organic compounds
A correction has been published for this article. To view the correction, click here.
2-C-Hydroxymethyl-2,3-O-isopropylidene-D-ribono-1,5-lactam
aDepartment of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England, and cEcole Normale Supérieure, Département de Chimie, UMR 8642, 24 rue Lhomond, 75231 Paris Cedex 05, France
*Correspondence e-mail: christopher.newton@new.ox.ac.uk
The title compound, C9H14NO5, was formed by catalytic hydrogenation of an azidolactone using Pd-black in 1,4-dioxane.
Comment
The replacement of the ring O atom of a carbohydrate by nitrogen gives a range of sugar mimics (Winchester & Fleet, 1992), many of which are natural products widely spread in plants (Asano et al., 2000). Because of the multitude of potential biological activities, interest in understanding the structures in the search for transition-state analogues continues (Heck et al., 2004). Almost all of the natural products and their synthetic analogues contain straight carbon chains; however, there are some very promising indications that carbohydrate mimics with hydroxymethyl branches (Ichikawa & Igarashi, 1995; Ichikawa et al., 1998), as well as their deoxygenated equivalents (Lillelund et al., 2003; Ostrowski et al., 2003), will show significant inhibition of sugar-metabolizing enzymes. However, the chemistry of simple branched sugars as starting materials is little explored. The title compound, (3), is a powerful intermediate in which a stereochemical ambiguity arises from an aldol reaction; additionally, information about the conformation of both protected and unprotected may help to understand the basis of their biological activity.
The azidolactol (1) was prepared from D-ribose and submitted to the key aldol branching step. Subsequent oxidation of the aldol product with bromine water gave the branched azidolactone (2). Hydrogenation of (2) resulted in initial reduction of the azide to the corresponding amine which underwent subsequent isomerization to the title lactam (3). The X-ray of (3) removes any ambiguity about the course of the aldol condensation.
Experimental
2-C-Hydroxymethyl-2,3-O-isopropylidene-D-ribono-1,5-lactam was obtained on reduction of 5-azido-2,3-O-isopropylidene-D-hamamelono-1,4-lactone, (2), using Pd-black and hydrogen gas in 1,4-dioxane at low reaction concentration (2.5 mg ml−1). A quantitative yield of the title compound was obtained. The title material was then recrystallized using solvent evaporation (methanol), appearing as colourless block crystals.
Crystal data
|
Refinement
|
|
H atoms were placed geometrically after each cycle, at a distance of 1.0 Å; Uiso values were set to 1.2 times the Ueq value of the parent atom. The was assumed to be the same as that of the sugar and the Friedel pairs were merged in the final refinement.
Data collection: COLLECT (Nonius, 1997–2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804008141/na6312sup1.cif
contains datablocks global, 3. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536804008141/na63123sup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C9H14NO5 | Dx = 1.456 Mg m−3 |
Mr = 216.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1329 reflections |
a = 7.3137 (1) Å | θ = 5–27° |
b = 10.6657 (2) Å | µ = 0.12 mm−1 |
c = 12.6476 (3) Å | T = 150 K |
V = 986.59 (3) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
F(000) = 460 |
Nonius KappaCCD diffractometer | 1195 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.01 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1996) | h = −9→9 |
Tmin = 0.976, Tmax = 0.988 | k = −13→13 |
2272 measured reflections | l = −16→16 |
1315 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(F*) + (0.0403p)2 + 0.549p] where p = 0.333max(Fo2,0) + 0.667Fc2 |
S = 0.98 | (Δ/σ)max = 0.000238 |
1315 reflections | Δρmax = 0.44 e Å−3 |
136 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7866 (3) | 0.0035 (2) | 0.02895 (15) | 0.0188 | |
C2 | 0.7198 (3) | 0.11166 (19) | −0.03931 (16) | 0.0193 | |
C3 | 0.6725 (3) | 0.0679 (2) | −0.14980 (15) | 0.0201 | |
C4 | 0.5206 (3) | −0.0288 (2) | −0.14517 (16) | 0.0229 | |
N5 | 0.5697 (2) | −0.12992 (17) | −0.07111 (15) | 0.0231 | |
C6 | 0.6915 (3) | −0.1217 (2) | 0.00682 (17) | 0.0206 | |
O7 | 0.7278 (2) | −0.21316 (13) | 0.06611 (13) | 0.0263 | |
O8 | 0.6178 (2) | 0.17082 (15) | −0.21510 (11) | 0.0246 | |
O9 | 0.5593 (2) | 0.15309 (15) | 0.01535 (11) | 0.0233 | |
C10 | 0.5842 (3) | 0.1282 (2) | 0.12615 (16) | 0.0202 | |
O11 | 0.7351 (2) | 0.04121 (14) | 0.13309 (11) | 0.0213 | |
C12 | 0.4107 (3) | 0.0679 (2) | 0.16656 (17) | 0.0270 | |
C13 | 0.6394 (3) | 0.2453 (2) | 0.18566 (19) | 0.0292 | |
C14 | 0.9941 (3) | −0.0134 (2) | 0.02935 (16) | 0.0218 | |
O15 | 1.0513 (2) | −0.05872 (15) | −0.07082 (12) | 0.0291 | |
H21 | 0.8129 | 0.1802 | −0.0492 | 0.0233* | |
H31 | 0.7838 | 0.0248 | −0.1813 | 0.0262* | |
H41 | 0.4980 | −0.0634 | −0.2173 | 0.0283* | |
H42 | 0.4059 | 0.0146 | −0.1199 | 0.0283* | |
H121 | 0.4229 | 0.0489 | 0.2435 | 0.0338* | |
H122 | 0.3890 | −0.0127 | 0.1269 | 0.0338* | |
H123 | 0.3048 | 0.1253 | 0.1548 | 0.0338* | |
H131 | 0.6555 | 0.2262 | 0.2625 | 0.0368* | |
H132 | 0.7581 | 0.2780 | 0.1564 | 0.0368* | |
H133 | 0.5432 | 0.3116 | 0.1772 | 0.0368* | |
H141 | 1.0564 | 0.0687 | 0.0449 | 0.0264* | |
H142 | 1.0305 | −0.0751 | 0.0866 | 0.0264* | |
H2 | 1.1000 | −0.1353 | −0.0668 | 0.0500* | |
H5 | 0.6767 | 0.1578 | −0.2858 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0176 (10) | 0.0214 (9) | 0.0176 (9) | −0.0002 (8) | 0.0004 (8) | 0.0006 (8) |
C2 | 0.0184 (9) | 0.0199 (9) | 0.0194 (9) | 0.0000 (8) | 0.0014 (8) | −0.0007 (8) |
C3 | 0.0200 (9) | 0.0221 (10) | 0.0182 (9) | 0.0017 (8) | −0.0010 (8) | 0.0019 (8) |
C4 | 0.0229 (10) | 0.0246 (11) | 0.0213 (10) | −0.0012 (9) | −0.0052 (9) | 0.0020 (8) |
N5 | 0.0229 (8) | 0.0226 (8) | 0.0237 (8) | −0.0016 (8) | −0.0054 (8) | 0.0017 (8) |
C6 | 0.0189 (9) | 0.0219 (9) | 0.0209 (10) | 0.0006 (8) | 0.0004 (8) | 0.0004 (8) |
O7 | 0.0277 (8) | 0.0214 (7) | 0.0298 (8) | −0.0024 (7) | −0.0048 (7) | 0.0043 (6) |
O8 | 0.0267 (8) | 0.0261 (8) | 0.0209 (7) | 0.0028 (7) | −0.0006 (6) | 0.0043 (6) |
O9 | 0.0232 (7) | 0.0294 (8) | 0.0172 (7) | 0.0093 (7) | 0.0018 (6) | 0.0017 (6) |
C10 | 0.0210 (10) | 0.0226 (10) | 0.0169 (9) | 0.0027 (9) | −0.0016 (8) | 0.0009 (8) |
O11 | 0.0227 (7) | 0.0248 (7) | 0.0163 (6) | 0.0055 (7) | −0.0009 (6) | −0.0005 (6) |
C12 | 0.0222 (10) | 0.0334 (12) | 0.0254 (11) | 0.0006 (10) | 0.0011 (9) | 0.0033 (10) |
C13 | 0.0319 (12) | 0.0249 (11) | 0.0307 (11) | 0.0028 (10) | −0.0048 (10) | −0.0046 (10) |
C14 | 0.0180 (9) | 0.0242 (10) | 0.0231 (10) | 0.0007 (9) | −0.0001 (9) | −0.0004 (9) |
O15 | 0.0294 (8) | 0.0325 (8) | 0.0255 (8) | 0.0114 (7) | 0.0059 (7) | 0.0040 (7) |
C1—C14 | 1.528 (3) | O8—H5 | 1.002 |
C1—O11 | 1.428 (2) | O9—C10 | 1.438 (2) |
C1—C6 | 1.531 (3) | C10—C13 | 1.513 (3) |
C1—C2 | 1.521 (3) | C10—C12 | 1.512 (3) |
C2—H21 | 1.007 | C10—O11 | 1.444 (2) |
C2—O9 | 1.432 (2) | C12—H123 | 0.998 |
C2—C3 | 1.513 (3) | C12—H122 | 1.007 |
C3—H31 | 1.016 | C12—H121 | 0.998 |
C3—O8 | 1.431 (2) | C13—H133 | 1.003 |
C3—C4 | 1.517 (3) | C13—H132 | 1.006 |
C4—H42 | 1.010 | C13—H131 | 0.999 |
C4—H41 | 0.998 | C14—H142 | 1.013 |
C4—N5 | 1.473 (3) | C14—H141 | 1.007 |
N5—C6 | 1.331 (3) | C14—O15 | 1.419 (3) |
C6—O7 | 1.259 (3) | O15—H2 | 0.892 |
C14—C1—O11 | 107.00 (17) | H5—O8—C3 | 106.752 |
C14—C1—C6 | 110.38 (17) | C10—O9—C2 | 108.04 (15) |
O11—C1—C6 | 107.11 (16) | C13—C10—C12 | 114.02 (19) |
C14—C1—C2 | 114.23 (17) | C13—C10—O11 | 107.24 (16) |
O11—C1—C2 | 103.03 (16) | C12—C10—O11 | 110.31 (17) |
C6—C1—C2 | 114.30 (16) | C13—C10—O9 | 111.49 (18) |
H21—C2—O9 | 112.952 | C12—C10—O9 | 107.55 (17) |
H21—C2—C3 | 105.327 | O11—C10—O9 | 105.94 (16) |
O9—C2—C3 | 110.70 (16) | C1—O11—C10 | 109.05 (14) |
H21—C2—C1 | 113.805 | H123—C12—H122 | 109.083 |
O9—C2—C1 | 102.89 (15) | H123—C12—H121 | 109.798 |
C3—C2—C1 | 111.33 (17) | H122—C12—H121 | 109.056 |
H31—C3—O8 | 110.168 | H123—C12—C10 | 109.863 |
H31—C3—C4 | 107.155 | H122—C12—C10 | 109.099 |
O8—C3—C4 | 109.83 (16) | H121—C12—C10 | 109.920 |
H31—C3—C2 | 108.516 | H133—C13—H132 | 108.752 |
O8—C3—C2 | 111.11 (16) | H133—C13—H131 | 109.264 |
C4—C3—C2 | 109.97 (16) | H132—C13—H131 | 109.064 |
H42—C4—H41 | 108.764 | H133—C13—C10 | 109.966 |
H42—C4—N5 | 109.677 | H132—C13—C10 | 109.488 |
H41—C4—N5 | 110.531 | H131—C13—C10 | 110.279 |
H42—C4—C3 | 107.994 | H142—C14—H141 | 107.835 |
H41—C4—C3 | 109.712 | H142—C14—O15 | 109.835 |
N5—C4—C3 | 110.11 (16) | H141—C14—O15 | 109.681 |
C6—N5—C4 | 125.82 (18) | H142—C14—C1 | 109.874 |
O7—C6—N5 | 122.03 (19) | H141—C14—C1 | 110.317 |
O7—C6—C1 | 118.13 (18) | O15—C14—C1 | 109.28 (17) |
N5—C6—C1 | 119.79 (18) | H2—O15—C14 | 112.190 |
Acknowledgements
Financial support (to MIS), provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymm. 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Heck, M. P., Vincent, S. P., Murray, B. W., Bellamy, F., Wong, C. H. & Mioskowski, C. (2004). J. Am. Chem. Soc. 126, 1971–1979. Web of Science CrossRef PubMed CAS Google Scholar
Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4586. Google Scholar
Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018. Web of Science CrossRef CAS Google Scholar
Lillelund, V. H., Liu, H. Z., Liang, X. F., Sohoel, H. & Bols, M. (2003). Org. Biomol. Chem. 1, 282–287. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ostrowski, J., Altenbach, H. J., Wischnat, R. & Brauer, D. J. (2003). Eur. J. Org. Chem. pp. 1104–1110. CSD CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210. CrossRef PubMed CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.