research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoBIOLOGICAL
CRYSTALLOGRAPHY
ISSN: 1399-0047
Volume 67| Part 5| May 2011| Pages 463-470

Pi sampling: a methodical and flexible approach to initial macromolecular crystallization screening

CROSSMARK_Color_square_no_text.svg

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England
*Correspondence e-mail: fgorrec@mrc-lmb.cam.ac.uk

(Received 4 January 2011; accepted 7 March 2011; online 7 April 2011)

The Pi sampling method is derived from the incomplete factorial approach to macromolecular crystallization screen design. The resulting `Pi screens' have a modular distribution of a given set of up to 36 stock solutions. Maximally diverse conditions can be produced by taking into account the properties of the chemicals used in the formulation and the concentrations of the corresponding solutions. The Pi sampling method has been implemented in a web-based application that generates screen formulations and recipes. It is particularly adapted to screens consisting of 96 different conditions. The flexibility and efficiency of Pi sampling is demonstrated by the crystallization of soluble proteins and of an integral membrane-protein sample.

1. Introduction

A crucial aspect of macromolecular crystallographic studies is finding suitable conditions for the crystallization of a sample. This can be difficult because many factors alter the crystallization behaviour of macromolecules, including the type and the concentration of the chemicals employed to formulate the conditions (McPherson, 1990[McPherson, A. (1990). Eur. J. Biochem. 189, 1-23.]). A condition includes at least a precipitant and most conditions also include a buffer and an additive. During the initial crystallization experiments, the structure of the macromolecule is not known and hence the most efficient formulation cannot be predicted. As a consequence, one should be cautious when making initial assumptions and limiting choices in subsequent optimizations (Rupp, 2003[Rupp, B. (2003). J. Struct. Biol. 142, 162-169.]). Nonetheless, the number of initial crystallization con­ditions cannot be unreasonably large since purified protein is often difficult and expensive to produce in large quantities.

There are essentially two approaches to restrict an initial screen to a limited number of crystallization conditions. Firstly, a sparse-matrix formulation can be used, which consists of an empirically derived combination of components based on known or published crystallization conditions (Jancarik & Kim, 1991[Jancarik, J. & Kim, S.-H. (1991). J. Appl. Cryst. 24, 409-411.]). Secondly, an incomplete factorial formulation can be generated in which selected components are combined to prepare new conditions in accordance with principles of randomization and balance (Carter & Carter, 1979[Carter, C. W. & Carter, C. W. (1979). J. Biol. Chem. 254, 12219-12223.]). Numerous commercial screens based on these two main approaches are available. Automated systems have been implemented at the Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) to test these as routine initial screens using the 96-well crystallization plate format (Stock et al., 2005[Stock, D., Perisic, O. & Löwe, J. (2005). Prog. Biophys. Mol. Biol. 88, 311-327.]). However, for various reasons, many laboratories opt for a minimal screen (Kimber et al., 2003[Kimber, M. S., Vallee, F., Houston, S., Necakov, A., Skarina, T., Evdokimova, E., Beasley, S., Christendat, D., Savchenko, A., Arrowsmith, C. H., Vedadi, M., Gerstein, M. & Edwards, A. M. (2003). Proteins, 51, 562-568.]) and still perform at least some aspects of the work manually (Bergfors, 2007[Bergfors, T. (2007). Methods Mol. Biol. 363, 131-151.]).

Here, we present a development based on the incomplete factorial formulation: the Pi sampling method. The name of the method was inspired by the story of Archimedes, who used the `method of exhaustion' (i.e. an empirical approach) with a 96-sided polygon in order to reach the first good numerical approximation of π (Smith, 1958[Smith, D. E. (1958). History of Mathematics. New York: Dover Publications.]). Pi sampling uses modular arithmetic to form combinations of three stock solutions across a 96-condition grid. Maximally diverse conditions can be produced by taking into account the properties of the chemicals used in the formulation and the concentrations of the corresponding stock solutions. We have implemented this approach in a web-based application called Pi Sampler: user input consists of the details of up to 36 stock solutions, from which the application generates the formulations for a 96-­condition screen. The Pi sampling method is intended to help laboratories to test new crystallization-screen formulations on a day-to-day basis based on the properties of the macromolecules investigated, as has been performed pre­viously with RNA (Doudna et al., 1993[Doudna, J. A., Grosshans, C., Gooding, A. & Kundrot, C. E. (1993). Proc. Natl Acad. Sci. USA, 90, 7829-7833.]).

Firstly, we tested Pi sampling with ten commercially available soluble proteins. For this, the `Pi minimal screen' was employed including a wide variety of well known chemicals frequently used for macromolecular crystallization.

We then investigated the impact of Pi sampling on the crystallization of a G-protein-coupled receptor (GPCR) that had been difficult to crystallize: the adenosine A2A receptor (construct A2AR-GL31). We formulated another Pi screen, the `Pi-PEG screen', taking into consideration general observations made about crystallization of integral membrane-protein samples. Previous crystallization experiments on another GPCR (the β1-adrenergic receptor) had indicated that the use of simple proprietary screens formulated with poly(ethylene glycol) (PEG) and buffers gave a greater yield of crystals than all commercially available screens, including those geared towards membrane proteins (Warne et al., 2009[Warne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. (2009). Protein Expr. Purif. 65, 204-213.]), and the 2.7 Å resolution structure was solved using conditions optimized from a proprietary screen essentially based on PEGs (Warne et al., 2008[Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G. & Schertler, G. F. (2008). Nature (London), 454, 486-491.]). This has been observed previously with other membrane-protein targets (Lemieux et al., 2003[Lemieux, M. J., Song, J., Kim, M. J., Huang, Y., Villa, A., Auer, M., Li, X.-D. & Wang, D.-N. (2003). Protein Sci. 12, 2748-2756.]). In addition, mixtures of polyethylene glycols have been used successfully to develop a minimal screen (Brzozowski & Walton, 2001[Brzozowski, A. M. & Walton, J. (2001). J. Appl. Cryst. 34, 97-101.]) and to study crystal structures of the Kir potassium channel (Clarke et al., 2010[Clarke, O. B., Caputo, A. T., Hill, A. P., Vandenberg, J. I., Smith, B. J. & Gulbis, J. M. (2010). Cell, 141, 1018-1029.]). Such mixtures were incorporated into the Pi-PEG screen.

2. Methods

2.1. Pi sampling

Pi sampling begins with up to 36 stock solutions, divided into three sets of 12. The first set of solutions is used in the screen at constant concentration. The second and third sets are added according to a gradient between specified minimum and maximum concentrations. Typically, the first set is com­posed of buffers and the second and third sets are precipitants/additives.

The combinations of three stock solutions (one from each set) are generated according to Fig. 1[link], where 1–12 refer to the IDs for solutions of the first set, A–M to those of the second set and N–X to those of the third set. The number in each cell shows which solution of the first set will be combined with the corresponding solutions of the second and third sets. Blank spaces show when no such combinations are generated.

[Figure 1]
Figure 1
Pi sampling: combinations of stock solutions from three different sets (see also https://pisampler.mrc-lmb.cam.ac.uk/ ).

Fig. 2[link] summarizes the distribution of the stock solutions in a standard 96-condition plate layout (i.e. 12 columns and eight rows).

  • Set 1: each solution (ID 1–12) is seen in the eight conditions forming a column of the plate. A variable Δ should be associated with the stock solutions. The variable Δ corresponds to a property of the solution selected (e.g. pH, molecular weight of the main chemical, absorption properties or others). Δ values increase from left to right in the screen layout.

  • Set 2: each solution (ID A–L) is represented once in each row. The final concentrations decrease gradually from the top to the bottom of the screen layout, forming a gradient. The distribution of solutions A–L is based on the sequence of Δ values established for set 1: the positions of the solutions shift across five columns and down one row. Solutions A–L should also be associated with a variable Δ and hence a sequence is formed for the distribution of the third set of solutions.

  • Set 3: each solution (ID M–X) is also represented once in each row. The final concentrations increase gradually from the top to the bottom of the screen, forming another gradient. The solutions M–X are distributed with the same modulo arithmetic operation as previously, but with respect to the Δ values of solutions A–L. For example, solution M is mixed with solution A in the first row, solution F in the second row, solution K in the third row and so on, as shown in Fig. 2[link]. This means that both the second and third sets are arranged according to the same modulo arithmetic operation (5 modulo 12); however, when looking at the plate layout, the positions of solutions M–X shift across ten columns and down one row.

[Figure 2]
Figure 2
Pi sampling: combinations of the stock solutions in a 96-condition plate layout (well A1 is at the top left corner). Each solution of set 1 (ID 1–12) is seen in the eight conditions forming a column of the plate. The Δ values of set 1 increase from left to right in the screen layout. The positions of the solutions A–L (set 2) shift across five columns and down one row (Δ values not represented). The positions of solutions M–X (set 3) shift across ten columns and down one row. Gradients of concentration for sets 2 and 3 are represented on the left and right, respectively.

2.2. Pi Sampler

Pi Sampler can be accessed via the internet at https://pisampler.mrc-lmb.cam.ac.uk/ . Users can enter the details of up to 36 stock solutions, including stock concentrations, desired screen concentration ranges and Δ values. The application then generates a 96-condition screen formulation following the Pi sampling method described above. Formulations, recipes and total required volumes of stock solutions are presented and may conveniently be downloaded in comma-separated variable format (CSV), allowing the user to import them into other software for automated screen making (Cox & Weber, 1987[Cox, M. J. & Weber, P. C. (1987). J. Appl. Cryst. 20, 366-373.]), formulation analysis (Hedderich et al., 2011[Hedderich, T., Marcia, M., Köpke, J. & Michel, H. (2011). Cryst. Growth Des. 11, 488-491.]) and data mining (Kantardjieff & Rupp, 2004[Kantardjieff, K. A. & Rupp, B. (2004). Bioinformatics, 20, 2162-2168.]). The parameters used to generate the screen can also be saved and uploaded in the same format. Further details and instructions can be found on the website.

2.3. Pi minimal screen preparation and crystallization assays with commercially available soluble proteins

The final formulation of the Pi minimal screen can be found in Table 1[link]. There are 36 starting stock solutions overall. Each solution composing the first set (ID 1–12) is a mixture of an acid with its corresponding base (e.g. HEPES pH 7.5: 1 M HEPES solution mixed with 1 M HEPES sodium salt in order to reach pH 7.5), except for buffer 11 (AMPD mixed with Tris base). Note that this is also true for the precipitant phosphate (phosphate system: sodium dihydrogen phosphate/dipotassium hydrogen phosphate). Values of pH (4.0–9.5) were chosen as the variable Δ for the first set, whilst arbitrary values were chosen for additives of various natures composing the second set (ID A–L). Eventually, a few conditions were made without additive/buffer because of chemical incompatibilities (Table 1[link]).

Table 1
Final formulation of the Pi minimal screen

ADA, N-(2-acetamido)iminodiacetic acid; AMPD, 2-amino-2-methyl-1,3-propanediol; CAPSO, 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; MOPS, 3-(N-morpholino)propanesulfonic acid; PEG, poly(ethylene glycol); TAPS, N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid.

  Set 1 Set 2 Set 3
Well ID Name Conc. Unit ID Name Conc. Unit ID Name Conc. Unit
A1 1 Formate pH 4.0 0.15 M A Potassium bromide 0.160 M M Phosphate 0.6 M
A2 2 Acetate pH 4.5 0.15 M B PEG 300 8.000 %(v/v) N PEG MME 550 24.00 %(v/v)
A3 3 Malate pH 5.0 0.15 M C Magnesium sulfate 0.160 M O Ammonium nitrate 2.0 M
A4 4 Citrate pH 5.5 0.15 M D Sodium fluoride 0.032 M P PEG 20 000 10.0 %(w/v)
A5 5 MES pH 6.0 0.15 M E Potassium thiocyanate 0.080 M Q PEG 1000 30.0 %(w/v)
A6 6 Cacodylate pH 6.5 0.15 M F Sodium iodide 0.160 M R Sodium chloride 1.6 M
A7 7 MOPS pH 7.0 0.15 M G Propanediol 8.000 %(v/v) S PEG 4000 24.0 %(w/v)
A8 8 HEPES pH 7.5 0.15 M H       T Lithium sulfate 0.8 M
A9 9 Tris pH 8.0 0.15 M I Ethylene glycol 8.000 %(v/v) U PEG MME 5000 20.0 %(w/v)
A10 10 TAPS pH 8.5 0.15 M J Sodium potassium tartrate 0.080 M V Glycerol 36.0 %(w/v)
A11 11 AMPD/Tris pH 9.0 0.15 M K MPD 8.000 %(v/v) W Ammonium sulfate 1.4 M
A12 12 CAPSO pH 9.5 0.15 M L 2-Butanol 8.000 %(v/v) X PEG 8000 20.0 %(w/v)
B1 1 Formate pH 4.0 0.15 M H Calcium chloride 0.070 M O Ammonium nitrate 2.3 M
B2 2 Acetate pH 4.5 0.15 M I Ethylene glycol 7.000 %(v/v) P PEG 20 000 12.0 %(w/v)
B3 3 Malate pH 5.0 0.15 M J Sodium potassium tartrate 0.070 M Q PEG 1000 35.0 %(w/v)
B4 4 Citrate pH 5.5 0.15 M K MPD 7.000 %(v/v) R Sodium chloride 1.8 M
B5 5 MES pH 6.0 0.15 M L 2-Butanol 7.000 %(v/v) S PEG 4000 28.0 %(w/v)
B6 6 Cacodylate pH 6.5 0.15 M A Potassium bromide 0.140 M T Lithium sulfate 0.9 M
B7 7 MOPS pH 7.0 0.15 M B PEG 300 7.000 %(v/v) U PEG MME 5000 23.0 %(w/v)
B8 8 HEPES pH 7.5 0.15 M C Magnesium sulfate 0.140 M V Glycerol 42.0 %(w/v)
B9 9 Tris pH 8.0 0.15 M D Sodium fluoride 0.028 M W Ammonium sulfate 1.6 M
B10 10 TAPS pH 8.5 0.15 M E Potassium thiocyanate 0.070 M X PEG 8000 23.0 %(w/v)
B11 11 AMPD/Tris pH 9.0 0.15 M F Sodium iodide 0.140 M M Phosphate 0.7 M
B12 12 CAPSO pH 9.5 0.15 M G Propanediol 7.000 %(v/v) N PEG MME 550 28.00 %(v/v)
C1 1 Formate pH 4.0 0.15 M C Magnesium sulfate 0.120 M Q PEG 1000 39.0 %(w/v)
C2 2 Acetate pH 4.5 0.15 M D Sodium fluoride 0.024 M R Sodium chloride 2.1 M
C3 3 Malate pH 5.0 0.15 M E Potassium thiocyanate 0.060 M S PEG 4000 31.0 %(w/v)
C4 4 Citrate pH 5.5 0.15 M F Sodium iodide 0.120 M T Lithium sulfate 1.0 M
C5 5 MES pH 6.0 0.15 M G Propanediol 6.000 %(v/v) U PEG MME 5000 26.0 %(w/v)
C6 6 Cacodylate pH 6.5 0.15 M H Calcium chloride 0.060 M V Glycerol 47.0 %(w/v)
C7 7 MOPS pH 7.0 0.15 M I Ethylene glycol 6.000 %(v/v) W Ammonium sulfate 1.8 M
C8 8 HEPES pH 7.5 0.15 M J Sodium potassium tartrate 0.060 M X PEG 8000 26.0 %(w/v)
C9 9 Tris pH 8.0 0.15 M K MPD 6.000 %(v/v) M Phosphate 0.8 M
C10 10 TAPS pH 8.5 0.15 M L 2-Butanol 6.000 %(v/v) N PEG MME 550 31.00 %(v/v)
C11 11 AMPD/Tris pH 9.0 0.15 M A Potassium bromide 0.120 M O Ammonium nitrate 2.6 M
C12 12 CAPSO pH 9.5 0.15 M B PEG 300 6.000 %(v/v) P PEG 20 000 13.0 %(w/v)
D1 1 Formate pH 4.0 0.15 M J       S PEG 4000 35.0 %(w/v)
D2 2 Acetate pH 4.5 0.15 M K MPD 5.000 %(v/v) T Lithium sulfate 1.1 M
D3 3 Malate pH 5.0 0.15 M L 2-Butanol 5.000 %(v/v) U PEG MME 5000 38.00 %(v/v)
D4 4 Citrate pH 5.5 0.15 M A Potassium bromide 0.100 M V Glycerol 52.0 %(w/v)
D5 5 MES pH 6.0 0.15 M B PEG 300 5.000 %(v/v) W Ammonium sulfate 2.0 M
D6 6 Cacodylate pH 6.5 0.15 M C Magnesium sulfate 0.100 M X PEG 8000 29.0 %(w/v)
D7 7 MOPS pH 7.0 0.15 M D Sodium fluoride 0.020 M M Phosphate 0.9 M
D8 8 HEPES pH 7.5 0.15 M E Potassium thiocyanate 0.050 M N PEG MME 550 34.00 %(v/v)
D9 9 Tris pH 8.0 0.15 M F Sodium iodide 0.100 M O Ammonium nitrate 2.9 M
D10 10 TAPS pH 8.5 0.15 M G Propanediol 5.000 %(v/v) P PEG 20 000 15.0 %(w/v)
D11 11       H Calcium chloride 0.050 M Q PEG 1000 43.0 %(w/v)
D12 12 CAPSO pH 9.5 0.15 M I Ethylene glycol 5.000 %(v/v) R Sodium chloride 2.3 M
E1 1 Formate pH 4.0 0.15 M E Potassium thiocyanate 0.040 M U PEG MME 5000 32.0 %(w/v)
E2 2 Acetate pH 4.5 0.15 M F Sodium iodide 0.080 M V Glycerol 57.0 %(w/v)
E3 3 Malate pH 5.0 0.15 M G Propanediol 4.000 %(v/v) W Ammonium sulfate 2.2 M
E4 4 Citrate pH 5.5 0.15 M H       X PEG 8000 32.0 %(w/v)
E5 5 MES pH 6.0 0.15 M I Ethylene glycol 4.000 %(v/v) M Phosphate 0.9 M
E6 6 Cacodylate pH 6.5 0.15 M J Sodium potassium tartrate 0.040 M N PEG MME 550 38.0 %(v/v)
E7 7 MOPS pH 7.0 0.15 M K MPD 4.000 %(v/v) O Ammonium nitrate 3.1 M
E8 8 HEPES pH 7.5 0.15 M L 2-Butanol 4.000 %(v/v) P PEG 20 000 16.0 %(w/v)
E9 9 Tris pH 8.0 0.15 M A Potassium bromide 0.080 M Q PEG 1000 48.0 %(w/v)
E10 10 TAPS pH 8.5 0.15 M B PEG 300 4.000 %(v/v) R Sodium chloride 2.5 M
E11 11 AMPD/Tris pH 9.0 0.15 M C Magnesium sulfate 0.080 M S PEG 4000 38.0 %(w/v)
E12 12 CAPSO pH 9.5 0.15 M D       T Lithium sulfate 1.3 M
F1 1 Formate pH 4.0 0.15 M L 2-Butanol 3.000 %(v/v) W Ammonium sulfate 2.4 M
F2 2 Acetate pH 4.5 0.15 M A Potassium bromide 0.060 M X PEG 8000 35.0 %(w/v)
F3 3 Malate pH 5.0 0.15 M B PEG 300 3.000 %(v/v) M Phosphate 1.0 M
F4 4       C Magnesium sulfate 0.06 M N PEG MME 550 42.00 %(v/v)
F5 5 MES pH 6.0 0.15 M D Sodium fluoride 0.012 M O Ammonium nitrate 3.4 M
F6 6 Cacodylate pH 6.5 0.15 M E Potassium thiocyanate 0.030 M P PEG 20 000 18.0 %(w/v)
F7 7 MOPS pH 7.0 0.15 M F Sodium iodide 0.060 M Q PEG 1000 52.0 %(w/v)
F8 8 HEPES pH 7.5 0.15 M G Propanediol 3.000 %(v/v) R Sodium chloride 2.7 M
F9 9 Tris pH 8.0 0.15 M H Calcium chloride 0.030 M S PEG 4000 42.0 %(w/v)
F10 10 TAPS pH 8.5 0.15 M I Ethylene glycol 3.000 %(v/v) T Lithium sulfate 1.4 M
F11 11 AMPD/Tris pH 9.0 0.15 M J Sodium potassium tartrate 0.030 M U PEG MME 5000 35.0 %(w/v)
F12 12 CAPSO pH 9.5 0.15 M K MPD 3.000 %(v/v) V Glycerol 62.0 %(w/v)
G1 1 Formate pH 4.0 0.15 M G Propanediol 2.000 %(v/v) M Phosphate 1.1 M
G2 2 Acetate pH 4.5 0.15 M H       N PEG MME 550 45.00 %(v/v)
G3 3 Malate pH 5.0 0.15 M I Ethylene glycol 2.000 %(v/v) O Ammonium nitrate 3.7 M
G4 4 Citrate pH 5.5 0.15 M J Sodium potassium tartrate 0.020 M P PEG 20 000 19.0 %(w/v)
G5 5 MES pH 6.0 0.15 M K MPD 2.000 %(v/v) Q PEG 1000 56.0 %(w/v)
G6 6 Cacodylate pH 6.5 0.15 M L 2-Butanol 2.000 %(v/v) R Sodium chloride 3.0 M
G7 7 MOPS pH 7.0 0.15 M A Potassium bromide 0.040 M S PEG 4000 45.0 %(w/v)
G8 8 HEPES pH 7.5 0.15 M B PEG 300 2.000 %(v/v) T Lithium sulfate 1.5 M
G9 9 Tris pH 8.0 0.15 M C Magnesium sulfate 0.040 M U PEG MME 5000 38.0 %(w/v)
G10 10 TAPS pH 8.5 0.15 M D Sodium fluoride 0.008 M V Glycerol 67.0 %(w/v)
G11 11 AMPD/Tris pH 9.0 0.15 M E Potassium thiocyanate 0.020 M W Ammonium sulfate 2.6 M
G12 12 CAPSO pH 9.5 0.15 M F Sodium iodide 0.040 M X PEG 8000 38.0 %(w/v)
H1 1 Formate pH 4.0 0.15 M B PEG 300 1.000 %(v/v) O Ammonium nitrate 4.0 M
H2 2 Acetate pH 4.5 0.15 M C Magnesium sulfate 0.020 M P PEG 20 000 20.0 %(w/v)
H3 3 Malate pH 5.0 0.15 M D Sodium fluoride 0.004 M Q PEG 1000 60.0 %(w/v)
H4 4 Citrate pH 5.5 0.15 M E Potassium thiocyanate 0.010 M R Sodium chloride 3.2 M
H5 5 MES pH 6.0 0.15 M F Sodium iodide 0.020 M S PEG 4000 48.0 %(w/v)
H6 6 Cacodylate pH 6.5 0.15 M G Propanediol 1.000 %(v/v) T Lithium sulfate 1.6 M
H7 7 MOPS pH 7.0 0.15 M H Calcium chloride 0.010 M U PEG MME 5000 40.0 %(w/v)
H8 8 HEPES pH 7.5 0.15 M I Ethylene glycol 1.000 %(v/v) V Glycerol 72.0 %(w/v)
H9 9 Tris pH 8.0 0.15 M J Sodium potassium tartrate 0.010 M W Ammonium sulfate 2.8 M
H10 10 TAPS pH 8.5 0.15 M K MPD 1.000 %(v/v) X PEG 8000 40.0 %(w/v)
H11 11 AMPD/Tris pH 9.0 0.15 M L 2-Butanol 1.000 %(v/v) M Phosphate 1.2 M
H12 12 CAPSO pH 9.5 0.15 M A Potassium bromide 0.020 M N PEG MME 550 48.00 %(v/v)

Highest purity grade chemicals (Molecular Biology grade when available) were purchased from Sigma–Aldrich to prepare 36 stock solutions. The solutions were mixed in 96 Falcon tubes. The screen was dispensed into `MRC original plates' (96-well, two-drop, Swissci; Stock et al., 2005[Stock, D., Perisic, O. & Löwe, J. (2005). Prog. Biophys. Mol. Biol. 88, 311-327.]).

Commercial proteins that had been crystallized before were chosen to prepare test samples. Protein concentrations were chosen randomly between 7 and 150 mg ml−1 (Table 2[link]). Vapour-diffusion experiments were set up at 295 K, mixing two different sample: condition ratios (1:3 and 3:1) to give a final volume of 400 nl. The plates were then stored at 291 K. A condition was considered to be a hit when at least one of the two corresponding drops con­tained crystals with well known morphology after one week. Table 3[link] shows the `hits per con­dition' observed and the corresponding results expected for the binomial distribution (see §[link]4.2).

Table 2
Details of the samples used with the Pi minimal screen (Table 1[link]) and number of crystallization hits

TEN, buffer consisting of 20 mM 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris), 1 mM ethylene­diaminetetraacetic acid (EDTA), 1 mM sodium azide and 200 mM sodium chloride.

Protein Concentration (mg ml−1) MW (kDa) Source and code Buffer/preparation Hits
Lysozyme 10.0 14.4 Sigma L6876 Deionized water 56
Concanavalin A 7.0 26.5 Sigma L7647 TEN pH 8.5 16
Glucose isomerase 33.0 43.0 Hampton HR7-102 See product user guide 11
Xylanase 36.0 21.0 Hampton HR7-106 See product user guide 8
Ferritin 50–150 440.0 Fluka 96701 As supplied by the manufacturer 8
Catalase 12.6 62.5 Sigma C3155 Deionized water 6
Citrate synthase 10.0 49.0 Sigma C3260 TEN pH 8.5 5
Lipase B 25.0 35.0 Hampton HR7-099 Deionized water 4
Ribonuclease A 30.0 13.7 Sigma R5503 Deionized water 1
Thaumatin 30.0 22.0 Sigma T7638 Deionized water 1
Sum         116

Table 3
`Hits per condition' observed and corresponding results expected with the binomial distribution (Pi minimal screen)

Hits/condition Observed Expected
0 21 26.5
1 45 36.4
2 20 22.5
3 or more 10 10.6
Sum 96 96

2.4. Pi-PEG screen preparation and crystallization assays with a GPCR

The final formulation of the Pi-PEG screen can be found in Table 4[link]. The formulation can also be generated using Pi Sampler by loading the Pi-PEG example data. The pH values (4.8–8.8) were chosen as the variable Δ for the buffers composing set 1 (ID 1–12), whilst molecular weight was chosen for set 2 (PEGs A–L, final concentration range 0–22.5%). The same 12 PEGs were used for set 3 (PEGs M–X, final concentration range 0–45%). General details of the preparation are similar to §[link]2.3, but there are 24 stock solutions at the start (instead of 36). Vapour-diffusion experiments were set up at 277 K, mixing sample and condition in a 1:1 ratio to give a final volume of 200 nl. The preparation of A2AR-GL31 will be published elsewhere (Lebon et al., submitted work). Crystal X-ray screening was performed at the Diamond synchrotron light source (microfocus beamline I24 equipped with a Pilatus 6M detector).

Table 4
Final formulation of the Pi-PEG screen

  Set 1 Set 2 Set 3
Well ID Name Conc. Unit ID Name Conc. Unit ID Name Conc. Unit
A1 1 Acetate pH 4.8 0.05 M A PEG 200 22.5 %(v/v) M      
A2 2 Acetate pH 5.2 0.05 M B PEG 300 20.0 %(v/v) N      
A3 3 MES pH 5.6 0.05 M C PEG MME 350 20.0 %(v/v) O      
A4 4 MES pH 6.0 0.05 M D PEG 400 20.0 %(v/v) P      
A5 5 ADA pH 6.4 0.05 M E PEG MME 550 20.0 %(v/v) Q      
A6 6 ADA pH 6.8 0.05 M F PEG 600 20.0 %(v/v) R      
A7 7 HEPES pH 7.1 0.05 M G PEG 1000 17.5 %(w/v) S      
A8 8 HEPES pH 7.3 0.05 M H PEG 1500 17.5 %(w/v) T      
A9 9 Tris pH 7.6 0.05 M I PEG 2000 15.0 %(w/v) U      
A10 10 Tris pH 8.0 0.05 M J PEG MME 2000 15.0 %(w/v) V      
A11 11 Bicine pH 8.4 0.05 M K PEG 3000 15.0 %(w/v) W      
A12 12 Bicine pH 8.8 0.05 M L PEG 4000 15.0 %(w/v) X      
B1 1 Acetate pH 4.8 0.05 M H PEG 1500 15.0 %(w/v) O PEG 4000 3.6 %(w/v)
B2 2 Acetate pH 5.2 0.05 M I PEG 2000 12.9 %(w/v) P PEG 200 6.4 %(v/v)
B3 3 MES pH 5.6 0.05 M J PEG MME 2000 12.9 %(w/v) Q PEG 300 5.7 %(v/v)
B4 4 MES pH 6.0 0.05 M K PEG 3000 12.9 %(w/v) R PEG MME 350 5.7 %(v/v)
B5 5 ADA pH 6.4 0.05 M L PEG 4000 12.9 %(w/v) S PEG 400 5.7 %(v/v)
B6 6 ADA pH 6.8 0.05 M A PEG 200 19.3 %(v/v) T PEG MME 550 5.7 %(v/v)
B7 7 HEPES pH 7.1 0.05 M B PEG 300 17.1 %(v/v) U PEG 600 5.7 %(v/v)
B8 8 HEPES pH 7.3 0.05 M C PEG MME 350 17.1 %(v/v) V PEG 1000 5.0 %(w/v)
B9 9 Tris pH 7.6 0.05 M D PEG 400 17.1 %(v/v) W PEG 1500 5.0 %(w/v)
B10 10 Tris pH 8.0 0.05 M E PEG MME 550 17.1 %(v/v) X PEG 2000 4.3 %(w/v)
B11 11 Bicine pH 8.4 0.05 M F PEG 600 17.1 %(v/v) M PEG MME 2000 4.3 %(w/v)
B12 12 Bicine pH 8.8 0.05 M G PEG 1000 15.0 %(w/v) N PEG 3000 4.3 %(w/v)
C1 1 Acetate pH 4.8 0.05 M C PEG MME 350 14.3 %(v/v) Q PEG 300 11.4 %(v/v)
C2 2 Acetate pH 5.2 0.05 M D PEG 400 14.3 %(v/v) R PEG MME 350 11.4 %(v/v)
C3 3 MES pH 5.6 0.05 M E PEG MME 550 14.3 %(v/v) S PEG 400 11.4 %(v/v)
C4 4 MES pH 6.0 0.05 M F PEG 600 14.3 %(v/v) T PEG MME 550 11.4 %(v/v)
C5 5 ADA pH 6.4 0.05 M G PEG 1000 12.5 %(w/v) U PEG 600 11.4 %(v/v)
C6 6 ADA pH 6.8 0.05 M H PEG 1500 12.5 %(w/v) V PEG 1000 10.0 %(w/v)
C7 7 HEPES pH 7.1 0.05 M I PEG 2000 10.7 %(w/v) W PEG 1500 10.0 %(w/v)
C8 8 HEPES pH 7.3 0.05 M J PEG MME 2000 10.7 %(w/v) X PEG 2000 8.6 %(w/v)
C9 9 Tris pH 7.6 0.05 M K PEG 3000 10.7 %(w/v) M PEG MME 2000 8.6 %(w/v)
C10 10 Tris pH 8.0 0.05 M L PEG 4000 10.7 %(w/v) N PEG 3000 8.6 %(w/v)
C11 11 Bicine pH 8.4 0.05 M A PEG 200 16.1 %(v/v) O PEG 4000 7.1 %(w/v)
C12 12 Bicine pH 8.8 0.05 M B PEG 300 14.3 %(v/v) P PEG 200 12.9 %(v/v)
D1 1 Acetate pH 4.8 0.05 M J PEG MME 2000 8.6 %(w/v) S PEG 400 17.1 %(w/v)
D2 2 Acetate pH 5.2 0.05 M K PEG 3000 8.6 %(w/v) T PEG MME 550 17.1 %(v/v)
D3 3 MES pH 5.6 0.05 M L PEG 4000 8.6 %(w/v) U PEG 600 17.1 %(v/v)
D4 4 MES pH 6.0 0.05 M A PEG 200 12.9 %(v/v) V PEG 1000 15.0 %(w/v)
D5 5 ADA pH 6.4 0.05 M B PEG 300 11.4 %(v/v) W PEG 1500 15.0 %(w/v)
D6 6 ADA pH 6.8 0.05 M C PEG MME 350 11.4 %(v/v) X PEG 2000 12.9 %(w/v)
D7 7 HEPES pH 7.1 0.05 M D PEG 400 11.4 %(v/v) M PEG MME 2000 12.9 %(w/v)
D8 8 HEPES pH 7.3 0.05 M E PEG MME 550 11.4 %(v/v) N PEG 3000 12.9 %(w/v)
D9 9 Tris pH 7.6 0.05 M F PEG 600 11.4 %(v/v) O PEG 4000 10.7 %(w/v)
D10 10 Tris pH 8.0 0.05 M G PEG 1000 10.0 %(w/v) P PEG 200 19.3 %(v/v)
D11 11 Bicine pH 8.4 0.05 M H PEG 1500 10.0 %(w/v) Q PEG 300 17.1 %(v/v)
D12 12 Bicine pH 8.8 0.05 M I PEG 2000 8.6 %(w/v) R PEG MME 350 17.1 %(v/v)
E1 1 Acetate pH 4.8 0.05 M E PEG MME 550 8.6 %(v/v) U PEG 600 22.9 %(v/v)
E2 2 Acetate pH 5.2 0.05 M F PEG 600 8.6 %(v/v) V PEG 1000 20.0 %(w/v)
E3 3 MES pH 5.6 0.05 M G PEG 1000 7.5 %(w/v) W PEG 1500 20.0 %(w/v)
E4 4 MES pH 6.0 0.05 M H PEG 1500 7.5 %(w/v) X PEG 2000 17.1 %(w/v)
E5 5 ADA pH 6.4 0.05 M I PEG 2000 6.4 %(w/v) M PEG MME 2000 17.1 %(w/v)
E6 6 ADA pH 6.8 0.05 M J PEG MME 2000 6.4 %(w/v) N PEG 3000 17.1 %(w/v)
E7 7 HEPES pH 7.1 0.05 M K PEG 3000 6.4 %(w/v) O PEG 4000 14.3 %(w/v)
E8 8 HEPES pH 7.3 0.05 M L PEG 4000 6.4 %(w/v) P PEG 200 25.7 %(v/v)
E9 9 Tris pH 7.6 0.05 M A PEG 200 9.6 %(v/v) Q PEG 300 22.9 %(v/v)
E10 10 Tris pH 8.0 0.05 M B PEG 300 8.6 %(v/v) R PEG MME 350 22.9 %(v/v)
E11 11 Bicine pH 8.4 0.05 M C PEG MME 350 8.6 %(v/v) S PEG 400 22.9 %(v/v)
E12 12 Bicine pH 8.8 0.05 M D PEG 400 8.6 %(v/v) T PEG MME 550 22.9 %(v/v)
F1 1 Acetate pH 4.8 0.05 M L PEG 4000 4.3 %(w/v) W PEG 1500 25.0 %(w/v)
F2 2 Acetate pH 5.2 0.05 M A PEG 200 6.4 %(v/v) X PEG 2000 21.4 %(w/v)
F3 3 MES pH 5.6 0.05 M B PEG 300 5.7 %(v/v) M PEG MME 2000 21.4 %(w/v)
F4 4 MES pH 6.0 0.05 M C PEG MME 350 5.7 %(v/v) N PEG 3000 21.4 %(w/v)
F5 5 ADA pH 6.4 0.05 M D PEG 400 5.7 %(v/v) O PEG 4000 17.9 %(w/v)
F6 6 ADA pH 6.8 0.05 M E PEG MME 550 5.7 %(v/v) P PEG 200 32.1 %(v/v)
F7 7 HEPES pH 7.1 0.05 M F PEG 600 5.7 %(v/v) Q PEG 300 28.6 %(v/v)
F8 8 HEPES pH 7.3 0.05 M G PEG 1000 5.0 %(w/v) R PEG MME 350 28.6 %(v/v)
F9 9 Tris pH 7.6 0.05 M H PEG 1500 5.0 %(w/v) S PEG 400 28.6 %(v/v)
F10 10 Tris pH 8.0 0.05 M I PEG 2000 4.3 %(w/v) T PEG MME 550 28.6 %(v/v)
F11 11 Bicine pH 8.4 0.05 M J PEG MME 2000 4.3 %(w/v) U PEG 600 28.6 %(v/v)
F12 12 Bicine pH 8.8 0.05 M K PEG 3000 4.3 %(w/v) V PEG 1000 25.0 %(w/v)
G1 1 Acetate pH 4.8 0.05 M G PEG 1000 2.5 %(w/v) M PEG MME 2000 25.7 %(w/v)
G2 2 Acetate pH 5.2 0.05 M H PEG 1500 2.5 %(w/v) N PEG 3000 25.7 %(w/v)
G3 3 MES pH 5.6 0.05 M I PEG 2000 2.1 %(w/v) O PEG 4000 21.4 %(w/v)
G4 4 MES pH 6.0 0.05 M J PEG MME 2000 2.1 %(w/v) P PEG 200 38.6 %(v/v)
G5 5 ADA pH 6.4 0.05 M K PEG 3000 2.1 %(w/v) Q PEG 300 34.3 %(v/v)
G6 6 ADA pH 6.8 0.05 M L PEG 4000 2.1 %(w/v) R PEG MME 350 34.3 %(v/v)
G7 7 HEPES pH 7.1 0.05 M A PEG 200 3.2 %(v/v) S PEG 400 34.3 %(v/v)
G8 8 HEPES pH 7.3 0.05 M B PEG 300 2.9 %(v/v) T PEG MME 550 34.3 %(v/v)
G9 9 Tris pH 7.6 0.05 M C PEG MME 350 2.9 %(v/v) U PEG 600 34.3 %(v/v)
G10 10 Tris pH 8.0 0.05 M D PEG 400 2.9 %(v/v) V PEG 1000 30.0 %(w/v)
G11 11 Bicine pH 8.4 0.05 M E PEG MME 550 2.9 %(v/v) W PEG 1500 30.0 %(w/v)
G12 12 Bicine pH 8.8 0.05 M F PEG 600 2.9 %(v/v) X PEG 2000 25.7 %(w/v)
H1 1 Acetate pH 4.8 0.05 M B       O PEG 4000 25.0 %(w/v)
H2 2 Acetate pH 5.2 0.05 M C       P PEG 200 45.0 %(v/v)
H3 3 MES pH 5.6 0.05 M D       Q PEG 300 40.0 %(v/v)
H4 4 MES pH 6.0 0.05 M E       R PEG MME 350 40.0 %(v/v)
H5 5 ADA pH 6.4 0.05 M F       S PEG 400 40.0 %(v/v)
H6 6 ADA pH 6.8 0.05 M G       T PEG MME 550 40.0 %(v/v)
H7 7 HEPES pH 7.1 0.05 M H       U PEG 600 40.0 %(v/v)
H8 8 HEPES pH 7.3 0.05 M I       V PEG 1000 35.0 %(w/v)
H9 9 Tris pH 7.6 0.05 M J       W PEG 1500 35.0 %(w/v)
H10 10 Tris pH 8.0 0.05 M K       X PEG 2000 30.0 %(w/v)
H11 11 Bicine pH 8.4 0.05 M L       M PEG MME 2000 30.0 %(w/v)
H12 12 Bicine pH 8.8 0.05 M A       N PEG 3000 30.0 %(w/v)

3. Results

There were 116 crystallization hits overall for the experiments with the Pi minimal screen (Table 2[link]). Some conditions produced hits for several samples (Table 3[link]).

The Pi-PEG screen yielded crystals that diffracted to 3.0 Å resolution for A2AR-GL31 with bound agonist. Fig. 3[link] shows the crystals of A2AR-GL31 obtained in well E9 [50 mM Tris–HCl pH 7.6, 9.6%(v/v) PEG 200, 22.9%(v/v) PEG 300] and an example of the corresponding diffraction pattern (no cryoprotectant was required).

[Figure 3]
Figure 3
Crystals of A2AR-GL31 obtained with the Pi-PEG screen (Table 4[link]) and an example of a corresponding diffraction pattern.

4. Discussion

4.1. Pi sampling

In order to understand the rationale behind the modular arithmetic employed for the Pi sampling, it may help to imagine, on a 12 h clock, a series of events occurring every 5 h. The first event is at noon, the second at 5 pm, then 10 pm, then 3 am etc. Eventually, there is a succession of 12 events occurring at different hours, with as much time as possible in between each event. If we now look at combinations of three components, there are originally 123 or 1728 possibilities. Pi Sampler generates 96 of these combinations that correspond to conditions that are distant in properties. The variety between conditions is then accentuated using a number of different concentrations of solutions (Fig. 2[link]). If the first and second sets of solutions are ordered according to physico-chemical properties, the generated screen will be an incomplete factorial sampling of interactions between chemicals with these properties. If the chemicals selected have completely different natures, they can be arranged randomly (see §[link]2.3). The ordering of the third set of solutions can be used to avoid obvious chemical incompatibilities (e.g. mixing phosphate and magnesium salts). It is also possible to design simpler screens with only two sets of stock solutions.

4.2. The Pi minimal screen

In order to check the homogeneity of the hits across the screen with the ten samples, we compared the results obtained with what would be expected if each condition had the same probability of hits overall (Table 3[link]). This can be approximated by a binomial distribution. The probability of success for the binomial distribution is the observed probability for ten attempts: 116/(10 × 96) = 0.12083. The χ2 statistic for the data is 3.48. This can be compared with the quantiles of a χ2 distribution with two degrees of freedom, which gives a p value of 0.18 (calculations not shown). This χ2 test indicates that no conditions are obvious outliers with regard to success or failure. There are, however, a multitude of possible biases implied when proceeding with crystallization experiments (which would be even more accentuated with the use of novel samples); hence, any statistical analysis should be taken with precaution. Nonetheless, it is interesting to see that the analysis of the distribution is in accordance with the original approach based on balanced randomization (Carter & Carter, 1979[Carter, C. W. & Carter, C. W. (1979). J. Biol. Chem. 254, 12219-12223.]; Rupp, 2003[Rupp, B. (2003). J. Struct. Biol. 142, 162-169.]).

In addition, the conditions of the Pi minimal screen show no identities to the extensive list of conditions (7230) from commercial screens stored in the `PICKScreens' database (Hedderich et al., 2011[Hedderich, T., Marcia, M., Köpke, J. & Michel, H. (2011). Cryst. Growth Des. 11, 488-491.]).

4.3. The Pi-PEG screen

The extent of effects on crystallization for precipitants such as PEGs is correlated with their concentrations (McPherson, 1976[McPherson, A. (1976). J. Biol. Chem. 251, 6300-6303.]) and molecular weights (Forsythe et al., 2002[Forsythe, E. L., Maxwell, D. L. & Pusey, M. (2002). Acta Cryst. D58, 1601-1605.]). The Pi-PEG screen covers a wide range of parameters (kinetics of equilibrium, protein stabilization etc.). In addition, the con­centrations of the two different PEGs in a condition can be adjusted for condition optimization (Stock et al., 2005[Stock, D., Perisic, O. & Löwe, J. (2005). Prog. Biophys. Mol. Biol. 88, 311-327.]) and for crystal cryoprotection (Berejnov et al., 2006[Berejnov, V., Husseini, N. S., Alsaied, O. A. & Thorne, R. E. (2006). J. Appl. Cryst. 39, 244-251.]). Furthermore, the PICKScreens database shows that the Pi-PEG screen is unique (as for the Pi minimal screen; see §[link]4.2).

Samples of A2AR-GL31 purified in a number of different detergents rarely crystallized in commercially available screens used at the LMB (Stock et al., 2005[Stock, D., Perisic, O. & Löwe, J. (2005). Prog. Biophys. Mol. Biol. 88, 311-327.]) and when they did the crystal quality was not sufficient for structure determination. The first quality crystals were recently obtained using the Pi-PEG screen.

5. Conclusions

We have demonstrated that the Pi sampling is a methodical and flexible approach to initial screening for macromolecular crystallization. Two unique screens produced de novo have resulted from this strategy. The Pi minimal screen potentially has an ideal formulation for crystallization of novel soluble protein samples. The Pi-PEG screen is a tailor-made screen for GPCRs and potentially other membrane proteins generated by biasing the formulation towards components known to be essential.

Further screens can be formulated with the Pi Sampler on a day-to-day basis in order to test chemicals and techniques, with the aim of increasing the yield of quality crystals. Also, new crystallization techniques are constantly emerging for macromolecular targets such as membrane proteins and hence formulations with special considerations are required: one may want to formulate screens compatible with the lipidic cubic phase (LCP) concept (Landau & Rosenbusch, 1996[Landau, E. M. & Rosenbusch, J. P. (1996). Proc. Natl Acad. Sci. USA, 93, 14532-14535.]) or make extensive use of detergents (Koszelak-Rosenblum et al., 2009[Koszelak-Rosenblum, M., Krol, A., Mozumdar, N., Wunsch, K., Ferin, A., Cook, E., Veatch, C. K., Nagel, R., Luft, J. R., Detitta, G. T. & Malkowski, M. G. (2009). Protein Sci. 18, 1828-1839.]).

In order for laboratories to be able to handle many Pi screen formulations and the flow of resulting data, we are working on the integration of Pi Sampler into the `xtalPiMS' Laboratory Information Management System (LIMS; Morris et al., 2011[Morris, C. et al. (2011). Acta Cryst. D67, 249-260.]; see https://www.pims-lims.org ).

Acknowledgements

Thanks to Simon Byrne (Cambridge University Statistics Clinic; https://www.statslab.cam.ac.uk/clinic/ ) for dis­cussions. Thanks to the LMB members Jan Löwe, John Kendrick-Jones, Christopher Aylett, Chris Tate, Jake Grimmett and Graham Lingley for various contributions. Finally, thanks to Karen Law (MRC Technology), Chris Morris (STFC, funded by CCP4) and Tanja Hedderich (Max Planck Institute). Conflicting commercial interest: we hereby state that we have a conflicting commercial interest in that MRC Technology (https://www.mrctechnology.org/ ) will commercialize Pi screens under an exclusive licence to Jena Bioscience (https://www.jenabioscience.com/ ).

References

First citationBerejnov, V., Husseini, N. S., Alsaied, O. A. & Thorne, R. E. (2006). J. Appl. Cryst. 39, 244–251.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergfors, T. (2007). Methods Mol. Biol. 363, 131–151.  CrossRef PubMed CAS Google Scholar
First citationBrzozowski, A. M. & Walton, J. (2001). J. Appl. Cryst. 34, 97–101.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarter, C. W. & Carter, C. W. (1979). J. Biol. Chem. 254, 12219–12223.  CAS PubMed Web of Science Google Scholar
First citationClarke, O. B., Caputo, A. T., Hill, A. P., Vandenberg, J. I., Smith, B. J. & Gulbis, J. M. (2010). Cell, 141, 1018–1029.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCox, M. J. & Weber, P. C. (1987). J. Appl. Cryst. 20, 366–373.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDoudna, J. A., Grosshans, C., Gooding, A. & Kundrot, C. E. (1993). Proc. Natl Acad. Sci. USA, 90, 7829–7833.  CrossRef CAS PubMed Web of Science Google Scholar
First citationForsythe, E. L., Maxwell, D. L. & Pusey, M. (2002). Acta Cryst. D58, 1601–1605.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHedderich, T., Marcia, M., Köpke, J. & Michel, H. (2011). Cryst. Growth Des. 11, 488–491.  CrossRef CAS Google Scholar
First citationJancarik, J. & Kim, S.-H. (1991). J. Appl. Cryst. 24, 409–411.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKantardjieff, K. A. & Rupp, B. (2004). Bioinformatics, 20, 2162–2168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKimber, M. S., Vallee, F., Houston, S., Necakov, A., Skarina, T., Evdokimova, E., Beasley, S., Christendat, D., Savchenko, A., Arrowsmith, C. H., Vedadi, M., Gerstein, M. & Edwards, A. M. (2003). Proteins, 51, 562–568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoszelak-Rosenblum, M., Krol, A., Mozumdar, N., Wunsch, K., Ferin, A., Cook, E., Veatch, C. K., Nagel, R., Luft, J. R., Detitta, G. T. & Malkowski, M. G. (2009). Protein Sci. 18, 1828–1839.  Web of Science PubMed CAS Google Scholar
First citationLandau, E. M. & Rosenbusch, J. P. (1996). Proc. Natl Acad. Sci. USA, 93, 14532–14535.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLemieux, M. J., Song, J., Kim, M. J., Huang, Y., Villa, A., Auer, M., Li, X.-D. & Wang, D.-N. (2003). Protein Sci. 12, 2748–2756.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcPherson, A. (1976). J. Biol. Chem. 251, 6300–6303.  CAS PubMed Web of Science Google Scholar
First citationMcPherson, A. (1990). Eur. J. Biochem. 189, 1–23.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorris, C. et al. (2011). Acta Cryst. D67, 249–260.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRupp, B. (2003). J. Struct. Biol. 142, 162–169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSmith, D. E. (1958). History of Mathematics. New York: Dover Publications.  Google Scholar
First citationStock, D., Perisic, O. & Löwe, J. (2005). Prog. Biophys. Mol. Biol. 88, 311–327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G. & Schertler, G. F. (2008). Nature (London), 454, 486–491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. (2009). Protein Expr. Purif. 65, 204–213.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoBIOLOGICAL
CRYSTALLOGRAPHY
ISSN: 1399-0047
Volume 67| Part 5| May 2011| Pages 463-470
Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds