organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­acetyl-4-imidazolin-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 9 March 2004; accepted 11 March 2004; online 24 March 2004)

The acetyl substituents of the title compound, C7H8N2O3, are in the syn configuration. The bond lengths and angles are as expected for a mol­ecule of this kind.

Comment

The mol­ecule of the title compound, (I[link]), is shown in Fig. 1[link], and bond lengths and angles involving the non-H atoms are given in Table 1[link] and are generally as expected for a mol­ecule of this kind. The torsion angles, however, clearly demonstrate the syn disposition of the acetyl substituents and are indicative of some departure from planarity in the configuration of the mol­ecule. This departure is further demonstrated by the dihedral angles between the planes of the five-membered ring and those of the acetyl groups [3.1 (4) and 5.9 (3)°] and by displacements of the acetyl O and methyl C atoms from the ring plane by as much as −0.110 (8) and 0.187 (8) Å for atoms O1 and C7, respectively. The distribution of the mol­ecules in the unit cell (Fig. 2[link]) can be interpreted in terms of layers (Fig. 3[link]) parallel to (010) and centred on y = [1\over 4] and [3\over 4]. The layer at y = [3\over 4] is related to that shown in Fig. 3[link] by the operation of an n-glide plane parallel to (100), which changes the tilt of the mol­ecules from one layer to the next. The whole arrangement brings about the C—H⋯O contacts given in Table 2[link], along with a C—H⋯π contact involving atoms C7 and H7B and the centroid (Cg) of the five-membered ring [this last with symmetry code (x − [1\over 2], [{1 \over 2}] − y, z)], for which the C—H, H⋯Cg, Hperp (the perpendicular distance of H7B from the plane of the ring) and C7⋯Cg distances are 0.96, 2.81, 2.79 and 3.640 (3) Å, respectively; the angle at the H atom between H⋯Cg and Hperp is 6°, and the C—H⋯Cg angle is 145°. The contacts involving O1 (Fig. 2[link] and Table 2[link]) are between the layers and the other two, including the C—H⋯π contact noted above, within them.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The cell contents of (I[link]). Displacement ellipsoids are drawn at the 50% probability level, H atoms other than those involved in intermolecular contacts (dashed lines) have been omitted and selected atoms are labelled. [Symmetry codes: (i) [3\over 2] − x, [{1 \over 2}] + y, [{1 \over 2}] + z; (ii) x − [1\over 2], [{1 \over 2}] − y, z; (iii) 1 − x, 1 − y, [{1 \over 2}] + z; (iv) x − 1, y, z; (v) 2 − x, 1 − y, [{1 \over 2}] + z.]
[Figure 3]
Figure 3
A layer of mol­ecules of (I[link]) parallel to (010) and centred on y = [1\over 4]. Displacement ellipsoids are drawn at the 50% probability level, H atoms other than those involved in intermolecular contacts (dashed lines) have been omitted and selected atoms are labelled. [Symmetry codes: (i) x − [1\over 2], [{1 \over 2}] − y, z; (ii) x − 1, y, z; (iii) x, y, 1 + z; (iv) x − [1\over 2], [{1 \over 2}] − y, 1 + z; (v) x − 1, y, 1 + z.]

Experimental

Compound (I[link]) was prepared by heating a suspension of the parent 4-imidazolin-2-one prepared by the method of Haines et al. (1982[Haines, D. R., Leonard, N. J. & Wiemer, D. F. (1982). J. Org. Chem. 47, 474-482.]) (0.84 g, 0.01 mol) in acetic anhydride (30 ml) until the solid had dissolved. The excess of acetic anhydride was evaporated to yield (I[link]) (1.53 g, 91%), which was recrystallized from Et2O as colourless needles [m.p. 379 K, literature m.p. 379 K (Gilbert, 1932[Gilbert, G. E. (1932). J. Am. Chem. Soc. 54, 3413-3419.])]. νmax (KBr, cm−1): 3130, 1732, 1714, 1385, 1255, 1240, 1132, 1038, 727, 715, 635 and 627; 1H NMR [CDCl3/(CF3CO)2O]: δ 2.59 (6H, s, CH3), 7.06 (2H, s, CH); m/z 168 (M+, 4%): 126 (13), 84 (100), 43 (50).

Crystal data
  • C7H8N2O3

  • Mr = 168.15

  • Orthorhombic, Pna21

  • a = 8.156 (4) Å

  • b = 18.251 (5) Å

  • c = 5.172 (7) Å

  • V = 769.9 (11) Å3

  • Z = 4

  • Dx = 1.451 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 14 reflections

  • θ = 7.6–10.3°

  • μ = 0.12 mm−1

  • T = 298 (2) K

  • Block, colourless

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Nicolet P3 four-circle diffractometer

  • θ–2θ scans

  • Absorption correction: none

  • 990 measured reflections

  • 990 independent reflections

  • 621 reflections with I > 2σ(I)

  • θmax = 27.6°

  • h = 0 → 10

  • k = 0 → 23

  • l = 0 → 6

  • 2 standard reflections every 50 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.113

  • S = 1.01

  • 990 reflections

  • 111 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0435P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.199 (5)
O2—C2 1.205 (5)
O3—C6 1.203 (5)
N1—C5 1.401 (6)
N1—C2 1.405 (5)
N1—C1 1.430 (5)
N2—C2 1.397 (5)
N2—C4 1.407 (5)
N2—C6 1.426 (4)
C1—C3 1.487 (7)
C4—C5 1.319 (5)
C6—C7 1.485 (7)
C5—N1—C2 110.0 (3)
C5—N1—C1 121.4 (4)
C2—N1—C1 128.5 (4)
C2—N2—C4 110.6 (3)
C2—N2—C6 127.7 (4)
C4—N2—C6 121.6 (3)
O1—C1—N1 118.0 (4)
O1—C1—C3 124.4 (4)
N1—C1—C3 117.6 (4)
O2—C2—N2 128.4 (4)
O2—C2—N1 128.5 (4)
N2—C2—N1 103.1 (4)
C5—C4—N2 107.6 (4)
C4—C5—N1 108.7 (4)
O3—C6—N2 118.0 (4)
O3—C6—C7 124.1 (4)
N2—C6—C7 117.9 (4)
C2—N1—C1—O1 −175.5 (4)
C5—N1—C1—O1 0.9 (6)
C2—N1—C1—C3 5.2 (6)
C5—N1—C1—C3 −178.5 (4)
C2—N2—C6—O3 175.8 (4)
C4—N2—C6—O3 −5.3 (6)
C2—N2—C6—C7 −5.4 (6)
C4—N2—C6—C7 173.5 (4)

Table 2
Parameters (Å, °) for C—H⋯O contacts between molecules of (I)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.59 3.522 (6) 174.7
C5—H5⋯O1ii 0.93 2.54 3.463 (5) 169.8
C7—H7A⋯O1iii 0.96 2.56 3.312 (5) 135.0
Symmetry codes: (i) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,1+z]; (ii) [2-x,-y,{\script{1\over 2}}+z]; (iii) [{\script{3\over 2}}-x,{\script{1\over 2}}+y,z-{\script{1\over 2}}].

In the final stages of refinement, H atoms were introduced in calculated positions, with C—H = 0.93 Å (alkene H atoms) and 0.96 Å (methyl H atoms), and treated using a riding model, with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C) for alkene and methyl H atoms, respectively. The rotational orientation of the rigid-body methyl groups was also refined. In the absence of any atom of atomic number higher than that of O, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter is, for this refinement, meaningless and the absolute polarity is indeterminate.

Data collection: Nicolet P3 Software (Nicolet, 1980[Nicolet (1980). Nicolet P3 Software. Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, CA 95014, USA.]); cell refinement: Nicolet P3 Software; data reduction: RDNIC (Howie, 1980[Howie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: Nicolet P3 Software (Nicolet, 1980); cell refinement: Nicolet P3 Software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia. 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

1,3-diacetyl-4-imidazolin-2-one top
Crystal data top
C7H8N2O3Dx = 1.451 Mg m3
Mr = 168.15Melting point: 379 (lit. 379) K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 8.156 (4) ÅCell parameters from 14 reflections
b = 18.251 (5) Åθ = 7.6–10.3°
c = 5.172 (7) ŵ = 0.12 mm1
V = 769.9 (11) Å3T = 298 K
Z = 4Block, colourless
F(000) = 3520.50 × 0.40 × 0.30 mm
Data collection top
Nicolet P3 four circle
diffractometer
Rint = 0.000
Radiation source: normal-focus sealed tubeθmax = 27.6°, θmin = 2.2°
Graphite monochromatorh = 010
θ–2θ scansk = 023
990 measured reflectionsl = 06
990 independent reflections2 standard reflections every 50 reflections
621 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
990 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.4918 (0.0220) x - 1.6134 (0.1449) y - 3.0973 (0.0135) z = 4.9755 (0.0222)

* 0.0000 (0.0000) C1 * 0.0000 (0.0000) O1 * 0.0000 (0.0000) C3

Rms deviation of fitted atoms = 0.0000

6.3195 (0.0133) x - 0.9068 (0.0342) y - 3.2595 (0.0091) z = 4.8997 (0.0144)

Angle to previous plane (with approximate e.s.d.) = 3.10 (0.41)

* 0.0047 (0.0023) N1 * -0.0050 (0.0022) C2 * 0.0036 (0.0022) N2 * -0.0007 (0.0024) C4 * -0.0026 (0.0025) C5 - 0.1097 (0.0075) O1 - 0.0448 (0.0067) C1 0.0026 (0.0080) C3 - 0.0297 (0.0058) O2 - 0.0402 (0.0066) O3 0.0348 (0.0066) C6 0.1867 (0.0083) C7

Rms deviation of fitted atoms = 0.0036

6.7793 (0.0139) x - 1.4639 (0.1425) y - 2.8453 (0.0121) z = 5.2256 (0.0505)

Angle to previous plane (with approximate e.s.d.) = 5.88 (0.31)

* 0.0000 (0.0000) C6 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) C7

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

In the absence of any atom of atomic number higher than that of O the the Flack x parameter is meaningless and the absolute structure therefore indeterminate.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8759 (4)0.00337 (15)0.2277 (7)0.0721 (12)
O20.7257 (3)0.19844 (14)0.1424 (7)0.0548 (8)
O30.9703 (4)0.35970 (14)0.2903 (6)0.0582 (9)
N10.8722 (4)0.12506 (16)0.1516 (8)0.0443 (9)
N20.9021 (4)0.24430 (15)0.1767 (7)0.0378 (8)
C10.8238 (5)0.0516 (2)0.0934 (10)0.0545 (14)
C20.8199 (5)0.1905 (2)0.0349 (9)0.0406 (10)
C30.7135 (5)0.0402 (2)0.1319 (12)0.0672 (14)
H3A0.77730.03890.28770.101*
H3B0.63590.07970.14120.101*
H3C0.65600.00540.11210.101*
C40.9979 (4)0.2123 (2)0.3726 (9)0.0416 (9)
H41.06270.23710.49180.050*
C50.9790 (5)0.1406 (2)0.3565 (10)0.0458 (11)
H51.02840.10620.46360.055*
C60.8982 (5)0.3217 (2)0.1381 (9)0.0448 (11)
C70.8084 (5)0.3501 (2)0.0906 (10)0.0556 (13)
H7A0.80940.40270.08790.083*
H7B0.69710.33290.08610.083*
H7C0.86060.33300.24570.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.104 (3)0.0356 (14)0.077 (3)0.0005 (18)0.000 (2)0.0069 (18)
O20.0523 (16)0.0546 (17)0.057 (2)0.0017 (14)0.006 (2)0.0000 (19)
O30.083 (2)0.0376 (15)0.054 (2)0.0015 (15)0.0041 (19)0.0037 (16)
N10.0455 (19)0.0373 (16)0.050 (2)0.0015 (15)0.004 (2)0.001 (2)
N20.0411 (17)0.0313 (15)0.0410 (19)0.0021 (14)0.0011 (19)0.0001 (18)
C10.055 (3)0.040 (2)0.068 (4)0.007 (2)0.016 (3)0.009 (3)
C20.039 (2)0.039 (2)0.044 (2)0.0006 (19)0.009 (2)0.000 (2)
C30.067 (3)0.050 (2)0.084 (4)0.007 (2)0.005 (4)0.015 (3)
C40.042 (2)0.0430 (19)0.039 (2)0.0012 (18)0.000 (2)0.006 (2)
C50.053 (2)0.037 (2)0.047 (3)0.0097 (18)0.008 (3)0.008 (2)
C60.051 (3)0.034 (2)0.049 (3)0.003 (2)0.014 (3)0.003 (2)
C70.064 (3)0.042 (2)0.060 (3)0.007 (2)0.001 (3)0.011 (2)
Geometric parameters (Å, º) top
O1—C11.199 (5)C3—H3A0.9600
O2—C21.205 (5)C3—H3B0.9600
O3—C61.203 (5)C3—H3C0.9600
N1—C51.401 (6)C4—C51.319 (5)
N1—C21.405 (5)C4—H40.9300
N1—C11.430 (5)C5—H50.9300
N2—C21.397 (5)C6—C71.485 (7)
N2—C41.407 (5)C7—H7A0.9600
N2—C61.426 (4)C7—H7B0.9600
C1—C31.487 (7)C7—H7C0.9600
C5—N1—C2110.0 (3)H3B—C3—H3C109.5
C5—N1—C1121.4 (4)C5—C4—N2107.6 (4)
C2—N1—C1128.5 (4)C5—C4—H4126.2
C2—N2—C4110.6 (3)N2—C4—H4126.2
C2—N2—C6127.7 (4)C4—C5—N1108.7 (4)
C4—N2—C6121.6 (3)C4—C5—H5125.6
O1—C1—N1118.0 (4)N1—C5—H5125.6
O1—C1—C3124.4 (4)O3—C6—N2118.0 (4)
N1—C1—C3117.6 (4)O3—C6—C7124.1 (4)
O2—C2—N2128.4 (4)N2—C6—C7117.9 (4)
O2—C2—N1128.5 (4)C6—C7—H7A109.5
N2—C2—N1103.1 (4)C6—C7—H7B109.5
C1—C3—H3A109.5H7A—C7—H7B109.5
C1—C3—H3B109.5C6—C7—H7C109.5
H3A—C3—H3B109.5H7A—C7—H7C109.5
C1—C3—H3C109.5H7B—C7—H7C109.5
H3A—C3—H3C109.5
C2—N1—C1—O1175.5 (4)C1—N1—C2—N2177.6 (4)
C5—N1—C1—O10.9 (6)C2—N2—C4—C50.4 (4)
C2—N1—C1—C35.2 (6)C6—N2—C4—C5178.7 (3)
C5—N1—C1—C3178.5 (4)N2—C4—C5—N10.2 (5)
C4—N2—C2—O2178.5 (4)C2—N1—C5—C40.7 (5)
C6—N2—C2—O22.5 (7)C1—N1—C5—C4177.7 (4)
C4—N2—C2—N10.8 (4)C2—N2—C6—O3175.8 (4)
C6—N2—C2—N1178.2 (4)C4—N2—C6—O35.3 (6)
C5—N1—C2—O2178.4 (4)C2—N2—C6—C75.4 (6)
C1—N1—C2—O21.7 (7)C4—N2—C6—C7173.5 (4)
C5—N1—C2—N20.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.593.522 (6)175
C5—H5···O1ii0.932.543.463 (5)170
C7—H7A···O1iii0.962.563.312 (5)135
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+2, y, z+1/2; (iii) x+3/2, y+1/2, z1/2.
 

Footnotes

Present address: Swiss Federal Laboratories for Material Testing and Research (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Acknowledgements

Financial support for this work by the SERC is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilbert, G. E. (1932). J. Am. Chem. Soc. 54, 3413–3419.  Google Scholar
First citationHaines, D. R., Leonard, N. J. & Wiemer, D. F. (1982). J. Org. Chem. 47, 474–482.  CSD CrossRef CAS Web of Science Google Scholar
First citationHowie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.  Google Scholar
First citationNicolet (1980). Nicolet P3 Software. Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, CA 95014, USA.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds