metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­gen bonding in thia­crown complexes: chloro­bis­­(nicotin­amide-κN)(1,4,7-tri­thia­cyclo­nonane-κ3S)­ruthenium(II) hexa­fluoro­phosphate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Dainton Building, University of Sheffield, Sheffield S7 3HF, England
*Correspondence e-mail: h.adams@sheffield.ac.uk

(Received 10 March 2004; accepted 20 April 2004; online 30 April 2004)

The title complex, [RuClL2([9]-ane-S3)]PF6·H2O [where L is nicotin­amide, C7H6N2O) and [9]-ane-S3 is 1,4,7-tri­thia­cyclo­nonane (C6H12S3)], was isolated as a hexa­fluoro­phosphate salt from water–ethanol. The structure confirms that the amide moieties are available for possible mutual hydrogen-bond interactions. However, from aqueous solvents, these sites are involved in networks of interactions with water mol­ecules.

Comment

The targeted design of long-range solid-state structures, or crystal engineering, is a fast-emerging area of chemistry. In this context, structures mediated by ligand coordination to specific metal centres has been particularly well pursued. However, comparatively less work has involved coordination complexes with coordinated ligands containing hydrogen-bonding sites. As part of a programme investigating the possible assembly of solution- and solid-phase host structures, we are synthesizing complexes based on RuII centres facially capped by thia­crown ligands. Coordination of two or three nicotinic and isonicotinic acid derivatives to these centres provides two- and three-dimensional synthons for crystal engineering. Solubility properties of the resultant complexes can be modulated by a change of counter-ion. The complexes are initially synthesized as chloride salts, but anion metathesis affords a route to a variety of other counter-ions. Using this methodology, we are exploring the effect of the counter-ion on the long-range structure of the resulting crystallographic architecture. We report here the structure of [RuClL2([9]-ane-S3)]PF6 (where L is nicotin­amide and [9]-ane-S3 is 1,4,7-tri­thia­cyclo­nonane) grown from water–ethanol as a monohydrate, (I[link]), in which the water mol­ecules interact with the projecting amide groups.[link]

[Scheme 1]
[Figure 1]
Figure 1
View of (I[link]), showing the numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Experimental

[RuCl2(DMSO)([9]-ane-S3)] (0.215 g, 0.5 mmol) and nicotin­amide (0.122 g, 1.0 mmol) were heated at reflux for 4 h under a nitro­gen atmosphere in 30 ml of a water–ethanol mixture (1:1). The reaction mixture was allowed to cool and any insoluble material was removed by filtration. Addition of ammonium hexa­fluoro­phosphate (0.163 g, 1.0 mmol) led to the crystallization of the final product. This was collected by filtration, washed with (3 × 10 ml) portions of water, ethanol and diethyl ether, and allowed to dry in vacuo. The product was obtained as a yellow powder (yield 0.178 g, 50%). Crystals suitable for X-ray crystallography were obtained via slow evaporation from the water:ethanol mother liquor.

Crystal data
  • [RuCl(C6H6N2O)2(C6H12S3)](PF6)·H2O

  • Mr = 724.10

  • Monoclinic, P21/c

  • a = 12.9575 (15) Å

  • b = 9.8190 (11) Å

  • c = 20.974 (3) Å

  • β = 101.483 (2)°

  • V = 2615.1 (5) Å3

  • Z = 4

  • Dx = 1.839 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4801 reflections

  • θ = 5.2–54.6°

  • μ = 1.08 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.32 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.806

  • 28 430 measured reflections

  • 5948 independent reflections

  • 4693 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.6°

  • h = −16 → 16

  • k = −12 → 12

  • l = −27 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.05

  • 5948 reflections

  • 334 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0573P)2 + 5.2806P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.49 e Å−3

  • Δρmin = −0.72 e Å−3

The H atoms were introduced at calculated positions and treated as riding atoms, with bond lengths of NH2 0.88 Å, 0.95(C—H aromatic), and 0.99 Å (CH2). The exception being the water O—H lengths which were found by low-theta difference Fourier, then restrained to 0.85 (1) Å. The thermal displacement parameters were all made equal to 1.2 times Ueq (parent N, O or C atom).

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

chlorobis(nicotinamide-κN)(1,4,7-trithiacyclononane-κ3S)ruthenium(II) hexafluorophosphate monohydrate top
Crystal data top
[RuCl(C6H6N2O)2(C6H12S3)](PF6)·H2OF(000) = 1456
Mr = 724.10Dx = 1.839 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9575 (15) ÅCell parameters from 4801 reflections
b = 9.8190 (11) Åθ = 5.2–54.6°
c = 20.974 (3) ŵ = 1.08 mm1
β = 101.483 (2)°T = 150 K
V = 2615.1 (5) Å3Block, yellow
Z = 40.32 × 0.28 × 0.21 mm
Data collection top
Bruker SMART 1000
diffractometer
5948 independent reflections
Radiation source: fine-focus sealed tube4693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1616
Tmin = 0.725, Tmax = 0.806k = 1212
28430 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 5.2806P]
where P = (Fo2 + 2Fc2)/3
5948 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 0.72 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.19776 (2)0.70164 (3)0.319483 (13)0.01861 (10)
Cl10.01847 (8)0.66421 (10)0.25691 (5)0.0308 (2)
S10.36636 (7)0.70302 (9)0.37723 (4)0.0231 (2)
S20.16145 (8)0.53152 (10)0.38655 (5)0.0273 (2)
S30.24794 (7)0.54053 (9)0.25309 (4)0.0243 (2)
N10.1462 (2)0.8586 (3)0.37745 (15)0.0223 (6)
N20.2257 (2)0.8604 (3)0.25466 (14)0.0214 (6)
N30.0935 (3)1.0985 (3)0.05677 (15)0.0253 (7)
H3A0.05231.10570.01810.030*
H3B0.12611.17080.07570.030*
N40.1557 (3)1.1008 (3)0.41734 (16)0.0282 (7)
H4A0.22351.10550.41740.034*
H4B0.11661.17460.42410.034*
O10.0627 (2)0.8725 (3)0.06244 (13)0.0280 (6)
O20.1639 (2)0.8741 (3)0.39730 (14)0.0285 (6)
C10.3748 (3)0.5650 (4)0.43730 (19)0.0297 (9)
H1A0.39780.48010.41880.036*
H1B0.42810.58870.47650.036*
C20.2704 (3)0.5417 (4)0.45614 (19)0.0335 (9)
H2A0.25680.61700.48480.040*
H2B0.27370.45600.48130.040*
C30.1930 (3)0.3712 (4)0.3486 (2)0.0336 (9)
H3D0.26510.34210.36910.040*
H3E0.14350.29930.35650.040*
C40.1861 (3)0.3866 (4)0.2762 (2)0.0331 (9)
H4D0.11090.38670.25440.040*
H4E0.21970.30660.26010.040*
C50.3877 (3)0.5047 (4)0.2854 (2)0.0325 (9)
H5A0.39400.42600.31550.039*
H5B0.42300.48070.24920.039*
C60.4411 (3)0.6278 (4)0.3213 (2)0.0315 (9)
H6A0.45190.69740.28910.038*
H6B0.51130.60040.34600.038*
C70.2126 (3)0.9549 (4)0.40857 (18)0.0268 (8)
H70.28580.94550.40950.032*
C80.1787 (3)1.0653 (4)0.43880 (19)0.0280 (8)
H80.22771.13110.45970.034*
C90.0724 (3)1.0800 (4)0.43849 (18)0.0264 (8)
H90.04701.15680.45820.032*
C100.0037 (3)0.9801 (4)0.40874 (18)0.0229 (7)
C110.0435 (3)0.8715 (4)0.37911 (17)0.0232 (8)
H110.00390.80310.35910.028*
C120.3037 (3)0.9516 (4)0.27140 (19)0.0259 (8)
H120.34730.94510.31340.031*
C130.3237 (3)1.0540 (4)0.23064 (19)0.0291 (9)
H130.38001.11590.24460.035*
C140.2612 (3)1.0660 (4)0.16944 (19)0.0269 (8)
H140.27311.13610.14050.032*
C150.1807 (3)0.9730 (4)0.15150 (17)0.0217 (7)
C160.1654 (3)0.8718 (4)0.19481 (17)0.0224 (7)
H160.11020.80800.18170.027*
C170.1064 (3)0.9782 (4)0.08650 (18)0.0231 (8)
C180.1124 (3)0.9821 (4)0.40712 (17)0.0249 (8)
P10.46884 (10)0.82344 (13)0.59334 (6)0.0403 (3)
F10.3684 (3)0.8500 (4)0.53914 (19)0.0786 (11)
F20.5298 (3)0.7825 (4)0.5370 (2)0.0902 (13)
F30.5049 (3)0.9775 (4)0.5886 (2)0.0944 (14)
F40.5742 (3)0.7989 (3)0.6439 (2)0.0896 (14)
F50.4085 (4)0.8643 (6)0.6465 (2)0.1205 (18)
F60.4388 (3)0.6669 (3)0.59625 (16)0.0671 (9)
O1W0.6483 (3)0.7735 (4)0.4320 (3)0.0801 (14)
H2W0.69180.82410.41770.096*
H1W0.63000.73980.46540.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01819 (16)0.01820 (15)0.01811 (16)0.00032 (11)0.00040 (11)0.00068 (11)
Cl10.0258 (5)0.0314 (5)0.0331 (5)0.0003 (4)0.0007 (4)0.0005 (4)
S10.0199 (4)0.0265 (5)0.0211 (5)0.0004 (3)0.0003 (3)0.0007 (3)
S20.0281 (5)0.0257 (5)0.0288 (5)0.0024 (4)0.0072 (4)0.0045 (4)
S30.0267 (5)0.0230 (5)0.0222 (5)0.0003 (4)0.0022 (4)0.0019 (3)
N10.0216 (15)0.0190 (15)0.0237 (16)0.0014 (12)0.0015 (12)0.0002 (12)
N20.0219 (15)0.0203 (15)0.0210 (16)0.0002 (12)0.0016 (12)0.0002 (12)
N30.0309 (17)0.0191 (15)0.0223 (16)0.0008 (13)0.0034 (13)0.0025 (12)
N40.0291 (17)0.0198 (16)0.0355 (19)0.0016 (13)0.0063 (14)0.0016 (13)
O10.0343 (15)0.0175 (13)0.0267 (14)0.0008 (11)0.0072 (11)0.0012 (11)
O20.0281 (14)0.0205 (13)0.0364 (16)0.0002 (11)0.0055 (12)0.0008 (11)
C10.033 (2)0.029 (2)0.0222 (19)0.0042 (16)0.0065 (16)0.0018 (15)
C20.040 (2)0.038 (2)0.022 (2)0.0009 (19)0.0062 (17)0.0072 (17)
C30.039 (2)0.0176 (19)0.043 (2)0.0002 (16)0.0047 (19)0.0028 (17)
C40.036 (2)0.0218 (19)0.040 (2)0.0028 (16)0.0035 (18)0.0024 (17)
C50.027 (2)0.036 (2)0.034 (2)0.0044 (17)0.0051 (17)0.0008 (18)
C60.0220 (19)0.042 (2)0.031 (2)0.0015 (17)0.0068 (16)0.0005 (18)
C70.025 (2)0.028 (2)0.026 (2)0.0007 (15)0.0020 (16)0.0030 (15)
C80.032 (2)0.0240 (19)0.026 (2)0.0046 (16)0.0007 (16)0.0032 (15)
C90.033 (2)0.0224 (19)0.0227 (19)0.0022 (15)0.0032 (16)0.0019 (14)
C100.0262 (19)0.0222 (18)0.0201 (18)0.0029 (14)0.0037 (15)0.0040 (14)
C110.0283 (19)0.0210 (18)0.0196 (18)0.0031 (15)0.0030 (15)0.0007 (14)
C120.0226 (19)0.031 (2)0.0224 (19)0.0030 (15)0.0007 (15)0.0022 (15)
C130.029 (2)0.029 (2)0.029 (2)0.0108 (16)0.0015 (16)0.0008 (16)
C140.028 (2)0.0259 (19)0.026 (2)0.0031 (15)0.0043 (16)0.0072 (15)
C150.0243 (18)0.0195 (17)0.0208 (18)0.0025 (14)0.0034 (14)0.0006 (14)
C160.0217 (18)0.0216 (18)0.0227 (19)0.0001 (14)0.0014 (14)0.0021 (14)
C170.0222 (18)0.0247 (19)0.0219 (19)0.0021 (14)0.0031 (15)0.0018 (14)
C180.030 (2)0.0229 (19)0.0198 (18)0.0015 (15)0.0017 (15)0.0022 (14)
P10.0343 (6)0.0412 (7)0.0387 (7)0.0108 (5)0.0085 (5)0.0105 (5)
F10.062 (2)0.079 (2)0.079 (2)0.0124 (19)0.0238 (18)0.002 (2)
F20.076 (3)0.113 (3)0.091 (3)0.015 (2)0.039 (2)0.030 (2)
F30.080 (3)0.046 (2)0.138 (4)0.0003 (18)0.027 (2)0.002 (2)
F40.079 (3)0.059 (2)0.102 (3)0.0182 (18)0.052 (2)0.020 (2)
F50.115 (4)0.178 (5)0.079 (3)0.011 (3)0.045 (3)0.060 (3)
F60.078 (2)0.0551 (19)0.059 (2)0.0091 (17)0.0070 (17)0.0022 (15)
O1W0.062 (3)0.062 (3)0.125 (4)0.018 (2)0.040 (3)0.035 (3)
Geometric parameters (Å, º) top
Ru1—N22.146 (3)C4—H4E0.9900
Ru1—N12.150 (3)C5—C61.516 (6)
Ru1—S12.2773 (9)C5—H5A0.9900
Ru1—S32.2859 (10)C5—H5B0.9900
Ru1—S22.2922 (10)C6—H6A0.9900
Ru1—Cl12.4579 (10)C6—H6B0.9900
S1—C61.820 (4)C7—C81.372 (5)
S1—C11.839 (4)C7—H70.9500
S2—C21.820 (4)C8—C91.384 (6)
S2—C31.847 (4)C8—H80.9500
S3—C41.821 (4)C9—C101.386 (5)
S3—C51.837 (4)C9—H90.9500
N1—C111.344 (5)C10—C111.384 (5)
N1—C71.355 (5)C10—C181.498 (5)
N2—C121.344 (5)C11—H110.9500
N2—C161.344 (5)C12—C131.377 (5)
N3—C171.330 (5)C12—H120.9500
N3—H3A0.8800C13—C141.380 (5)
N3—H3B0.8800C13—H130.9500
N4—C181.329 (5)C14—C151.381 (5)
N4—H4A0.8800C14—H140.9500
N4—H4B0.8800C15—C161.387 (5)
O1—C171.240 (4)C15—C171.505 (5)
O2—C181.248 (4)C16—H160.9500
C1—C21.501 (6)P1—F51.537 (4)
C1—H1A0.9900P1—F11.570 (3)
C1—H1B0.9900P1—F41.571 (3)
C2—H2A0.9900P1—F61.590 (3)
C2—H2B0.9900P1—F31.592 (4)
C3—C41.510 (6)P1—F21.598 (4)
C3—H3D0.9900O1W—H2W0.8501
C3—H3E0.9900O1W—H1W0.8499
C4—H4D0.9900
N2—Ru1—N187.02 (12)S3—C5—H5A109.6
N2—Ru1—S193.89 (8)C6—C5—H5B109.6
N1—Ru1—S193.92 (8)S3—C5—H5B109.6
N2—Ru1—S390.72 (8)H5A—C5—H5B108.1
N1—Ru1—S3176.98 (8)C5—C6—S1113.2 (3)
S1—Ru1—S388.23 (4)C5—C6—H6A108.9
N2—Ru1—S2177.81 (8)S1—C6—H6A108.9
N1—Ru1—S292.89 (9)C5—C6—H6B108.9
S1—Ru1—S288.30 (4)S1—C6—H6B108.9
S3—Ru1—S289.29 (4)H6A—C6—H6B107.7
N2—Ru1—Cl191.77 (8)N1—C7—C8122.9 (4)
N1—Ru1—Cl192.40 (8)N1—C7—H7118.6
S1—Ru1—Cl1171.72 (4)C8—C7—H7118.6
S3—Ru1—Cl185.67 (3)C7—C8—C9119.4 (4)
S2—Ru1—Cl186.05 (4)C7—C8—H8120.3
C6—S1—C1100.11 (19)C9—C8—H8120.3
C6—S1—Ru1103.42 (13)C8—C9—C10118.5 (3)
C1—S1—Ru1106.27 (13)C8—C9—H9120.8
C2—S2—C3101.0 (2)C10—C9—H9120.8
C2—S2—Ru1103.34 (14)C11—C10—C9119.0 (3)
C3—S2—Ru1105.44 (14)C11—C10—C18117.5 (3)
C4—S3—C5101.3 (2)C9—C10—C18123.5 (3)
C4—S3—Ru1102.61 (14)N1—C11—C10122.9 (3)
C5—S3—Ru1106.66 (14)N1—C11—H11118.5
C11—N1—C7117.3 (3)C10—C11—H11118.5
C11—N1—Ru1120.2 (2)N2—C12—C13123.3 (3)
C7—N1—Ru1122.2 (3)N2—C12—H12118.4
C12—N2—C16117.1 (3)C13—C12—H12118.4
C12—N2—Ru1122.1 (2)C12—C13—C14119.5 (4)
C16—N2—Ru1120.8 (2)C12—C13—H13120.3
C17—N3—H3A120.0C14—C13—H13120.3
C17—N3—H3B120.0C13—C14—C15118.0 (3)
H3A—N3—H3B120.0C13—C14—H14121.0
C18—N4—H4A120.0C15—C14—H14121.0
C18—N4—H4B120.0C14—C15—C16119.6 (3)
H4A—N4—H4B120.0C14—C15—C17122.4 (3)
C2—C1—S1111.0 (3)C16—C15—C17118.0 (3)
C2—C1—H1A109.4N2—C16—C15122.6 (3)
S1—C1—H1A109.4N2—C16—H16118.7
C2—C1—H1B109.4C15—C16—H16118.7
S1—C1—H1B109.4O1—C17—N3123.2 (3)
H1A—C1—H1B108.0O1—C17—C15119.9 (3)
C1—C2—S2113.2 (3)N3—C17—C15116.9 (3)
C1—C2—H2A108.9O2—C18—N4122.8 (4)
S2—C2—H2A108.9O2—C18—C10119.6 (3)
C1—C2—H2B108.9N4—C18—C10117.5 (3)
S2—C2—H2B108.9F5—P1—F190.8 (3)
H2A—C2—H2B107.8F5—P1—F492.9 (3)
C4—C3—S2112.0 (3)F1—P1—F4176.0 (3)
C4—C3—H3D109.2F5—P1—F693.5 (3)
S2—C3—H3D109.2F1—P1—F690.8 (2)
C4—C3—H3E109.2F4—P1—F690.70 (19)
S2—C3—H3E109.2F5—P1—F389.8 (3)
H3D—C3—H3E107.9F1—P1—F390.4 (2)
C3—C4—S3114.2 (3)F4—P1—F387.8 (2)
C3—C4—H4D108.7F6—P1—F3176.5 (2)
S3—C4—H4D108.7F5—P1—F2178.8 (3)
C3—C4—H4E108.7F1—P1—F288.1 (2)
S3—C4—H4E108.7F4—P1—F288.3 (3)
H4D—C4—H4E107.6F6—P1—F286.9 (2)
C6—C5—S3110.4 (3)F3—P1—F289.9 (3)
C6—C5—H5A109.6H2W—O1W—H1W146.2
 

References

First citationBruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds