metal-organic compounds
Hydrogen-bonding motifs in the solid-state structure of ferroceneboronic acid
aSchool of Chemistry, Cardiff University, PO Box 912, Park Place, Cardiff CF10 3TB, Wales
*Correspondence e-mail: aldridges@cf.ac.uk
At 180 K, the 5H5)(C5H6BO2)], consists of centrosymmetric [FcB(OH)2]2 dimers [Fc is (η5-C5H5)Fe(η5-C5H4)], formed by a pair of complementary O—H⋯O hydrogen-bonding interactions [O⋯H 1.97 Å and O⋯O 2.806 (3) Å]. The remaining two O-bound H atoms per [FcB(OH)2]2 moiety serve to link the dimeric units to adjacent dimers in a criss-cross fashion, very similar to that between hydrogen-bonded chains in solid Fe[η5-C5H4B(OH)2]2.
of ferroceneboronic acid, [Fe(CComment
The title compound, ferroceneboronic acid, FcB(OH)2 [Fc is (η5-C5H5)Fe(η5-C5H4)], has been known since the late 1950s, having been initially synthesized by Nesmeyanov et al. (1959) by the reaction of lithioferrocene with (BuO)3B, and subsequent hydrolytic work-up. A number of alternative syntheses have been reported in the interim (Shechter & Helling, 1961; McVey et al., 1967), and continued interest in this compound and related derivatives is in part due to their implication in Suzuki-type coupling reactions (Hua et al., 2001) and in anion and neutral molecule sensing (Dusemund et al., 1995; Ori & Shinkai, 1995). Although the solid-state structures of a number of related compounds, including the diboronic acid Fe[η5-C5H4B(OH)2]2 (Braga et al., 2003), the cyclic boronic anhydride (FcBO)3 (Bats et al., 2002), boronic (such as FcBO2C6H4-1,2; Aldridge & Bresner, 2003; Aldridge, Bresner & Fallis, 2004) and [5]trovacenylboronic acid, (η7-C7H7)V[η5-C5H4B(OH)2] (Elschenbroich et al., 2004), have been determined, to our knowledge there have been no reports to date concerning the of FcB(OH)2. The title compound, (I), was isolated in this instance as the main organometallic product from the aerobic hydrolysis of FcB(OCH2CH2)2S in a mixed toluene–hexane solvent (Aldridge et al., 2004).
The structural parameters relating to the individual FcB(OH)2 units of (I) are unremarkable, with the geometries at the Fe and B centres mirroring those found in related compounds (Bats et al., 2002; Braga et al., 2003; Aldridge et al., 2004). In particular, the small degree of bending of the boronic acid moiety out of the plane of the cyclopentadienyl ligand [Cp centroid—C1—B1 176.4 (2)°] mirrors that observed in related ferrocenes containing weakly Lewis acidic boryl (BX2) substituents [e.g. 178.5 (3)° for FcBO2C2H2Ph2; Aldridge et al., 2004], but contrasts with that found in the much more electron-deficient FcBBr2 (ca 162° for both crystallographically independent molecules; Appel et al., 1996; Aldridge & Bresner, 2003).
In the solid state, the molecular units of (I) aggregate into centrosymmetric dimers, [FcB(OH)2]2, formed by a pair of complementary O—H⋯O hydrogen-bonding interactions characterized by O⋯H distances of 1.97 Å and O—H⋯O angles of 172°. The eight-membered ring thus formed is very similar to that seen in the crystal structures of Fe[η5-C5H4B(OH)2]2 and PhB(OH)2 (Braga et al., 2003; Rettig & Trotter, 1977). Indeed, the O⋯O separations between the two components of the dimer [2.806 (3) Å] are essentially identical to those found in Fe[η5-C5H4B(OH)2]2 [2.81 (1) Å]. The remaining two O-bound H atoms per [FcB(OH)2]2 moiety serve to link the dimeric units to adjacent dimers in a criss-cross fashion, very similar to the linking between hydrogen-bonded chains in solid Fe[η5-C5H4B(OH)2]2 (Braga et al., 2003). The 16-membered ring thus formed (Fig. 2) incorporates two [FcB(OH)2]2 dimers from within the same layer, bridged by two FcB(OH)2 moieties from different dimeric units of the intervening stack. The O⋯H and O⋯O distances [2.14 and 2.930 (3) Å, respectively] are somewhat longer than those found within each dimeric unit, but are consistent with the O⋯O distance found for the very similar structural motif present in Fe[η5-C5H4B(OH)2]2 [O⋯O 2.89 (1) Å].
Experimental
The title compound was isolated as the main organometallic product from the aerobic hydrolysis of FcB(OCH2CH2)2S (Aldridge et al., 2004). Attempted recrystallization of FcB(OCH2CH2)2S in air by hexane diffusion into a toluene solution led to the isolation of FcB(OH)2, (I), as single yellow–orange crystals suitable for X-ray diffraction. Spectroscopic data obtained (11B, 1H and 13C NMR, and mass spectrometry) were in agreement with those reported previously (Shechter & Helling, 1961; McVey et al., 1967).
Crystal data
|
Refinement
|
|
|
Aromatic H atoms were constrained as riding atoms, with C—H distances of 0.95 Å. Hydroxyl H atoms were located in a difference Fourier map and refined as a rigid rotor, with O—H distances of 0.84 Å. The Uiso(H) values were fixed at 1.2 times Ueq(C) or 1.5 times Ueq(O).
Data collection: COLLECT (Nonius, 2000); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536804006014/wk6014sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804006014/wk6014Isup2.hkl
Data collection: COLLECT (Nonius 2000); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: DIRDIF99 (Beurskens, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Fe(C5H5)(C5H6BO2)] | F(000) = 472 |
Mr = 229.85 | Dx = 1.607 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0680 (7) Å | Cell parameters from 1453 reflections |
b = 7.0080 (5) Å | θ = 2.9–27.5° |
c = 14.0300 (13) Å | µ = 1.55 mm−1 |
β = 106.320 (3)° | T = 180 K |
V = 950.02 (13) Å3 | Triangular plate, yellow |
Z = 4 | 0.13 × 0.10 × 0.03 mm |
Nonius KappaCCD area-detector diffractometer | 1398 reflections with I > 2σ(I) |
φ scans | Rint = 0.092 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | θmax = 27.4°, θmin = 3.0° |
Tmin = 0.824, Tmax = 0.955 | h = −12→12 |
6820 measured reflections | k = −9→9 |
2130 independent reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.0264P)2 + 0.3652P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.49 e Å−3 |
2130 reflections | Δρmin = −0.57 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.11105 (5) | 0.00607 (7) | −0.22534 (3) | 0.02057 (18) | |
C1 | 0.0238 (3) | −0.0392 (5) | −0.3745 (2) | 0.0178 (8) | |
C2 | −0.0747 (4) | 0.0449 (5) | −0.3306 (2) | 0.0214 (8) | |
H2 | −0.161 | −0.0095 | −0.3304 | 0.026* | |
C3 | −0.0229 (4) | 0.2212 (5) | −0.2877 (3) | 0.0248 (9) | |
H3 | −0.0679 | 0.3048 | −0.2534 | 0.03* | |
C4 | 0.1073 (4) | 0.2525 (5) | −0.3044 (3) | 0.0255 (9) | |
H4 | 0.1647 | 0.361 | −0.2838 | 0.031* | |
C5 | 0.1378 (4) | 0.0929 (5) | −0.3577 (2) | 0.0203 (8) | |
H5 | 0.2191 | 0.0765 | −0.3785 | 0.024* | |
C6 | 0.2554 (6) | −0.1909 (8) | −0.1623 (3) | 0.0616 (16) | |
H6 | 0.309 | −0.2606 | −0.1964 | 0.074* | |
C7 | 0.1288 (6) | −0.2463 (6) | −0.1505 (3) | 0.0519 (13) | |
H7 | 0.0806 | −0.3607 | −0.1751 | 0.062* | |
C8 | 0.0843 (5) | −0.1061 (6) | −0.0966 (3) | 0.0388 (11) | |
H8 | 0.0006 | −0.1085 | −0.078 | 0.047* | |
C9 | 0.1839 (4) | 0.0400 (6) | −0.0743 (2) | 0.0366 (11) | |
H9 | 0.1795 | 0.1536 | −0.0384 | 0.044* | |
C10 | 0.2912 (4) | −0.0128 (8) | −0.1148 (3) | 0.0544 (14) | |
H10 | 0.3728 | 0.0583 | −0.111 | 0.065* | |
B1 | 0.0135 (4) | −0.2396 (6) | −0.4231 (3) | 0.0163 (9) | |
O1 | 0.1187 (2) | −0.3230 (3) | −0.45319 (16) | 0.0202 (6) | |
H1 | 0.185 | −0.2461 | −0.4448 | 0.03* | |
O2 | −0.1077 (2) | −0.3400 (3) | −0.43684 (17) | 0.0212 (6) | |
H2A | −0.1029 | −0.4424 | −0.4667 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0174 (3) | 0.0271 (3) | 0.0165 (3) | 0.0004 (3) | 0.0035 (2) | −0.0031 (2) |
C1 | 0.0145 (18) | 0.0231 (19) | 0.0138 (16) | 0.0024 (15) | 0.0007 (14) | 0.0025 (14) |
C2 | 0.0137 (18) | 0.025 (2) | 0.0235 (19) | −0.0004 (15) | 0.0014 (15) | −0.0024 (15) |
C3 | 0.022 (2) | 0.0234 (19) | 0.029 (2) | 0.0057 (17) | 0.0081 (17) | −0.0060 (17) |
C4 | 0.027 (2) | 0.0185 (19) | 0.031 (2) | −0.0040 (17) | 0.0089 (17) | −0.0020 (17) |
C5 | 0.021 (2) | 0.0210 (19) | 0.0207 (18) | −0.0043 (17) | 0.0087 (15) | −0.0028 (16) |
C6 | 0.067 (4) | 0.091 (4) | 0.019 (2) | 0.054 (3) | 0.000 (2) | 0.003 (3) |
C7 | 0.082 (4) | 0.040 (3) | 0.027 (2) | 0.007 (3) | 0.004 (3) | 0.007 (2) |
C8 | 0.042 (3) | 0.057 (3) | 0.016 (2) | −0.009 (2) | 0.0051 (19) | 0.002 (2) |
C9 | 0.044 (3) | 0.046 (3) | 0.0152 (19) | −0.010 (2) | 0.0008 (18) | −0.0119 (18) |
C10 | 0.021 (2) | 0.117 (5) | 0.020 (2) | −0.004 (3) | −0.0025 (17) | 0.016 (3) |
B1 | 0.010 (2) | 0.023 (2) | 0.0134 (19) | 0.0051 (17) | −0.0002 (15) | 0.0045 (17) |
O1 | 0.0139 (13) | 0.0170 (12) | 0.0296 (14) | −0.0025 (10) | 0.0060 (11) | −0.0033 (11) |
O2 | 0.0183 (14) | 0.0202 (13) | 0.0263 (14) | 0.0004 (11) | 0.0081 (11) | −0.0056 (11) |
Fe1—C6 | 2.020 (4) | C4—C5 | 1.426 (5) |
Fe1—C10 | 2.032 (4) | C4—H4 | 0.95 |
Fe1—C7 | 2.039 (4) | C5—H5 | 0.95 |
Fe1—C5 | 2.043 (3) | C6—C7 | 1.387 (7) |
Fe1—C4 | 2.047 (4) | C6—C10 | 1.413 (7) |
Fe1—C3 | 2.048 (3) | C6—H6 | 0.95 |
Fe1—C2 | 2.049 (3) | C7—C8 | 1.388 (6) |
Fe1—C9 | 2.053 (3) | C7—H7 | 0.95 |
Fe1—C1 | 2.054 (3) | C8—C9 | 1.406 (6) |
Fe1—C8 | 2.056 (4) | C8—H8 | 0.95 |
C1—C2 | 1.433 (5) | C9—C10 | 1.404 (6) |
C1—C5 | 1.441 (5) | C9—H9 | 0.95 |
C1—B1 | 1.551 (5) | C10—H10 | 0.95 |
C2—C3 | 1.408 (5) | B1—O2 | 1.375 (4) |
C2—H2 | 0.95 | B1—O1 | 1.376 (4) |
C3—C4 | 1.413 (5) | O1—H1 | 0.84 |
C3—H3 | 0.95 | O2—H2A | 0.84 |
C6—Fe1—C10 | 40.8 (2) | C1—C2—H2 | 125.4 |
C6—Fe1—C7 | 40.0 (2) | Fe1—C2—H2 | 126.5 |
C10—Fe1—C7 | 67.7 (2) | C2—C3—C4 | 108.3 (3) |
C6—Fe1—C5 | 109.83 (18) | C2—C3—Fe1 | 69.92 (19) |
C10—Fe1—C5 | 113.32 (16) | C4—C3—Fe1 | 69.8 (2) |
C7—Fe1—C5 | 135.38 (17) | C2—C3—H3 | 125.8 |
C6—Fe1—C4 | 135.7 (2) | C4—C3—H3 | 125.8 |
C10—Fe1—C4 | 110.18 (18) | Fe1—C3—H3 | 126 |
C7—Fe1—C4 | 175.16 (19) | C3—C4—C5 | 108.2 (3) |
C5—Fe1—C4 | 40.80 (13) | C3—C4—Fe1 | 69.9 (2) |
C6—Fe1—C3 | 175.5 (2) | C5—C4—Fe1 | 69.4 (2) |
C10—Fe1—C3 | 135.48 (19) | C3—C4—H4 | 125.9 |
C7—Fe1—C3 | 144.1 (2) | C5—C4—H4 | 125.9 |
C5—Fe1—C3 | 68.39 (14) | Fe1—C4—H4 | 126.4 |
C4—Fe1—C3 | 40.36 (14) | C4—C5—C1 | 108.1 (3) |
C6—Fe1—C2 | 143.6 (2) | C4—C5—Fe1 | 69.77 (19) |
C10—Fe1—C2 | 175.10 (18) | C1—C5—Fe1 | 69.84 (19) |
C7—Fe1—C2 | 114.60 (18) | C4—C5—H5 | 125.9 |
C5—Fe1—C2 | 68.41 (14) | C1—C5—H5 | 125.9 |
C4—Fe1—C2 | 67.88 (14) | Fe1—C5—H5 | 126 |
C3—Fe1—C2 | 40.21 (13) | C7—C6—C10 | 108.2 (4) |
C6—Fe1—C9 | 67.82 (17) | C7—C6—Fe1 | 70.8 (3) |
C10—Fe1—C9 | 40.20 (17) | C10—C6—Fe1 | 70.1 (3) |
C7—Fe1—C9 | 67.33 (17) | C7—C6—H6 | 125.9 |
C5—Fe1—C9 | 143.53 (16) | C10—C6—H6 | 125.9 |
C4—Fe1—C9 | 114.13 (15) | Fe1—C6—H6 | 124.8 |
C3—Fe1—C9 | 110.92 (15) | C6—C7—C8 | 108.3 (4) |
C2—Fe1—C9 | 135.85 (16) | C6—C7—Fe1 | 69.3 (3) |
C6—Fe1—C1 | 112.94 (16) | C8—C7—Fe1 | 70.8 (2) |
C10—Fe1—C1 | 143.31 (17) | C6—C7—H7 | 125.8 |
C7—Fe1—C1 | 109.94 (15) | C8—C7—H7 | 125.8 |
C5—Fe1—C1 | 41.20 (13) | Fe1—C7—H7 | 125.7 |
C4—Fe1—C1 | 68.94 (13) | C7—C8—C9 | 108.6 (4) |
C3—Fe1—C1 | 68.71 (13) | C7—C8—Fe1 | 69.5 (2) |
C2—Fe1—C1 | 40.89 (13) | C9—C8—Fe1 | 69.9 (2) |
C9—Fe1—C1 | 175.15 (15) | C7—C8—H8 | 125.7 |
C6—Fe1—C8 | 67.02 (19) | C9—C8—H8 | 125.7 |
C10—Fe1—C8 | 67.28 (17) | Fe1—C8—H8 | 126.4 |
C7—Fe1—C8 | 39.64 (17) | C10—C9—C8 | 107.4 (4) |
C5—Fe1—C8 | 174.84 (16) | C10—C9—Fe1 | 69.1 (2) |
C4—Fe1—C8 | 144.27 (16) | C8—C9—Fe1 | 70.1 (2) |
C3—Fe1—C8 | 115.06 (17) | C10—C9—H9 | 126.3 |
C2—Fe1—C8 | 111.44 (16) | C8—C9—H9 | 126.3 |
C9—Fe1—C8 | 40.01 (15) | Fe1—C9—H9 | 126 |
C1—Fe1—C8 | 135.39 (15) | C9—C10—C6 | 107.5 (4) |
C2—C1—C5 | 106.3 (3) | C9—C10—Fe1 | 70.7 (2) |
C2—C1—B1 | 126.3 (3) | C6—C10—Fe1 | 69.1 (2) |
C5—C1—B1 | 127.2 (3) | C9—C10—H10 | 126.2 |
C2—C1—Fe1 | 69.35 (18) | C6—C10—H10 | 126.2 |
C5—C1—Fe1 | 68.96 (17) | Fe1—C10—H10 | 125.6 |
B1—C1—Fe1 | 123.0 (2) | O2—B1—O1 | 118.0 (3) |
C3—C2—C1 | 109.1 (3) | O2—B1—C1 | 118.1 (3) |
C3—C2—Fe1 | 69.86 (19) | O1—B1—C1 | 123.9 (3) |
C1—C2—Fe1 | 69.76 (18) | B1—O1—H1 | 109.5 |
C3—C2—H2 | 125.5 | B1—O2—H2A | 109.5 |
C6—Fe1—C1—C2 | 147.9 (3) | C3—Fe1—C5—C1 | −81.9 (2) |
C10—Fe1—C1—C2 | −176.0 (3) | C2—Fe1—C5—C1 | −38.53 (19) |
C7—Fe1—C1—C2 | 104.9 (3) | C9—Fe1—C5—C1 | −178.3 (2) |
C5—Fe1—C1—C2 | −117.8 (3) | C10—Fe1—C6—C7 | 118.5 (4) |
C4—Fe1—C1—C2 | −80.1 (2) | C5—Fe1—C6—C7 | −138.4 (3) |
C3—Fe1—C1—C2 | −36.7 (2) | C4—Fe1—C6—C7 | −176.9 (2) |
C8—Fe1—C1—C2 | 67.9 (3) | C2—Fe1—C6—C7 | −58.2 (4) |
C6—Fe1—C1—C5 | −94.4 (3) | C9—Fe1—C6—C7 | 80.7 (3) |
C10—Fe1—C1—C5 | −58.2 (4) | C1—Fe1—C6—C7 | −94.1 (3) |
C7—Fe1—C1—C5 | −137.3 (2) | C8—Fe1—C6—C7 | 37.2 (3) |
C4—Fe1—C1—C5 | 37.7 (2) | C7—Fe1—C6—C10 | −118.5 (4) |
C3—Fe1—C1—C5 | 81.1 (2) | C5—Fe1—C6—C10 | 103.1 (3) |
C2—Fe1—C1—C5 | 117.8 (3) | C4—Fe1—C6—C10 | 64.6 (3) |
C8—Fe1—C1—C5 | −174.3 (2) | C2—Fe1—C6—C10 | −176.7 (3) |
C6—Fe1—C1—B1 | 27.2 (4) | C9—Fe1—C6—C10 | −37.8 (3) |
C10—Fe1—C1—B1 | 63.3 (4) | C1—Fe1—C6—C10 | 147.4 (3) |
C7—Fe1—C1—B1 | −15.8 (4) | C8—Fe1—C6—C10 | −81.3 (3) |
C5—Fe1—C1—B1 | 121.5 (4) | C10—C6—C7—C8 | 0.1 (5) |
C4—Fe1—C1—B1 | 159.2 (3) | Fe1—C6—C7—C8 | −60.3 (3) |
C3—Fe1—C1—B1 | −157.4 (3) | C10—C6—C7—Fe1 | 60.4 (3) |
C2—Fe1—C1—B1 | −120.7 (4) | C10—Fe1—C7—C6 | −38.4 (3) |
C8—Fe1—C1—B1 | −52.8 (4) | C5—Fe1—C7—C6 | 62.8 (4) |
C5—C1—C2—C3 | −0.4 (4) | C3—Fe1—C7—C6 | −176.8 (3) |
B1—C1—C2—C3 | 175.4 (3) | C2—Fe1—C7—C6 | 146.4 (3) |
Fe1—C1—C2—C3 | 58.9 (2) | C9—Fe1—C7—C6 | −82.0 (3) |
C5—C1—C2—Fe1 | −59.4 (2) | C1—Fe1—C7—C6 | 102.3 (3) |
B1—C1—C2—Fe1 | 116.4 (3) | C8—Fe1—C7—C6 | −119.2 (4) |
C6—Fe1—C2—C3 | −176.1 (3) | C6—Fe1—C7—C8 | 119.2 (4) |
C7—Fe1—C2—C3 | 147.0 (2) | C10—Fe1—C7—C8 | 80.8 (3) |
C5—Fe1—C2—C3 | −81.6 (2) | C5—Fe1—C7—C8 | −178.0 (2) |
C4—Fe1—C2—C3 | −37.5 (2) | C3—Fe1—C7—C8 | −57.6 (4) |
C9—Fe1—C2—C3 | 64.9 (3) | C2—Fe1—C7—C8 | −94.4 (3) |
C1—Fe1—C2—C3 | −120.4 (3) | C9—Fe1—C7—C8 | 37.2 (3) |
C8—Fe1—C2—C3 | 103.9 (2) | C1—Fe1—C7—C8 | −138.5 (3) |
C6—Fe1—C2—C1 | −55.7 (4) | C6—C7—C8—C9 | 0.2 (5) |
C7—Fe1—C2—C1 | −92.5 (2) | Fe1—C7—C8—C9 | −59.2 (3) |
C5—Fe1—C2—C1 | 38.81 (19) | C6—C7—C8—Fe1 | 59.3 (3) |
C4—Fe1—C2—C1 | 82.9 (2) | C6—Fe1—C8—C7 | −37.5 (3) |
C3—Fe1—C2—C1 | 120.4 (3) | C10—Fe1—C8—C7 | −82.0 (3) |
C9—Fe1—C2—C1 | −174.7 (2) | C4—Fe1—C8—C7 | −175.3 (3) |
C8—Fe1—C2—C1 | −135.6 (2) | C3—Fe1—C8—C7 | 146.9 (3) |
C1—C2—C3—C4 | 0.6 (4) | C2—Fe1—C8—C7 | 103.1 (3) |
Fe1—C2—C3—C4 | 59.4 (2) | C9—Fe1—C8—C7 | −119.9 (4) |
C1—C2—C3—Fe1 | −58.9 (2) | C1—Fe1—C8—C7 | 62.4 (4) |
C10—Fe1—C3—C2 | −176.5 (2) | C6—Fe1—C8—C9 | 82.4 (3) |
C7—Fe1—C3—C2 | −57.6 (3) | C10—Fe1—C8—C9 | 37.9 (3) |
C5—Fe1—C3—C2 | 81.7 (2) | C7—Fe1—C8—C9 | 119.9 (4) |
C4—Fe1—C3—C2 | 119.4 (3) | C4—Fe1—C8—C9 | −55.4 (4) |
C9—Fe1—C3—C2 | −137.5 (2) | C3—Fe1—C8—C9 | −93.2 (3) |
C1—Fe1—C3—C2 | 37.3 (2) | C2—Fe1—C8—C9 | −137.0 (3) |
C8—Fe1—C3—C2 | −94.1 (2) | C1—Fe1—C8—C9 | −177.7 (2) |
C10—Fe1—C3—C4 | 64.1 (3) | C7—C8—C9—C10 | −0.3 (4) |
C7—Fe1—C3—C4 | −177.0 (3) | Fe1—C8—C9—C10 | −59.3 (3) |
C5—Fe1—C3—C4 | −37.7 (2) | C7—C8—C9—Fe1 | 59.0 (3) |
C2—Fe1—C3—C4 | −119.4 (3) | C6—Fe1—C9—C10 | 38.4 (3) |
C9—Fe1—C3—C4 | 103.1 (2) | C7—Fe1—C9—C10 | 81.8 (3) |
C1—Fe1—C3—C4 | −82.1 (2) | C5—Fe1—C9—C10 | −55.3 (4) |
C8—Fe1—C3—C4 | 146.5 (2) | C4—Fe1—C9—C10 | −93.2 (3) |
C2—C3—C4—C5 | −0.5 (4) | C3—Fe1—C9—C10 | −136.9 (3) |
Fe1—C3—C4—C5 | 59.0 (2) | C2—Fe1—C9—C10 | −175.7 (3) |
C2—C3—C4—Fe1 | −59.5 (2) | C8—Fe1—C9—C10 | 118.6 (4) |
C6—Fe1—C4—C3 | −176.8 (2) | C6—Fe1—C9—C8 | −80.2 (3) |
C10—Fe1—C4—C3 | −137.8 (2) | C10—Fe1—C9—C8 | −118.6 (4) |
C5—Fe1—C4—C3 | 119.5 (3) | C7—Fe1—C9—C8 | −36.8 (3) |
C2—Fe1—C4—C3 | 37.4 (2) | C5—Fe1—C9—C8 | −173.9 (3) |
C9—Fe1—C4—C3 | −94.4 (2) | C4—Fe1—C9—C8 | 148.2 (3) |
C1—Fe1—C4—C3 | 81.5 (2) | C3—Fe1—C9—C8 | 104.5 (3) |
C8—Fe1—C4—C3 | −59.0 (3) | C2—Fe1—C9—C8 | 65.7 (3) |
C6—Fe1—C4—C5 | 63.7 (3) | C8—C9—C10—C6 | 0.4 (4) |
C10—Fe1—C4—C5 | 102.7 (2) | Fe1—C9—C10—C6 | −59.5 (3) |
C3—Fe1—C4—C5 | −119.5 (3) | C8—C9—C10—Fe1 | 59.9 (3) |
C2—Fe1—C4—C5 | −82.1 (2) | C7—C6—C10—C9 | −0.3 (5) |
C9—Fe1—C4—C5 | 146.1 (2) | Fe1—C6—C10—C9 | 60.5 (3) |
C1—Fe1—C4—C5 | −38.0 (2) | C7—C6—C10—Fe1 | −60.8 (3) |
C8—Fe1—C4—C5 | −178.5 (3) | C6—Fe1—C10—C9 | −118.4 (4) |
C3—C4—C5—C1 | 0.2 (4) | C7—Fe1—C10—C9 | −80.8 (3) |
Fe1—C4—C5—C1 | 59.5 (2) | C5—Fe1—C10—C9 | 147.8 (2) |
C3—C4—C5—Fe1 | −59.3 (2) | C4—Fe1—C10—C9 | 103.9 (3) |
C2—C1—C5—C4 | 0.1 (4) | C3—Fe1—C10—C9 | 65.5 (3) |
B1—C1—C5—C4 | −175.6 (3) | C1—Fe1—C10—C9 | −174.6 (2) |
Fe1—C1—C5—C4 | −59.5 (2) | C8—Fe1—C10—C9 | −37.7 (3) |
C2—C1—C5—Fe1 | 59.6 (2) | C7—Fe1—C10—C6 | 37.6 (3) |
B1—C1—C5—Fe1 | −116.1 (3) | C5—Fe1—C10—C6 | −93.8 (3) |
C6—Fe1—C5—C4 | −138.2 (3) | C4—Fe1—C10—C6 | −137.8 (3) |
C10—Fe1—C5—C4 | −94.3 (3) | C3—Fe1—C10—C6 | −176.1 (3) |
C7—Fe1—C5—C4 | −175.6 (3) | C9—Fe1—C10—C6 | 118.4 (4) |
C3—Fe1—C5—C4 | 37.3 (2) | C1—Fe1—C10—C6 | −56.2 (4) |
C2—Fe1—C5—C4 | 80.7 (2) | C8—Fe1—C10—C6 | 80.6 (3) |
C9—Fe1—C5—C4 | −59.0 (3) | C2—C1—B1—O2 | 8.3 (5) |
C1—Fe1—C5—C4 | 119.2 (3) | C5—C1—B1—O2 | −176.8 (3) |
C6—Fe1—C5—C1 | 102.5 (3) | Fe1—C1—B1—O2 | 95.7 (3) |
C10—Fe1—C5—C1 | 146.4 (2) | C2—C1—B1—O1 | −171.6 (3) |
C7—Fe1—C5—C1 | 65.1 (3) | C5—C1—B1—O1 | 3.3 (5) |
C4—Fe1—C5—C1 | −119.2 (3) | Fe1—C1—B1—O1 | −84.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 2.14 | 2.930 (3) | 156 |
O2—H2A···O1ii | 0.84 | 1.97 | 2.806 (3) | 172 |
Symmetry codes: (i) x+1/2, −y−1/2, z; (ii) −x, −y−1, −z−1. |
Acknowledgements
The authors acknowledge funding from the EPSRC for this and related work.
References
Aldridge, S. & Bresner, C. (2003). Coord. Chem. Rev. 244, 71–92. Web of Science CrossRef CAS Google Scholar
Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation. Google Scholar
Appel, A., Jäkle, F., Priermeier, T., Schmid, R. & Wagner, M. (1996). Organometallics, 15, 1188–1194. CSD CrossRef CAS Web of Science Google Scholar
Bats, J. W., Ma, K. & Wagner, M. (2002). Acta Cryst. C58, m129–m132. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142–2150. Web of Science CSD CrossRef CAS Google Scholar
Dusemund, C., Sandanayake, K. R. A. S. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 333–334. CrossRef Web of Science Google Scholar
Elschenbroich, C., Wolf, M., Pebler, J. & Harms, K. (2004). Organometallics, 23, 454–459. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hua, D. H., McGill, J. W., Ueda, M. & Stephany, H. A. (2001). J. Organomet. Chem. 637–639, 832–836. Web of Science CrossRef CAS Google Scholar
McVey, S., Morrison, I. G. & Pauson, P. L. (1967). J. Chem. Soc. C, pp. 1847–1850. Google Scholar
Nesmeyanov, A. N., Sazonowa, V. A. & Drozd, V. N. (1959). Dokl. Akad. Nauk SSSR, 126, 1004–1008. (In Russian.) CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ori, A. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1771–1772. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075. CAS Google Scholar
Shechter, H. & Helling, J. F. (1961). J. Org. Chem. 26, 1034–1037. CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.