organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Chloro­methyl)­tri­methyl­silane at 160 K

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: s.parsons@ed.ac.uk

(Received 16 February 2004; accepted 8 March 2004; online 24 March 2004)

(Chloro­methyl)­tri­methyl­silane, Me3SiCH2Cl or C4H11ClSi, is a liquid at room temperature, and it was crystallized using in situ methods. The C—Si—C bond angles involving the chloro­methyl group are somewhat smaller than those involving only methyl groups [105.5 (2)–109.47 (19)° versus 110.01 (19)–111.2 (2)°], which is ascribable to both the electronegative and the steric effects of the Cl atom.

Comment

(Chloro­methyl)­tri­methyl­silane, (I[link]), is a liquid under ambient conditions, and a crystal was obtained by in situ crystallization of a sample held in a hand-drawn Pyrex capillary (Boese & Nussbaumer, 1994[Boese, R. & Nussbaumer, M. (1994). Correlations, Transformations and Interactions in Organic Crystal Chemistry, IUCr Crystallographic Symposia, Vol. 7, edited by D. W. Jones & A. Katrusiak, pp. 20-37. Oxford University Press.]).

[Scheme 1]

Molecules of (I[link]) adopt the expected tetrahedral configuration at Si (Fig. 1[link]). Si—C bond distances fall into the range 1.848 (4)–1.880 (4) Å, although to within experimental error the bond distances and angles have Cs symmetry, with a mirror plane passing through atoms Si1, C1, Cl1 and C4; the C4—Si1—C1—Cl1 torsion angle [175.3 (2)°] shows a somewhat more significant deviation from the symmetry. The bond angles at atom Si1 involving the more electronegative CH2Cl group are smaller [105.5 (2)–109.47 (19)°] than those involving only methyl groups [110.01 (19)–111.2 (2)°]. The smaller magnitude of C1—Si1—C4 [105.5 (2)°] relative to C1—Si1—C2 [109.4 (2)°] and C1—Si1—C3 [109.47 (19)°] presumably reflects the steric influence of the Cl atom.

The only intermolecular interactions falling within the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of the participating atoms are weak Cl1⋯H33i [symmetry code (i): −x, −y, z − [{1 \over 2}]] interactions (2.93 Å; the sum of the van der Waals radii of Cl and H is 2.95 Å). These result in chains that spiral about the 21 axis parallel to the c direction (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the molecular structure of (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radii.
[Figure 2]
Figure 2
The molecular packing of (I[link]), viewed along the b axis. Weak intermolecular Cl1⋯H33 interactions are shown as dotted lines.

Experimental

A sample of (I[link]) was obtained from Aldrich and used as received. Compound (I[link]) is a liquid under ambient conditions and it was crystallized in situ in a capillary (o.d. 0.34 mm) mounted on the diffractometer. A crystal was grown by first establishing a seed in a small volume of the liquid at 182.8 K, and then cooling at a rate of 10 K h−1. The sample was then cooled to 160 K for data collection.

Crystal data
  • C4H11ClSi

  • Mr = 122.67

  • Orthorhombic, Pna21

  • a = 13.8776 (13) Å

  • b = 6.3855 (9) Å

  • c = 8.4000 (10) Å

  • V = 744.37 (15) Å3

  • Z = 4

  • Dx = 1.095 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 72 reflections

  • θ = 15–16°

  • μ = 0.56 mm−1

  • T = 160 K

  • Cylinder, colourless

  • 0.50 × 0.39 × 0.39 mm

  • 0.50 mm length, 0.39 mm radius

Data collection
  • Stoe STADI-4 diffractometer equipped with an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.])

  • ωθ scans

  • Absorption correction: ψ scan [azimuthal absorption correction (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) applied using XPREP (Sheldrick, 1997[Sheldrick, G. M. (1997). XP, XPREP and SHELXL97. University of Göttingen, Germany.])]Tmin = 0.741, Tmax = 0.804

  • 3768 measured reflections

  • 1306 independent reflections

  • 1186 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 25.0°

  • h = −1 → 16

  • k = −7 → 7

  • l = −9 → 9

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.02

  • 1305 reflections

  • 56 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F)2 + (0.0706P)2 + 0.41P] where P = 0.3333max(0,Fo2) + 0.6667Fc2

  • (Δ/σ)max = 0.001

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 602 Friedel pairs

  • Flack parameter = −0.17 (17)

Table 1
Selected geometric parameters (Å, °)

Cl1—C1 1.798 (5)
Si1—C1 1.880 (4)
Si1—C2 1.848 (4)
Si1—C3 1.862 (4)
Si1—C4 1.867 (4)
C1—Si1—C2 109.4 (2)
C1—Si1—C3 109.47 (19)
C1—Si1—C4 105.5 (2)
C2—Si1—C3 110.01 (19)
C2—Si1—C4 111.2 (2)
C3—Si1—C4 111.18 (19)
Cl1—C1—Si1 111.9 (2)

The positions of the H atoms were recalculated geometrically after each refinement cycle, using a C—H distance of 1.00 Å, and they were assigned Uiso(H) = 1.2Ueq(C). The 10,1,0 reflection was omitted as an outlier.

Data collection: DIF4 (Stoe & Cie, 1990[Stoe & Cie (1990). DIF4 (Version 7.09/DOS) and REDU4 (Version 7.03/DOS). Stoe & Cie, Darmstadt, Germany.]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990[Stoe & Cie (1990). DIF4 (Version 7.09/DOS) and REDU4 (Version 7.03/DOS). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: DIRDIF (Beurskens et al., 1996[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]) and XP (Sheldrick, 1997[Sheldrick, G. M. (1997). XP, XPREP and SHELXL97. University of Göttingen, Germany.]); software used to prepare material for publication: CRYSTALS, enCIFer (CCDC, 2003[CCDC (2003). enCIFer. Test version. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) used within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DIF4 (Stoe & Cie, 1990); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and XP (Sheldrick, 1997); software used to prepare material for publication: CRYSTALS, enCIFer (CCDC, 2003) and PLATON (Spek, 2003) used within WinGX (Farrugia, 1999).

(Chloromethyl)trimethylsilane top
Crystal data top
C4H11ClSiDx = 1.095 Mg m3
Mr = 122.67Melting point: 182.8 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 72 reflections
a = 13.8776 (13) Åθ = 15–16°
b = 6.3855 (9) ŵ = 0.56 mm1
c = 8.400 (1) ÅT = 160 K
V = 744.37 (15) Å3Cylinder, colourless
Z = 40.50 × 0.39 × 0.39 × 0.39 (radius) mm
F(000) = 264
Data collection top
Stoe STADI-4
diffractometer equipped with an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986)
Rint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ωθ scansh = 116
Absorption correction: ψ scan
Azimuthal absorption correction (North et al., 1968) applied using XPREP (Sheldrick, 1997)
k = 77
Tmin = 0.741, Tmax = 0.804l = 99
3768 measured reflections3 standard reflections every 0 reflections
1306 independent reflections intensity decay: 0.0%
1186 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(F*) + (0.0706P)2 + 0.41P]
where P = 0.333*max(Fo2,0) + (1-0.333)Fc2 (SHELXL97; Sheldrick, 1997)
S = 1.02(Δ/σ)max = 0.001
1305 reflectionsΔρmax = 0.43 e Å3
56 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 602 Friedel pairs
Primary atom site location: PattersonAbsolute structure parameter: 0.17 (17)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09384 (8)0.28224 (18)0.33332 (15)0.0602
Si10.14648 (6)0.17201 (14)0.00888 (17)0.0327
C10.0582 (3)0.3037 (6)0.1281 (5)0.0430
C20.2681 (3)0.2813 (6)0.0252 (5)0.0492
C30.1468 (3)0.1149 (6)0.0303 (5)0.0464
C40.1032 (3)0.2305 (7)0.2146 (5)0.0522
H110.05380.45530.09930.0516*
H120.00640.23660.11470.0516*
H210.31510.21130.04760.0591*
H220.26730.43510.00340.0591*
H230.28740.25610.13820.0591*
H310.19370.18490.04260.0557*
H320.16590.14110.14330.0557*
H330.08080.17270.01120.0557*
H410.14770.16440.29360.0629*
H420.10240.38570.23110.0629*
H430.03680.17330.22860.0629*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0550 (6)0.0864 (8)0.0393 (6)0.0021 (6)0.0026 (6)0.0070 (7)
Si10.0317 (4)0.0313 (4)0.0350 (5)0.0017 (4)0.0013 (5)0.0014 (5)
C10.041 (2)0.044 (2)0.044 (2)0.0084 (17)0.0020 (17)0.0021 (19)
C20.039 (2)0.050 (2)0.059 (3)0.0074 (17)0.001 (2)0.001 (2)
C30.048 (2)0.0382 (18)0.053 (3)0.0006 (17)0.0011 (19)0.0025 (17)
C40.060 (3)0.058 (3)0.039 (2)0.006 (2)0.0051 (19)0.0053 (18)
Geometric parameters (Å, º) top
Cl1—C11.798 (5)C2—H220.999
Si1—C11.880 (4)C2—H211.000
Si1—C21.848 (4)C3—H331.000
Si1—C31.862 (4)C3—H321.000
Si1—C41.867 (4)C3—H311.000
C1—H121.000C4—H430.998
C1—H111.000C4—H421.000
C2—H231.000C4—H410.999
C1—Si1—C2109.4 (2)H23—C2—Si1109.391
C1—Si1—C3109.47 (19)H22—C2—Si1109.438
C1—Si1—C4105.5 (2)H21—C2—Si1109.407
C2—Si1—C3110.01 (19)H33—C3—H32109.483
C2—Si1—C4111.2 (2)H33—C3—H31109.471
C3—Si1—C4111.18 (19)H32—C3—H31109.508
H12—C1—H11109.474H33—C3—Si1109.441
H12—C1—Cl1108.829H32—C3—Si1109.458
H11—C1—Cl1108.829H31—C3—Si1109.467
H12—C1—Si1108.878H43—C4—H42109.610
H11—C1—Si1108.891H43—C4—H41109.690
Cl1—C1—Si1111.9 (2)H42—C4—H41109.489
H23—C2—H22109.553H43—C4—Si1109.412
H23—C2—H21109.488H42—C4—Si1109.281
H22—C2—H21109.551H41—C4—Si1109.344
 

Acknowledgements

The authors thank the EPSRC and the University of Edinburgh for funding.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBoese, R. & Nussbaumer, M. (1994). Correlations, Transformations and Interactions in Organic Crystal Chemistry, IUCr Crystallographic Symposia, Vol. 7, edited by D. W. Jones & A. Katrusiak, pp. 20–37. Oxford University Press.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCCDC (2003). enCIFer. Test version. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). XP, XPREP and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1990). DIF4 (Version 7.09/DOS) and REDU4 (Version 7.03/DOS). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds