metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­benzyl­di­chloro­di-μ2-hydro­xo-di-μ3-oxo-tetratin toluene disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 19 March 2004; accepted 24 March 2004; online 31 March 2004)

The title tin complex crystallizes as a stoichiometric toluene-solvated dimer of 1,1,3,3-tetrabenzyl-1-chloro-3-hydroxydi­stannoxane, [Sn4(C7H7)8Cl2O2(OH)2]·2C7H8. The tetranuclear molecule lies across a centre of inversion in space group P21/n; the Sn4O4 framework, in which the two independent Sn centres both have distorted trigonal bipyramidal coordination, is essentially planar.

Comment

The organotin component of the title compound, (I[link]), was obtained as an adventitious product of the partial hydro­lysis of di­benzyl­di­chloro­tin(IV) during the attempted preparation of adducts of this tin precursor complex with amines. It crystallizes from toluene as the stoichiometric disolvate 1,1,3,3-tetra­benzyl-1-chloro-3-hydroxy­distannoxane–toluene (1/2).[link]

[Scheme 1]

The tetranuclear molecule is a dimeric form of the simple distannoxane ClSn(CH2Ph)2OSn(CH2Ph)2OH. The dimer lies across a centre of inversion and the Sn4O4 framework, which is essentially planar, takes the form of three edge-fused Sn2O2 rings (Fig. 1[link] and Table 1[link]). Each of the two independent Sn atoms is five-coordinate, adopting approximate trigonal bipyramidal coordination, as demonstrated by the bond angles (Table 1[link]): the benzyl groups occupy equatorial sites and the unique Cl bonded to Sn2 occupies an axial site.

This type of molecular architecture appears to be rather characteristic of functionalized distannoxanes XSnR2OSnR2Y, where X and Y are electron-rich substituents, such as OH, Cl, I or NCS, all of which are capable of coordinating to a second Sn atom (Chow, 1971[Chow, Y. M. (1971). Inorg. Chem. 10, 673-677.]; Puff et al., 1981[Puff, H., Freidrichs, E. & Visel, F. (1981). Z. Anorg. Allg. Chem. 477, 50-58.]; Graziani et al., 1983[Graziani, R., Casellato, U. & Plazzogna, G. (1983). Acta Cryst. C39, 1188-1190.]; Blair et al., 1997[Blair, J. A., Howie, R. A., Wardell, J. L. & Cox, P. J. (1997). Polyhedron, 16, 881-888.]; Dakternieks et al., 1997[Dakternieks, D., Jurkschat, K., Dreumel, S. & Tiekink, E. R. T. (1997). Inorg. Chem. 36, 2023-2029.]; Lu et al., 2001[Lu, Y., Leng, X., Wang, H., Xie, Q. & Li, J. (2001). Acta Cryst. C57, 1391-1392.]). The present example is unusual only inasmuch as the two electron-rich substituents X and Y are different, here Cl and OH; in most previously reported examples, these two substituents are the same, although an example with X = I and Y = OEt has been reported by Blair et al. (1997[Blair, J. A., Howie, R. A., Wardell, J. L. & Cox, P. J. (1997). Polyhedron, 16, 881-888.]).

The Sn—O distances for the equatorial sites are slightly shorter than those for the axial sites (Table 1[link]) and the Sn—C distances lie in the rather narrow range 2.144 (3)–2.156 (4) Å. There are no direction-specific interactions between the dimeric tin units. In particular, the hydroxyl group acts neither as a donor nor as an acceptor of hydrogen bonds: there are no O or C atoms within 3.6 Å of atom O2 other than those in the same dimer unit, and none of these is appropriately positioned to act as a hydrogen-bond donor or acceptor. It is likely that the hydroxyl group at (x, y, z) is effectively shielded by the adjacent benzyl substituents, especially by the phenyl rings C11–C16 and C21–C26 at (x, y, z) and C41–C46 at (1 − x, 1 − y, 1 − z) (Figs. 1 and 2).

[Figure 1]
Figure 1
The asymmetric unit of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, the toluene solvent mol­ecule has been omitted.
[Figure 2]
Figure 2
The centrosymmetric distannoxane dimer and the unique toluene solvent mol­ecule. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, the phenyl ring atoms Cn2–Cn6 (n = 1–4) and the associated H atoms have been omitted. The atoms with the suffix a are at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

The title distannoxane was obtained as an adventitious product from the attempted reaction of di­benzyl­di­chloro­tin(IV) with either 2-(di­methyl­amino)­pyridine or N,N,N′,N′-tetra­methyl­ethyl­enedi­amine. Crystallization from toluene solution gave the stoichiometric disolv­ate (I[link]) in each case. Crystals of both were ex­amined, and they proved to have identical cell dimensions; data sets were collected for both and they gave essentially identical refinements.

Crystal data
  • [Sn4(C7H7)Cl2O2(OH)2]·2C7H8

  • Mr = 1525.03

  • Monoclinic, P21/n

  • a = 10.0738 (2) Å

  • b = 15.5680 (3) Å

  • c = 20.3943 (3) Å

  • β = 96.6730 (10)°

  • V = 3176.75 (10) Å3

  • Z = 2

  • Dx = 1.594 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7235 reflections

  • θ = 3.3–27.5°

  • μ = 1.69 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.552, Tmax = 0.850

  • 38321 measured reflections

  • 7235 independent reflections

  • 5628 reflections with I > 2σ(I)

  • Rint = 0.074

  • θmax = 27.5°

  • h = −13 → 13

  • k = −20 → 20

  • l = −26 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.04

  • 7235 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0369P)2 + 3.0069P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.132 (2)
Sn1—O2 2.147 (2)
Sn1—C17 2.143 (3)
Sn1—C27 2.146 (3)
Sn1—O1i 2.051 (2)
Sn2—O1 2.024 (2)
Sn2—Cl1 2.4819 (10)
Sn2—C37 2.145 (4)
Sn2—C47 2.156 (4)
Sn2—O2i 2.197 (3)
O1—Sn1—O2 146.07 (9)
O1—Sn1—O1i 73.34 (10)
O1—Sn1—C17 100.30 (12)
O1—Sn1—C27 99.02 (12)
O2—Sn1—C17 97.73 (13)
O2—Sn1—C27 96.07 (13)
O2—Sn1—O1i 72.76 (10)
O1i—Sn1—C17 120.11 (12)
O1i—Sn1—C27 119.09 (11)
C17—Sn1—C27 120.70 (14)
Sn1—O1—Sn2 140.75 (11)
Sn1i—O1—Sn1 106.66 (10)
Cl1—Sn2—O2i 159.64 (7)
Cl1—Sn2—O1 87.55 (7)
Cl1—Sn2—C37 96.70 (12)
Cl1—Sn2—C47 95.02 (13)
O2i—Sn2—O1 72.21 (10)
O2i—Sn2—C37 93.47 (13)
O2i—Sn2—C47 92.76 (15)
O1—Sn2—C37 113.48 (13)
O1—Sn2—C47 118.24 (18)
C37—Sn2—C47 127.27 (19)
Sn1i—O1—Sn2 112.52 (11)
Sn1—O2—Sn2i 102.50 (11)
O2—Sn1—C17—C11 −62.5 (3)
Sn1—C17—C11—C12 −69.0 (4)
O2—Sn1—C27—C21 −81.4 (3)
Sn1—C27—C21—C22 93.1 (4)
O1—Sn2—C37—C31 −148.5 (3)
Sn2—C37—C31—C32 −84.2 (4)
O1—Sn2—C47—C41 −124.5 (3)
Sn2—C47—C41—C42 93.2 (4)
Symmetry code: (i) 1-x,1-y,1-z.

All H atoms were located from difference maps and then treated as riding atoms. H atoms bonded to C atoms were assigned C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), with Uiso(H) = 1.2Ueq(C); the H atom bonded to O2 was assigned an O—H distance of 0.84 Å and a Uiso(H) value of 1.2Ueq(O). The anisotropic displace­ment parameter values gave some indication of libration about Sn—C bonds in several of the benzyl groups: however, it did not prove possible to account for this using a static disorder model. The highest maximum is the diference map is adjacemt to the C45—C46 bond, 1.15 Å from C45 and 1.00 Å from C46; the deepest hole is 0.85 Å from Sn2.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version, Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(I) top
Crystal data top
[Sn4(C7H7)Cl2O2(OH)2]·2C7H8F(000) = 1520
Mr = 1525.03Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7235 reflections
a = 10.0738 (2) Åθ = 3.3–27.5°
b = 15.5680 (3) ŵ = 1.69 mm1
c = 20.3943 (3) ÅT = 120 K
β = 96.673 (1)°Block, colourless
V = 3176.75 (10) Å30.40 × 0.20 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
7235 independent reflections
Radiation source: rotating anode5628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1313
Tmin = 0.552, Tmax = 0.850k = 2020
38321 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0369P)2 + 3.0069P]
where P = (Fo2 + 2Fc2)/3
7235 reflections(Δ/σ)max = 0.002
361 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.08 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.47186 (2)0.400543 (15)0.526877 (11)0.02463 (8)
Sn20.38725 (2)0.613123 (16)0.615749 (12)0.02976 (8)
Cl10.31601 (10)0.48300 (6)0.67267 (5)0.0391 (2)
O10.4503 (2)0.53387 (15)0.54706 (11)0.0257 (5)
O20.5363 (2)0.30670 (17)0.46019 (12)0.0338 (6)
C110.5656 (3)0.2717 (2)0.63170 (16)0.0280 (8)
C120.4452 (4)0.2526 (2)0.65557 (18)0.0330 (8)
C130.4112 (4)0.1698 (2)0.67068 (18)0.0358 (9)
C140.4984 (4)0.1025 (2)0.66102 (19)0.0359 (9)
C150.6181 (4)0.1201 (2)0.6384 (2)0.0386 (9)
C160.6522 (4)0.2042 (3)0.62379 (18)0.0356 (9)
C170.5992 (4)0.3619 (2)0.61338 (18)0.0338 (8)
C210.1925 (3)0.4032 (2)0.45308 (18)0.0284 (8)
C220.1784 (4)0.3588 (3)0.3935 (2)0.0465 (11)
C230.1146 (5)0.3957 (6)0.3372 (3)0.084 (2)
C240.0619 (6)0.4748 (6)0.3382 (4)0.111 (3)
C250.0737 (6)0.5207 (4)0.3969 (5)0.105 (3)
C260.1393 (4)0.4847 (3)0.4539 (3)0.0618 (14)
C270.2647 (3)0.3649 (3)0.51373 (18)0.0327 (8)
C310.5053 (3)0.6673 (2)0.75837 (18)0.0322 (8)
C320.4554 (4)0.7470 (2)0.77449 (19)0.0350 (9)
C330.4260 (4)0.7653 (3)0.8375 (2)0.0409 (10)
C340.4463 (4)0.7043 (3)0.8862 (2)0.0430 (10)
C350.4933 (4)0.6240 (3)0.8716 (2)0.0415 (10)
C360.5223 (4)0.6056 (3)0.8078 (2)0.0367 (9)
C370.5432 (4)0.6508 (3)0.69090 (19)0.0396 (9)
C410.1906 (3)0.7620 (2)0.60061 (19)0.0336 (9)
C420.1958 (4)0.8100 (3)0.5442 (2)0.0479 (11)
C430.2033 (5)0.8968 (3)0.5428 (3)0.0645 (14)
C440.2060 (5)0.9399 (4)0.5986 (3)0.0645 (14)
C450.1993 (5)0.9013 (4)0.6576 (3)0.0660 (17)
C460.1896 (4)0.8070 (4)0.6590 (2)0.0608 (14)
C470.1893 (4)0.6669 (3)0.5971 (3)0.0643 (15)
C510.7260 (5)0.8822 (3)0.6469 (2)0.0468 (11)
C520.5969 (5)0.8867 (3)0.6167 (3)0.0600 (15)
C530.5732 (6)0.8918 (3)0.5481 (4)0.078 (2)
C540.6756 (9)0.8928 (3)0.5118 (3)0.084 (2)
C550.8000 (7)0.8893 (3)0.5407 (3)0.0664 (15)
C560.8286 (5)0.8841 (3)0.6077 (3)0.0544 (12)
C570.7563 (9)0.8762 (5)0.7207 (3)0.122 (3)
H20.51820.25410.46180.041*
H120.38470.29790.66160.040*
H130.32900.15860.68760.043*
H140.47480.04500.67010.043*
H150.67860.07460.63250.046*
H160.73590.21540.60820.043*
H17A0.69380.36500.60480.041*
H17B0.58690.40130.65030.041*
H220.21320.30230.39170.056*
H230.10790.36470.29680.101*
H240.01680.49910.29910.133*
H250.03690.57680.39810.127*
H260.14760.51650.49390.074*
H27A0.25750.30150.51110.039*
H27B0.22200.38400.55260.039*
H320.44130.78990.74130.042*
H330.39170.82020.84710.049*
H340.42800.71720.92970.052*
H350.50600.58130.90500.050*
H360.55400.55010.79800.044*
H37A0.61240.60530.69450.048*
H37B0.58510.70370.67580.048*
H420.19380.78010.50350.057*
H430.20670.92620.50220.077*
H440.21301.00070.59730.077*
H450.20090.93410.69700.079*
H460.18270.77760.69920.073*
H47A0.14840.64880.55280.077*
H47B0.13340.64410.63000.077*
H520.52410.88630.64240.072*
H530.48410.89450.52700.094*
H540.65890.89610.46510.101*
H550.87140.89040.51410.080*
H560.91890.88170.62720.065*
H57A0.84680.85350.73200.183*0.50
H57B0.69170.83770.73810.183*0.50
H57C0.75020.93340.74020.183*0.50
H57D0.67900.89630.74150.183*0.50
H57E0.83410.91200.73540.183*0.50
H57F0.77560.81640.73340.183*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02328 (13)0.02541 (13)0.02479 (13)0.00154 (9)0.00109 (9)0.00599 (10)
Sn20.02910 (14)0.02791 (15)0.03366 (15)0.00235 (10)0.00955 (11)0.00097 (10)
Cl10.0486 (6)0.0358 (5)0.0352 (5)0.0013 (4)0.0148 (4)0.0039 (4)
O10.0289 (13)0.0233 (13)0.0253 (12)0.0027 (9)0.0044 (10)0.0051 (10)
O20.0361 (14)0.0292 (14)0.0371 (14)0.0033 (11)0.0081 (12)0.0004 (11)
C110.0285 (19)0.033 (2)0.0205 (17)0.0049 (15)0.0045 (14)0.0040 (15)
C120.033 (2)0.033 (2)0.033 (2)0.0057 (16)0.0023 (16)0.0053 (16)
C130.034 (2)0.040 (2)0.033 (2)0.0006 (17)0.0016 (16)0.0058 (17)
C140.044 (2)0.027 (2)0.034 (2)0.0016 (17)0.0068 (17)0.0031 (16)
C150.041 (2)0.032 (2)0.042 (2)0.0094 (17)0.0018 (18)0.0014 (17)
C160.031 (2)0.042 (2)0.033 (2)0.0062 (17)0.0005 (16)0.0078 (17)
C170.032 (2)0.037 (2)0.0306 (19)0.0026 (16)0.0055 (16)0.0099 (17)
C210.0207 (17)0.031 (2)0.0326 (19)0.0069 (14)0.0015 (14)0.0056 (15)
C220.024 (2)0.078 (3)0.038 (2)0.000 (2)0.0022 (17)0.008 (2)
C230.029 (3)0.190 (8)0.033 (3)0.013 (4)0.000 (2)0.014 (4)
C240.037 (3)0.183 (9)0.102 (5)0.041 (4)0.033 (3)0.101 (6)
C250.052 (3)0.059 (4)0.189 (8)0.015 (3)0.058 (4)0.062 (5)
C260.042 (3)0.035 (3)0.100 (4)0.001 (2)0.028 (3)0.003 (2)
C270.0278 (19)0.039 (2)0.032 (2)0.0045 (16)0.0036 (16)0.0058 (17)
C310.0242 (18)0.039 (2)0.034 (2)0.0081 (16)0.0074 (15)0.0056 (17)
C320.031 (2)0.035 (2)0.040 (2)0.0055 (16)0.0082 (17)0.0010 (17)
C330.031 (2)0.040 (2)0.053 (3)0.0071 (17)0.0098 (18)0.011 (2)
C340.038 (2)0.059 (3)0.033 (2)0.014 (2)0.0116 (18)0.010 (2)
C350.039 (2)0.047 (3)0.038 (2)0.0115 (19)0.0019 (18)0.0078 (19)
C360.031 (2)0.036 (2)0.043 (2)0.0024 (16)0.0039 (17)0.0016 (18)
C370.032 (2)0.047 (3)0.040 (2)0.0056 (18)0.0085 (17)0.0023 (19)
C410.0215 (18)0.038 (2)0.041 (2)0.0083 (15)0.0025 (16)0.0013 (18)
C420.047 (3)0.048 (3)0.049 (3)0.013 (2)0.006 (2)0.002 (2)
C430.060 (3)0.055 (3)0.080 (4)0.014 (2)0.014 (3)0.014 (3)
C440.050 (3)0.055 (3)0.086 (4)0.002 (2)0.000 (3)0.003 (3)
C450.042 (3)0.085 (4)0.068 (4)0.019 (2)0.008 (2)0.053 (3)
C460.044 (3)0.100 (4)0.037 (2)0.034 (3)0.001 (2)0.005 (3)
C470.028 (2)0.035 (3)0.132 (5)0.0054 (18)0.018 (3)0.011 (3)
C510.069 (3)0.034 (2)0.036 (2)0.016 (2)0.000 (2)0.0021 (18)
C520.048 (3)0.027 (2)0.112 (5)0.0037 (19)0.040 (3)0.009 (3)
C530.063 (4)0.039 (3)0.119 (6)0.013 (2)0.050 (4)0.024 (3)
C540.148 (7)0.054 (4)0.044 (3)0.039 (4)0.021 (4)0.007 (2)
C550.093 (4)0.051 (3)0.062 (4)0.003 (3)0.037 (3)0.002 (3)
C560.037 (2)0.050 (3)0.075 (4)0.001 (2)0.001 (2)0.017 (2)
C570.213 (9)0.109 (6)0.041 (3)0.086 (6)0.003 (4)0.007 (3)
Geometric parameters (Å, º) top
Sn1—O12.132 (2)C31—C321.392 (5)
Sn1—O22.147 (2)C32—C331.382 (6)
Sn1—C172.143 (3)C32—H320.95
Sn1—C272.146 (3)C33—C341.372 (6)
Sn1—O1i2.051 (2)C33—H330.95
Sn2—O12.024 (2)C34—C351.381 (6)
Sn2—Cl12.4819 (10)C34—H340.95
Sn2—C372.145 (4)C35—C361.396 (6)
Sn2—C472.156 (4)C35—H350.95
Sn2—O2i2.197 (3)C36—H360.95
O2—H20.84C47—C411.482 (6)
C17—C111.502 (5)C47—H47A0.99
C17—H17A0.99C47—H47B0.99
C17—H17B0.99C41—C421.377 (6)
C11—C161.387 (5)C41—C461.382 (6)
C11—C121.391 (5)C42—C431.354 (6)
C12—C131.378 (5)C42—H420.95
C12—H120.95C43—C441.318 (7)
C13—C141.395 (5)C43—H430.95
C13—H130.95C44—C451.354 (8)
C14—C151.369 (6)C44—H440.95
C14—H140.95C45—C461.472 (8)
C15—C161.394 (5)C45—H450.95
C15—H150.95C46—H460.95
C16—H160.95C51—C521.374 (7)
C27—C211.486 (5)C51—C561.380 (7)
C27—H27A0.99C51—C571.503 (7)
C27—H27B0.99C52—C531.394 (9)
C21—C261.377 (5)C52—H520.95
C21—C221.391 (5)C53—C541.338 (10)
C22—C231.376 (7)C53—H530.95
C22—H220.95C54—C551.322 (9)
C23—C241.341 (10)C54—H540.95
C23—H230.95C55—C561.366 (7)
C24—C251.387 (11)C55—H550.95
C24—H240.95C56—H560.95
C25—C261.387 (8)C57—H57A0.98
C25—H250.95C57—H57B0.98
C26—H260.95C57—H57C0.98
C37—C311.492 (5)C57—H57D0.98
C37—H37A0.99C57—H57E0.98
C37—H37B0.99C57—H57F0.98
C31—C361.388 (5)
O1—Sn1—O2146.07 (9)C36—C31—C37121.8 (4)
O1—Sn1—O1i73.34 (10)C32—C31—C37120.6 (4)
O1—Sn1—C17100.30 (12)C33—C32—C31121.7 (4)
O1—Sn1—C2799.02 (12)C33—C32—H32119.1
O2—Sn1—C1797.73 (13)C31—C32—H32119.1
O2—Sn1—C2796.07 (13)C34—C33—C32119.9 (4)
O2—Sn1—O1i72.76 (10)C34—C33—H33120.0
O1i—Sn1—C17120.11 (12)C32—C33—H33120.0
O1i—Sn1—C27119.09 (11)C33—C34—C35119.8 (4)
C17—Sn1—C27120.70 (14)C33—C34—H34120.1
Sn1—O1—Sn2140.75 (11)C35—C34—H34120.1
Sn1i—O1—Sn1106.66 (10)C34—C35—C36120.0 (4)
Cl1—Sn2—O2i159.64 (7)C34—C35—H35120.0
Cl1—Sn2—O187.55 (7)C36—C35—H35120.0
Cl1—Sn2—C3796.70 (12)C31—C36—C35120.9 (4)
Cl1—Sn2—C4795.02 (13)C31—C36—H36119.5
O2i—Sn2—O172.21 (10)C35—C36—H36119.5
O2i—Sn2—C3793.47 (13)C41—C47—Sn2112.1 (3)
O2i—Sn2—C4792.76 (15)C41—C47—H47A109.2
O1—Sn2—C37113.48 (13)Sn2—C47—H47A109.2
O1—Sn2—C47118.24 (18)C41—C47—H47B109.2
C37—Sn2—C47127.27 (19)Sn2—C47—H47B109.2
Sn1i—O1—Sn2112.52 (11)H47A—C47—H47B107.9
Sn1—O2—Sn2i102.50 (11)C42—C41—C46116.7 (4)
Sn1—O2—H2123.7C42—C41—C47120.2 (4)
Sn2i—O2—H2132.7C46—C41—C47123.1 (4)
C11—C17—Sn1109.7 (2)C43—C42—C41124.5 (5)
C11—C17—H17A109.7C43—C42—H42117.8
Sn1—C17—H17A109.7C41—C42—H42117.8
C11—C17—H17B109.7C44—C43—C42119.1 (5)
Sn1—C17—H17B109.7C44—C43—H43120.5
H17A—C17—H17B108.2C42—C43—H43120.5
C16—C11—C12117.7 (3)C43—C44—C45122.9 (5)
C16—C11—C17121.1 (3)C43—C44—H44118.6
C12—C11—C17121.2 (3)C45—C44—H44118.6
C13—C12—C11121.9 (3)C44—C45—C46118.0 (4)
C13—C12—H12119.1C44—C45—H45121.0
C11—C12—H12119.1C46—C45—H45121.0
C12—C13—C14119.6 (4)C41—C46—C45118.8 (5)
C12—C13—H13120.2C41—C46—H46120.6
C14—C13—H13120.2C45—C46—H46120.6
C15—C14—C13119.4 (4)C52—C51—C56118.1 (4)
C15—C14—H14120.3C52—C51—C57121.6 (6)
C13—C14—H14120.3C56—C51—C57120.2 (5)
C14—C15—C16120.6 (4)C51—C52—C53119.7 (5)
C14—C15—H15119.7C51—C52—H52120.1
C16—C15—H15119.7C53—C52—H52120.1
C11—C16—C15120.8 (4)C54—C53—C52120.2 (5)
C11—C16—H16119.6C54—C53—H53119.9
C15—C16—H16119.6C52—C53—H53119.9
C21—C27—Sn1112.0 (2)C55—C54—C53120.3 (5)
C21—C27—H27A109.2C55—C54—H54119.8
Sn1—C27—H27A109.2C53—C54—H54119.8
C21—C27—H27B109.2C54—C55—C56121.8 (5)
Sn1—C27—H27B109.2C54—C55—H55119.1
H27A—C27—H27B107.9C56—C55—H55119.1
C26—C21—C22117.9 (4)C55—C56—C51119.8 (5)
C26—C21—C27120.9 (4)C55—C56—H56120.1
C22—C21—C27121.2 (4)C51—C56—H56120.1
C23—C22—C21120.8 (5)C51—C57—H57A109.5
C23—C22—H22119.6C51—C57—H57B109.5
C21—C22—H22119.6H57A—C57—H57B109.5
C24—C23—C22121.1 (6)C51—C57—H57C109.5
C24—C23—H23119.4H57A—C57—H57C109.5
C22—C23—H23119.4H57B—C57—H57C109.5
C23—C24—C25119.5 (5)C51—C57—H57D109.5
C23—C24—H24120.3H57A—C57—H57D141.1
C25—C24—H24120.3H57B—C57—H57D56.3
C26—C25—C24120.0 (6)H57C—C57—H57D56.3
C26—C25—H25120.0C51—C57—H57E109.5
C24—C25—H25120.0H57A—C57—H57E56.3
C21—C26—C25120.7 (6)H57B—C57—H57E141.1
C21—C26—H26119.7H57C—C57—H57E56.3
C25—C26—H26119.7H57D—C57—H57E109.5
C31—C37—Sn2117.5 (2)C51—C57—H57F109.5
C31—C37—H37A107.9H57A—C57—H57F56.3
Sn2—C37—H37A107.9H57B—C57—H57F56.3
C31—C37—H37B107.9H57C—C57—H57F141.1
Sn2—C37—H37B107.9H57D—C57—H57F109.5
H37A—C37—H37B107.2H57E—C57—H57F109.5
C36—C31—C32117.6 (3)
C37—Sn2—O1—Sn1i84.97 (16)C22—C23—C24—C251.1 (9)
C47—Sn2—O1—Sn1i84.40 (17)C23—C24—C25—C260.2 (9)
O2i—Sn2—O1—Sn1i1.01 (10)C22—C21—C26—C250.1 (7)
Cl1—Sn2—O1—Sn1i178.79 (10)C27—C21—C26—C25179.0 (4)
C37—Sn2—O1—Sn191.3 (2)C24—C25—C26—C210.4 (9)
C47—Sn2—O1—Sn199.3 (2)O1—Sn2—C37—C31148.5 (3)
O2i—Sn2—O1—Sn1177.3 (2)C47—Sn2—C37—C3143.3 (4)
Cl1—Sn2—O1—Sn14.95 (17)O2i—Sn2—C37—C31139.4 (3)
O1i—Sn1—O1—Sn2176.4 (2)Cl1—Sn2—C37—C3158.3 (3)
C17—Sn1—O1—Sn257.9 (2)Sn2—C37—C31—C3698.0 (4)
C27—Sn1—O1—Sn265.8 (2)Sn2—C37—C31—C3284.2 (4)
O2—Sn1—O1—Sn2178.86 (14)C36—C31—C32—C331.2 (5)
C17—Sn1—O1—Sn1i118.54 (13)C37—C31—C32—C33176.7 (3)
C27—Sn1—O1—Sn1i117.80 (12)C31—C32—C33—C340.2 (6)
O2—Sn1—O1—Sn1i2.5 (2)C32—C33—C34—C351.4 (6)
O1i—Sn1—O2—Sn2i0.90 (8)C33—C34—C35—C361.1 (6)
O1—Sn1—O2—Sn2i1.6 (2)C32—C31—C36—C351.6 (5)
C17—Sn1—O2—Sn2i120.10 (13)C37—C31—C36—C35176.3 (3)
C27—Sn1—O2—Sn2i117.72 (12)C34—C35—C36—C310.4 (6)
O1i—Sn1—C17—C11137.0 (2)O1—Sn2—C47—C41124.5 (3)
O1—Sn1—C17—C11146.4 (2)C37—Sn2—C47—C4143.2 (5)
C27—Sn1—C17—C1139.3 (3)O2i—Sn2—C47—C4153.3 (4)
O2—Sn1—C17—C1162.5 (3)Cl1—Sn2—C47—C41145.6 (4)
Sn1—C17—C11—C16109.4 (3)Sn2—C47—C41—C4293.2 (4)
Sn1—C17—C11—C1269.0 (4)Sn2—C47—C41—C4685.5 (4)
C16—C11—C12—C130.4 (5)C46—C41—C42—C431.8 (6)
C17—C11—C12—C13178.0 (3)C47—C41—C42—C43176.9 (4)
C11—C12—C13—C141.0 (6)C41—C42—C43—C440.1 (8)
C12—C13—C14—C151.8 (6)C42—C43—C44—C451.1 (8)
C13—C14—C15—C161.2 (6)C43—C44—C45—C460.4 (8)
C12—C11—C16—C151.0 (5)C42—C41—C46—C452.4 (6)
C17—C11—C16—C15177.4 (3)C47—C41—C46—C45176.3 (4)
C14—C15—C16—C110.2 (6)C44—C45—C46—C411.4 (6)
O1i—Sn1—C27—C217.7 (3)C56—C51—C52—C530.9 (6)
O1—Sn1—C27—C2168.2 (3)C57—C51—C52—C53179.7 (5)
C17—Sn1—C27—C21175.9 (2)C51—C52—C53—C540.4 (7)
O2—Sn1—C27—C2181.4 (3)C52—C53—C54—C550.2 (8)
Sn1—C27—C21—C2685.8 (4)C53—C54—C55—C560.4 (8)
Sn1—C27—C21—C2293.1 (4)C54—C55—C56—C510.1 (8)
C26—C21—C22—C230.8 (6)C52—C51—C56—C550.7 (7)
C27—C21—C22—C23178.2 (4)C57—C51—C56—C55179.8 (5)
C21—C22—C23—C241.4 (7)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

First citationBlair, J. A., Howie, R. A., Wardell, J. L. & Cox, P. J. (1997). Polyhedron, 16, 881–888.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChow, Y. M. (1971). Inorg. Chem. 10, 673–677.  CSD CrossRef CAS Web of Science Google Scholar
First citationDakternieks, D., Jurkschat, K., Dreumel, S. & Tiekink, E. R. T. (1997). Inorg. Chem. 36, 2023–2029.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGraziani, R., Casellato, U. & Plazzogna, G. (1983). Acta Cryst. C39, 1188–1190.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLu, Y., Leng, X., Wang, H., Xie, Q. & Li, J. (2001). Acta Cryst. C57, 1391–1392.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPuff, H., Freidrichs, E. & Visel, F. (1981). Z. Anorg. Allg. Chem. 477, 50–58.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds