0O2i—Sr2—O2v65.14 (5)
Sr1iv—O1—Sr1180.0O2i—Sr2—O2xv99.17 (9)
Sr1iv—O1—Sr1vi90.0O2i—Sr2—O265.14 (5)
Sr1—O1—Sr1v90.0O2xv—Sr2—O265.14 (5)
Sr1iv—O1—Sr1v90.0O2xv—Sr2—O2v65.14 (5)
Ni—O2—Nivi163.98 (15)O2v—Sr2—Cl138.952 (17)
Nivi—O2—Sr1vi84.04 (6)O2i—Sr2—Cliv138.952 (17)
Nivi—O2—Sr1iv84.04 (6)O2—Sr2—Cl76.64 (4)
Ni—O2—Sr1iv84.04 (6)O2i—Sr2—Cl76.64 (4)
Ni—O2—Sr1vi84.04 (6)O2v—Sr2—Clv76.64 (4)
Ni—O2—Sr295.18 (4)O2v—Sr2—Cliv76.64 (4)
Ni—O2—Sr2viii95.18 (4)O2—Sr2—Cliv138.952 (17)
Nivi—O2—Sr295.18 (4)O2xv—Sr2—Cliv76.64 (4)
Nivi—O2—Sr2viii95.18 (4)O2—Sr2—Clvi76.64 (4)
Sr1vi—O2—Sr1iv83.74 (7)O2xv—Sr2—Clvi76.64 (4)
Sr2—O2—Sr1iv88.546 (13)O2i—Sr2—Clv76.64 (4)
Sr2viii—O2—Sr1iv172.29 (8)O2v—Sr2—Clvi138.952 (17)
Sr2—O2—Sr1vi172.28 (8)O2i—Sr2—Clvi138.952 (17)
Sr2viii—O2—Sr1vi88.547 (13)O2xv—Sr2—Clv138.952 (17)
Sr2—O2—Sr2viii99.17 (9)O2xv—Sr2—Cl138.952 (17)
Sr2vii—Cl—Sr2iii80.635 (18)O2—Sr2—Clv138.952 (17)
Sr2iii—Cl—Sr280.634 (18)Cliv—Sr2—Ni168.74 (3)
Sr2viii—Cl—Sr280.634 (18)Cliv—Sr2—Niiv58.85 (2)
Sr2iii—Cl—Sr2ix113.79 (2)Clvi—Sr2—Niv168.74 (3)
Sr2—Cl—Sr2ix113.79 (2)Cl—Sr2—Nivi103.398 (13)
Sr2vii—Cl—Sr2viii80.635 (18)Clv—Sr2—Niiv103.398 (13)
Sr2iii—Cl—Sr2viii132.42 (5)Cl—Sr2—Niv103.398 (13)
Sr2vii—Cl—Sr2ix113.79 (2)Clvi—Sr2—Niiv103.398 (13)
Sr2vii—Cl—Sr2132.42 (5)Cliv—Sr2—Niv103.398 (13)
Sr2viii—Cl—Sr2ix113.79 (2)Clv—Sr2—Nivi168.74 (3)
O1vii—Sr1—O1180.0Clv—Sr2—Ni103.397 (13)
O1—Sr1—O1iii90.0Cliv—Sr2—Nivi103.398 (13)
O1—Sr1—O1viii90.0Clvi—Sr2—Nivi58.85 (2)
O1vii—Sr1—O1viii90.0Cl—Sr2—Ni58.85 (2)
O1iii—Sr1—O1viii180.0Cl—Sr2—Niiv168.74 (3)
O1vii—Sr1—O1iii90.0Clv—Sr2—Niv58.85 (2)
O1vii—Sr1—O2xi61.84 (2)Clvi—Sr2—Ni103.397 (13)
O1—Sr1—O2xii118.16 (2)Clv—Sr2—Clvi132.42 (5)
O1viii—Sr1—O2xi118.16 (2)Cliv—Sr2—Clvi80.634 (18)
O1vii—Sr1—O2ii118.16 (2)Cl—Sr2—Clv80.634 (18)
O1iii—Sr1—O2xi61.84 (2)Cl—Sr2—Clvi80.634 (18)
O1viii—Sr1—O2ii61.84 (2)Cliv—Sr2—Clv80.634 (18)
O1viii—Sr1—O2xiii61.84 (2)Cliv—Sr2—Cl132.42 (5)
O2—Ni—O1—Sr1iv45.0Sr1iv—Ni—O1—Sr1vi90.0
O2—Ni—O1—Sr1v135.0Sr1vi—Ni—O1—Sr1v180.0
O2iii—Ni—O1—Sr1iv135.0Sr1—Ni—O1—Sr1vi90.0
O2—Ni—O1—Sr1135.0Sr1v—Ni—O1—Sr190.0
O2ii—Ni—O1—Sr1iv135.0Sr1—Ni—O1—Sr1v90.0
O2iii—Ni—O1—Sr145.0Sr1vi—Ni—O1—Sr1iv90.0
O2—Ni—O1—Sr1vi45.0Sr1iv—Ni—O1—Sr1180.0
O2iii—Ni—O1—Sr1vi135.0Sr1vi—Ni—O1—Sr190.0
O2i—Ni—O1—Sr1v45.0Sr2vii—Ni—O1—Sr1v90.0
O2i—Ni—O1—Sr1135.0Sr2viii—Ni—O1—Sr1iv90.0
O2ii—Ni—O1—Sr1v135.0Sr2viii—Ni—O1—Sr1v180.0
O2iii—Ni—O1—Sr1v45.0Sr2vii—Ni—O1—Sr10.0
O2i—Ni—O1—Sr1iv45.0Sr2vii—Ni—O1—Sr1vi90.0
O2ii—Ni—O1—Sr145.0Sr2—Ni—O1—Sr1180.0
O2i—Ni—O1—Sr1vi135.0Sr2vii—Ni—O1—Sr1iv180.0
O2ii—Ni—O1—Sr1vi45.0Sr2—Ni—O1—Sr1vi90.0
Sr1—Ni—O1—Sr1iv180.0Sr2viii—Ni—O1—Sr1vi0.0
Sr1iv—Ni—O1—Sr1v90.0Sr2viii—Ni—O1—Sr190.0
Sr1v—Ni—O1—Sr1vi180.0Sr2—Ni—O1—Sr1v90.0
Sr1v—Ni—O1—Sr1iv90.0Sr2—Ni—O1—Sr1iv0.0
Symmetry codes: (i) y2, x, z; (ii) y1, x, z; (iii) x, y+1, z; (iv) x1, y1, z; (v) x1, y, z; (vi) x, y1, z; (vii) x+1, y+1, z; (viii) x+1, y, z; (ix) x3/2, y3/2, z+1/2; (x) x1, y1, z+1; (xi) y+1, x, z+1; (xii) y1, x+1, z; (xiii) y+1, x1, z+1; (xiv) x, y1, z+1; (xv) y2, x1, z.
Wyckoff positions (WP), occupancy, fractional atomic coordinates, isotropic and anisotropic atomic displacement parameters (Å2) of Sr3Ni2O5Cl2 top
AtomWPOcc.xyzUisoU11U22U33
Sr12a1000.50.01719 (12)0.01381 (13)= U110.0239 (3)
Sr24e1000.34453 (2)0.01499 (10)0.01223 (10)= U110.02051 (19)
Ni4e1000.07705 (2)0.01226 (11)0.01015 (13)= U110.01650 (2)
Oap2a10000.0193 (8)0.02260 (12)= U110.01280 (17)
Oeq8g100.50.08818 (10)0.0171 (4)0.0156 (8)0.0101 (7)0.0256 (10)
Cl4e1000.24750 (5)0.0208 (2)0.0181 (3)= U110.0263 (5)
Notes: (*) U12 = U13 = U23 = 0.
 

Acknowledgements

We thank Professors Masayuki Ochi (Osaka University), Hirofumi Sakakibara (Tottori University), Hidetomo Usui (Shimane Univsity) and Kazuhiko Kuroki (Osaka University) for fruitful discussions. This work is supported by the World Premier Inter­national Research Center Initiative (WPI), MEXT, Japan, and JSPS KAKENHI.

Conflict of interest

The authors declare no competing interests.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Funding information

Funding for this research was provided by: World Premier International Research Center Initiative (grant No. JP20H05644); JSPS KAKENHI (grant No. JP24K01333).

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHector, A. L., Hutchings, J. A., Needs, R. L., Thomas, M. F. & Weller, M. T. (2001). J. Mater. Chem. 11, 527–532.  CrossRef ICSD CAS Google Scholar
First citationKaneko, T., Sakakibara, H., Ochi, M. & Kuroki, K. (2024). Phys. Rev. B, 109, 045154.  CrossRef Google Scholar
First citationKawai, N. & Endo, S. (1970). Rev. Sci. Instrum. 41, 1178–1181.  CrossRef CAS Google Scholar
First citationLeib, W. & Müller–Buschbaum, Hk. (1984). Z. Anorg. Allg. Chem. 518, 115–119.  CrossRef ICSD CAS Google Scholar
First citationLoureiro, S. M., Felser, C., Huang, Q. & Cava, R. J. (2000). Chem. Mater. 12, 3181–3185.  CrossRef ICSD CAS Google Scholar
First citationMatsumoto, R., Sasama, Y., Fujioka, M., Irifune, T., Tanaka, M., Yamaguchi, T., Takeya, H. & Takano, Y. (2016). Rev. Sci. Instrum. 87, 076103.  CrossRef PubMed Google Scholar
First citationMcGlothlin, N., Ho, D. & Cava, R. J. (2000). Mater. Res. Bull. 35, 1035–1043.  CrossRef ICSD CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagata, H., Sakurai, H., Ueki, Y., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). J. Phys. Soc. Jpn, 93, 095003.  CrossRef Google Scholar
First citationNakata, M., Ogura, D., Usui, H. & Kuroki, K. (2017). Phys. Rev. B, 95, 214509.  CrossRef Google Scholar
First citationOchi, M., Sakakibara, H., Usui, H. & Kuroki, K. (2025). Phys. Rev. B, 111, 064511.  CrossRef Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. (2024a). Phys. Rev. Lett. 132, 106002.  CrossRef PubMed Google Scholar
First citationSakakibara, H., Ochi, M., Nagata, H., Ueki, Y., Sakurai, H., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M., Takano, Y. & Kuroki, K. (2024b). Phys. Rev. B, 109, 144511.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, Y., Tsujimoto, Y., Fujii, K., Tatsuta, M., Oka, K., Yashima, M., Ogino, H. & Yamaura, K. (2018). Inorg. Chem. 57, 5615–5623.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationSun, H., Huo, M., Hu, X., Li, J., Liu, Z., Han, Y., Tang, L., Mao, Z., Yang, P., Wang, B., Cheng, J., Yao, D. X., Zhang, G. M. & Wang, M. (2023). Nature, 621, 493–498.  CrossRef CAS PubMed Google Scholar
First citationTsujimoto, Y., Yamaura, K. & Uchikoshi, T. (2013). Inorg. Chem. 52, 10211–10216.  CrossRef ICSD CAS PubMed Google Scholar
First citationUeki, Y., Sakurai, H., Nagata, H., Yamane, K., Matsumoto, R., Terashima, K., Hirose, K., Ohta, H., Kato, M. & Takano, Y. (2024). arXiv preprint arXiv:2408.04970.  Google Scholar
First citationWang, L., Li, Y., Xie, S. Y., Liu, F., Sun, H., Huang, C., Gao, Y., Nakagawa, T., Fu, B., Dong, B., Cao, Z., Yu, R., Kawaguchi, S. I., Kadobayashi, H., Wang, M., Jin, C., Mao, H. K. & Liu, H. (2024a). J. Am. Chem. Soc. 146, 7506–7514.  CrossRef ICSD CAS PubMed Google Scholar
First citationWang, N., Wang, G., Shen, X., Hou, J., Luo, J., Ma, X., Yang, H., Shi, L., Dou, J., Feng, J., Yang, J., Shi, Y., Ren, Z., Ma, H., Yang, P., Liu, Y., Liu, Y., Zhang, H., Dong, X., Wang, Y., Jiang, K., Hu, J., Nagasaki, S., Kitagawa, K., Calder, S., Yan, J., Sun, J., Wang, B., Zhou, R., Uwatoko, Y. & Cheng, J. (2024b). Nature, 634, 579–584.  CrossRef CAS PubMed Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds