organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Methyl­phen­oxy)­acetic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland
*Correspondence e-mail: p.j.cox@rgu.ac.uk

(Received 24 March 2004; accepted 31 March 2004; online 17 April 2004)

Dimeric hydrogen bonding is present in the crystal structure of (2-methyl­phenoxy)­acetic acid, C9H10O3, involving the carboxyl­ate groups of centrosymmetrically related pairs of mol­ecules. The structure is further stabilized by C—H⋯O hydrogen bonding.

Comment

The title compound, (I[link]), also known as (o-tolyl­oxy)­acetic acid, has been described as an expectorant (Negwer, 1996[Negwer, M. (1996). Organic Chemical Drugs and their Synonyms. 7th ed., Vol. 1. Berlin: Akademie Verlag.]), and several phenoxy­acetic acid compounds are used as herbicides (Cserhati & Forgacs, 1998[Cserhati, T. & Forgacs, E. (1998). J. Chromatogr. B, 717, 157-178.]).[link]

[Scheme 1]

The atomic arrangement in (I[link]) is shown in Fig. 1[link] and selected geometric parameters are given in Table 1[link]. Apart from the H atoms, the mol­ecule is essentially planar and the torsion angle with the greatest deviation from 0, or [\pm]180°, is C2—O1—C7—C8 = 175.6 (2)°.

Carboxyl­ic acids normally form dimers or catemers and here, as expected for a simple mono­carboxyl­ic acid, dimers are formed by intermolecular hydrogen bonding involving the carboxyl­ate groups. The pairs of mol­ecules forming the dimers are related by a centre of symmetry and details of the hydrogen bonding are given in Table 2[link]. As well as the dimeric R22(8) motif, a weak C—H⋯O contact (Table 2[link]) is present and this links two mol­ecules about a centre of symmetry in an R22(14) formation (Fig. 2[link]). Hence, atom O2 acts as both a donor and an acceptor. Indications of C—H⋯π bonding (Table 2[link]) are also present as H7A is close to the centroid (Cg1) of the aromatic ring.

There are many similar examples of dimer formation involving carboxyl­ate groups e.g. phenyl­acetic acid (Hodgson & Asplund, 1991[Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.]) and 2,4,5-tri­methyl­benzoic acid (Barcon et al., 1997[Barcon, A., Cote, M. L., Brunskill,, A. P. J., Thompson, H. W. & Lalancette, R. A. (1997). Acta Cryst. C53, 1842-1845.]). The solid-state structures of related compounds, viz. (4-methyl­phenoxy)­acetic acid (Kumar & Rao, 1982[Kumar, S. V. & Rao, L. M. (1982). Z. Kristallogr. 161, 45-51.]) and 3-(2-hydroxy­phenyl)­propionic acid (Begum et al., 1992[Begum, N. S., Jain, M., Chandrasekhar, S. & Venkatesan, K. (1992). Acta Cryst. C48, 1076-1078.]), have also been determined.

[Figure 1]
Figure 1
The atomic arrangement in the mol­ecule of (I[link]), with the the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A partial packing diagram of (I[link]), showing R22(8) and R22(14) ring formations. [Symmetry codes: (*) −1 − x, −y, 1 − z; (#) −x, −y, 2 − z.]

Experimental

The title compound was obtained from Aldrich and was recrystallized from a mixture of methanol and ethanol.

Crystal data
  • C9H10O3

  • Mr = 166.17

  • Monoclinic, P21/c

  • a = 5.1062 (5) Å

  • b = 22.352 (2) Å

  • c = 7.4014 (9) Å

  • β = 108.235 (5)°

  • V = 802.33 (14) Å3

  • Z = 4

  • Dx = 1.376 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2909 reflections

  • θ = 3.0–27.5°

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.40 × 0.24 × 0.06 mm

Data collection
  • Enraf–Nonius KappaCCD area detector

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.97, Tmax = 0.99

  • 2908 measured reflections

  • 1304 independent reflections

  • 1006 reflections with I > 2σ(I)

  • Rint = 0.055

  • θmax = 27.5°

  • h = −6 → 5

  • k = −28 → 29

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.230

  • S = 1.04

  • 1304 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.1765P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.53 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.07 (2)

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.381 (3)
O1—C7 1.415 (3)
O2—C8 1.322 (3)
O3—C8 1.219 (3)
C1—O1—C7 116.32 (19)
O1—C1—C2 114.7 (2)
O3—C8—O2 124.4 (2)
O3—C8—C7 124.8 (2)
O2—C8—C7 110.8 (2)
O1—C1—C2—C9 3.7 (4)
C1—O1—C7—C8 175.6 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.93 (4) 1.69 (4) 2.618 (3) 172 (4)
C6—H6⋯O2ii 0.95 2.56 3.505 (3) 175
C7—H7ACg1iii 0.99 2.60 3.37 134
Symmetry codes: (i) -1-x,-y,1-z; (ii) -x,-y,2-z; (iii) x-1,y,z. Cg1 is the centroid of the aromatic ring.

The crystal diffracted very weakly and decomposed during data collection, hence data completeness is only 71%. The hydroxy (O2) H atom was refined isotropically. The C—H H atoms were allowed to ride on their attached C atoms: C—H distances were 0.95 Å (aromatic), 0.99 Å (methyl­ene) and 0.98 Å (methyl), and Uiso(H) = 1.2Ueq(non-methyl C) or 1.4Ueq(methyl C).

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

(2-Methylphenoxy)acetic acid top
Crystal data top
C9H10O3F(000) = 352
Mr = 166.17Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2909 reflections
a = 5.1062 (5) Åθ = 3.0–27.5°
b = 22.352 (2) ŵ = 0.10 mm1
c = 7.4014 (9) ÅT = 150 K
β = 108.235 (5)°Plate, colourless
V = 802.33 (14) Å30.40 × 0.24 × 0.06 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD area detector
diffractometer
1304 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode1006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 65
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2829
Tmin = 0.97, Tmax = 0.99l = 99
2908 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.230 w = 1/[σ2(Fo2) + (0.1765P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1304 reflectionsΔρmax = 0.36 e Å3
115 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.07 (2)
Special details top

Experimental. Please note cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2301 (3)0.09458 (8)0.7120 (2)0.0268 (6)
O20.2795 (4)0.00989 (9)0.7344 (3)0.0307 (7)
H20.443 (7)0.022 (2)0.645 (5)0.062 (12)*
O30.2447 (3)0.04691 (8)0.4924 (3)0.0267 (6)
C10.4626 (5)0.12234 (11)0.8299 (4)0.0240 (7)
C20.5808 (5)0.16514 (11)0.7399 (4)0.0256 (7)
C30.8208 (6)0.19291 (12)0.8493 (4)0.0288 (8)
H30.90400.22210.79150.035*
C40.9440 (5)0.17961 (12)1.0406 (4)0.0278 (7)
H41.11160.19841.11120.033*
C50.8177 (5)0.13824 (12)1.1272 (4)0.0268 (7)
H50.89580.12961.25890.032*
C60.5776 (5)0.10956 (11)1.0210 (4)0.0246 (7)
H60.49240.08111.07990.030*
C70.1007 (5)0.05243 (11)0.7989 (4)0.0247 (7)
H7A0.05660.07140.90670.030*
H7B0.22720.01850.84890.030*
C80.1568 (5)0.03024 (11)0.6572 (4)0.0236 (7)
C90.4458 (6)0.18060 (13)0.5338 (4)0.0334 (8)
H9A0.53380.21630.50170.047*
H9B0.24950.18860.51140.047*
H9C0.46620.14700.45410.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (11)0.0223 (10)0.0275 (13)0.0086 (7)0.0072 (9)0.0024 (8)
O20.0338 (12)0.0250 (10)0.0308 (13)0.0092 (8)0.0066 (10)0.0048 (8)
O30.0329 (12)0.0200 (9)0.0258 (13)0.0051 (7)0.0070 (10)0.0006 (7)
C10.0270 (14)0.0150 (12)0.0297 (16)0.0000 (9)0.0083 (12)0.0019 (10)
C20.0322 (15)0.0170 (12)0.0280 (15)0.0010 (10)0.0100 (12)0.0004 (11)
C30.0372 (15)0.0157 (12)0.0344 (18)0.0038 (10)0.0126 (13)0.0005 (11)
C40.0282 (14)0.0192 (13)0.0331 (18)0.0046 (9)0.0055 (13)0.0062 (11)
C50.0305 (15)0.0225 (14)0.0257 (15)0.0002 (10)0.0063 (12)0.0035 (11)
C60.0278 (14)0.0182 (12)0.0274 (16)0.0001 (9)0.0081 (12)0.0002 (11)
C70.0341 (16)0.0164 (12)0.0261 (15)0.0045 (9)0.0133 (13)0.0001 (10)
C80.0310 (14)0.0147 (12)0.0268 (16)0.0006 (9)0.0114 (13)0.0005 (10)
C90.0412 (16)0.0241 (14)0.0319 (19)0.0037 (11)0.0072 (14)0.0070 (11)
Geometric parameters (Å, º) top
O1—C11.381 (3)C4—C51.393 (4)
O1—C71.415 (3)C4—H40.9500
O2—C81.322 (3)C5—C61.389 (3)
O2—H20.93 (4)C5—H50.9500
O3—C81.219 (3)C6—H60.9500
C1—C61.381 (4)C7—C81.487 (3)
C1—C21.405 (4)C7—H7A0.9900
C2—C31.386 (4)C7—H7B0.9900
C2—C91.504 (4)C9—H9A0.9800
C3—C41.390 (4)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C1—O1—C7116.32 (19)C1—C6—H6120.0
C8—O2—H2109 (2)C5—C6—H6120.0
O1—C1—C6124.1 (2)O1—C7—C8109.7 (2)
O1—C1—C2114.7 (2)O1—C7—H7A109.7
C6—C1—C2121.2 (2)C8—C7—H7A109.7
C3—C2—C1117.4 (2)O1—C7—H7B109.7
C3—C2—C9122.0 (2)C8—C7—H7B109.7
C1—C2—C9120.6 (2)H7A—C7—H7B108.2
C2—C3—C4122.4 (3)O3—C8—O2124.4 (2)
C2—C3—H3118.8O3—C8—C7124.8 (2)
C4—C3—H3118.8O2—C8—C7110.8 (2)
C3—C4—C5118.9 (2)C2—C9—H9A109.5
C3—C4—H4120.5C2—C9—H9B109.5
C5—C4—H4120.5H9A—C9—H9B109.5
C6—C5—C4120.0 (3)C2—C9—H9C109.5
C6—C5—H5120.0H9A—C9—H9C109.5
C4—C5—H5120.0H9B—C9—H9C109.5
C1—C6—C5120.1 (3)
C7—O1—C1—C62.6 (4)C2—C3—C4—C52.0 (4)
C7—O1—C1—C2178.2 (2)C3—C4—C5—C62.1 (4)
O1—C1—C2—C3177.6 (2)O1—C1—C6—C5177.7 (2)
C6—C1—C2—C31.5 (4)C2—C1—C6—C51.4 (4)
O1—C1—C2—C93.7 (4)C4—C5—C6—C10.5 (4)
C6—C1—C2—C9177.2 (2)C1—O1—C7—C8175.6 (2)
C1—C2—C3—C40.2 (4)O1—C7—C8—O31.3 (4)
C9—C2—C3—C4178.8 (3)O1—C7—C8—O2179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.93 (4)1.69 (4)2.618 (3)172 (4)
C6—H6···O2ii0.952.563.505 (3)175
C7—H7A···Cg1iii0.992.603.37134
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+2; (iii) x1, y, z.
 

Acknowledgements

We thank the EPSRC for use of the National Crystallographic Service at Southampton University (X-ray data collection) and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarcon, A., Cote, M. L., Brunskill,, A. P. J., Thompson, H. W. & Lalancette, R. A. (1997). Acta Cryst. C53, 1842–1845.  CrossRef IUCr Journals Google Scholar
First citationBegum, N. S., Jain, M., Chandrasekhar, S. & Venkatesan, K. (1992). Acta Cryst. C48, 1076–1078.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCserhati, T. & Forgacs, E. (1998). J. Chromatogr. B, 717, 157–178.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKumar, S. V. & Rao, L. M. (1982). Z. Kristallogr. 161, 45–51.  CrossRef CAS Web of Science Google Scholar
First citationNegwer, M. (1996). Organic Chemical Drugs and their Synonyms. 7th ed., Vol. 1. Berlin: Akademie Verlag.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds