organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Adamantan-1-yl)-5-methyl­benzo­[d][1,3]­oxazin-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England
*Correspondence e-mail: j.d.crane@hull.ac.uk

(Received 22 March 2004; accepted 23 March 2004; online 27 March 2004)

At 150 K, the benzo­[d][1,3]­oxazin-4-one heterocycle in the title compound, C19H21NO2, lies on a crystallographic mirror plane. This group is planar despite the resulting unfavourable steric interaction between the proximal 5-methyl and 4-carbonyl groups.

Comment

The title compound, (I[link]), has a planar benzo­[d][1,3]­oxazin-4-one heterocycle that lies on a crystallographic mirror plane. The molecular structure of (I) is shown in Fig. 1[link] and selected bond distances and angles are given in Table 1[link]. Within the oxazin-4-one group the C=O and C=N double bonds are clearly localized, but of the two formally single C—O bonds, O2—C2 is significantly shorter than O2—C1. The bicyclic heterocycle is planar despite the unfavourable steric interaction between the 5-methyl and 4-carbonyl groups, but the planarity allows π-stacking of these groups in the direction of the b axis (Fig. 2[link]), with an inter-layer distance of 3.3662 (4) Å (Table 2[link]). The widened bond angles of 128.39 (12), 121.75 (11) and 123.51 (12)° for O1—C1—C4, C1—C4—C5 and C4—C5—C9, respectively, still result in a short O1⋯C9 distance of 2.838 (2) Å.[link]

[Scheme 1]
[Figure 1]
Figure 1
View of the molecular structure of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary size. Only one orientation of the disordered methyl group is shown.
[Figure 2]
Figure 2
Packing diagram for (I[link]), viewed down the b axis. Only one orientation for the disordered methyl group is shown.

Experimental

Suitable crystals of the title compound, (I[link]), were prepared by the attempted recrystallization of 2-[(adamantane-1-carbonyl)-amino]-6-methyl­benzoic acid from petroleum ether (80/100)–toluene.

Crystal data
  • C19H21NO2

  • Mr = 295.37

  • Monoclinic, P21/m

  • a = 8.3514 (12) Å

  • b = 6.7324 (5) Å

  • c = 13.3203 (19) Å

  • β = 104.275 (11)°

  • V = 725.81 (16) Å3

  • Z = 2

  • Dx = 1.352 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8117 reflections

  • θ = 2.5–34.7°

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.60 × 0.25 × 0.20 mm

Data collection
  • Stoe IPDSII area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 10561 measured reflections

  • 3325 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.061

  • θmax = 34.7°

  • h = −13 → 13

  • k = −10 → 9

  • l = −21 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 1.00

  • 3325 reflections

  • 126 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.081P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.37 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.032 (7)

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.2010 (16)
O2—C2 1.3750 (15)
O2—C1 1.3940 (15)
N1—C2 1.2762 (15)
N1—C3 1.4019 (16)
C1—C4 1.4625 (17)
C3—C4 1.4082 (18)
C2—O2—C1 122.07 (9)
C2—N1—C3 117.81 (11)
O1—C1—O2 116.33 (11)
O1—C1—C4 128.39 (12)
O2—C1—C4 115.28 (10)
N1—C2—O2 124.64 (11)
N1—C2—C10 123.61 (11)
O2—C2—C10 111.75 (9)
N1—C3—C4 122.43 (10)
C3—C4—C1 117.77 (11)
C5—C4—C1 121.75 (11)
C4—C5—C9 123.51 (12)

Table 2
Contact distances (Å)

C1⋯C7i 3.3984 (4)
C3⋯C5i 3.4038 (4)
C4⋯C8i 3.4884 (5)
N1⋯C6i 3.5083 (5)
Symmetry code: (i) -x,-y,1-z.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry with a C—H distance of 0.98 Å, but the group was allowed to rotate freely about its X—C bond. In its final position, the methyl group is not bisected exactly by the mirror plane and hence is disordered 50:50 about the mirror plane. All other H atoms were placed in geometrically ideal­ized positions, with C—H distances of 0.95–1.00 Å. Uiso(H) values were set at 1.2Ueq(C) for all of the H atoms.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

2-(Adamantan-1-yl)-5-methylbenzo[d][1,3]oxazin-4-one top
Crystal data top
C19H21NO2F(000) = 316
Mr = 295.37Dx = 1.352 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 8117 reflections
a = 8.3514 (12) Åθ = 2.5–34.7°
b = 6.7324 (5) ŵ = 0.09 mm1
c = 13.3203 (19) ÅT = 150 K
β = 104.275 (11)°Block, colourless
V = 725.81 (16) Å30.60 × 0.25 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS-II area-detector
diffractometer
2132 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 34.7°, θmin = 2.5°
φ and ω scansh = 1313
10561 measured reflectionsk = 109
3325 independent reflectionsl = 2117
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.081P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3325 reflectionsΔρmax = 0.49 e Å3
126 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (7)
Special details top

Experimental. The crystal was mounted under the perfluoro-polyether PFO-XR75 (Lancaster Synthesis). A total of 160 frames (2 minute exposure) were collected (phi/omega: 35/90–160, 120/90–180, delta-omega = 1 °.)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.39794 (12)0.25000.58496 (8)0.0299 (2)
O20.30446 (10)0.25000.41487 (7)0.0219 (2)
N10.02377 (13)0.25000.32687 (8)0.0197 (2)
C10.27710 (15)0.25000.51396 (10)0.0208 (2)
C20.17667 (14)0.25000.32710 (10)0.0187 (2)
C30.01715 (14)0.25000.42282 (10)0.0189 (2)
C40.10352 (15)0.25000.51764 (10)0.0188 (2)
C50.05645 (16)0.25000.61268 (10)0.0219 (2)
C60.11190 (18)0.25000.60815 (11)0.0242 (3)
H60.14620.25000.67100.029*
C70.23170 (16)0.25000.51463 (12)0.0254 (3)
H70.34550.25000.51440.030*
C80.18492 (15)0.25000.42207 (11)0.0233 (3)
H80.26640.25000.35820.028*
C90.1785 (2)0.25000.71724 (11)0.0317 (3)
H9A0.12070.22010.77110.038*0.50
H9B0.23070.38100.73030.038*0.50
H9C0.26330.14900.71820.038*0.50
C100.23881 (14)0.25000.22986 (9)0.0179 (2)
C110.09153 (15)0.25000.13392 (10)0.0248 (3)
H11A0.02240.13090.13490.030*0.50
H11B0.02240.36910.13490.030*0.50
C120.15514 (16)0.25000.03505 (10)0.0265 (3)
H120.05890.25000.02690.032*
C130.25990 (13)0.43563 (16)0.03269 (8)0.0273 (2)
H13A0.19230.55620.03340.033*
H13B0.29930.43700.03160.033*
C140.40801 (12)0.43543 (14)0.12743 (7)0.02358 (19)
H140.47650.55670.12580.028*
C150.34586 (12)0.43626 (14)0.22713 (7)0.02296 (19)
H15A0.27970.55750.22930.028*
H15B0.44120.43710.28840.028*
C160.51278 (16)0.25000.12420 (10)0.0235 (3)
H16A0.55240.25000.06000.028*
H16B0.61030.25000.18420.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (4)0.0484 (7)0.0209 (5)0.0000.0036 (3)0.000
O20.0149 (4)0.0333 (5)0.0184 (4)0.0000.0059 (3)0.000
N10.0169 (4)0.0230 (5)0.0202 (5)0.0000.0067 (4)0.000
C10.0186 (5)0.0250 (6)0.0198 (5)0.0000.0068 (4)0.000
C20.0173 (5)0.0201 (5)0.0193 (5)0.0000.0058 (4)0.000
C30.0171 (5)0.0193 (5)0.0219 (5)0.0000.0079 (4)0.000
C40.0180 (5)0.0191 (5)0.0212 (5)0.0000.0086 (4)0.000
C50.0257 (6)0.0207 (6)0.0220 (6)0.0000.0111 (5)0.000
C60.0284 (6)0.0217 (6)0.0286 (6)0.0000.0184 (5)0.000
C70.0207 (5)0.0241 (6)0.0362 (7)0.0000.0165 (5)0.000
C80.0172 (5)0.0258 (6)0.0284 (6)0.0000.0085 (5)0.000
C90.0353 (7)0.0427 (8)0.0191 (6)0.0000.0105 (5)0.000
C100.0167 (5)0.0210 (5)0.0174 (5)0.0000.0069 (4)0.000
C110.0175 (5)0.0374 (7)0.0200 (6)0.0000.0058 (4)0.000
C120.0206 (5)0.0414 (8)0.0179 (5)0.0000.0055 (4)0.000
C130.0314 (5)0.0293 (5)0.0245 (4)0.0079 (4)0.0133 (4)0.0080 (4)
C140.0278 (4)0.0209 (4)0.0259 (4)0.0046 (3)0.0140 (3)0.0008 (3)
C150.0264 (4)0.0212 (4)0.0246 (4)0.0038 (3)0.0126 (3)0.0035 (3)
C160.0193 (5)0.0315 (7)0.0221 (6)0.0000.0095 (4)0.000
Geometric parameters (Å, º) top
O1—C11.2010 (16)C10—C111.5398 (17)
O2—C21.3750 (15)C10—C151.5457 (11)
O2—C11.3940 (15)C10—C15i1.5457 (11)
N1—C21.2762 (15)C11—C121.5368 (18)
N1—C31.4019 (16)C11—H11A0.9900
C1—C41.4625 (17)C11—H11B0.9900
C2—C101.5094 (16)C12—C131.5303 (13)
C3—C81.3988 (17)C12—C13i1.5303 (13)
C3—C41.4082 (18)C12—H121.0000
C4—C51.4151 (17)C13—C141.5339 (14)
C5—C61.3923 (19)C13—H13A0.9900
C5—C91.510 (2)C13—H13B0.9900
C6—C71.392 (2)C14—C161.5311 (12)
C6—H60.9500C14—C151.5405 (12)
C7—C81.3821 (19)C14—H141.0000
C7—H70.9500C15—H15A0.9900
C8—H80.9500C15—H15B0.9900
C9—H9A0.9800C16—C14i1.5311 (12)
C9—H9B0.9800C16—H16A0.9900
C9—H9C0.9800C16—H16B0.9900
C1···C7ii3.3984 (4)C4···C8ii3.4884 (5)
C3···C5ii3.4038 (4)N1···C6ii3.5083 (5)
C2—O2—C1122.07 (9)C15—C10—C15i108.44 (10)
C2—N1—C3117.81 (11)C12—C11—C10109.70 (10)
O1—C1—O2116.33 (11)C12—C11—H11A109.7
O1—C1—C4128.39 (12)C10—C11—H11A109.7
O2—C1—C4115.28 (10)C12—C11—H11B109.7
N1—C2—O2124.64 (11)C10—C11—H11B109.7
N1—C2—C10123.61 (11)H11A—C11—H11B108.2
O2—C2—C10111.75 (9)C13—C12—C13i109.51 (11)
C8—C3—N1117.55 (11)C13—C12—C11109.74 (7)
C8—C3—C4120.03 (11)C13i—C12—C11109.74 (7)
N1—C3—C4122.43 (10)C13—C12—H12109.3
C3—C4—C5120.48 (11)C13i—C12—H12109.3
C3—C4—C1117.77 (11)C11—C12—H12109.3
C5—C4—C1121.75 (11)C12—C13—C14109.36 (8)
C6—C5—C4117.48 (12)C12—C13—H13A109.8
C6—C5—C9119.01 (12)C14—C13—H13A109.8
C4—C5—C9123.51 (12)C12—C13—H13B109.8
C7—C6—C5122.28 (12)C14—C13—H13B109.8
C7—C6—H6118.9H13A—C13—H13B108.2
C5—C6—H6118.9C16—C14—C13109.15 (9)
C8—C7—C6119.96 (12)C16—C14—C15110.09 (8)
C8—C7—H7120.0C13—C14—C15109.54 (8)
C6—C7—H7120.0C16—C14—H14109.3
C7—C8—C3119.78 (12)C13—C14—H14109.3
C7—C8—H8120.1C15—C14—H14109.3
C3—C8—H8120.1C14—C15—C10109.70 (8)
C5—C9—H9A109.5C14—C15—H15A109.7
C5—C9—H9B109.5C10—C15—H15A109.7
H9A—C9—H9B109.5C14—C15—H15B109.7
C5—C9—H9C109.5C10—C15—H15B109.7
H9A—C9—H9C109.5H15A—C15—H15B108.2
H9B—C9—H9C109.5C14i—C16—C14109.24 (10)
C2—C10—C11109.81 (9)C14i—C16—H16A109.8
C2—C10—C15110.08 (6)C14—C16—H16A109.8
C11—C10—C15109.19 (7)C14i—C16—H16B109.8
C2—C10—C15i110.08 (6)C14—C16—H16B109.8
C11—C10—C15i109.19 (7)H16A—C16—H16B108.3
C2—O2—C1—O1180.0N1—C3—C8—C7180.0
C2—O2—C1—C40.0C4—C3—C8—C70.0
C3—N1—C2—O20.0N1—C2—C10—C110.0
C3—N1—C2—C10180.0O2—C2—C10—C11180.0
C1—O2—C2—N10.0N1—C2—C10—C15120.25 (7)
C1—O2—C2—C10180.0O2—C2—C10—C1559.75 (7)
C2—N1—C3—C8180.0N1—C2—C10—C15i120.25 (7)
C2—N1—C3—C40.0O2—C2—C10—C15i59.75 (7)
C8—C3—C4—C50.0C2—C10—C11—C12180.0
N1—C3—C4—C5180.0C15—C10—C11—C1259.21 (6)
C8—C3—C4—C1180.0C15i—C10—C11—C1259.21 (6)
N1—C3—C4—C10.0C10—C11—C12—C1360.19 (7)
O1—C1—C4—C3180.0C10—C11—C12—C13i60.19 (7)
O2—C1—C4—C30.0C13i—C12—C13—C1460.07 (12)
O1—C1—C4—C50.0C11—C12—C13—C1460.45 (11)
O2—C1—C4—C5180.0C12—C13—C14—C1660.38 (10)
C3—C4—C5—C60.0C12—C13—C14—C1560.23 (10)
C1—C4—C5—C6180.0C16—C14—C15—C1060.25 (10)
C3—C4—C5—C9180.0C13—C14—C15—C1059.79 (10)
C1—C4—C5—C90.0C2—C10—C15—C14179.74 (8)
C4—C5—C6—C70.0C11—C10—C15—C1459.12 (10)
C9—C5—C6—C7180.0C15i—C10—C15—C1459.77 (12)
C5—C6—C7—C80.0C13—C14—C16—C14i60.82 (12)
C6—C7—C8—C30.0C15—C14—C16—C14i59.45 (13)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y, z+1.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2001). X-AREA, X-RED32 and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds