metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,1,5,5-tetra­methyl-2-thio­biuretato)­nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England
*Correspondence e-mail: j.d.crane@hull.ac.uk

(Received 16 March 2004; accepted 18 March 2004; online 27 March 2004)

At 150 K, the title compound, [Ni(C6H12N3OS)2], comprises a cis square-planar nickel(II) ion with two anionic bidentate 1,1,5,5-tetra­methyl-2-thio­biuretate ligands. All non-H atoms lie on a crystallographic mirror plane.

Comment

The title compound, (I[link]), is the neutral homoleptic nickel(II) complex of the anionic bidentate 1,1,5,5-tetra­methyl-2-thio­biuretate ligand. The complex is cis square-planar (Table 1[link]) and all non-H atoms lie on a crystallographic mirror plane (Fig. 1[link]).

[Scheme 1]

In both of the ligands, the pattern of bond distances is similar to that observed for the corresponding homoleptic cobalt(III) complex reported by Crane & Whittingham (2004[Crane, J. D. & Whittingham, M. (2004). Acta Cryst. E60, m350-m351.]) and indicates that the formal negative charge is predominately localized on the S atom. The relatively long C—S and short C—O average bond lengths [1.747 (4) and 1.261 (3) Å] are consistent with mostly single- and double-bond character, respectively, and this bond localization is also reflected in the average C—N bond distances to the central N atom, viz. 1.323 (7) Å in the (iso)­thio­urea group and 1.348 (7) Å in the urea group.

The mol­ecules are packed in layers (Figs. 3[link] and 4[link]) perpendicular to the b axis, with an interlayer spacing of 3.5062 (3) Å. Of the shortest non-H interatomic contact distance between layers (Table 2[link]), the shortest involving the S atoms is 3.5986 (5) Å for S2 and N5i [symmetry code: (i) −x, 1 − y, −z].

[Figure 1]
Figure 1
A view of the mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Only one of the disordered positions for each methyl group is shown.
[Figure 2]
Figure 2
The packing and unit cell of (I[link]), viewed down the b axis. H atoms have been omitted.
[Figure 3]
Figure 3
The packing and unit cell of (I[link]), viewed down the c axis.
[Figure 4]
Figure 4
The packing of one layer of mol­ecules of (I[link]), parallel to the ac plane. H atoms have been omitted.

Experimental

The title compound, (I[link]), was prepared by a variation of the method of Koenig et al. (1987[Koenig, K. H., Kaul, L., Kuge, M. & Schuster, M. (1987). Liebigs Ann. Chem. pp. 1115-1116.]). Di­methyl­carbamyl chloride (1.08 g, 10 mmol) and potassium thio­cyanate (0.97 g, 10 mmol) in aceto­nitrile (40 ml) were heated at reflux for 2 h. The solution was allowed to cool to room temperature and excess 40% aqueous di­methyl­amine (3.4 ml, 30 mmol) was added with stirring, followed after 15 min by nickel(II) acetate tetrahydrate (1.25 g, 5 mmol) and water (5 ml). After stirring for a further 15 min, the crude product was obtained as a purple powder by precipitation with methanol (200 ml), isolation by filtration and washing sequentially with water, methanol and diethyl ether. Suitable crystals were grown by recrystallization from di­chloro­methane/methanol: yield 1.07 g, 53%. Spectroscopic analysis: IR (KBr disk, cm−1): ν 2921 (w), 1540 (s), 1481 (s), 1389 (s), 1357 (s), 1266 (w), 1198 (w), 1115 (m), 1031 (m), 734 (m), 474 (w); 1H NMR (CDCl3, p.p.m.): δ 3.18 (br, s, 6H), 3.08 (br, s, 6H), 2.96 (s, 6H), 2.87 (s, 6H); 13C NMR (CDCl3, p.p.m.): δ 171.3, 163.1, 40.1, 39.7, 37.4, 35.9. Analysis calculated for C12H24N6NiO2S2: C 35.40, H 5.94, N 20.64, S 15.75%; found: C 35.49, H 6.03, N 20.49, S 15.71%.

Crystal data
  • [Ni(C6H12N3OS)2]

  • Mr = 407.20

  • Orthorhombic, Pnma

  • a = 13.9350 (10) Å

  • b = 7.0123 (5) Å

  • c = 18.4739 (18) Å

  • V = 1805.2 (3) Å3

  • Z = 4

  • Dx = 1.498 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 10003 reflections

  • θ = 2.2–30.0°

  • μ = 1.32 mm−1

  • T = 150 (2) K

  • Plate, purple

  • 0.20 × 0.18 × 0.02 mm

Data collection
  • Stoe IPDS-II area-detector diffractometer

  • ω scans

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.630, Tmax = 0.751

  • 18236 measured reflections

  • 2820 independent reflections

  • 1936 reflections with I > 2σ(I)

  • Rint = 0.065

  • θmax = 30.0°

  • h = −16 → 19

  • k = −9 → 9

  • l = −25 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.060

  • S = 0.87

  • 2820 reflections

  • 148 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0271P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0017 (3)

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.8694 (17)
Ni1—O2 1.8634 (15)
Ni1—S1 2.1374 (7)
Ni1—S2 2.1386 (7)
S1—C1 1.743 (2)
S2—C7 1.750 (2)
O1—C2 1.261 (3)
O2—C8 1.260 (3)
N1—C1 1.316 (3)
N1—C2 1.355 (3)
N2—C1 1.353 (3)
N3—C2 1.351 (3)
N4—C7 1.329 (3)
N4—C8 1.341 (3)
N5—C7 1.333 (3)
N6—C8 1.366 (3)
O1—Ni1—S1 95.16 (6)
O2—Ni1—S2 94.65 (6)
O1—Ni1—O2 84.45 (8)
S1—Ni1—S2 85.75 (3)
O1—Ni1—S2 179.10 (6)
O2—Ni1—S1 179.60 (7)
C1—S1—Ni1 109.05 (8)
C7—S2—Ni1 109.52 (8)
C2—O1—Ni1 133.73 (16)
C8—O2—Ni1 134.24 (17)
C1—N1—C2 123.6 (2)
C7—N4—C8 123.39 (19)
N1—C1—S1 129.24 (18)
O1—C2—N1 129.2 (2)
N4—C7—S2 128.39 (18)
O2—C8—N4 129.8 (2)

Table 2
Interlayer contact distances (Å) less than 3.6 Å for non-H atoms

S2⋯N5i 3.5986 (5)
C2⋯C5ii 3.5161 (4)
N6⋯C3iii 3.5470 (6)
N2⋯C12iv 3.5622 (7)
Symmetry codes: (i) -x,1-y,-z; (ii) 1-x,1-y,-z; (iii) [{\script{1\over 2}}-x,1-y,{\script{1\over 2}}+z]; (iv) [{\script{1\over 2}}-x,1-y,z-{\script{1\over 2}}].

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry, with a C—H distance of 0.98 Å, and Uiso(H) was set to 1.2Ueq(C), but each group was allowed to rotate freely about its X—C bond. In their final positions, none of the methyl groups accords with the crystallographic mirror symmetry and hence each methyl group is disordered 50:50 about the mirror plane.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX and PLATON (Spek, 2001[Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.]).

Supporting information


Computing details top

Data collection: X-AREA (STOE 2001); cell refinement: X-AREA; data reduction: X-RED (STOE 2001); program(s) used to solve structure: X-STEP32 (STOE 2001) and WinGX (Farrugia 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia 1997); software used to prepare material for publication: WinGX and PLATON (Spek 2001).

Bis(1,1,5,5-tetramethyl-2-thiobiuretato)nickel(II) top
Crystal data top
[Ni(C6H12N3OS)2]F(000) = 856
Mr = 407.20Dx = 1.498 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 10003 reflections
a = 13.935 (1) Åθ = 2.2–30.0°
b = 7.0123 (5) ŵ = 1.32 mm1
c = 18.4739 (18) ÅT = 150 K
V = 1805.2 (3) Å3Plate, purple
Z = 40.20 × 0.18 × 0.02 mm
Data collection top
Stoe IPDS-II area-detector
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube1936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2001)
h = 1619
Tmin = 0.630, Tmax = 0.751k = 99
18236 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.001
2820 reflectionsΔρmax = 0.36 e Å3
148 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Special details top

Experimental. The crystal was mounted under the perfluoro-polyether PFO-XR75 (Lancaster Synthesis). A total of 180 frames (6 minute exposure) were collected (phi/omega: 45/0–180, delta-omega = 1 °.)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.25640 (2)0.75000.026041 (15)0.02336 (8)
S10.26181 (4)0.75000.14166 (3)0.03616 (15)
S20.10385 (4)0.75000.03869 (3)0.02723 (13)
O10.38951 (12)0.75000.01340 (9)0.0346 (4)
O20.25262 (13)0.75000.07478 (8)0.0401 (4)
N10.45995 (14)0.75000.12976 (11)0.0304 (5)
N20.39559 (15)0.75000.24175 (11)0.0341 (5)
N30.54773 (15)0.75000.02573 (13)0.0376 (5)
N40.09073 (15)0.75000.11138 (9)0.0262 (4)
N50.04648 (14)0.75000.04589 (10)0.0287 (5)
N60.21546 (17)0.75000.19149 (11)0.0362 (5)
C10.38142 (17)0.75000.16931 (12)0.0263 (5)
C20.45972 (17)0.75000.05643 (13)0.0287 (5)
C30.3186 (2)0.75000.29499 (13)0.0393 (6)
H3A0.33520.83640.33480.047*0.50
H3B0.25900.79300.27210.047*0.50
H3C0.30990.62060.31400.047*0.50
C40.4930 (2)0.75000.27118 (16)0.0517 (8)
H4A0.53620.81440.23720.062*0.50
H4B0.49350.81740.31770.062*0.50
H4C0.51440.61820.27840.062*0.50
C50.5585 (2)0.75000.05249 (16)0.0425 (7)
H5A0.61290.83110.06600.051*0.50
H5B0.57020.61950.06940.051*0.50
H5C0.49980.79930.07490.051*0.50
C60.6360 (2)0.75000.06748 (18)0.0501 (8)
H6A0.66410.62190.06700.060*0.50
H6B0.68140.84070.04610.060*0.50
H6C0.62210.78750.11750.060*0.50
C70.04920 (16)0.75000.04660 (12)0.0229 (4)
C80.18610 (19)0.75000.12095 (12)0.0276 (5)
C90.10292 (18)0.75000.02043 (13)0.0351 (6)
H9A0.11280.88160.03670.042*0.50
H9B0.16530.69000.01130.042*0.50
H9C0.06880.67840.05800.042*0.50
C100.10153 (19)0.75000.11318 (12)0.0348 (6)
H10A0.11910.61880.12580.042*0.50
H10B0.15990.82620.10680.042*0.50
H10C0.06260.80500.15210.042*0.50
C110.3170 (2)0.75000.20903 (15)0.0553 (9)
H11A0.35410.71370.16610.066*0.50
H11B0.32920.65850.24800.066*0.50
H11C0.33630.87780.22480.066*0.50
C120.1490 (2)0.75000.25251 (15)0.0445 (7)
H12A0.08570.70630.23620.053*0.50
H12B0.14350.87950.27200.053*0.50
H12C0.17290.66420.29030.053*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02122 (15)0.02998 (15)0.01888 (12)0.0000.00043 (11)0.000
S10.0237 (3)0.0646 (4)0.0202 (2)0.0000.0022 (2)0.000
S20.0231 (3)0.0417 (3)0.0169 (2)0.0000.00057 (19)0.000
O10.0233 (8)0.0532 (12)0.0272 (8)0.0000.0015 (7)0.000
O20.0283 (9)0.0740 (13)0.0180 (8)0.0000.0008 (7)0.000
N10.0253 (10)0.0366 (12)0.0293 (10)0.0000.0032 (8)0.000
N20.0313 (10)0.0455 (13)0.0255 (9)0.0000.0070 (9)0.000
N30.0228 (10)0.0506 (14)0.0395 (12)0.0000.0029 (9)0.000
N40.0312 (11)0.0288 (11)0.0185 (8)0.0000.0028 (7)0.000
N50.0268 (10)0.0392 (13)0.0202 (9)0.0000.0028 (7)0.000
N60.0403 (12)0.0494 (14)0.0189 (9)0.0000.0059 (8)0.000
C10.0273 (12)0.0248 (12)0.0268 (11)0.0000.0029 (8)0.000
C20.0231 (11)0.0299 (13)0.0331 (12)0.0000.0008 (9)0.000
C30.0453 (15)0.0508 (16)0.0218 (11)0.0000.0023 (11)0.000
C40.0396 (16)0.076 (2)0.0394 (15)0.0000.0175 (12)0.000
C50.0342 (14)0.0494 (19)0.0439 (16)0.0000.0106 (12)0.000
C60.0248 (13)0.070 (2)0.0558 (18)0.0000.0017 (12)0.000
C70.0277 (11)0.0186 (10)0.0225 (10)0.0000.0016 (8)0.000
C80.0358 (12)0.0270 (11)0.0199 (10)0.0000.0017 (9)0.000
C90.0252 (12)0.0500 (16)0.0300 (12)0.0000.0016 (10)0.000
C100.0304 (13)0.0446 (16)0.0293 (12)0.0000.0089 (10)0.000
C110.0518 (18)0.085 (2)0.0290 (14)0.0000.0181 (13)0.000
C120.0666 (19)0.0478 (16)0.0191 (11)0.0000.0009 (11)0.000
Geometric parameters (Å, º) top
Ni1—O11.8694 (17)C3—H3A0.9800
Ni1—O21.8634 (15)C3—H3B0.9800
Ni1—S12.1374 (7)C3—H3C0.9800
Ni1—S22.1386 (7)C4—H4A0.9800
S1—C11.743 (2)C4—H4B0.9800
S2—C71.750 (2)C4—H4C0.9800
O1—C21.261 (3)C5—H5A0.9800
O2—C81.260 (3)C5—H5B0.9800
N1—C11.316 (3)C5—H5C0.9800
N1—C21.355 (3)C6—H6A0.9800
N2—C11.353 (3)C6—H6B0.9800
N2—C31.455 (3)C6—H6C0.9800
N2—C41.462 (3)C9—H9A0.9800
N3—C21.351 (3)C9—H9B0.9800
N3—C61.452 (4)C9—H9C0.9800
N3—C51.453 (4)C10—H10A0.9800
N4—C71.329 (3)C10—H10B0.9800
N4—C81.341 (3)C10—H10C0.9800
N5—C71.333 (3)C11—H11A0.9800
N5—C91.456 (3)C11—H11B0.9800
N5—C101.461 (3)C11—H11C0.9800
N6—C81.366 (3)C12—H12A0.9800
N6—C111.452 (4)C12—H12B0.9800
N6—C121.459 (4)C12—H12C0.9800
S2···N5i3.5986 (5)N6···C3iii3.5470 (6)
C2···C5ii3.5161 (4)N2···C12iv3.5622 (7)
O1—Ni1—S195.16 (6)N3—C5—H5A109.5
O2—Ni1—S294.65 (6)N3—C5—H5B109.5
O1—Ni1—O284.45 (8)H5A—C5—H5B109.5
S1—Ni1—S285.75 (3)N3—C5—H5C109.5
O1—Ni1—S2179.10 (6)H5A—C5—H5C109.5
O2—Ni1—S1179.60 (7)H5B—C5—H5C109.5
C1—S1—Ni1109.05 (8)N3—C6—H6A109.5
C7—S2—Ni1109.52 (8)N3—C6—H6B109.5
C2—O1—Ni1133.73 (16)H6A—C6—H6B109.5
C8—O2—Ni1134.24 (17)N3—C6—H6C109.5
C1—N1—C2123.6 (2)H6A—C6—H6C109.5
C1—N2—C3124.1 (2)H6B—C6—H6C109.5
C1—N2—C4120.2 (2)N4—C7—N5116.4 (2)
C3—N2—C4115.6 (2)N4—C7—S2128.39 (18)
C2—N3—C6123.1 (2)N5—C7—S2115.23 (17)
C2—N3—C5120.8 (2)O2—C8—N4129.8 (2)
C6—N3—C5116.1 (2)O2—C8—N6115.2 (2)
C7—N4—C8123.39 (19)N4—C8—N6115.0 (2)
C7—N5—C9123.27 (19)N5—C9—H9A109.5
C7—N5—C10121.1 (2)N5—C9—H9B109.5
C9—N5—C10115.62 (19)H9A—C9—H9B109.5
C8—N6—C11120.3 (2)N5—C9—H9C109.5
C8—N6—C12123.2 (2)H9A—C9—H9C109.5
C11—N6—C12116.5 (2)H9B—C9—H9C109.5
N1—C1—N2115.3 (2)N5—C10—H10A109.5
N1—C1—S1129.24 (18)N5—C10—H10B109.5
N2—C1—S1115.43 (18)H10A—C10—H10B109.5
O1—C2—N3116.1 (2)N5—C10—H10C109.5
O1—C2—N1129.2 (2)H10A—C10—H10C109.5
N3—C2—N1114.7 (2)H10B—C10—H10C109.5
N2—C3—H3A109.5N6—C11—H11A109.5
N2—C3—H3B109.5N6—C11—H11B109.5
H3A—C3—H3B109.5H11A—C11—H11B109.5
N2—C3—H3C109.5N6—C11—H11C109.5
H3A—C3—H3C109.5H11A—C11—H11C109.5
H3B—C3—H3C109.5H11B—C11—H11C109.5
N2—C4—H4A109.5N6—C12—H12A109.5
N2—C4—H4B109.5N6—C12—H12B109.5
H4A—C4—H4B109.5H12A—C12—H12B109.5
N2—C4—H4C109.5N6—C12—H12C109.5
H4A—C4—H4C109.5H12A—C12—H12C109.5
H4B—C4—H4C109.5H12B—C12—H12C109.5
O1—Ni1—S1—C10.0C6—N3—C2—N10.000 (1)
S2—Ni1—S1—C1180.0C5—N3—C2—N1180.0
O2—Ni1—S2—C70.0C1—N1—C2—O10.000 (1)
S1—Ni1—S2—C7180.0C1—N1—C2—N3180.0
O2—Ni1—O1—C2180.0C8—N4—C7—N5180.0
S1—Ni1—O1—C20.0C8—N4—C7—S20.0
O1—Ni1—O2—C8180.0C9—N5—C7—N4180.0
S2—Ni1—O2—C80.0C10—N5—C7—N40.0
C2—N1—C1—N2180.0C9—N5—C7—S20.0
C2—N1—C1—S10.000 (1)C10—N5—C7—S2180.0
C3—N2—C1—N1180.0Ni1—S2—C7—N40.0
C4—N2—C1—N10.0Ni1—S2—C7—N5180.0
C3—N2—C1—S10.0Ni1—O2—C8—N40.0
C4—N2—C1—S1180.0Ni1—O2—C8—N6180.0
Ni1—S1—C1—N10.0C7—N4—C8—O20.0
Ni1—S1—C1—N2180.0C7—N4—C8—N6180.0
Ni1—O1—C2—N3180.0C11—N6—C8—O20.0
Ni1—O1—C2—N10.000 (1)C12—N6—C8—O2180.0
C6—N3—C2—O1180.0C11—N6—C8—N4180.0
C5—N3—C2—O10.000 (1)C12—N6—C8—N40.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+1, z1/2.
 

References

First citationCrane, J. D. & Whittingham, M. (2004). Acta Cryst. E60, m350–m351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoenig, K. H., Kaul, L., Kuge, M. & Schuster, M. (1987). Liebigs Ann. Chem. pp. 1115–1116.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.  Google Scholar
First citationStoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds