organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Bis­(tri­methyl­silyl­ethynyl)-2,2′-bi­pyridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khod 123, Sultanate of Oman, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 19 April 2004; accepted 26 April 2004; online 30 April 2004)

The title compound, 5,5′-bis­(tri­methyl­silyl­ethynyl)-2,2′-bi­pyridine, C20H24N2Si2, is a tri­methyl­silyl-protected dialkyne. It is a precursor in the preparation of platinum di-yne complexes and platinum poly-yne polymers. Such organic compounds are of interest because of the extended π-conjugation that occurs through the hetero-aromatic linker unit in the molecular backbone. Within the mol­ecule, the ­silyl-alkyne groups are essentially linear and the bi­pyridine unit is approximately planar with a dihedral angle of 5.3 (1)° between the planes.

Comment

In this paper, we report the structural characterization of the title compound, (I), which is a tri­methyl­silyl-protected di-alkyne and a precursor of the dinuclear platinum(II) di-yne species, trans-[(Ph)(PEt3)2Pt—C≡C—R—C≡C—Pt(PEt3)2(Ph)] (R = 2,2′-bipyridne-5,5′-diyl). Such organoplatinum species forms the building blocks for rigid-rod platinum poly-ynes with the general formula trans-[(nBu3P)2Pt—C≡C—R—C≡C—] (R = aromatic or heteroaromatic spacer group). Platinum poly-ynes are of immense current interest because of the π-electron conjugation that occurs along the polymer backbone, novel donor-acceptor interaction between the metal centres and the conjugated ligands, and the unique photophysical properties arising from the large spin–orbit coupling associated with the presence of the heavy metal atoms (Wittmann et al., 1994[Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693-2698.]; Beljonne et al., 1996[Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868-3877.]; Younus et al., 1998[Younus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036-3039.]; Chawdhury et al., 1998[Chawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). Macromol­ecules, 31, 722-727.], 1999[Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963-4970.]; Wilson et al., 2000[Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627-7634.]; Wilson, Chawdhury et al., 2001[Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 123, 9412-9417.]; Wilson, Dhoot et al., 2001[Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828-831.]; Khan, Al-Mandhary, Al-Suti, Hisahm et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]; Khan, Al-Mandhary, Al-Feeder et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441-2448.]; Khan, Al-Mandhary, Al-Suti, Corcoran et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140-149.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Male et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). Dalton Trans. pp. 65-73.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Mahon et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Boothby, C. E. & Köhler, A. (2003). Dalton Trans. pp. 74-84.]). [link]

[Scheme 1]

Precursors to organometallic polymers, such as the title compound, (I), are studied as models of the molecular and electronic properties and structure-property relationships that occur in metal poly-ynes. The central ring system of (I[link]) is approximately planar, with a dihedral angle of 5.3 (1)° between the planes of the two pyridine rings. The Si—C≡C and the C≡C—C(ring) units are essentially linear. There are no short intermolecular contacts within the crystal structure.

[Figure 1]
Figure 1
View of (I[link]) (50% probability displacement ellipsoids). The disorder in the methyl groups has been omitted for clarity.

Experimental

5,5′-Bis­(tri­methyl­silyl­ethynyl)-2,2′-bi­pyridine was synthesized according to the procedure of Khan, Al-Mandhary, Al-Suti, Hisahm et al. (2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]). To a solution of 5,5′-di­bromo-2,2′-bi­pyridine (2.0 g, 6.37 mmol) in diiso­propyl­amine/THF (60 ml, 1:1 v/v) under nitro­gen was added a catalytic mixture of CuI (15 mg), Pd(OAc)2 (16 mgl) and PPh3 (50 mg). The solution was stirred for 20 min at 323 K and then tri­methyl­silyl­ethyne (2.24 ml, 15.92 mmol) was added and the mixture stirred for another 20 min. The temperature was then raised to 348 K and the reaction left under reflux with stirring for 20 h. The completion of the reaction was determined by silica thin-layer chromatography and IR spectroscopy. The solution was allowed to cool to room temperature, was filtered and the solvent mixture removed. The residue was subjected to silica column chromatography using hexane/CH2Cl2 (1:2) as eluant to afford (I[link]) as colourless needles (1.77 g, 80% yield).

Crystal data
  • C20H24N2Si2

  • Mr = 348.59

  • Monoclinic, P21/c

  • a = 6.1910 (6) Å

  • b = 25.697 (2) Å

  • c = 13.2450 (11) Å

  • β = 92.249 (5)°

  • V = 2105.5 (3) Å3

  • Z = 4

  • Dx = 1.1 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 22 483 reflections

  • θ = 2.9–25.0°

  • μ = 0.17 mm−1

  • T = 180 (2) K

  • Needle, colourless

  • 0.18 × 0.11 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.94, Tmax = 0.99

  • 8978 measured reflections

  • 3715 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 25.1°

  • h = −7 → 7

  • k = −30 → 30

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.110

  • S = 1.00

  • 3715 reflections

  • 243 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

The two tri­methyl­silyl groups are partially disordered, and one CH3 group on each terminal group was refined over two positions with occupancies of 0.3 (1) and 0.7 (1) for C1 and C1′, respectively, and 0.56 (2) and 0.44 (2) for C18 and C18′, respectively; the associated H atoms were assigned the same occupancies. All aromatic and methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distances of 0.93 and 0.96 Å, respectively. Uiso values were set equal to 1.2Ueq (1.5 for methyl H) of the parent atom.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
C20H24N2Si2F(000) = 744
Mr = 348.59Dx = 1.1 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22483 reflections
a = 6.1910 (6) Åθ = 2.9–25.0°
b = 25.697 (2) ŵ = 0.17 mm1
c = 13.2450 (11) ÅT = 180 K
β = 92.249 (5)°Tablet, colourless
V = 2105.5 (3) Å30.18 × 0.11 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2301 reflections with I > 2σ(I)
CCD scansRint = 0.052
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 25.1°, θmin = 3.7°
Tmin = 0.94, Tmax = 0.99h = 07
8978 measured reflectionsk = 3030
3715 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max = 0.002
243 parametersΔρmax = 0.18 e Å3
28 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si11.15745 (10)0.22354 (3)0.20143 (5)0.0452 (2)
Si20.10692 (10)0.59904 (3)0.98707 (5)0.0484 (2)
C11.337 (4)0.2506 (12)0.1051 (14)0.083 (8)0.30
H1A1.25210.27000.05590.124*0.30
H1B1.40920.22260.07220.124*0.30
H1C1.44230.27310.13740.124*0.30
C1'1.2693 (16)0.2406 (6)0.0769 (6)0.074 (3)0.70
H1'11.36160.27040.08460.111*0.70
H1'21.15270.24830.02930.111*0.70
H1'31.35110.21170.05260.111*0.70
C20.9326 (4)0.17786 (12)0.1731 (2)0.0854 (10)
H2A0.85930.17040.23400.128*
H2B0.98880.14620.14620.128*
H2C0.83300.19330.12450.128*
C31.3557 (4)0.19401 (12)0.2916 (2)0.0754 (9)
H3A1.47000.21840.30670.113*
H3B1.41460.16320.26250.113*
H3C1.28580.18510.35270.113*
C41.0400 (3)0.27990 (10)0.26492 (17)0.0467 (6)
C50.9560 (3)0.31345 (10)0.31314 (17)0.0435 (6)
N10.5516 (3)0.37694 (8)0.47131 (14)0.0459 (5)
C60.6455 (3)0.34556 (10)0.40625 (17)0.0480 (6)
H60.56500.31790.37940.058*
C70.8572 (3)0.35155 (9)0.37577 (16)0.0389 (6)
C80.9676 (3)0.39481 (9)0.41289 (16)0.0422 (6)
H81.10700.40150.39260.051*
C90.8727 (3)0.42769 (9)0.47926 (15)0.0358 (5)
H90.94680.45680.50390.043*
C100.6666 (3)0.41736 (9)0.50926 (15)0.0327 (5)
N20.6783 (3)0.48926 (8)0.62732 (14)0.0421 (5)
C110.5640 (3)0.44926 (8)0.58700 (15)0.0324 (5)
C120.3595 (3)0.43736 (9)0.61818 (16)0.0408 (6)
H120.28380.40940.58970.049*
C130.2693 (3)0.46696 (10)0.69111 (17)0.0474 (7)
H130.13080.45940.71160.057*
C140.3826 (3)0.50797 (9)0.73444 (16)0.0382 (6)
C150.5874 (3)0.51767 (9)0.69937 (16)0.0425 (6)
H150.66570.54540.72730.051*
C160.2949 (3)0.53950 (10)0.81337 (18)0.0442 (6)
C170.2193 (4)0.56410 (10)0.88083 (18)0.0489 (7)
C180.1937 (14)0.5921 (7)0.9876 (8)0.069 (3)0.56
H18A0.25790.60990.93020.103*0.56
H18B0.24590.60691.04850.103*0.56
H18C0.23150.55590.98430.103*0.56
C18'0.1855 (17)0.6039 (9)0.9470 (10)0.066 (4)0.44
H18D0.19950.62200.88360.098*0.44
H18E0.26180.62260.99720.098*0.44
H18F0.24540.56960.93960.098*0.44
C190.1993 (5)0.56474 (12)1.10385 (19)0.0854 (10)
H19A0.13750.53051.10440.128*
H19B0.15420.58381.16170.128*
H19C0.35410.56211.10600.128*
C200.2088 (4)0.66656 (10)0.98830 (19)0.0596 (7)
H20A0.36340.66630.99770.089*
H20B0.14660.68541.04260.089*
H20C0.16950.68310.92520.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0495 (4)0.0455 (5)0.0411 (4)0.0099 (3)0.0095 (3)0.0041 (4)
Si20.0470 (4)0.0500 (5)0.0486 (5)0.0025 (3)0.0082 (3)0.0143 (4)
C10.122 (17)0.079 (17)0.049 (11)0.062 (12)0.024 (10)0.024 (11)
C1'0.087 (5)0.082 (5)0.056 (5)0.022 (4)0.039 (4)0.004 (5)
C20.0666 (18)0.078 (2)0.112 (3)0.0040 (16)0.0007 (16)0.041 (2)
C30.0790 (19)0.078 (2)0.069 (2)0.0226 (17)0.0047 (15)0.0051 (17)
C40.0506 (14)0.0484 (17)0.0415 (15)0.0035 (12)0.0079 (11)0.0045 (14)
C50.0458 (14)0.0428 (16)0.0420 (15)0.0010 (12)0.0039 (11)0.0024 (13)
N10.0415 (11)0.0463 (13)0.0505 (13)0.0045 (10)0.0083 (9)0.0145 (11)
C60.0443 (14)0.0476 (17)0.0523 (16)0.0052 (12)0.0062 (11)0.0198 (14)
C70.0409 (13)0.0412 (16)0.0348 (13)0.0061 (11)0.0059 (10)0.0019 (12)
C80.0406 (13)0.0440 (16)0.0425 (15)0.0024 (12)0.0102 (10)0.0010 (13)
C90.0369 (12)0.0343 (14)0.0367 (13)0.0046 (10)0.0057 (10)0.0030 (12)
C100.0364 (12)0.0300 (14)0.0317 (13)0.0024 (10)0.0003 (9)0.0018 (11)
N20.0455 (11)0.0384 (12)0.0428 (12)0.0019 (10)0.0055 (9)0.0054 (10)
C110.0362 (12)0.0289 (13)0.0319 (13)0.0023 (10)0.0015 (9)0.0023 (11)
C120.0330 (12)0.0447 (16)0.0450 (14)0.0057 (11)0.0046 (10)0.0109 (13)
C130.0362 (13)0.0565 (19)0.0500 (16)0.0027 (12)0.0075 (11)0.0105 (14)
C140.0423 (13)0.0396 (15)0.0329 (14)0.0109 (11)0.0044 (10)0.0007 (12)
C150.0502 (14)0.0386 (15)0.0388 (15)0.0039 (11)0.0040 (11)0.0067 (12)
C160.0448 (14)0.0441 (16)0.0434 (16)0.0043 (11)0.0020 (11)0.0004 (13)
C170.0497 (14)0.0485 (18)0.0485 (16)0.0053 (12)0.0022 (12)0.0069 (14)
C180.053 (4)0.083 (8)0.072 (8)0.003 (4)0.017 (4)0.034 (7)
C18'0.048 (4)0.076 (10)0.076 (10)0.001 (4)0.029 (5)0.026 (8)
C190.140 (3)0.067 (2)0.0503 (18)0.004 (2)0.0209 (17)0.0006 (17)
C200.0637 (15)0.0567 (19)0.0580 (17)0.0067 (14)0.0019 (12)0.0049 (15)
Geometric parameters (Å, º) top
Si1—C41.839 (3)C8—C91.369 (3)
Si1—C31.842 (2)C8—H80.9300
Si1—C21.848 (3)C9—C101.377 (3)
Si1—C11.860 (13)C9—H90.9300
Si1—C1'1.866 (6)C10—C111.479 (3)
Si2—C171.829 (3)N2—C151.343 (3)
Si2—C201.846 (3)N2—C111.347 (3)
Si2—C191.851 (3)C11—C121.381 (3)
Si2—C181.870 (9)C12—C131.366 (3)
Si2—C18'1.871 (11)C12—H120.9300
C1—H1A0.9600C13—C141.379 (3)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.390 (3)
C1'—H1'10.9600C14—C161.445 (3)
C1'—H1'20.9600C15—H150.9300
C1'—H1'30.9600C16—C171.204 (3)
C2—H2A0.9600C18—H18A0.9600
C2—H2B0.9600C18—H18B0.9600
C2—H2C0.9600C18—H18C0.9600
C3—H3A0.9600C18'—H18D0.9600
C3—H3B0.9600C18'—H18E0.9600
C3—H3C0.9600C18'—H18F0.9600
C4—C51.203 (3)C19—H19A0.9600
C5—C71.435 (3)C19—H19B0.9600
N1—C61.330 (3)C19—H19C0.9600
N1—C101.345 (3)C20—H20A0.9600
C6—C71.395 (3)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—C81.385 (3)
C4—Si1—C3107.05 (12)C6—C7—C5121.2 (2)
C4—Si1—C2106.55 (11)C9—C8—C7120.3 (2)
C3—Si1—C2110.31 (15)C9—C8—H8119.8
C4—Si1—C1106.1 (10)C7—C8—H8119.8
C3—Si1—C1101.4 (8)C8—C9—C10119.5 (2)
C2—Si1—C1124.3 (8)C8—C9—H9120.2
C4—Si1—C1'112.7 (5)C10—C9—H9120.2
C3—Si1—C1'114.1 (4)N1—C10—C9121.6 (2)
C2—Si1—C1'105.8 (3)N1—C10—C11116.91 (18)
C1—Si1—C1'18.8 (10)C9—C10—C11121.5 (2)
C17—Si2—C20109.14 (12)C15—N2—C11117.93 (19)
C17—Si2—C19107.14 (13)N2—C11—C12121.6 (2)
C20—Si2—C19110.24 (13)N2—C11—C10117.76 (18)
C17—Si2—C18111.4 (5)C12—C11—C10120.61 (19)
C20—Si2—C18115.4 (6)C13—C12—C11119.5 (2)
C19—Si2—C18103.1 (3)C13—C12—H12120.2
C17—Si2—C18'102.0 (6)C11—C12—H12120.2
C20—Si2—C18'105.5 (7)C12—C13—C14120.3 (2)
C19—Si2—C18'122.2 (4)C12—C13—H13119.8
C18—Si2—C18'19.1 (6)C14—C13—H13119.8
Si1—C1—H1A109.5C13—C14—C15117.0 (2)
Si1—C1—H1B109.5C13—C14—C16122.0 (2)
Si1—C1—H1C109.5C15—C14—C16121.0 (2)
Si1—C1'—H1'1109.5N2—C15—C14123.6 (2)
Si1—C1'—H1'2109.5N2—C15—H15118.2
H1'1—C1'—H1'2109.5C14—C15—H15118.2
Si1—C1'—H1'3109.5C17—C16—C14177.6 (3)
H1'1—C1'—H1'3109.5C16—C17—Si2177.5 (2)
H1'2—C1'—H1'3109.5Si2—C18—H18A109.5
Si1—C2—H2A109.5Si2—C18—H18B109.5
Si1—C2—H2B109.5Si2—C18—H18C109.5
H2A—C2—H2B109.5Si2—C18'—H18D109.5
Si1—C2—H2C109.5Si2—C18'—H18E109.5
H2A—C2—H2C109.5H18D—C18'—H18E109.5
H2B—C2—H2C109.5Si2—C18'—H18F109.5
Si1—C3—H3A109.5H18D—C18'—H18F109.5
Si1—C3—H3B109.5H18E—C18'—H18F109.5
H3A—C3—H3B109.5Si2—C19—H19A109.5
Si1—C3—H3C109.5Si2—C19—H19B109.5
H3A—C3—H3C109.5H19A—C19—H19B109.5
H3B—C3—H3C109.5Si2—C19—H19C109.5
C5—C4—Si1173.7 (2)H19A—C19—H19C109.5
C4—C5—C7176.6 (3)H19B—C19—H19C109.5
C6—N1—C10118.16 (18)Si2—C20—H20A109.5
N1—C6—C7124.0 (2)Si2—C20—H20B109.5
N1—C6—H6118.0H20A—C20—H20B109.5
C7—C6—H6118.0Si2—C20—H20C109.5
C8—C7—C6116.2 (2)H20A—C20—H20C109.5
C8—C7—C5122.48 (19)H20B—C20—H20C109.5
 

Acknowledgements

We thank Sultan Qaboos University, Oman, the Royal Society, England, the Cambridge Crystallographic Data Centre, England, the EPSRC, England, and the DAAD, Germany, for funding.

References

First citationBeljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868–3877.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963–4970.  Web of Science CrossRef CAS Google Scholar
First citationChawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). Macromol­ecules, 31, 722–727.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441–2448.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358–1368.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Boothby, C. E. & Köhler, A. (2003). Dalton Trans. pp. 74–84.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). Dalton Trans. pp. 65–73.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 123, 9412–9417.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627–7634.  Web of Science CrossRef CAS Google Scholar
First citationWittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693–2698.  CrossRef CAS Web of Science Google Scholar
First citationYounus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036–3039.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds