organic compounds
(Chloromethyl)trimethylsilane at 160 K
aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: s.parsons@ed.ac.uk
(Chloromethyl)trimethylsilane, Me3SiCH2Cl or C4H11ClSi, is a liquid at room temperature, and it was crystallized using in situ methods. The C—Si—C bond angles involving the chloromethyl group are somewhat smaller than those involving only methyl groups [105.5 (2)–109.47 (19)° versus 110.01 (19)–111.2 (2)°], which is ascribable to both the electronegative and the steric effects of the Cl atom.
Comment
(Chloromethyl)trimethylsilane, (I), is a liquid under ambient conditions, and a crystal was obtained by in situ crystallization of a sample held in a hand-drawn Pyrex capillary (Boese & Nussbaumer, 1994).
Molecules of (I) adopt the expected tetrahedral configuration at Si (Fig. 1). Si—C bond distances fall into the range 1.848 (4)–1.880 (4) Å, although to within experimental error the bond distances and angles have Cs symmetry, with a mirror plane passing through atoms Si1, C1, Cl1 and C4; the C4—Si1—C1—Cl1 torsion angle [175.3 (2)°] shows a somewhat more significant deviation from the symmetry. The bond angles at atom Si1 involving the more electronegative CH2Cl group are smaller [105.5 (2)–109.47 (19)°] than those involving only methyl groups [110.01 (19)–111.2 (2)°]. The smaller magnitude of C1—Si1—C4 [105.5 (2)°] relative to C1—Si1—C2 [109.4 (2)°] and C1—Si1—C3 [109.47 (19)°] presumably reflects the steric influence of the Cl atom.
The only intermolecular interactions falling within the sum of the van der Waals radii (Bondi, 1964) of the participating atoms are weak Cl1⋯H33i [symmetry code (i): −x, −y, z − ] interactions (2.93 Å; the sum of the van der Waals radii of Cl and H is 2.95 Å). These result in chains that spiral about the 21 axis parallel to the c direction (Fig. 2).
Experimental
A sample of (I) was obtained from Aldrich and used as received. Compound (I) is a liquid under ambient conditions and it was crystallized in situ in a capillary (o.d. 0.34 mm) mounted on the diffractometer. A crystal was grown by first establishing a seed in a small volume of the liquid at 182.8 K, and then cooling at a rate of 10 K h−1. The sample was then cooled to 160 K for data collection.
Crystal data
|
Data collection
Refinement
|
|
The positions of the H atoms were recalculated geometrically after each Uiso(H) = 1.2Ueq(C). The 10,1,0 reflection was omitted as an outlier.
cycle, using a C—H distance of 1.00 Å, and they were assignedData collection: DIF4 (Stoe & Cie, 1990); cell DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and XP (Sheldrick, 1997); software used to prepare material for publication: CRYSTALS, enCIFer (CCDC, 2003) and PLATON (Spek, 2003) used within WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536804005276/ya6200sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804005276/ya6200Isup2.hkl
Data collection: DIF4 (Stoe & Cie, 1990); cell
DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and XP (Sheldrick, 1997); software used to prepare material for publication: CRYSTALS, enCIFer (CCDC, 2003) and PLATON (Spek, 2003) used within WinGX (Farrugia, 1999).C4H11ClSi | Dx = 1.095 Mg m−3 |
Mr = 122.67 | Melting point: 182.8 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 72 reflections |
a = 13.8776 (13) Å | θ = 15–16° |
b = 6.3855 (9) Å | µ = 0.56 mm−1 |
c = 8.400 (1) Å | T = 160 K |
V = 744.37 (15) Å3 | Cylinder, colourless |
Z = 4 | 0.50 × 0.39 × 0.39 × 0.39 (radius) mm |
F(000) = 264 |
Stoe STADI-4 diffractometer equipped with an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986) | Rint = 0.030 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
ω–θ scans | h = −1→16 |
Absorption correction: ψ scan Azimuthal absorption correction (North et al., 1968) applied using XPREP (Sheldrick, 1997) | k = −7→7 |
Tmin = 0.741, Tmax = 0.804 | l = −9→9 |
3768 measured reflections | 3 standard reflections every 0 reflections |
1306 independent reflections | intensity decay: 0.0% |
1186 reflections with I > 2σ(I) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(F*) + (0.0706P)2 + 0.41P] where P = 0.333*max(Fo2,0) + (1-0.333)Fc2 (SHELXL97; Sheldrick, 1997) |
S = 1.02 | (Δ/σ)max = 0.001 |
1305 reflections | Δρmax = 0.43 e Å−3 |
56 parameters | Δρmin = −0.32 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 602 Friedel pairs |
Primary atom site location: Patterson | Absolute structure parameter: −0.17 (17) |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.09384 (8) | 0.28224 (18) | −0.33332 (15) | 0.0602 | |
Si1 | 0.14648 (6) | 0.17201 (14) | 0.00888 (17) | 0.0327 | |
C1 | 0.0582 (3) | 0.3037 (6) | −0.1281 (5) | 0.0430 | |
C2 | 0.2681 (3) | 0.2813 (6) | −0.0252 (5) | 0.0492 | |
C3 | 0.1468 (3) | −0.1149 (6) | −0.0303 (5) | 0.0464 | |
C4 | 0.1032 (3) | 0.2305 (7) | 0.2146 (5) | 0.0522 | |
H11 | 0.0538 | 0.4553 | −0.0993 | 0.0516* | |
H12 | −0.0064 | 0.2366 | −0.1147 | 0.0516* | |
H21 | 0.3151 | 0.2113 | 0.0476 | 0.0591* | |
H22 | 0.2673 | 0.4351 | −0.0034 | 0.0591* | |
H23 | 0.2874 | 0.2561 | −0.1382 | 0.0591* | |
H31 | 0.1937 | −0.1849 | 0.0426 | 0.0557* | |
H32 | 0.1659 | −0.1411 | −0.1433 | 0.0557* | |
H33 | 0.0808 | −0.1727 | −0.0112 | 0.0557* | |
H41 | 0.1477 | 0.1644 | 0.2936 | 0.0629* | |
H42 | 0.1024 | 0.3857 | 0.2311 | 0.0629* | |
H43 | 0.0368 | 0.1733 | 0.2286 | 0.0629* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0550 (6) | 0.0864 (8) | 0.0393 (6) | 0.0021 (6) | −0.0026 (6) | 0.0070 (7) |
Si1 | 0.0317 (4) | 0.0313 (4) | 0.0350 (5) | 0.0017 (4) | 0.0013 (5) | −0.0014 (5) |
C1 | 0.041 (2) | 0.044 (2) | 0.044 (2) | 0.0084 (17) | −0.0020 (17) | 0.0021 (19) |
C2 | 0.039 (2) | 0.050 (2) | 0.059 (3) | −0.0074 (17) | 0.001 (2) | −0.001 (2) |
C3 | 0.048 (2) | 0.0382 (18) | 0.053 (3) | 0.0006 (17) | 0.0011 (19) | −0.0025 (17) |
C4 | 0.060 (3) | 0.058 (3) | 0.039 (2) | 0.006 (2) | 0.0051 (19) | −0.0053 (18) |
Cl1—C1 | 1.798 (5) | C2—H22 | 0.999 |
Si1—C1 | 1.880 (4) | C2—H21 | 1.000 |
Si1—C2 | 1.848 (4) | C3—H33 | 1.000 |
Si1—C3 | 1.862 (4) | C3—H32 | 1.000 |
Si1—C4 | 1.867 (4) | C3—H31 | 1.000 |
C1—H12 | 1.000 | C4—H43 | 0.998 |
C1—H11 | 1.000 | C4—H42 | 1.000 |
C2—H23 | 1.000 | C4—H41 | 0.999 |
C1—Si1—C2 | 109.4 (2) | H23—C2—Si1 | 109.391 |
C1—Si1—C3 | 109.47 (19) | H22—C2—Si1 | 109.438 |
C1—Si1—C4 | 105.5 (2) | H21—C2—Si1 | 109.407 |
C2—Si1—C3 | 110.01 (19) | H33—C3—H32 | 109.483 |
C2—Si1—C4 | 111.2 (2) | H33—C3—H31 | 109.471 |
C3—Si1—C4 | 111.18 (19) | H32—C3—H31 | 109.508 |
H12—C1—H11 | 109.474 | H33—C3—Si1 | 109.441 |
H12—C1—Cl1 | 108.829 | H32—C3—Si1 | 109.458 |
H11—C1—Cl1 | 108.829 | H31—C3—Si1 | 109.467 |
H12—C1—Si1 | 108.878 | H43—C4—H42 | 109.610 |
H11—C1—Si1 | 108.891 | H43—C4—H41 | 109.690 |
Cl1—C1—Si1 | 111.9 (2) | H42—C4—H41 | 109.489 |
H23—C2—H22 | 109.553 | H43—C4—Si1 | 109.412 |
H23—C2—H21 | 109.488 | H42—C4—Si1 | 109.281 |
H22—C2—H21 | 109.551 | H41—C4—Si1 | 109.344 |
Acknowledgements
The authors thank the EPSRC and the University of Edinburgh for funding.
References
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Boese, R. & Nussbaumer, M. (1994). Correlations, Transformations and Interactions in Organic Crystal Chemistry, IUCr Crystallographic Symposia, Vol. 7, edited by D. W. Jones & A. Katrusiak, pp. 20–37. Oxford University Press. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
CCDC (2003). enCIFer. Test version. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). XP, XPREP and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1990). DIF4 (Version 7.09/DOS) and REDU4 (Version 7.03/DOS). Stoe & Cie, Darmstadt, Germany. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.