organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The Diels–Alder adduct of p-benzo­quinone and anthracene: 9,10-tetra­hydro-9,10[1′,2′]­benzeno­anthracene-1′,4′(2′H,3′H)-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Department of Chemistry, Brookhill, Sheffield S3 7HF, England
*Correspondence e-mail: h.adams@sheffield.ac.uk

(Received 5 March 2004; accepted 25 March 2004; online 31 March 2004)

The structure of the title compound, C20H14O2, has a rigid bicyclic backbone, and the six-membered diketone ring is in a shallow boat conformation. Both carbonyl groups are orientated away from the underlying benzene rings. The structure is compared to other similar anthracene Diels–Alder adducts.

Comment

Diels–Alder adducts from the reaction of anthracene with dienophiles have been used in a variety of applications, including the synthesis of discrete molecular architectures such as molecular gears (Stevens & Richards, 1997[Stevens, A. M. & Richards, C. J. (1997). Tetrahedron Lett. 38, 7805-7808.]). Although the crystal structures of a number of such derivatives have been disclosed, somewhat surprisingly the structure of the adduct (1[link]) of p-benzo­quinone and anthracene has not been previously reported. Tautomer (2[link]) does appear in the Cambridge Structural Database (Version 5.25; Allen et al. 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); however, its full structure has not been deposited (Hashimoto et al., 1999[Hashimoto, M., Takagi, H. & Yamamura, K. (1999). Tetrahedron, 40, 6037-6040.]).

[Scheme 1]
[Scheme 2]

The 2-ene-1,4-dione ring in (1[link]) is in a shallow boat conformation in which the bonds C15—C16 and C19—C20 are parallel, and all the atoms of both these bonds are coplanar (r.m.s. deviation 0.007 Å). The two sets of atoms O2/C18/C16/C20 and O1/C17/C19/C15 (which contain the carbonyl groups) are essentially planar (r.m.s. deviations 0.009 and 0.007 Å, respectively) and these planar groups (O2/C18/C16/C20 and O1/C17/C19/C15) have dihedral angles with the previous plane (C15/C16/C19/C20) of 12.34 (13) and 18.99 (11)°, respectively. The difference in these angles is intriguing since the mol­ecule itself is otherwise symmetrical. Unsymmetrical 9-substituted anthracene Diels–Alder adducts (3[link]) and (4[link]) also show similar deviations, although this is obviously more pronounced for the carbonyl group located proximal to the 9-substituent (Bharadwaj et al., 1985[Bharadwaj, P., Potenza, J. A., Ornaf, R. M., Rodriques, K. E., Knapp, S. & Lalancette, R. A. (1985). Acta Cryst. C41, 1520-1522.]; Watson & Nagl, 1988[Watson, H. W. & Nagl, A. (1988). Acta Cryst. C44, 381-383.]).

In the crystal structure, weak intermolecular C—H⋯O bonds (see Table 1[link]) connect the mol­ecules into a three-dimensional network (Fig. 2[link])

[Figure 1]
Figure 1
View of (1) (50% probability displacement ellipsoids). H atoms are not shown.
[Figure 2]
Figure 2
Packing diagram (Spek, 2003[Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.]) showing weak C—H⋯O interactions (dashed lines). O atoms are coloured red.

Experimental

The title compound, (1[link]), was prepared by the thermal Diels–Alder addition reaction of anthracene with p-benzo­quinone (Wasielewski et al., 1989[Wasielewski, M. R., Niemczyk, M. P., Johnson, D. G., Svec, W. A. & Minsek, D. W. (1989). Tetrahedron, 45, 4785-4806.]). Suitable crystals for X-ray diffraction analysis were obtained by slow evaporation of a di­chloro­methane/petrol (60–80) solution, resulting in colourless crystals.

Crystal data
  • C20H14O2

  • Mr = 286.31

  • Triclinic, [P\overline 1]

  • a = 6.870 (3) Å

  • b = 8.333 (4) Å

  • c = 12.707 (5) Å

  • α = 78.567 (7)°

  • β = 78.991 (7)°

  • γ = 79.361 (7)°

  • V = 691.7 (5) Å3

  • Z = 2

  • Dx = 1.375 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1866 reflections

  • θ = 5.0–54.7°

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.46 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.986

  • 4302 measured reflections

  • 2373 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 25°

  • h = −8 → 8

  • k = −9 → 9

  • l = −15 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.03

  • 2373 reflections

  • 199 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0738P)2 + 0.2376P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.52 3.388 (3) 151
C6—H6⋯O2ii 0.95 2.46 3.385 (3) 164
C10—H10⋯O2iii 1.00 2.57 3.302 (2) 130
Symmetry codes: (i) 1-x,1-y,1-z; (ii) 2-x,-y,-z; (iii) 2-x,1-y,-z.

H atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with Uiso(H) values constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (Bruker, 1997).

(1) top
Crystal data top
C20H14O2Z = 2
Mr = 286.31F(000) = 300
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.870 (3) ÅCell parameters from 1866 reflections
b = 8.333 (4) Åθ = 5.1–54.7°
c = 12.707 (5) ŵ = 0.09 mm1
α = 78.567 (7)°T = 150 K
β = 78.991 (7)°Plate, colourless
γ = 79.361 (7)°0.46 × 0.24 × 0.16 mm
V = 691.7 (5) Å3
Data collection top
Bruker SMART 1000
diffractometer
1741 reflections with I > 2σ(I)
ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
θmax = 25°, θmin = 1.7°
Tmin = 0.961, Tmax = 0.986h = 88
4302 measured reflectionsk = 99
2373 independent reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.2376P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.24 e Å3
2373 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.1857 (2)0.32714 (19)0.04934 (12)0.0371 (4)
O11.0437 (3)0.1850 (2)0.47566 (13)0.0435 (5)
C10.3560 (3)0.4841 (3)0.37728 (18)0.0303 (5)
H10.32970.45120.4540.036*
C20.2296 (3)0.6139 (3)0.3246 (2)0.0344 (6)
H20.11580.66930.36570.041*
C30.2696 (3)0.6620 (3)0.2129 (2)0.0329 (6)
H30.18210.74970.17810.039*
C40.4363 (3)0.5838 (2)0.15056 (18)0.0283 (5)
H40.46370.61830.07410.034*
C50.7541 (3)0.0568 (2)0.11251 (18)0.0267 (5)
H50.78460.090.0360.032*
C60.7347 (3)0.1085 (3)0.15683 (19)0.0315 (5)
H60.74830.18740.11020.038*
C70.6957 (3)0.1569 (2)0.26878 (19)0.0310 (5)
H70.68270.26920.29820.037*
C80.6754 (3)0.0431 (2)0.33860 (18)0.0269 (5)
H80.65190.07780.41520.032*
C90.6743 (3)0.2622 (2)0.35815 (16)0.0231 (5)
H90.63970.22530.43840.028*
C100.7485 (3)0.3545 (2)0.14796 (16)0.0227 (5)
H100.77060.3890.06710.027*
C110.5212 (3)0.4039 (2)0.31528 (17)0.0241 (5)
C120.5617 (3)0.4541 (2)0.20263 (16)0.0230 (5)
C130.7283 (3)0.1716 (2)0.18166 (16)0.0217 (5)
C140.6898 (3)0.1220 (2)0.29469 (16)0.0219 (5)
C150.8831 (3)0.3280 (2)0.32630 (16)0.0231 (5)
H150.86990.43030.35860.028*
C160.9310 (3)0.3772 (2)0.20054 (16)0.0230 (5)
H160.94590.49720.18340.028*
C171.0366 (3)0.1979 (3)0.37928 (17)0.0275 (5)
C181.1179 (3)0.2805 (2)0.14419 (17)0.0253 (5)
C191.1718 (3)0.0843 (3)0.31257 (18)0.0306 (5)
H191.23190.01960.34750.037*
C201.2121 (3)0.1233 (3)0.20460 (18)0.0301 (5)
H201.30410.04810.1650.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0384 (10)0.0381 (9)0.0304 (9)0.0078 (7)0.0038 (7)0.0022 (7)
O10.0513 (11)0.0500 (10)0.0306 (10)0.0075 (8)0.0173 (8)0.0000 (7)
C10.0308 (13)0.0277 (11)0.0351 (13)0.0117 (10)0.0005 (10)0.0095 (10)
C20.0226 (12)0.0284 (12)0.0553 (16)0.0053 (9)0.0009 (10)0.0185 (11)
C30.0289 (13)0.0210 (10)0.0518 (15)0.0033 (9)0.0124 (11)0.0080 (10)
C40.0296 (13)0.0228 (11)0.0356 (13)0.0083 (9)0.0104 (10)0.0032 (9)
C50.0240 (12)0.0277 (11)0.0303 (12)0.0038 (9)0.0059 (9)0.0079 (9)
C60.0267 (13)0.0238 (11)0.0486 (15)0.0035 (9)0.0096 (10)0.0140 (10)
C70.0271 (13)0.0153 (10)0.0511 (15)0.0050 (8)0.0111 (10)0.0005 (9)
C80.0231 (12)0.0227 (10)0.0341 (12)0.0047 (9)0.0083 (9)0.0020 (9)
C90.0267 (12)0.0228 (10)0.0205 (10)0.0091 (9)0.0021 (8)0.0025 (8)
C100.0258 (12)0.0203 (10)0.0228 (11)0.0054 (8)0.0052 (9)0.0021 (8)
C110.0233 (12)0.0215 (10)0.0304 (12)0.0083 (9)0.0046 (9)0.0065 (8)
C120.0242 (12)0.0177 (10)0.0311 (12)0.0084 (8)0.0082 (9)0.0047 (8)
C130.0179 (11)0.0195 (10)0.0295 (11)0.0042 (8)0.0067 (8)0.0041 (8)
C140.0183 (11)0.0207 (10)0.0284 (11)0.0062 (8)0.0065 (8)0.0023 (8)
C150.0248 (12)0.0195 (10)0.0267 (11)0.0069 (8)0.0050 (9)0.0043 (8)
C160.0242 (12)0.0185 (10)0.0276 (11)0.0077 (8)0.0047 (9)0.0024 (8)
C170.0286 (12)0.0281 (11)0.0280 (12)0.0133 (9)0.0074 (9)0.0013 (9)
C180.0249 (12)0.0259 (11)0.0273 (12)0.0111 (9)0.0037 (9)0.0036 (9)
C190.0242 (12)0.0260 (11)0.0399 (14)0.0046 (9)0.0101 (10)0.0037 (9)
C200.0231 (12)0.0268 (11)0.0397 (14)0.0034 (9)0.0030 (10)0.0060 (10)
Geometric parameters (Å, º) top
O2—C181.220 (2)C9—C111.517 (3)
O1—C171.218 (3)C9—C141.524 (3)
C1—C111.393 (3)C9—C151.582 (3)
C1—C21.401 (3)C9—H91
C1—H10.95C10—C121.521 (3)
C2—C31.385 (3)C10—C131.524 (3)
C2—H20.95C10—C161.585 (3)
C3—C41.395 (3)C10—H101
C3—H30.95C11—C121.398 (3)
C4—C121.392 (3)C13—C141.401 (3)
C4—H40.95C15—C171.516 (3)
C5—C131.389 (3)C15—C161.556 (3)
C5—C61.401 (3)C15—H151
C5—H50.95C16—C181.518 (3)
C6—C71.387 (3)C16—H161
C6—H60.95C17—C191.473 (3)
C7—C81.394 (3)C18—C201.484 (3)
C7—H70.95C19—C201.333 (3)
C8—C141.392 (3)C19—H190.95
C8—H80.95C20—H200.95
C11—C1—C2118.9 (2)C1—C11—C12120.52 (19)
C11—C1—H1120.6C1—C11—C9126.16 (19)
C2—C1—H1120.6C12—C11—C9113.30 (17)
C3—C2—C1120.3 (2)C4—C12—C11120.49 (19)
C3—C2—H2119.9C4—C12—C10125.93 (19)
C1—C2—H2119.9C11—C12—C10113.58 (17)
C2—C3—C4121.1 (2)C5—C13—C14120.47 (18)
C2—C3—H3119.4C5—C13—C10126.32 (19)
C4—C3—H3119.4C14—C13—C10113.12 (17)
C12—C4—C3118.7 (2)C8—C14—C13120.11 (18)
C12—C4—H4120.6C8—C14—C9126.38 (19)
C3—C4—H4120.6C13—C14—C9113.48 (17)
C13—C5—C6119.3 (2)C17—C15—C16116.20 (17)
C13—C5—H5120.4C17—C15—C9107.70 (16)
C6—C5—H5120.4C16—C15—C9109.37 (16)
C7—C6—C5120.0 (2)C17—C15—H15107.8
C7—C6—H6120C16—C15—H15107.8
C5—C6—H6120C9—C15—H15107.8
C6—C7—C8120.90 (19)C18—C16—C15116.24 (16)
C6—C7—H7119.6C18—C16—C10106.80 (16)
C8—C7—H7119.6C15—C16—C10109.35 (16)
C14—C8—C7119.2 (2)C18—C16—H16108.1
C14—C8—H8120.4C15—C16—H16108.1
C7—C8—H8120.4C10—C16—H16108.1
C11—C9—C14107.99 (16)O1—C17—C19120.9 (2)
C11—C9—C15105.89 (16)O1—C17—C15120.5 (2)
C14—C9—C15106.44 (16)C19—C17—C15118.58 (18)
C11—C9—H9112O2—C18—C20120.10 (19)
C14—C9—H9112O2—C18—C16120.82 (19)
C15—C9—H9112C20—C18—C16119.02 (18)
C12—C10—C13107.89 (16)C20—C19—C17121.79 (19)
C12—C10—C16106.94 (15)C20—C19—H19119.1
C13—C10—C16105.24 (16)C17—C19—H19119.1
C12—C10—H10112.1C19—C20—C18122.1 (2)
C13—C10—H10112.1C19—C20—H20118.9
C16—C10—H10112.1C18—C20—H20118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.523.388 (3)151
C6—H6···O2ii0.952.463.385 (3)164
C10—H10···O2iii1.002.573.302 (2)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z; (iii) x+2, y+1, z.
 

Acknowledgements

We thank the Department of Chemistry, University of Sheffield, for support (IO).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBharadwaj, P., Potenza, J. A., Ornaf, R. M., Rodriques, K. E., Knapp, S. & Lalancette, R. A. (1985). Acta Cryst. C41, 1520–1522.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashimoto, M., Takagi, H. & Yamamura, K. (1999). Tetrahedron, 40, 6037–6040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.  Google Scholar
First citationStevens, A. M. & Richards, C. J. (1997). Tetrahedron Lett. 38, 7805–7808.  CrossRef CAS Web of Science Google Scholar
First citationWasielewski, M. R., Niemczyk, M. P., Johnson, D. G., Svec, W. A. & Minsek, D. W. (1989). Tetrahedron, 45, 4785–4806.  CrossRef CAS Web of Science Google Scholar
First citationWatson, H. W. & Nagl, A. (1988). Acta Cryst. C44, 381–383.  CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds