organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(10-Bromo­anthracen-9-yl­methyl)-N-[2-(5,5-di­methyl-1,3,2-dioxaborinan-2-yl)­benzyl]­methyl­amine at 240 K

CROSSMARK_Color_square_no_text.svg

aSchool of Pure and Applied Chemistry, University of Kwazulu–Natal, Durban 4041, South Africa, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 2 March 2004; accepted 8 March 2004; online 24 March 2004)

Features of the structure of the title compound, C28H29BBrNO2, are the planar coordination of B and the intramolecular B⋯N contact distance of 3.204 (3) Å. The mol­ecules form layers parallel to (010), with the creation of ππ and C—H⋯π contacts.

Comment

The synthesis and structure determination of the title compound, (I[link]), is part of a continuing study, following on from the work of James et al. (1994[James, T. D., Sandanayako, K. R. A. S. & Shinkai, S. (1994). Chem. Commun. pp. 477-478.]), of compounds of potential value for use as sensors for sugar-like species. The molecular structure of (I[link]) is shown in Fig. 1[link], and selected bond lengths and angles are given in Table 1[link]. Bond lengths in the aryl fragments are in the ranges 1.351 (3)–1.445 (2) Å and 1.364 (3)–1.403 (3) Å for the bromo­anthracene (C1–C14) and benzene ring (C18–C23) moieties, respectively. The C7—Br1 bond length [1.909 (2) Å] is, like all of the bond lengths found in this structure, as expected for a mol­ecule of this kind. Particularly significant, however, is the intramolecular B1⋯N1 distance of 3.204 (3) Å. The dihedral angle between the least-squares planes (unit weights applied to the constituent atoms) of the anthracene and benzene ring groups as defined above is 69.64 (8)°. The relevant torsion angles in Table 1[link] are clearly compatible with the description of the conformation of the six-membered dioxaborinane ring as an envelope, with atom C25 at the point of the flap and with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2), Q(3) and φ(2) of 0.384 (2) Å, −0.273 (2) Å and 359.3 (3)°, respectively [overall Q = 0.471 (2) Å, θ = 125.5 (2)° and φ = φ(2) for the ring atoms in the order B1—O1—C24—C25—C28—O2]. The only axial non-H-atom substituent is atom C26.

[Scheme 1]

In the unit cell, the mol­ecules form layers in such a way as to induce two kinds of intermolecular contacts between pairs of centrosymmetrically related mol­ecules. This situation is illustrated in Fig. 2[link], where these interactions are shown as dashed lines. The first is a ππ interaction between anthracene fragments, which is most conveniently assessed in terms of the overlap of the rings of the form C1/C6–C8/C13/C14. These rings are related to one another (symmetry code: 2 − x, −y, 1 − z) by crystallographic centres of symmetry and their least-squares planes are then, by definition, precisely parallel to one another. In this circumstance, the overlap between the rings can be completely specified in terms of the distance between the centroids [3.950 (1) Å] and the perpendicular distance between the overlapping rings [3.483 (1) Å]. These values can be treated as two sides of a right-angled triangle of which the third side [1.863 (1) Å] is the lateral displacement or slippage of the overlapping rings in a direction parallel to their least-squares planes. The overlap of the anthracene fragments is shown more fully in Fig. 3[link]. The second intermolecular contact in the layer of mol­ecules is of the C—H⋯π type and involves atoms C28 and H28A and the benzene ring, defined by C18–23, with centroid Cg (symmetry code: 1 − x, y, [{1 \over 2}] − z). This interaction is characterized by C—H, H⋯Cg, Hperp (the perpendicular distance of H28A from the plane of the benzene ring) and C⋯Cg distances of 0.98, 3.32, 3.19 and 4.224 (3) Å, respectively. The C28—H28ACg angle and the angle at H28A between H28ACg and Hperp are 154 and 16°, respectively.

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing the labelling scheme. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Part of a layer, parallel to (010), of mol­ecules of (I[link]). Intermolecular C—H⋯π and ππ contacts as explained in the text are denoted by dashed lines. The representation is otherwise the same as in Fig. 1[link], except that only selected atoms are labelled and H atoms not used in forming intermolecular contacts have been omitted. [Symmetry codes: (i) 2 − x, −y, 1 − z; (ii) 2 − x, y, [{1 \over 2}] − z; (iii) x, −y, z − [1\over 2]; (iv) x − 1, y, z; (v) 1 − x, −y, 1 − z; (vi) 1 − x, y, [{1 \over 2}] − z; (vii) x − 1, −y, z − [1\over2].]
[Figure 3]
Figure 3
A pair of incomplete mol­ecules of (I[link]), displaying the overlap of the anthracene fragments. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms have been omitted for clarity. Selected atoms are labelled. The dashed line joins the ring centroids mentioned in the text. [Symmetry code: (i) 2 − x, −y, 1 − z.]

Experimental

Compound (I[link]) was synthesized according to the procedure of James et al. (1995[James, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982-8987.]) but with 10-bromo-9-bromo­methyl­anthracene as starting material. The product was recrystallized from methanol in a refrigerator at 283 K (m.p. 340–342 K). 1H NMR (300 MHz, CDCl3): δ 7.29–8.56 (m, 12H, ArH), 4.35 (s, 2H, ArCH2), 3.92 (s, 2H, ArCH2), 3.54 (s, 4H, OCH2), 2.18 (s, 3H, NCH3), 0.89 [s, 6H, C(CH3)2].

Crystal data
  • C28H29BBrNO2

  • Mr = 502.24

  • Monoclinic, C2/c

  • a = 12.854 (7) Å

  • b = 14.457 (9) Å

  • c = 26.686 (11) Å

  • β = 100.06 (4)°

  • V = 4883 (5) Å3

  • Z = 8

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 22 217 reflections

  • θ = 4.3–31.9°

  • μ = 1.71 mm−1

  • T = 240 (2) K

  • Block, yellow

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Oxford Diffraction Excalibur2 CCD area-detector diffractometer

  • ω/2θ scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.907, Tmax = 1.000

  • 22 217 measured reflections

  • 7799 independent reflections

  • 3964 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 31.9°

  • h = −17 → 18

  • k = −20 → 18

  • l = −39 → 39

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 0.87

  • 7799 reflections

  • 301 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0341P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

C7—Br1 1.909 (2)
C15—N1 1.465 (2)
N1—C16 1.454 (2)
N1—C17 1.465 (2)
C23—B1 1.576 (3)
B1—O1 1.353 (3)
B1—O2 1.357 (3)
O1—C24 1.438 (2)
C24—C25 1.515 (3)
C25—C28 1.511 (3)
C28—O2 1.440 (3)
C16—N1—C15 111.55 (15)
C16—N1—C17 109.82 (14)
C15—N1—C17 109.82 (14)
O1—B1—C23 121.02 (19)
O2—B1—C23 115.7 (2)
O1—B1—O2 123.2 (2)
B1—O1—C24 119.76 (17)
O1—C24—C25 112.36 (17)
C28—C25—C24 107.60 (19)
O2—C28—C25 112.76 (18)
B1—O2—C28 119.39 (18)
O2—B1—O1—C24 −0.8 (3)
B1—O1—C24—C25 −27.9 (3)
O1—C24—C25—C28 52.9 (3)
C24—C25—C28—O2 −52.7 (3)
C25—C28—O2—B1 27.3 (3)
O1—B1—O2—C28 1.2 (3)
C23—B1—O1—C24 −178.20 (18)
C23—B1—O2—C28 178.75 (18)
O1—C24—C25—C26 −68.2 (2)
O1—C24—C25—C27 170.64 (19)
C26—C25—C28—O2 67.5 (3)
C27—C25—C28—O2 −170.9 (2)

In the final stages of refinement, H atoms were placed in calculated positions, with C—H = 0.94, 0.97 and 0.98 Å for aryl, methyl and methyl­ene H atoms, respectively, and refined using a riding model, with Uiso(H) values set at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Data collection: CrysAlisCCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisCCD; data reduction: CrysAlisRED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

N-(10-Bromoanthracen-9-ylmethyl)-N-[2-(5,5-dimethyl-1,3,2-dioxaborinan-2- yl)benzyl]methylamine top
Crystal data top
C28H29BBrNO2F(000) = 2080
Mr = 502.24Dx = 1.366 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.854 (7) ÅCell parameters from 22217 reflections
b = 14.457 (9) Åθ = 4.3–31.9°
c = 26.686 (11) ŵ = 1.71 mm1
β = 100.06 (4)°T = 240 K
V = 4883 (5) Å3Block, yellow
Z = 80.40 × 0.40 × 0.35 mm
Data collection top
Oxford Instruments Excalibur2 CCD area-detector
diffractometer
7799 independent reflections
Radiation source: fine-focus sealed tube3964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω/2θ scansθmax = 31.9°, θmin = 4.3°
Absorption correction: multi-scan
(Blessing, 1995, 1997)
h = 1718
Tmin = 0.907, Tmax = 1.000k = 2018
22217 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
7799 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00768 (13)0.11827 (11)0.47589 (7)0.0263 (4)
C20.98551 (15)0.17985 (13)0.51471 (7)0.0357 (5)
H20.91470.19370.51630.043*
C31.06275 (16)0.21884 (14)0.54909 (8)0.0410 (5)
H31.04510.25880.57410.049*
C41.16931 (16)0.19984 (14)0.54764 (8)0.0406 (5)
H41.22250.22680.57190.049*
C51.19588 (14)0.14315 (12)0.51166 (7)0.0335 (4)
H51.26760.13140.51120.040*
C61.11789 (13)0.10103 (12)0.47450 (7)0.0275 (4)
C71.14230 (14)0.04195 (12)0.43666 (7)0.0300 (4)
C81.06619 (14)0.00107 (12)0.40060 (7)0.0298 (4)
C91.09059 (16)0.06173 (13)0.36229 (7)0.0390 (5)
H91.16170.07400.36060.047*
C101.01365 (18)0.10229 (14)0.32809 (8)0.0481 (6)
H101.03170.14200.30310.058*
C110.90665 (17)0.08475 (14)0.33011 (8)0.0459 (5)
H110.85360.11260.30610.055*
C120.87942 (15)0.02842 (12)0.36609 (7)0.0361 (5)
H120.80750.01850.36690.043*
C130.95661 (13)0.01626 (12)0.40287 (7)0.0276 (4)
C140.92829 (13)0.07521 (12)0.44044 (7)0.0269 (4)
C150.81203 (13)0.08650 (12)0.44265 (7)0.0296 (4)
H15A0.77970.02510.44230.035*
H15B0.80520.11630.47490.035*
N10.75375 (11)0.14110 (10)0.40070 (6)0.0287 (3)
C160.78962 (16)0.23665 (13)0.40270 (9)0.0469 (5)
H16A0.77250.26630.43280.070*
H16B0.75480.26920.37260.070*
H16C0.86550.23820.40400.070*
C170.64047 (13)0.13793 (13)0.40230 (7)0.0362 (5)
H17A0.60370.18390.37860.043*
H17B0.62920.15420.43660.043*
C180.59414 (13)0.04339 (14)0.38841 (7)0.0357 (5)
C190.55765 (15)0.00943 (15)0.42532 (8)0.0448 (5)
H190.55710.01610.45770.054*
C200.52202 (16)0.09926 (17)0.41514 (10)0.0568 (6)
H200.49770.13420.44050.068*
C210.52252 (17)0.13653 (17)0.36825 (10)0.0586 (6)
H210.49910.19760.36130.070*
C220.55737 (16)0.08461 (16)0.33091 (9)0.0496 (6)
H220.55690.11110.29870.060*
C230.59334 (14)0.00611 (13)0.33980 (8)0.0365 (5)
B10.63288 (17)0.05875 (18)0.29493 (9)0.0407 (6)
O10.61759 (11)0.15084 (10)0.28833 (5)0.0502 (4)
C240.65182 (19)0.19649 (17)0.24618 (9)0.0573 (6)
H24A0.67180.26030.25590.069*
H24B0.59290.19870.21740.069*
C250.74475 (17)0.14806 (15)0.22963 (8)0.0474 (5)
C260.84277 (18)0.15812 (18)0.27099 (10)0.0655 (7)
H26A0.82820.13270.30270.098*
H26B0.86080.22310.27570.098*
H26C0.90140.12500.26080.098*
C270.7649 (2)0.19040 (18)0.17960 (9)0.0727 (8)
H27A0.82380.15890.16870.109*
H27B0.78150.25550.18470.109*
H27C0.70220.18360.15370.109*
C280.7151 (2)0.04756 (17)0.22043 (9)0.0603 (7)
H28A0.65940.04290.19040.072*
H28B0.77670.01340.21330.072*
O20.67864 (12)0.00534 (10)0.26306 (5)0.0508 (4)
Br11.287387 (16)0.017499 (16)0.434454 (9)0.04864 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (9)0.0231 (9)0.0281 (10)0.0037 (7)0.0059 (8)0.0033 (8)
C20.0321 (11)0.0366 (11)0.0394 (12)0.0041 (8)0.0089 (9)0.0025 (9)
C30.0439 (12)0.0423 (13)0.0368 (12)0.0033 (10)0.0065 (10)0.0107 (10)
C40.0386 (12)0.0405 (12)0.0392 (12)0.0068 (9)0.0029 (10)0.0052 (10)
C50.0260 (10)0.0350 (11)0.0388 (11)0.0007 (8)0.0040 (8)0.0019 (9)
C60.0277 (9)0.0282 (10)0.0269 (10)0.0003 (7)0.0052 (8)0.0041 (8)
C70.0267 (9)0.0341 (11)0.0302 (10)0.0052 (8)0.0079 (8)0.0051 (8)
C80.0315 (9)0.0300 (11)0.0278 (10)0.0047 (8)0.0050 (8)0.0026 (8)
C90.0392 (11)0.0408 (12)0.0379 (12)0.0097 (9)0.0095 (10)0.0029 (10)
C100.0582 (15)0.0458 (13)0.0407 (13)0.0101 (11)0.0095 (11)0.0146 (11)
C110.0465 (13)0.0413 (13)0.0448 (13)0.0028 (10)0.0061 (10)0.0121 (10)
C120.0324 (10)0.0315 (11)0.0419 (12)0.0017 (8)0.0000 (9)0.0038 (9)
C130.0297 (9)0.0234 (9)0.0291 (9)0.0022 (7)0.0036 (8)0.0024 (8)
C140.0266 (9)0.0250 (10)0.0296 (10)0.0037 (7)0.0059 (8)0.0053 (8)
C150.0279 (10)0.0293 (10)0.0318 (11)0.0005 (7)0.0059 (8)0.0016 (8)
N10.0234 (8)0.0270 (8)0.0354 (9)0.0036 (6)0.0045 (7)0.0037 (7)
C160.0471 (13)0.0310 (12)0.0624 (15)0.0014 (9)0.0094 (11)0.0092 (11)
C170.0279 (10)0.0445 (12)0.0365 (11)0.0114 (9)0.0068 (8)0.0040 (9)
C180.0179 (9)0.0486 (13)0.0403 (12)0.0040 (8)0.0044 (8)0.0051 (10)
C190.0263 (10)0.0697 (16)0.0393 (12)0.0052 (10)0.0080 (9)0.0008 (11)
C200.0372 (12)0.0731 (17)0.0614 (16)0.0174 (12)0.0126 (11)0.0146 (14)
C210.0500 (14)0.0575 (15)0.0691 (17)0.0245 (12)0.0124 (13)0.0047 (14)
C220.0369 (12)0.0643 (16)0.0472 (14)0.0099 (10)0.0060 (10)0.0023 (12)
C230.0202 (9)0.0476 (13)0.0401 (11)0.0008 (8)0.0014 (8)0.0022 (10)
B10.0285 (12)0.0543 (16)0.0375 (14)0.0034 (11)0.0011 (10)0.0008 (12)
O10.0523 (9)0.0562 (10)0.0457 (9)0.0183 (7)0.0185 (7)0.0183 (8)
C240.0596 (15)0.0642 (16)0.0494 (14)0.0135 (12)0.0133 (12)0.0249 (12)
C250.0501 (13)0.0565 (15)0.0372 (12)0.0007 (11)0.0120 (10)0.0097 (11)
C260.0503 (15)0.0789 (18)0.0679 (17)0.0034 (13)0.0116 (13)0.0139 (14)
C270.085 (2)0.0823 (19)0.0568 (17)0.0016 (15)0.0291 (15)0.0153 (14)
C280.0704 (17)0.0725 (18)0.0427 (14)0.0069 (13)0.0232 (12)0.0006 (12)
O20.0604 (10)0.0521 (10)0.0440 (9)0.0048 (7)0.0207 (8)0.0002 (7)
Br10.02980 (11)0.06577 (16)0.05168 (14)0.00946 (10)0.01076 (9)0.00139 (12)
Geometric parameters (Å, º) top
C1—C141.410 (2)C16—H16C0.9700
C1—C21.432 (3)C17—C181.511 (3)
C1—C61.445 (2)C17—H17A0.9800
C2—C31.352 (3)C17—H17B0.9800
C2—H20.9400C18—C191.391 (3)
C3—C41.404 (3)C18—C231.403 (3)
C3—H30.9400C19—C201.388 (3)
C4—C51.351 (3)C19—H190.9400
C4—H40.9400C20—C211.364 (3)
C5—C61.418 (2)C20—H200.9400
C5—H50.9400C21—C221.383 (3)
C6—C71.400 (2)C21—H210.9400
C7—C81.393 (3)C22—C231.397 (3)
C7—Br11.909 (2)C22—H220.9400
C8—C91.423 (3)C23—B11.576 (3)
C8—C131.442 (3)B1—O11.353 (3)
C9—C101.356 (3)B1—O21.357 (3)
C9—H90.9400O1—C241.438 (2)
C10—C111.409 (3)C24—C251.515 (3)
C10—H100.9400C24—H24A0.9800
C11—C121.351 (3)C24—H24B0.9800
C11—H110.9400C25—C281.511 (3)
C12—C131.423 (3)C25—C261.530 (3)
C12—H120.9400C25—C271.532 (3)
C13—C141.411 (2)C26—H26A0.9700
C14—C151.515 (2)C26—H26B0.9700
C15—N11.465 (2)C26—H26C0.9700
C15—H15A0.9800C27—H27A0.9700
C15—H15B0.9800C27—H27B0.9700
N1—C161.454 (2)C27—H27C0.9700
N1—C171.465 (2)C28—O21.440 (3)
C16—H16A0.9700C28—H28A0.9800
C16—H16B0.9700C28—H28B0.9800
C14—C1—C2123.22 (16)N1—C17—H17A109.2
C14—C1—C6120.31 (16)C18—C17—H17A109.2
C2—C1—C6116.47 (16)N1—C17—H17B109.2
C3—C2—C1122.34 (18)C18—C17—H17B109.2
C3—C2—H2118.8H17A—C17—H17B107.9
C1—C2—H2118.8C19—C18—C23119.66 (19)
C2—C3—C4120.27 (19)C19—C18—C17119.34 (18)
C2—C3—H3119.9C23—C18—C17120.88 (17)
C4—C3—H3119.9C20—C19—C18121.0 (2)
C5—C4—C3120.49 (18)C20—C19—H19119.5
C5—C4—H4119.8C18—C19—H19119.5
C3—C4—H4119.8C21—C20—C19119.7 (2)
C4—C5—C6121.45 (17)C21—C20—H20120.2
C4—C5—H5119.3C19—C20—H20120.2
C6—C5—H5119.3C20—C21—C22120.1 (2)
C7—C6—C5123.12 (16)C20—C21—H21120.0
C7—C6—C1117.90 (16)C22—C21—H21120.0
C5—C6—C1118.97 (16)C21—C22—C23121.8 (2)
C8—C7—C6123.51 (16)C21—C22—H22119.1
C8—C7—Br1117.90 (13)C23—C22—H22119.1
C6—C7—Br1118.59 (14)C22—C23—C18117.81 (18)
C7—C8—C9123.71 (17)C22—C23—B1117.73 (19)
C7—C8—C13117.82 (16)C18—C23—B1124.45 (18)
C9—C8—C13118.46 (17)O1—B1—C23121.02 (19)
C10—C9—C8121.57 (19)O2—B1—C23115.7 (2)
C10—C9—H9119.2O1—B1—O2123.2 (2)
C8—C9—H9119.2B1—O1—C24119.76 (17)
C9—C10—C11119.89 (19)O1—C24—C25112.36 (17)
C9—C10—H10120.1O1—C24—H24A109.1
C11—C10—H10120.1C25—C24—H24A109.1
C12—C11—C10120.77 (19)O1—C24—H24B109.1
C12—C11—H11119.6C25—C24—H24B109.1
C10—C11—H11119.6H24A—C24—H24B107.9
C11—C12—C13121.86 (18)C28—C25—C24107.60 (19)
C11—C12—H12119.1C28—C25—C26111.17 (19)
C13—C12—H12119.1C24—C25—C26109.73 (19)
C14—C13—C12121.93 (16)C28—C25—C27108.59 (19)
C14—C13—C8120.64 (16)C24—C25—C27109.36 (19)
C12—C13—C8117.43 (16)C26—C25—C27110.3 (2)
C1—C14—C13119.82 (15)C25—C26—H26A109.5
C1—C14—C15122.00 (15)C25—C26—H26B109.5
C13—C14—C15118.12 (16)H26A—C26—H26B109.5
N1—C15—C14113.88 (14)C25—C26—H26C109.5
N1—C15—H15A108.8H26A—C26—H26C109.5
C14—C15—H15A108.8H26B—C26—H26C109.5
N1—C15—H15B108.8C25—C27—H27A109.5
C14—C15—H15B108.8C25—C27—H27B109.5
H15A—C15—H15B107.7H27A—C27—H27B109.5
C16—N1—C15111.55 (15)C25—C27—H27C109.5
C16—N1—C17109.82 (14)H27A—C27—H27C109.5
C15—N1—C17109.82 (14)H27B—C27—H27C109.5
N1—C16—H16A109.5O2—C28—C25112.76 (18)
N1—C16—H16B109.5O2—C28—H28A109.0
H16A—C16—H16B109.5C25—C28—H28A109.0
N1—C16—H16C109.5O2—C28—H28B109.0
H16A—C16—H16C109.5C25—C28—H28B109.0
H16B—C16—H16C109.5H28A—C28—H28B107.8
N1—C17—C18111.86 (14)B1—O2—C28119.39 (18)
C14—C1—C2—C3178.46 (18)C8—C13—C14—C15176.70 (15)
C6—C1—C2—C31.3 (3)C1—C14—C15—N1110.71 (18)
C1—C2—C3—C40.2 (3)C13—C14—C15—N172.1 (2)
C2—C3—C4—C50.6 (3)C14—C15—N1—C1665.43 (19)
C3—C4—C5—C60.1 (3)C14—C15—N1—C17172.57 (15)
C4—C5—C6—C7180.00 (17)C16—N1—C17—C18167.01 (16)
C4—C5—C6—C11.0 (3)C15—N1—C17—C1869.96 (19)
C14—C1—C6—C71.0 (2)N1—C17—C18—C19112.94 (19)
C2—C1—C6—C7179.30 (16)N1—C17—C18—C2363.2 (2)
C14—C1—C6—C5178.08 (16)C23—C18—C19—C201.1 (3)
C2—C1—C6—C51.7 (2)C17—C18—C19—C20175.04 (17)
C5—C6—C7—C8178.75 (16)C18—C19—C20—C210.1 (3)
C1—C6—C7—C80.2 (3)C19—C20—C21—C220.7 (3)
C5—C6—C7—Br10.5 (2)C20—C21—C22—C230.4 (3)
C1—C6—C7—Br1179.53 (12)C21—C22—C23—C180.6 (3)
C6—C7—C8—C9179.51 (17)C21—C22—C23—B1179.1 (2)
Br1—C7—C8—C90.2 (2)C19—C18—C23—C221.3 (3)
C6—C7—C8—C130.3 (3)C17—C18—C23—C22174.77 (17)
Br1—C7—C8—C13178.97 (12)C19—C18—C23—B1179.76 (18)
C7—C8—C9—C10179.77 (18)C17—C18—C23—B13.7 (3)
C13—C8—C9—C100.6 (3)C22—C23—B1—O1145.6 (2)
C8—C9—C10—C110.1 (3)C18—C23—B1—O136.0 (3)
C9—C10—C11—C120.6 (3)C22—C23—B1—O232.0 (3)
C10—C11—C12—C130.8 (3)C18—C23—B1—O2146.40 (19)
C11—C12—C13—C14179.93 (18)O2—B1—O1—C240.8 (3)
C11—C12—C13—C80.3 (3)B1—O1—C24—C2527.9 (3)
C7—C8—C13—C140.2 (2)O1—C24—C25—C2852.9 (3)
C9—C8—C13—C14179.42 (16)C24—C25—C28—O252.7 (3)
C7—C8—C13—C12179.62 (16)C25—C28—O2—B127.3 (3)
C9—C8—C13—C120.4 (2)O1—B1—O2—C281.2 (3)
C2—C1—C14—C13179.18 (16)C23—B1—O1—C24178.20 (18)
C6—C1—C14—C131.1 (2)C23—B1—O2—C28178.75 (18)
C2—C1—C14—C153.7 (3)O1—C24—C25—C2668.2 (2)
C6—C1—C14—C15176.01 (15)O1—C24—C25—C27170.64 (19)
C12—C13—C14—C1179.68 (16)C26—C25—C28—O267.5 (3)
C8—C13—C14—C10.5 (2)C27—C25—C28—O2170.9 (2)
C12—C13—C14—C153.1 (2)
 

Acknowledgements

GEMM acknowledges funding for this work received from the National Research Foundation of the Republic of South Africa (Economic Growth and Development Fund, Gun 2053369).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982–8987.  CrossRef CAS Web of Science Google Scholar
First citationJames, T. D., Sandanayako, K. R. A. S. & Shinkai, S. (1994). Chem. Commun. pp. 477–478.  CrossRef Google Scholar
First citationOxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds