metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-butyl­amine­(carbonato-κ2O,O′)­cobalt(III) n-butylcarbamate dihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: daniel.price@soton.ac.uk

(Received 2 March 2004; accepted 4 March 2004; online 20 March 2004)

The title compound, [Co(CO3)(C4H11N)4](C5H10NO2)·2H2O, is a coordination complex with an N4O2 coordination sphere around the central CoIII ion. The small bite angle of the chelating carbonate causes a distortion of the octahedral geometry to an approximately C2v local symmetry. Hydro­gen-bonding between the carbonate, carbamate and amine groups, and the water of crystallization, results in a complex two-dimensional network.

Comment

The title complex, (I[link]) (Fig. 1[link]), crystallized very slowly from a mixture of cobalt(II) oxalate dihydrate, n-butyl­amine and water. This synthesis involves the aerobic oxidation of CoII to CoIII, which is facilitated by the strong-field amine ligands. In addition, the oxalate is oxidized to CO2, which is sequestered in this basic reaction mixture and converted into carbonate and n-butylcarbamate.

[Scheme 1]

Compound (I[link]) contains monocationic [Co(BuNH2)4(CO3)] units and non-coordinating n-butylcarbamate anions. The CoIII ion has a distorted octahedral coordination environment (Table 1[link]), due to the constraints imposed by the chelating carbonate group. While the O1—Co1—O2 angle is very acute, at 68.86 (5)°, all other angles not involving the carbonate group are close to the ideal octahedral values. The Co—N and Co—O bond lengths are typical for a low-spin CoIII ion and this assignment is supported by electronic spectroscopy, from which we calculate Δoct = 19 600 cm−1. We note that three of the four coordinated butyl­amine ligands adopt a fully extended all-anti conformation, while one of these and the butyl chain on the carbamate show a gauche conformational geometry.

The structure of (I[link]) shows a very distinct two-dimensional character, with layers of the non-polar alkyl chains alternating with layers that contain more polar functionalities, in particular the complex cation core, the carbamate anion and the water of crystallization. The complex cations are hydrogen-bonded through the amine H atoms and the carbonate groups to form ribbons running parallel to the a axis (Fig. 2[link]). These ribbons are further hydrogen-bonded through the water of crystallization and the carbamate units into a two-dimensional structure in the ab plane. In total, 11 distinct linear hydrogen bonds are involved in this very complex network (Table 2[link]).

Metal carbonate-containing compounds are of interest as possible fixatives of atmospheric CO2 (Zhu & Chen, 1999[Zhu, H.-L. & Chen, X.-M. (1999). Acta Cryst. C55, 2010-2012.]), and biologically in relation to carbonic anhydrases (Dussart et al., 2002[Dussart, Y., Harding, C., Dalgaard, P., McKenzie, C., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713, and references therein.]). A search of the Cambridge Structural Database (CSD, Version 5.42 of November 2002; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for discrete metal carbonate-containing structures reveals that octahedral CoIII complexes outnumber all other types (see, for example, Bernal et al., 1994[Bernal, I., Cai, J., Cetrullo, J. & Massoud, S. S. (1994). Struct. Chem. 5, 265-275, and references therein.]; Kaas & Sorensen, 1973[Kaas, K. & Sorensen, A. M. (1973). Acta Cryst. B29, 113-120.]; García-Granda et al., 1993[García-Granda, S., Calvo-Pérez, V. & Gómez-Beltrán, F. (1993). Acta Cryst. C49, 322-324.]). It is particularly interesting that, in most cases, while the carbonate occupies two coordination sites, the other four sites are occupied by N-donor ligands.

Due to their tendency for thermal de­carboxyl­ation, carbamic acids and free carbamate are not common in crystal structures. There are a number of reports where carbamate is found to be coordinated to a metal centre (Blacque et al., 2001[Blacque, O., Brunner, H., Kubicki, M. M., Leblanc, J.-C., Meier, W., Moize, C., Mugnier, Y., Sadorge, A., Wachter, J. & Zabel, M. (2001). J. Organomet. Chem. 634, 47-54.]; Duatti et al., 1991[Duatti, A., Marchi, A., Bertalasi, V. & Ferretti, V. (1991). J. Am. Chem. Soc. 113, 9680-9682.]; Schmid & Strähle, 1991[Schmid, S. & Strähle, J. (1991). Z. Naturforsch. Teil B, 46, 235-244.]). Compound (I[link]) represents a rare example where a carbamate group simply acts as a non-coordinating counterion (Kovbasyuk et al., 1997[Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723-1729.]).

[Figure 1]
Figure 1
A view of the asymmetric unit of (I[link]), with displacement ellipsoids drawn at the 50% probability level. Alkyl H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
A view of the amine–carbonate hydrogen-bonded ribbon, looking down the c axis, showing an alternation of the two distinct types of cyclic hydrogen-bonded motif making up the ribbon structure.

Experimental

Co(C2O4)·2H2O (183 mg, 1.00 mmol), n-butyl­amine (1.0 ml) and distilled water (10 ml) were stirred in a test tube and left to react for six months. Although initially a green precipitate was formed, eventually small red crystals of (I[link]) appeared. These were separated manually. IR (diffuse reflectance, cm−1): 3378–3233 br m (NH and OH stretch), 2958 m (CH), 2924 m (CH), 2868 m (CH), 2409 w, 2319 w, 2213 w, 1790 w, 1614 br s (CO3 ν3; carbamate and NH bend), 1465 s (CH2 def.), 1373 s (CH3 sym. def.), 1306 s (carbamate), 1275 s (CO3 ν3′; OH bend), 1217 s, 1105 s, 1038 (CO3 ν1) 990 s, 817 s (CO3 ν2), 755 s (CO3 ν4), 674 s (CO3 ν4′), 582 s, 492 m, 473 m, 458 m, 422 m (MO); UV/VIS/NIR (diffuse reflectance, cm−1): 19 000 and 20 100 (1A1g [\rightarrow] 1T1g split by reduced symmetry), 27 000 ([\rightarrow] 1T2g). IR assignments were based on the literature values of comparable compounds (Nakamoto, 1968[Nakamoto, K. (1968). Spectroscopy and Structure of Metal Chelate Compounds, edited by K. Nakamoto & P. J. McCarthy, ch. 4, p.26-285. New York: John Wiley & Sons, Inc.]; Williams & Fleming, 1987[Williams, D. H. & Fleming, I. (1987). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw-Hill Book Company.])

Crystal data
  • [Co(CO3)(C4H11N)4](C5H10NO2)·2H2O

  • Mr = 563.66

  • Triclinic, [P\overline 1]

  • a = 8.7948 (2) Å

  • b = 12.9638 (4) Å

  • c = 13.9288 (4) Å

  • α = 88.187 (2)°

  • β = 89.525 (2)°

  • γ = 75.210 (2)°

  • V = 1534.69 (7) Å3

  • Z = 2

  • Dx = 1.22 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 33 407 reflections

  • θ = 2.9–27.5°

  • μ = 0.60 mm−1

  • T = 120 (2) K

  • Block, red

  • 0.16 × 0.14 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.634, Tmax = 0.953

  • 30 921 measured reflections

  • 7050 independent reflections

  • 6003 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 27.6°

  • h = −11 → 11

  • k = −16 → 16

  • l = −17 → 18

Refinement
  • Refinement on F2

  • R(F) = 0.041

  • wR[F2 > 2σ(F2)] = 0.108

  • S = 1.03

  • 7050 reflections

  • 332 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0478P)2 + 0.8409P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—Co1 1.9113 (12)
O2—Co1 1.9214 (12)
N1—Co1 1.9838 (15)
N2—Co1 1.9687 (14)
N3—Co1 1.9563 (14)
N4—Co1 1.9849 (15)
O1—Co1—O2 68.86 (5)
O1—Co1—N3 99.99 (6)
O2—Co1—N3 168.74 (6)
O1—Co1—N2 87.94 (6)
O2—Co1—N2 92.50 (6)
N3—Co1—N2 88.56 (6)
O1—Co1—N1 169.00 (6)
O2—Co1—N1 100.34 (6)
N3—Co1—N1 90.86 (6)
N2—Co1—N1 90.57 (6)
O1—Co1—N4 91.70 (6)
O2—Co1—N4 87.97 (6)
N3—Co1—N4 90.86 (6)
N2—Co1—N4 179.26 (6)
N1—Co1—N4 89.90 (6)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.90 2.07 2.956 (3) 167
N2—H2B⋯O3i 0.90 2.11 2.996 (3) 168
N3—H3A⋯O4i 0.90 2.03 2.898 (4) 160
N3—H3B⋯O2Wii 0.90 2.14 3.026 (3) 166
N1—H1B⋯O5i 0.90 2.09 2.967 (4) 166
N4—H4A⋯O2Wii 0.90 2.15 2.974 (2) 152
N4—H4B⋯O2ii 0.90 2.18 3.024 (2) 157
O2W—H21W⋯O4iii 0.851 (16) 1.854 (19) 2.695 (4) 169.7 (18)
O2W—H22W⋯O1W 0.853 (17) 1.96 (2) 2.754 (4) 154 (2)
O1W—H11W⋯O3 0.851 (17) 1.907 (17) 2.751 (3) 171 (2)
O1W—H12W⋯O4 0.845 (17) 1.94 (3) 2.780 (3) 170 (3)
Symmetry codes: (i) 2-x,1-y,1-z; (ii) 1-x,1-y,1-z; (iii) 1-x,2-y,1-z.

H atoms bound to C or N atoms were positioned geometrically and refined as riding, with C—H = 0.96–0.97 and N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(parent atom). H atoms bound to O atoms were located in difference maps, but their distances and angles were restrained to literature values.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT (Nonius, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999).

(I) top
Crystal data top
[Co(CO3)(C4H11N)4](C5H10NO2)·2H2OZ = 2
Mr = 563.66F(000) = 616
Triclinic, P1Dx = 1.22 Mg m3
Hall symbol: -P 1Melting point: N/A K
a = 8.7948 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9638 (4) ÅCell parameters from 33407 reflections
c = 13.9288 (4) Åθ = 2.9–27.5°
α = 88.187 (2)°µ = 0.60 mm1
β = 89.525 (2)°T = 120 K
γ = 75.210 (2)°Block, red
V = 1534.69 (7) Å30.16 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
6003 reflections with I > 2σ(I)
φ and ω scans to fill Ewald SphereRint = 0.092
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.6°, θmin = 2.9°
Tmin = 0.634, Tmax = 0.953h = 1111
30921 measured reflectionsk = 1616
7050 independent reflectionsl = 1718
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.8409P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.31 e Å3
7050 reflectionsΔρmin = 0.73 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85979 (14)0.44465 (9)0.45133 (9)0.0171 (3)
O20.67427 (14)0.48892 (9)0.55706 (9)0.0181 (3)
O30.74239 (15)0.61932 (10)0.46808 (10)0.0226 (3)
N20.95987 (17)0.35553 (11)0.62436 (11)0.0176 (3)
H2A0.98590.29420.65960.021*
H2B1.04480.35840.58890.021*
N30.92955 (17)0.21136 (11)0.49077 (11)0.0179 (3)
H3A0.98470.17650.54140.021*
H3B0.86870.17050.46980.021*
N10.70029 (17)0.26660 (12)0.63460 (11)0.0176 (3)
H1A0.66080.21800.60570.021*
H1B0.77760.23090.67420.021*
N40.62597 (17)0.33398 (12)0.44355 (10)0.0178 (3)
H4A0.60980.26860.45270.021*
H4B0.53690.38120.46130.021*
C10.7582 (2)0.52382 (14)0.49041 (13)0.0182 (4)
C210.9321 (2)0.44442 (14)0.69205 (13)0.0199 (4)
H21A0.83480.44800.72670.024*
H21B0.92050.51120.65600.024*
C221.0659 (2)0.43058 (15)0.76355 (14)0.0230 (4)
H22A1.16280.42910.72910.028*
H22B1.07950.36290.79850.028*
C231.0341 (3)0.52060 (17)0.83435 (15)0.0317 (5)
H23A1.02610.58760.79930.038*
H23B0.93370.52460.86550.038*
C241.1607 (3)0.5066 (2)0.91081 (17)0.0395 (5)
H24A1.13430.56540.95330.059*
H24B1.26000.50440.88060.059*
H24C1.16780.44110.94680.059*
C341.3229 (3)0.0251 (2)0.24777 (19)0.0472 (6)
H34A1.39180.03860.19780.071*
H34B1.24900.00960.22160.071*
H34C1.38360.02000.29720.071*
C331.2352 (3)0.12968 (17)0.28996 (17)0.0356 (5)
H33A1.17630.17540.23930.043*
H33B1.31070.16500.31490.043*
C321.1226 (2)0.11647 (15)0.36990 (14)0.0240 (4)
H32A1.04370.08440.34460.029*
H32B1.18020.06860.41970.029*
C311.0424 (2)0.22201 (14)0.41307 (13)0.0201 (4)
H31A1.12160.25350.43890.024*
H31B0.98650.27010.36280.024*
C110.5737 (2)0.33496 (14)0.69341 (13)0.0194 (4)
H11A0.48440.36630.65220.023*
H11B0.61180.39280.71820.023*
C120.5185 (2)0.27547 (16)0.77728 (14)0.0231 (4)
H12A0.48930.21400.75270.028*
H12B0.42460.32190.80420.028*
C130.6376 (2)0.23714 (17)0.85790 (14)0.0271 (4)
H13A0.59400.19570.90480.033*
H13B0.73160.19020.83150.033*
C140.6835 (3)0.3266 (2)0.90867 (16)0.0389 (5)
H14A0.75840.29680.95830.058*
H14B0.59170.37250.93660.058*
H14C0.72940.36700.86320.058*
C410.6445 (2)0.35029 (18)0.33954 (14)0.0285 (4)
H41A0.74530.30590.31950.034*
H41B0.64480.42410.32630.034*
C420.5159 (2)0.32408 (16)0.28131 (14)0.0241 (4)
H42A0.51390.25090.29640.029*
H42B0.41560.36970.30070.029*
C430.5330 (3)0.3371 (2)0.17450 (16)0.0448 (6)
H43A0.63700.29640.15580.054*
H43B0.52570.41170.15890.054*
C440.4130 (3)0.3021 (2)0.11633 (16)0.0380 (5)
H44A0.43140.31320.04920.057*
H44B0.30950.34310.13300.057*
H44C0.42130.22780.12960.057*
O40.83001 (16)0.90478 (10)0.37696 (10)0.0239 (3)
O51.00761 (16)0.84550 (11)0.26221 (10)0.0267 (3)
N50.8177 (2)0.99862 (13)0.23680 (12)0.0279 (4)
H50.73731.04320.26020.034*
C510.8895 (2)0.91169 (15)0.29292 (14)0.0210 (4)
C520.8676 (3)1.02092 (17)0.14077 (15)0.0324 (5)
H52A0.96880.97210.12800.039*
H52B0.88141.09280.13760.039*
C530.7524 (3)1.0107 (2)0.06337 (17)0.0439 (6)
H53A0.65201.06050.07580.053*
H53B0.79021.03130.00190.053*
C540.7270 (3)0.9001 (2)0.05617 (19)0.0502 (7)
H54A0.69650.87720.11880.060*
H54B0.64090.90340.01220.060*
C550.8703 (4)0.8183 (2)0.0221 (2)0.0522 (7)
H55A0.84650.75020.01890.078*
H55B0.95540.81300.06620.078*
H55C0.89990.83950.04050.078*
O1W0.57777 (17)0.82925 (11)0.44237 (11)0.0280 (3)
O2W0.31962 (18)0.90202 (12)0.55808 (12)0.0328 (3)
Co10.79257 (3)0.345151 (18)0.534965 (16)0.01531 (8)
H21W0.276 (3)0.9662 (14)0.5723 (18)0.043 (7)*
H22W0.407 (2)0.897 (2)0.529 (2)0.059 (9)*
H11W0.623 (3)0.7642 (14)0.456 (2)0.053 (8)*
H12W0.646 (3)0.859 (2)0.420 (2)0.054 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (6)0.0157 (6)0.0183 (6)0.0044 (5)0.0009 (5)0.0005 (5)
O20.0167 (6)0.0168 (6)0.0200 (6)0.0028 (5)0.0010 (5)0.0016 (5)
O30.0225 (6)0.0167 (6)0.0279 (7)0.0041 (5)0.0013 (5)0.0020 (5)
N20.0165 (7)0.0166 (7)0.0194 (7)0.0038 (6)0.0019 (6)0.0009 (6)
N30.0201 (7)0.0159 (7)0.0177 (7)0.0044 (6)0.0001 (6)0.0013 (6)
N10.0188 (7)0.0171 (7)0.0169 (7)0.0045 (6)0.0008 (6)0.0000 (6)
N40.0179 (7)0.0181 (7)0.0176 (7)0.0052 (6)0.0007 (6)0.0002 (6)
C10.0160 (8)0.0185 (9)0.0199 (9)0.0042 (7)0.0041 (7)0.0001 (7)
C210.0195 (9)0.0196 (9)0.0208 (9)0.0050 (7)0.0004 (7)0.0028 (7)
C220.0226 (9)0.0263 (10)0.0204 (9)0.0066 (8)0.0027 (7)0.0017 (7)
C230.0354 (11)0.0315 (11)0.0287 (11)0.0084 (9)0.0032 (9)0.0089 (9)
C240.0432 (13)0.0477 (14)0.0311 (12)0.0168 (11)0.0065 (10)0.0091 (10)
C340.0537 (15)0.0386 (13)0.0445 (15)0.0028 (11)0.0211 (12)0.0098 (11)
C330.0409 (12)0.0285 (11)0.0360 (12)0.0061 (9)0.0181 (10)0.0048 (9)
C320.0262 (10)0.0215 (9)0.0238 (10)0.0053 (8)0.0040 (8)0.0029 (8)
C310.0205 (9)0.0196 (9)0.0196 (9)0.0043 (7)0.0022 (7)0.0015 (7)
C110.0171 (8)0.0208 (9)0.0194 (9)0.0035 (7)0.0006 (7)0.0001 (7)
C120.0196 (9)0.0281 (10)0.0216 (9)0.0066 (7)0.0041 (7)0.0003 (8)
C130.0288 (10)0.0320 (11)0.0195 (9)0.0063 (8)0.0034 (8)0.0023 (8)
C140.0479 (14)0.0515 (15)0.0225 (11)0.0223 (12)0.0018 (10)0.0018 (10)
C410.0290 (10)0.0409 (12)0.0200 (10)0.0173 (9)0.0028 (8)0.0034 (8)
C420.0228 (9)0.0279 (10)0.0216 (10)0.0061 (8)0.0015 (7)0.0036 (8)
C430.0427 (13)0.0767 (19)0.0230 (11)0.0302 (13)0.0034 (10)0.0002 (11)
C440.0349 (12)0.0568 (15)0.0229 (11)0.0117 (11)0.0037 (9)0.0065 (10)
O40.0276 (7)0.0209 (7)0.0219 (7)0.0043 (5)0.0016 (5)0.0012 (5)
O50.0245 (7)0.0256 (7)0.0259 (7)0.0005 (6)0.0015 (6)0.0031 (6)
N50.0277 (9)0.0253 (9)0.0251 (9)0.0026 (7)0.0017 (7)0.0064 (7)
C510.0209 (9)0.0201 (9)0.0229 (9)0.0070 (7)0.0030 (7)0.0014 (7)
C520.0354 (12)0.0296 (11)0.0298 (11)0.0056 (9)0.0029 (9)0.0118 (9)
C530.0348 (12)0.0568 (16)0.0292 (12)0.0068 (11)0.0002 (10)0.0114 (11)
C540.0411 (14)0.084 (2)0.0329 (13)0.0289 (14)0.0042 (11)0.0011 (13)
C550.0665 (18)0.0509 (16)0.0424 (15)0.0208 (14)0.0060 (13)0.0002 (12)
O1W0.0233 (7)0.0212 (7)0.0384 (9)0.0039 (6)0.0029 (6)0.0012 (6)
O2W0.0305 (8)0.0194 (7)0.0493 (10)0.0075 (6)0.0096 (7)0.0060 (7)
Co10.01598 (13)0.01440 (13)0.01542 (13)0.00362 (9)0.00036 (9)0.00055 (9)
Geometric parameters (Å, º) top
O1—Co11.9113 (12)C32—H32B0.9700
O2—Co11.9214 (12)C31—H31A0.9700
N1—Co11.9838 (15)C31—H31B0.9700
N2—Co11.9687 (14)C11—C121.523 (2)
N3—Co11.9563 (14)C11—H11A0.9700
N4—Co11.9849 (15)C11—H11B0.9700
O1—C11.306 (2)C12—C131.524 (3)
O2—C11.321 (2)C12—H12A0.9700
O3—C11.240 (2)C12—H12B0.9700
O4—C511.288 (2)C13—C141.518 (3)
O5—C511.249 (2)C13—H13A0.9700
N5—C511.367 (2)C13—H13B0.9700
N2—C211.482 (2)C14—H14A0.9600
N2—H2A0.9000C14—H14B0.9600
N2—H2B0.9000C14—H14C0.9600
N3—C311.489 (2)C41—C421.510 (3)
N3—H3A0.9000C41—H41A0.9700
N3—H3B0.9000C41—H41B0.9700
N1—C111.491 (2)C42—C431.503 (3)
N1—H1A0.9000C42—H42A0.9700
N1—H1B0.9000C42—H42B0.9700
N4—C411.471 (2)C43—C441.503 (3)
N4—H4A0.9000C43—H43A0.9700
N4—H4B0.9000C43—H43B0.9700
C1—Co12.3230 (18)C44—H44A0.9600
C21—C221.520 (2)C44—H44B0.9600
C21—H21A0.9700C44—H44C0.9600
C21—H21B0.9700N5—C521.448 (3)
C22—C231.521 (3)N5—H50.8600
C22—H22A0.9700C52—C531.517 (3)
C22—H22B0.9700C52—H52A0.9700
C23—C241.521 (3)C52—H52B0.9700
C23—H23A0.9700C53—C541.512 (4)
C23—H23B0.9700C53—H53A0.9700
C24—H24A0.9600C53—H53B0.9700
C24—H24B0.9600C54—C551.509 (4)
C24—H24C0.9600C54—H54A0.9700
C34—C331.512 (3)C54—H54B0.9700
C34—H34A0.9600C55—H55A0.9600
C34—H34B0.9600C55—H55B0.9600
C34—H34C0.9600C55—H55C0.9600
C33—C321.518 (3)O1W—H11W0.851 (17)
C33—H33A0.9700O1W—H12W0.845 (17)
C33—H33B0.9700O2W—H21W0.851 (16)
C32—C311.511 (2)O2W—H22W0.853 (17)
C32—H32A0.9700
O1—Co1—O268.86 (5)C33—C32—H32A109.3
O1—Co1—N399.99 (6)C31—C32—H32B109.3
O2—Co1—N3168.74 (6)C33—C32—H32B109.3
O1—Co1—N287.94 (6)H32A—C32—H32B107.9
O2—Co1—N292.50 (6)N3—C31—C32112.84 (15)
N3—Co1—N288.56 (6)N3—C31—H31A109.0
O1—Co1—N1169.00 (6)C32—C31—H31A109.0
O2—Co1—N1100.34 (6)N3—C31—H31B109.0
N3—Co1—N190.86 (6)C32—C31—H31B109.0
N2—Co1—N190.57 (6)H31A—C31—H31B107.8
O1—Co1—N491.70 (6)N1—C11—C12113.96 (15)
O2—Co1—N487.97 (6)N1—C11—H11A108.8
N3—Co1—N490.86 (6)C12—C11—H11A108.8
N2—Co1—N4179.26 (6)N1—C11—H11B108.8
N1—Co1—N489.90 (6)C12—C11—H11B108.8
O1—Co1—C134.22 (6)H11A—C11—H11B107.7
O2—Co1—C134.64 (6)C11—C12—C13115.57 (15)
N3—Co1—C1134.21 (6)C11—C12—H12A108.4
N2—Co1—C189.60 (6)C13—C12—H12A108.4
N1—Co1—C1134.91 (6)C11—C12—H12B108.4
N4—Co1—C190.47 (6)C13—C12—H12B108.4
C1—O1—Co190.41 (10)H12A—C12—H12B107.4
C1—O2—Co189.55 (10)C14—C13—C12113.96 (18)
C21—N2—Co1119.84 (11)C14—C13—H13A108.8
C21—N2—H2A107.4C12—C13—H13A108.8
Co1—N2—H2A107.4C14—C13—H13B108.8
C21—N2—H2B107.4C12—C13—H13B108.8
Co1—N2—H2B107.4H13A—C13—H13B107.7
H2A—N2—H2B106.9C13—C14—H14A109.5
C31—N3—Co1115.76 (11)C13—C14—H14B109.5
C31—N3—H3A108.3H14A—C14—H14B109.5
Co1—N3—H3A108.3C13—C14—H14C109.5
C31—N3—H3B108.3H14A—C14—H14C109.5
Co1—N3—H3B108.3H14B—C14—H14C109.5
H3A—N3—H3B107.4N4—C41—C42112.96 (16)
C11—N1—Co1114.75 (11)N4—C41—H41A109.0
C11—N1—H1A108.6C42—C41—H41A109.0
Co1—N1—H1A108.6N4—C41—H41B109.0
C11—N1—H1B108.6C42—C41—H41B109.0
Co1—N1—H1B108.6H41A—C41—H41B107.8
H1A—N1—H1B107.6C43—C42—C41114.52 (17)
C41—N4—Co1121.01 (11)C43—C42—H42A108.6
C41—N4—H4A107.1C41—C42—H42A108.6
Co1—N4—H4A107.1C43—C42—H42B108.6
C41—N4—H4B107.1C41—C42—H42B108.6
Co1—N4—H4B107.1H42A—C42—H42B107.6
H4A—N4—H4B106.8C42—C43—C44114.48 (19)
O3—C1—O1124.59 (16)C42—C43—H43A108.6
O3—C1—O2124.26 (16)C44—C43—H43A108.6
O1—C1—O2111.14 (15)C42—C43—H43B108.6
O3—C1—Co1178.59 (14)C44—C43—H43B108.6
O1—C1—Co155.36 (8)H43A—C43—H43B107.6
O2—C1—Co155.80 (8)C43—C44—H44A109.5
N2—C21—C22111.89 (15)C43—C44—H44B109.5
N2—C21—H21A109.2H44A—C44—H44B109.5
C22—C21—H21A109.2C43—C44—H44C109.5
N2—C21—H21B109.2H44A—C44—H44C109.5
C22—C21—H21B109.2H44B—C44—H44C109.5
H21A—C21—H21B107.9C51—N5—C52124.60 (17)
C21—C22—C23111.42 (16)C51—N5—H5117.7
C21—C22—H22A109.3C52—N5—H5117.7
C23—C22—H22A109.3O5—C51—O4123.82 (17)
C21—C22—H22B109.3O5—C51—N5119.85 (17)
C23—C22—H22B109.3O4—C51—N5116.32 (17)
H22A—C22—H22B108.0N5—C52—C53113.43 (18)
C24—C23—C22113.19 (18)N5—C52—H52A108.9
C24—C23—H23A108.9C53—C52—H52A108.9
C22—C23—H23A108.9N5—C52—H52B108.9
C24—C23—H23B108.9C53—C52—H52B108.9
C22—C23—H23B108.9H52A—C52—H52B107.7
H23A—C23—H23B107.8C54—C53—C52114.60 (19)
C23—C24—H24A109.5C54—C53—H53A108.6
C23—C24—H24B109.5C52—C53—H53A108.6
H24A—C24—H24B109.5C54—C53—H53B108.6
C23—C24—H24C109.5C52—C53—H53B108.6
H24A—C24—H24C109.5H53A—C53—H53B107.6
H24B—C24—H24C109.5C55—C54—C53113.5 (2)
C33—C34—H34A109.5C55—C54—H54A108.9
C33—C34—H34B109.5C53—C54—H54A108.9
H34A—C34—H34B109.5C55—C54—H54B108.9
C33—C34—H34C109.5C53—C54—H54B108.9
H34A—C34—H34C109.5H54A—C54—H54B107.7
H34B—C34—H34C109.5C54—C55—H55A109.5
C34—C33—C32113.36 (19)C54—C55—H55B109.5
C34—C33—H33A108.9H55A—C55—H55B109.5
C32—C33—H33A108.9C54—C55—H55C109.5
C34—C33—H33B108.9H55A—C55—H55C109.5
C32—C33—H33B108.9H55B—C55—H55C109.5
H33A—C33—H33B107.7H11W—O1W—H12W108 (2)
C31—C32—C33111.81 (16)H21W—O2W—H22W112 (2)
C31—C32—H32A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.902.072.956 (3)167
N2—H2B···O3i0.902.112.996 (3)168
N3—H3A···O4i0.902.032.898 (4)160
N3—H3B···O2Wii0.902.143.026 (3)166
N1—H1B···O5i0.902.092.967 (4)166
N4—H4A···O2Wii0.902.152.974 (2)152
N4—H4B···O2ii0.902.183.024 (2)157
O2W—H21W···O4iii0.85 (2)1.85 (2)2.695 (4)170 (2)
O2W—H22W···O1W0.85 (2)1.96 (2)2.754 (4)154 (2)
O1W—H11W···O30.85 (2)1.91 (2)2.751 (3)171 (2)
O1W—H12W···O40.85 (2)1.94 (3)2.780 (3)170 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to the EPSRC for the provision of X-ray crystallographic facilities and for the award of an Advanced Research Fellowship to DJP.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernal, I., Cai, J., Cetrullo, J. & Massoud, S. S. (1994). Struct. Chem. 5, 265–275, and references therein.  CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlacque, O., Brunner, H., Kubicki, M. M., Leblanc, J.-C., Meier, W., Moize, C., Mugnier, Y., Sadorge, A., Wachter, J. & Zabel, M. (2001). J. Organomet. Chem. 634, 47–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuatti, A., Marchi, A., Bertalasi, V. & Ferretti, V. (1991). J. Am. Chem. Soc. 113, 9680–9682.  CSD CrossRef CAS Web of Science Google Scholar
First citationDussart, Y., Harding, C., Dalgaard, P., McKenzie, C., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704–1713, and references therein.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Granda, S., Calvo-Pérez, V. & Gómez-Beltrán, F. (1993). Acta Cryst. C49, 322–324.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKaas, K. & Sorensen, A. M. (1973). Acta Cryst. B29, 113–120.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–1729.  CSD CrossRef CAS Web of Science Google Scholar
First citationNakamoto, K. (1968). Spectroscopy and Structure of Metal Chelate Compounds, edited by K. Nakamoto & P. J. McCarthy, ch. 4, p.26–285. New York: John Wiley & Sons, Inc.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchmid, S. & Strähle, J. (1991). Z. Naturforsch. Teil B, 46, 235–244.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilliams, D. H. & Fleming, I. (1987). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw–Hill Book Company.  Google Scholar
First citationZhu, H.-L. & Chen, X.-M. (1999). Acta Cryst. C55, 2010–2012.  CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds