metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]­octane aqua­bis­­(oxalato-κ2O,O′)copper(II) dihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: daniel.price@soton.ac.uk

(Received 1 March 2004; accepted 4 March 2004; online 20 March 2004)

The title compound, (C6H14N2)[Cu(C2O4)2(H2O)]·2H2O, crystallizes in the space group P[\overline 1]. In the solid state, the [Cu(ox)2(H2O)]2− units (ox is oxalate, C2O4) dimerize to give a tetragonally distorted CuO6 coordination environment. Extensive hydrogen bonding between the oxalate, the coordinated water, the 1,4-diazoniabi­cyclo­[2.2.2]­octane dications ([dabcoH2]2+) and the water of crystallization determines the crystal packing.

Comment

Blue crystals of the title compound, (I[link]), were obtained by a slow diffusion technique in an aqueous gel. This ionic compound crystallizes in the triclinic space group P[\overline 1], with two formula units per unit cell. The structure of (I[link]) contains [Cu(ox)2(H2O)]2− (ox is oxalate, C2O4) units, in which the CuII ion is coordinated by two chelating oxalate ions in a planar geometry, and the coordinated water mol­ecule forms a long axial contact [Cu1—O1W 2.344 (7) Å]. These units dimerize through one of the coordinating O atoms of the oxalate (Fig. 1[link] and Table 1[link]), resulting in a Cu1⋯Cu1i separation of 3.818 (8) Å [symmetry code: (i) −x, 1 − y, 1 − z]. The long Cu1—O3i contact of 2.906 (10) Å gives an idea of the weakness of the dimerization interaction.

[Scheme 1]

The number of hydrogen-bond acceptor sites in (I[link]) is greater than the number of potential hydrogen-bond donating groups. We note that all D—H groups are involved in hydrogen bonding, and that there are seven different (near) linear and one bifurcated hydrogen-bond interactions (Table 2[link]). Neighbouring [Cu(ox)2(H2O)]24− units are directly hydrogen-bonded into chains. These chains are hydrogen-bonded through the water of crystallization, resulting in an extensive three-dimensional network (Fig. 2[link]). The unsymmetric bifurcated hydrogen bond between the oxalate and 1,4-diazoniabi­cyclo­[2.2.2]­octane ([dabcoH2]2+) is a motif seen in almost all other compounds containing [dabcoH2]2+ and ox2− (Vaidhyanathan et al., 2001[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699-706.]; Lee & Wang, 1999[Lee, M.-Y. & Wang, S.-L. (1999). Chem. Mater. 11, 3588-3594.]; Malfant et al., 1990[Malfant, I., Morgenstern-Badarau, I., Philoche-Levisalles, M. & Lloret, F. (1990). J. Chem. Soc. Chem. Commun. pp. 1338-1340.]), although we note that this hydrogen-bonding pattern is not uncommon in oxalate compounds.

As described previously (Keene et al., 2003[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131-m1133.], 2004[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Z. Anorg. Allg. Chem. 630, 350-352.]), discrete mono- and dinuclear metal oxalate species may be formed when the bridging potential of the oxalate is reduced. This can be achieved either through the use of capping ligands or by a high concentration of the oxalate dianion, in both cases resulting in coordinatively saturated complexes. The large Jahn–Teller effect in CuII makes the structural chemistry of copper oxalate compounds different from that of other 3d transition metals. In particular, a displacement of the labile axial water mol­ecules during crystallization is commonly observed, and a polycatenation process results in chains of [Cu(ox)2]22n in the solid state. Very few examples of isolated [Cu(ox)2(H2O)2]2− (Insausti et al., 1994[Insausti, M., Urtiaga, M. K., Cortes, R., Mesa, J. L., Arriortua, M. I. & Rojo, T. (1994). J. Mater. Chem. 4, 1867-1870.]; Keene et al., 2004[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Z. Anorg. Allg. Chem. 630, 350-352.]) or dimerized species (Savel'eva et al., 1992[Savel'eva, Z. A., Larionov, S. V., Romanenko, G. V., Podberezskaya, N. V. & Sheludyakova, L. A. (1992). Zh. Neorg. Khim. (Russ. J. Inorg. Chem.), 37, 1094-1102. (In Russian.)]) have been observed in the solid state. In the case of (I[link]), the extensive hydrogen-bonded network stabilizes the discrete dimerization of the copper bisoxalate dianions, to give isolated [Cu(ox)2(H2O)]24− units.

[Figure 1]
Figure 1
The asymmetric unit and selected symmetry equivalents of (I[link]), showing the dimerization of the [Cu(ox)2(H2O)]2− unit. Displacement ellipsoids are drawn at the 50% probability level. Some H atoms have been omitted for clarity. Primed atoms are generated by the symmetry operation (−x, 1 − y, 1 − z).
[Figure 2]
Figure 2
Hydro­gen-bonding interactions (dashed lines) between [Cu(ox)2(H2O)]24− clusters and the water of crystallization, viewed along the b axis.

Experimental

Single crystals of (I[link]) were synthesized by a gel-crystallization technique. CuSO4·5H2O (100 mg, 0.40 mmol) was dissolved in distilled water (18 ml). Tetra­methoxy­silane (2 ml) was added and the mixture stirred until monophasic, then allowed to set in a test tube. A solution of 1,4-diazo­niabi­cyclo­[2.2.2]­octane bis­(hydrogenoxalate) (200 mg, 0.68 mmol) was added to the top of the gel. After two weeks, light-blue crystals of (I[link]) had formed in the gel. IR (KBr, diffuse reflectance, cm−1): 3450 s (O—H stretch), 2823 s (C—H stretch), 2650 s (N—H stretch), 1681 s and 1658 s (oxalate), 1412 s (oxalate), 1291 s, 1059 s, 850 s, 801 s, 607 m, 540 m, 495 m; UV/VIS/NIR (diffuse reflectance, cm−1): 14 400 (d-d), 35 700 (oxalate).

Crystal data
  • (C6H14N2)[Cu(C2O4)2(H2O)]·2H2O

  • Mr = 407.82

  • Triclinic, [P\overline 1]

  • a = 9.3847 (7) Å

  • b = 9.4884 (6) Å

  • c = 9.6936 (5) Å

  • α = 62.150 (4)°

  • β = 81.987 (4)°

  • γ = 87.868 (3)°

  • V = 755.36 (9) Å3

  • Z = 2

  • Dx = 1.793 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9717 reflections

  • θ = 2.9–27.5°

  • μ = 1.51 mm−1

  • T = 167 (2) K

  • Block, blue

  • 0.42 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421.]) Tmin = 0.696, Tmax = 0.886

  • 7866 measured reflections

  • 3465 independent reflections

  • 3018 reflections with I > 2σ(I)

  • Rint = 0.060

  • θmax = 27.6°

  • h = −10 → 12

  • k = −12 → 12

  • l = −11 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.05

  • 3465 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0396P)2 + 0.8532P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O6 1.9366 (18)
Cu1—O3 1.9458 (19)
Cu1—O3i 2.9058 (18)
Cu1—O1 1.9584 (18)
Cu1—O8 1.9617 (17)
Cu1—O1W 2.343 (2)
Symmetry code: (i) -x,1-y,1-z.

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2W 0.91 1.84 2.698 (4) 157
N2—H2⋯O4ii 0.91 1.90 2.690 (3) 144
N2—H2⋯O2ii 0.91 2.28 2.978 (5) 133
O2W—H21⋯O8iii 0.87 (2) 1.95 (2) 2.819 (5) 178 (2)
O2W—H22⋯O3Wiv 0.87 (2) 2.36 (2) 3.201 (4) 163 (2)
O3W—H31⋯O5 0.88 (4) 1.95 (4) 2.770 (6) 155 (4)
O1W—H11⋯O7iii 0.87 (3) 1.98 (3) 2.837 (5) 169 (3)
O1W—H12⋯O3Wv 0.875 (18) 1.942 (19) 2.800 (6) 166.1 (16)
O3W—H32⋯O2vi 0.87 (3) 1.88 (3) 2.703 (6) 157 (3)
Symmetry codes: (ii) 1+x,y,1+z; (iii) 1-x,1-y,1-z; (iv) 1-x,2-y,1-z; (v) x,y,z-1; (vi) -x,2-y,1-z.

H atoms bound to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.97 and N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(parent atom). H atoms bound to O atoms were located in difference maps, but their distances and angles were restrained to literature values.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, The Netherlands.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]) in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT (Nonius, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999).

(I) top
Crystal data top
(C6H14N2)[Cu(C2O4)2(H2O)]·2H2OZ = 2
Mr = 407.82F(000) = 422
Triclinic, P1Dx = 1.793 Mg m3
Hall symbol: -P 1Melting point: N/A K
a = 9.3847 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4884 (6) ÅCell parameters from 9717 reflections
c = 9.6936 (5) Åθ = 2.9–27.5°
α = 62.150 (4)°µ = 1.51 mm1
β = 81.987 (4)°T = 167 K
γ = 87.868 (3)°Block, blue
V = 755.36 (9) Å30.42 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD areadetector
diffractometer
3018 reflections with I > 2σ(I)
φ and ω scans to fill Ewald sphereRint = 0.060
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.6°, θmin = 3.0°
Tmin = 0.696, Tmax = 0.886h = 1012
7866 measured reflectionsk = 1212
3465 independent reflectionsl = 1112
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.8532P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.53 e Å3
3465 reflectionsΔρmin = 0.71 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15412 (3)0.65517 (4)0.42178 (3)0.01844 (11)
O1W0.3493 (2)0.7610 (2)0.2200 (2)0.0272 (4)
O80.2783 (2)0.4889 (2)0.5517 (2)0.0194 (4)
O2W0.6147 (2)0.8080 (3)0.4064 (2)0.0287 (5)
O50.3221 (2)0.7258 (2)0.7332 (2)0.0255 (4)
O30.0787 (2)0.5310 (2)0.3337 (2)0.0214 (4)
O60.1949 (2)0.7605 (2)0.5422 (2)0.0200 (4)
O70.4125 (2)0.4410 (2)0.7398 (2)0.0229 (4)
O40.0491 (2)0.5699 (2)0.1426 (2)0.0228 (4)
O10.0246 (2)0.8192 (2)0.3001 (2)0.0218 (4)
O3W0.2755 (3)0.8810 (4)0.9159 (3)0.0501 (7)
N10.6965 (2)0.8110 (3)0.6610 (2)0.0200 (5)
H10.660.83630.57040.024*
O20.1199 (2)0.8612 (2)0.1207 (2)0.0282 (4)
N20.7966 (2)0.7424 (3)0.9072 (3)0.0211 (5)
H20.83320.71690.99790.025*
C40.9168 (3)0.8005 (4)0.7740 (3)0.0284 (6)
H4A0.9860.71740.79110.034*
H4B0.96560.89230.76720.034*
C20.6907 (4)0.8692 (4)0.8822 (3)0.0331 (7)
H2A0.73770.96350.87220.04*
H2B0.61510.83280.97170.04*
C50.6648 (3)0.6382 (3)0.7716 (3)0.0232 (6)
H5A0.70690.5740.72350.028*
H5B0.56160.6170.79570.028*
C10.6263 (3)0.9093 (3)0.7327 (3)0.0221 (5)
H1A0.52330.88650.75770.027*
H1B0.64251.02180.65910.027*
C60.7282 (3)0.5964 (3)0.9210 (3)0.0258 (6)
H6A0.6530.55421.01080.031*
H6B0.79950.51540.93690.031*
C30.8556 (3)0.8458 (3)0.6226 (3)0.0258 (6)
H3A0.87490.95830.5510.031*
H3B0.90050.78510.57180.031*
C80.0006 (3)0.6126 (3)0.2280 (3)0.0185 (5)
C90.2796 (3)0.6833 (3)0.6437 (3)0.0182 (5)
C100.3301 (3)0.5234 (3)0.6479 (3)0.0166 (5)
C70.0364 (3)0.7803 (3)0.2126 (3)0.0194 (5)
H210.646 (3)0.7160 (17)0.419 (3)0.028 (9)*
H220.646 (4)0.878 (3)0.310 (2)0.046 (11)*
H310.262 (4)0.826 (4)0.867 (4)0.047 (11)*
H110.427 (2)0.706 (4)0.238 (3)0.032 (9)*
H120.337 (3)0.788 (4)0.1230 (19)0.045 (11)*
H320.210 (3)0.953 (3)0.893 (4)0.053 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02148 (18)0.01728 (18)0.02011 (18)0.00559 (12)0.00930 (12)0.01031 (13)
O1W0.0246 (10)0.0295 (11)0.0250 (10)0.0103 (8)0.0053 (8)0.0109 (9)
O80.0223 (9)0.0186 (9)0.0208 (9)0.0055 (7)0.0095 (7)0.0107 (7)
O2W0.0382 (12)0.0284 (11)0.0253 (11)0.0103 (9)0.0119 (9)0.0160 (9)
O50.0277 (10)0.0270 (10)0.0310 (10)0.0070 (8)0.0129 (8)0.0194 (9)
O30.0256 (10)0.0193 (9)0.0239 (9)0.0066 (7)0.0123 (8)0.0120 (8)
O60.0226 (9)0.0177 (9)0.0226 (9)0.0053 (7)0.0109 (7)0.0100 (7)
O70.0224 (9)0.0251 (10)0.0241 (9)0.0087 (8)0.0112 (7)0.0123 (8)
O40.0267 (10)0.0228 (10)0.0246 (10)0.0050 (8)0.0125 (8)0.0139 (8)
O10.0265 (10)0.0185 (9)0.0230 (9)0.0054 (7)0.0099 (8)0.0104 (8)
O3W0.0565 (16)0.0730 (19)0.0554 (15)0.0433 (14)0.0380 (13)0.0535 (15)
N10.0218 (11)0.0226 (11)0.0178 (10)0.0046 (9)0.0082 (8)0.0101 (9)
O20.0349 (11)0.0229 (10)0.0307 (10)0.0104 (8)0.0189 (9)0.0125 (9)
N20.0238 (11)0.0230 (12)0.0185 (10)0.0026 (9)0.0079 (9)0.0102 (9)
C40.0186 (13)0.0318 (16)0.0323 (15)0.0037 (11)0.0058 (11)0.0120 (13)
C20.0452 (18)0.0332 (16)0.0283 (15)0.0185 (14)0.0124 (13)0.0198 (13)
C50.0223 (13)0.0196 (13)0.0314 (14)0.0029 (10)0.0088 (11)0.0138 (11)
C10.0209 (13)0.0211 (13)0.0255 (13)0.0040 (10)0.0066 (10)0.0112 (11)
C60.0308 (15)0.0192 (13)0.0239 (13)0.0034 (11)0.0055 (11)0.0064 (11)
C30.0214 (13)0.0281 (15)0.0239 (13)0.0010 (11)0.0011 (10)0.0099 (11)
C80.0173 (12)0.0187 (12)0.0188 (12)0.0017 (9)0.0036 (9)0.0080 (10)
C90.0199 (12)0.0172 (12)0.0199 (12)0.0013 (9)0.0036 (9)0.0103 (10)
C100.0152 (11)0.0183 (12)0.0164 (11)0.0019 (9)0.0026 (9)0.0082 (10)
C70.0189 (12)0.0188 (13)0.0202 (12)0.0026 (9)0.0037 (10)0.0088 (10)
Geometric parameters (Å, º) top
Cu1—O61.9366 (18)O2—C71.228 (3)
Cu1—O31.9458 (19)N2—C21.484 (4)
Cu1—O3i2.9058 (18)N2—C41.489 (4)
Cu1—O11.9584 (18)N2—C61.490 (3)
Cu1—O81.9617 (17)N2—H20.91
Cu1—O1W2.343 (2)C4—C31.515 (4)
O1W—H110.87 (3)C4—H4A0.97
O1W—H120.875 (10)C4—H4B0.97
O8—C101.278 (3)C2—C11.524 (4)
O2W—H210.871 (10)C2—H2A0.97
O2W—H220.872 (10)C2—H2B0.97
O5—C91.228 (3)C5—C61.515 (4)
O3—C81.278 (3)C5—H5A0.97
O6—C91.280 (3)C5—H5B0.97
O7—C101.225 (3)C1—H1A0.97
O4—C81.221 (3)C1—H1B0.97
O1—C71.275 (3)C6—H6A0.97
O3W—H310.88 (4)C6—H6B0.97
O3W—H320.87 (3)C3—H3A0.97
N1—C11.489 (3)C3—H3B0.97
N1—C51.493 (3)C8—C71.555 (4)
N1—C31.498 (3)C9—C101.557 (4)
N1—H10.91
O6—Cu1—O3168.20 (8)N2—C2—H2B109.9
O6—Cu1—O194.13 (7)C1—C2—H2B109.9
O3—Cu1—O184.94 (8)H2A—C2—H2B108.3
O6—Cu1—O884.77 (7)N1—C5—C6108.4 (2)
O3—Cu1—O895.69 (7)N1—C5—H5A110
O1—Cu1—O8177.59 (7)C6—C5—H5A110
O6—Cu1—O1W98.46 (8)N1—C5—H5B110
O3—Cu1—O1W93.33 (8)C6—C5—H5B110
O1—Cu1—O1W93.02 (7)H5A—C5—H5B108.4
O8—Cu1—O1W89.27 (7)N1—C1—C2108.4 (2)
Cu1—O1W—H11115 (2)N1—C1—H1A110
Cu1—O1W—H12120 (2)C2—C1—H1A110
H11—O1W—H12106.5 (15)N1—C1—H1B110
C10—O8—Cu1112.33 (16)C2—C1—H1B110
H21—O2W—H22107.0 (15)H1A—C1—H1B108.4
C8—O3—Cu1112.38 (16)N2—C6—C5109.2 (2)
C9—O6—Cu1113.35 (16)N2—C6—H6A109.8
C7—O1—Cu1111.87 (17)C5—C6—H6A109.8
H31—O3W—H32106.9 (15)N2—C6—H6B109.8
C1—N1—C5109.7 (2)C5—C6—H6B109.8
C1—N1—C3110.1 (2)H6A—C6—H6B108.3
C5—N1—C3110.7 (2)N1—C3—C4108.7 (2)
C1—N1—H1108.7N1—C3—H3A110
C5—N1—H1108.7C4—C3—H3A110
C3—N1—H1108.7N1—C3—H3B110
C2—N2—C4110.2 (2)C4—C3—H3B110
C2—N2—C6111.3 (2)H3A—C3—H3B108.3
C4—N2—C6109.0 (2)O4—C8—O3126.0 (2)
C2—N2—H2108.7O4—C8—C7119.3 (2)
C4—N2—H2108.7O3—C8—C7114.7 (2)
C6—N2—H2108.7O5—C9—O6125.6 (2)
N2—C4—C3108.8 (2)O5—C9—C10119.8 (2)
N2—C4—H4A109.9O6—C9—C10114.5 (2)
C3—C4—H4A109.9O7—C10—O8125.2 (2)
N2—C4—H4B109.9O7—C10—C9119.8 (2)
C3—C4—H4B109.9O8—C10—C9115.0 (2)
H4A—C4—H4B108.3O2—C7—O1126.4 (3)
N2—C2—C1108.9 (2)O2—C7—C8118.2 (2)
N2—C2—H2A109.9O1—C7—C8115.4 (2)
C1—C2—H2A109.9
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2W0.911.842.698 (4)157
N2—H2···O4ii0.911.902.690 (3)144
N2—H2···O2ii0.912.282.978 (5)133
O2W—H21···O8iii0.87 (2)1.95 (2)2.819 (5)178 (2)
O2W—H22···O3Wiv0.87 (2)2.36 (2)3.201 (4)163 (2)
O3W—H31···O50.88 (4)1.95 (4)2.770 (6)155 (4)
O1W—H11···O7iii0.87 (3)1.98 (3)2.837 (5)169 (3)
O1W—H12···O3Wv0.88 (2)1.94 (2)2.800 (6)166 (2)
O3W—H32···O2vi0.87 (3)1.88 (3)2.703 (6)157 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y, z1; (vi) x, y+2, z+1.
 

Acknowledgements

The authors thank the EPSRC for funding of crystallographic facilities and for an Advanced Research Fellowship to DJP.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationInsausti, M., Urtiaga, M. K., Cortes, R., Mesa, J. L., Arriortua, M. I. & Rojo, T. (1994). J. Mater. Chem. 4, 1867–1870.  CrossRef CAS Web of Science Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Z. Anorg. Allg. Chem. 630, 350–352.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, M.-Y. & Wang, S.-L. (1999). Chem. Mater. 11, 3588–3594.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalfant, I., Morgenstern-Badarau, I., Philoche-Levisalles, M. & Lloret, F. (1990). J. Chem. Soc. Chem. Commun. pp. 1338–1340.  CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSavel'eva, Z. A., Larionov, S. V., Romanenko, G. V., Podberezskaya, N. V. & Sheludyakova, L. A. (1992). Zh. Neorg. Khim. (Russ. J. Inorg. Chem.), 37, 1094–1102. (In Russian.)  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.  Web of Science CSD CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds