organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­oxy­carbonyl-4-nitro­acetanilide: π-stacked chains linked in pairs by C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 15 April 2004; accepted 19 April 2004; online 24 April 2004)

Molecules of the title compound, C10H10N2O5, lie on mirror planes in space group Ibam. The mol­ecules are linked into [001] chains by an aromatic ππ stacking interaction, and pairs of these chains are linked by a single C—H⋯O hydrogen bond.

Comment

The title compound (I[link]) (Fig. 1[link]), crystallizes in the uncommon space group Ibam with Z′ = 0.5: all of the atoms apart from the methyl H atoms lie on a mirror plane, chosen for the reference mol­ecule as that at z = 0.5. Each of the H atoms in the methyl groups is disordered over two sites with equal occupancy. The inter-bond angles at N1, at C11 and at C21 (Table 1[link]) show marked deviations from 120°, possibly indicative of repulsive non-bonded intramolecular contacts (Table 2[link]). The bond distances show no unusual values. [link]

[Scheme 1]

The mol­ecules of compound (I[link]) are linked into chains by a single aromatic ππ stacking interaction, and these chains are weakly linked in pairs by a C—H⋯O hydrogen bond. The reference mol­ecule at (x, y, 0.5) forms π-stacking interactions with the two mol­ecules at (1 − x, y, 0) and (1 − x, y, 1). The common interplanar spacing is c/2 and the ring-centroid separation is 3.634 (2) Å, corresponding to a near-ideal centroid offset of 1.341 (2) Å. Propagation of this interaction thus produces a chain running parallel to the [001] direction and generated by the c-glide plane at x = 0.5 (Fig. 2[link]). Four chains of this type run through each unit cell; two are generated by the c-glide plane at x = 0.5 and lie wholly within the domain 0.25 < y < 0.75, while the two others generated by the c-glide plane at x = 0.0 lie within the domain −0.25 < x < 0.25.

Within each domain of x, the pairs of [001] chains in the domains 0 < y < 0.5 and 0.5 < y < 1.0 are linked by a single C—H⋯O hydrogen bond which, although it is rather long, is effectively linear (Table 2[link]). Atom C3 in the mol­ecule at (x, y, 0.5) acts as donor to nitro atom O41 in the mol­ecule at (1 − x, 1 − y, 0.5), so forming an R22(10) motif generated by the twofold rotation axis along (0.5, 0.5, z) (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, only one orientation is shown for each methyl group.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of compound (I[link]), showing the formation of a π-stacked chain along [001]. For the sake of clarity, the H atoms have all been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I[link]), showing the formation of the R22(10) motif which links the [001] chains into pairs. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 0.5).

Experimental

2-Carboxy­methyl­acetanilide was nitrated using fuming nitric acid at 273 K, following a published procedure (Adams et al., 1954[Adams, R., Young, T. E. & Short, R. W. P. (1954). J. Am. Chem. Soc. 76, 1114-1118.]). The reaction mixture was poured on to ice and the resulting solid (I[link]) was collected. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone (m.p. 447–449 K).

Crystal data
  • C10H10N2O5

  • Mr = 238.20

  • Orthorhombic, Ibam

  • a = 16.4482 (14) Å

  • b = 19.9095 (17) Å

  • c = 6.7549 (6) Å

  • V = 2212.1 (3) Å3

  • Z = 8

  • Dx = 1.430 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1384 reflections

  • θ = 2.1–27.5°

  • μ = 0.12 mm−1

  • T = 291 (2) K

  • Prism, colourless

  • 0.43 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area detector diffractometer

  • φω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.985

  • 7820 measured reflections

  • 1384 independent reflections

  • 828 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

  • h = −21 → 21

  • k = −24 → 25

  • l = −8 → 6

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.01

  • 1384 reflections

  • 105 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0672P)2 + 0.1650P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond angles (°)

C1—N1—C11 129.6 (2)
N1—C11—O11 122.8 (2)
N1—C11—C12 114.1 (2)
O11—C11—C12 123.1 (2)
C2—C21—O21 111.55 (19)
C2—C21—O22 125.9 (2)
O21—C21—O22 122.5 (2)
C21—O21—C22 117.2 (2)

Table 2
Geometric parameters (Å, °) for hydrogen bonds and short intramolecular contacts

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O22 0.86 1.98 2.691 (2) 139
C3—H3⋯O41i 0.93 2.51 3.440 (3) 180
C3—H3⋯O21 0.93 2.32 2.660 (3) 101
C6—H6⋯O11 0.93 2.23 2.854 (3) 124
Symmetry code: (i) 1-x,1-y,z.

All of the non-H atoms lie on mirror planes and the reference mol­ecule was chosen to lie on the mirror plane at z = 0.5. The H atoms were located in difference maps and then treated as riding atoms, with C—H distances 0.93 (aromatic) or 0.95 Å (methyl) and an N—H distance of 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. Each methyl group was modelled using six H-atom sites, each with 0.5 occupancy, offset by 60° intervals.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

2-Methoxycarbonyl-4-nitroacetanilide top
Crystal data top
C10H10N2O5F(000) = 992
Mr = 238.20Dx = 1.430 Mg m3
Orthorhombic, IbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2 2cCell parameters from 1384 reflections
a = 16.4482 (14) Åθ = 2.1–27.5°
b = 19.9095 (17) ŵ = 0.12 mm1
c = 6.7549 (6) ÅT = 291 K
V = 2212.1 (3) Å3Prism, colourless
Z = 80.43 × 0.18 × 0.13 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
1384 independent reflections
Radiation source: fine-focus sealed X-ray tube828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.930, Tmax = 0.985k = 2425
7820 measured reflectionsl = 86
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
1384 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.45219 (11)0.10453 (9)0.50000.0744 (6)
O210.66067 (10)0.37614 (9)0.50000.0692 (6)
O220.68212 (10)0.26564 (8)0.50000.0616 (6)
O410.40462 (14)0.47898 (12)0.50000.1634 (16)
O420.29482 (11)0.42449 (11)0.50000.0958 (8)
N10.54959 (11)0.18637 (9)0.50000.0489 (5)
N40.36872 (14)0.42739 (12)0.50000.0729 (8)
C10.50391 (14)0.24555 (11)0.50000.0416 (6)
C20.54480 (12)0.30844 (11)0.50000.0408 (5)
C30.49928 (13)0.36756 (12)0.50000.0470 (6)
C40.41495 (13)0.36446 (12)0.50000.0490 (6)
C50.37413 (14)0.30371 (13)0.50000.0507 (6)
C60.41814 (14)0.24511 (12)0.50000.0504 (6)
C110.52385 (16)0.12038 (12)0.50000.0512 (6)
C120.59167 (17)0.07005 (13)0.50000.0689 (8)
C210.63546 (13)0.31282 (11)0.50000.0450 (6)
C220.74801 (15)0.38759 (15)0.50000.0832 (10)
H10.60150.19190.50000.059*
H30.52540.40900.50000.056*
H50.31760.30260.50000.061*
H60.39080.20420.50000.061*
H12A0.63640.08710.42360.103*0.50
H12B0.57290.02870.44280.103*0.50
H12C0.60920.06210.63350.103*0.50
H22A0.77260.36200.60460.125*0.50
H22B0.75870.43450.52020.125*0.50
H22C0.77040.37380.37520.125*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0529 (12)0.0586 (11)0.1116 (18)0.0126 (8)0.0000.000
O210.0310 (8)0.0527 (10)0.1239 (18)0.0032 (7)0.0000.000
O220.0367 (9)0.0546 (10)0.0936 (16)0.0063 (8)0.0000.000
O410.0541 (13)0.0527 (14)0.383 (5)0.0054 (10)0.0000.000
O420.0394 (11)0.0895 (15)0.158 (3)0.0176 (10)0.0000.000
N10.0394 (10)0.0479 (11)0.0593 (14)0.0033 (8)0.0000.000
N40.0402 (12)0.0643 (15)0.114 (2)0.0088 (11)0.0000.000
C10.0381 (12)0.0490 (12)0.0376 (14)0.0013 (9)0.0000.000
C20.0325 (11)0.0494 (12)0.0404 (14)0.0020 (9)0.0000.000
C30.0358 (12)0.0497 (12)0.0556 (16)0.0024 (10)0.0000.000
C40.0351 (12)0.0541 (14)0.0580 (17)0.0029 (10)0.0000.000
C50.0314 (11)0.0679 (16)0.0527 (17)0.0019 (11)0.0000.000
C60.0369 (13)0.0590 (15)0.0554 (17)0.0090 (10)0.0000.000
C110.0522 (15)0.0485 (14)0.0530 (16)0.0055 (11)0.0000.000
C120.0604 (16)0.0521 (16)0.094 (2)0.0014 (12)0.0000.000
C210.0365 (12)0.0479 (13)0.0504 (16)0.0031 (10)0.0000.000
C220.0301 (13)0.0730 (18)0.147 (3)0.0092 (13)0.0000.000
Geometric parameters (Å, º) top
C1—N11.397 (3)O21—C221.454 (3)
C1—C61.411 (3)C22—H22A0.96
C1—C21.421 (3)C22—H22B0.96
N1—C111.380 (3)C22—H22C0.96
N1—H10.86C3—C41.388 (3)
C11—O111.220 (3)C3—H30.93
C11—C121.499 (4)C4—C51.383 (3)
C12—H12A0.96C4—N41.466 (3)
C12—H12B0.96N4—O411.185 (3)
C12—H12C0.96N4—O421.217 (3)
C2—C31.395 (3)C5—C61.373 (3)
C2—C211.494 (3)C5—H50.93
C21—O221.213 (3)C6—H60.93
C21—O211.327 (3)
N1—C1—C6122.2 (2)O21—C22—H22A109.5
N1—C1—C2119.24 (19)O21—C22—H22B109.5
C6—C1—C2118.6 (2)H22A—C22—H22B109.5
C1—N1—C11129.6 (2)O21—C22—H22C109.5
C11—N1—H1115.2H22A—C22—H22C109.5
C1—N1—H1115.2H22B—C22—H22C109.5
N1—C11—O11122.8 (2)C4—C3—C2119.9 (2)
N1—C11—C12114.1 (2)C4—C3—H3120.0
O11—C11—C12123.1 (2)C2—C3—H3120.0
C11—C12—H12A109.5C5—C4—C3121.6 (2)
C11—C12—H12B109.5C5—C4—N4119.7 (2)
H12A—C12—H12B109.5C3—C4—N4118.7 (2)
C11—C12—H12C109.5O41—N4—O42122.6 (2)
H12A—C12—H12C109.5O41—N4—C4118.8 (2)
H12B—C12—H12C109.5O42—N4—C4118.5 (2)
C3—C2—C1119.3 (2)C6—C5—C4119.1 (2)
C3—C2—C21119.1 (2)C6—C5—H5120.4
C1—C2—C21121.58 (19)C4—C5—H5120.4
C2—C21—O21111.55 (19)C5—C6—C1121.5 (2)
C2—C21—O22125.9 (2)C5—C6—H6119.3
O21—C21—O22122.5 (2)C1—C6—H6119.3
C21—O21—C22117.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.861.982.691 (2)139
C3—H3···O41i0.932.513.440 (3)180
C3—H3···O210.932.322.660 (3)101
C6—H6···O110.932.232.854 (3)124
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

X-ray data were collected at the University of Aberdeen using a Bruker SMART 1000 CCD diffractometer; the authors thank the University of Aberdeen for funding the purchase of the diffractometer. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAdams, R., Young, T. E. & Short, R. W. P. (1954). J. Am. Chem. Soc. 76, 1114–1118.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds