metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-(μ-5,5′-Diethynyl-2,2′-bi­pyridine)­bis­­[phenyl­bis­­(tri­ethyl­phosphine)­platinum(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khod 123, Sultanate of Oman, bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England, and cCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 21 April 2004; accepted 28 April 2004; online 8 May 2004)

The title compound, [Pt2(C6H5)2(C14H6N2)(C6H15P)4], is a dinuclear PtII di-yne complex that exhibits π-conjugation along the molecular backbone. It is used as a model complex for rigid-rod platinum poly-yne polymers of which it is a precursor. Such compounds are of interest because of the extended π-conjugation through the aromatic/heteroaromatic spacer group in the backbone. The asymmetric unit contains two half mol­ecules of the title compound, each lying on a crystallographic centre of symmetry situated at the mid-point of the central C—C bond of the bi­pyridine unit.

Comment

In this paper, we report the structural characterization of the title compound, (I), which is a dinuclear platinum(II) di-yne species, trans-[(Ph)(PEt3)2Pt—C≡C—R—C≡C—Pt(PEt3)2(Ph)] (R = 2,2′-bi­pyridine-5,5′-diyl). Such organoplatinum species form the building blocks for rigid-rod platinum poly-ynes of general formula trans-[Pt(PX3)2—C≡C—R—C≡C—] (X = tertiary phosphines and R = aromatic/heteroaromatic spacer group). Platinum(II) poly-ynes are of immense current interest due to π-electron conjugation along the rigid backbone of the organometallic polymer. These materials possess a wide variety of interesting properties useful for application in modern technology. For example, incorporating platinum into the polymer backbone introduces strong spin-orbit coupling and phospho­rescence can be readily observed (Wittmann et al., 1994[Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693-2698.]; Beljonne et al., 1996[Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868-3877.]; Younus et al., 1998[Younus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. Engl. 37, 3036-3039.]; Chawdhury et al., 1998[Chawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). Macromol­ecules, 31, 722-727.], 1999[Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963-4970.]). Platinum(II) poly-ynes provide model systems for the study of some of the basic photophysical properties that occur in conjugated organic and organometallic polymers (Khan, Al-Mandhary, Al-Suti, Hisahm et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441-2448.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Mahon et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Mahon, M., Male, L., Boothby, C. E. & Köhler, A. (2003). Dalton Trans. pp. 74-84.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Male et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler A. & Wilson, J. S., (2003). Dalton Trans. pp. 65-73.]), are used in optoelectronic devices such as light emitting diodes (LEDs), lasers, photocells and field-effect transistors (FETs) (Wilson et al., 2000[Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627-7634.]; Wilson, Chawdhury et al., 2001[Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 123, 9412-9417.]; Wilson, Dhoot et al., 2001[Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828-831.]). Group 10 metal poly-ynes also show interesting alignment and liquid crystal properties, one-dimensional conductivity and non-linear optical (NLO) properties (Takahashi et al., 1984[Takahashi, S., Takay, Y., Morimoto, H. & Sonogashira, K. (1984). J. Chem. Soc. Chem. Commun. pp. 3-4.]; Wilson et al., 2003[Wilson, J. S., Wilson, R. J., Friend, R. H., Köhler, A., Al-Suti, M. K. Al-Mandhary, M. R. A. & Khan, M. S. (2003). Phys. Rev. B, 67, 125206-125208]). [link]

[Scheme 1]
Precursors to these species, such as the title compound, (I[link]), are utilized as models in the study of the molecular and electronic properties and structure–property relationships in the metal poly-ynes.

The asymmetric unit of the triclinic unit cell of (I[link]) contains two structurally similar half mol­ecules of the title compound, each sitting on a centre of symmetry corresponding to the mid-point of the central C—C bond of the bi­pyridine ligand. The bi­pyridine ligands are orientated in the trans configuration with respect to the N atoms, as would be expected to minimize H⋯H contacts. The same configuration is observed in the tri­methyl­silyl-substituted derivative (Khan et al., 2004[Khan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2004). Acta Cryst. E60, o915-o916.]); the bond parameters are also similar to those found in this deriv­ative. The platinum centres exhibit the expected square-planar geometry and the bond parameters are similar to those reported in related platinum di-yne complexes (Khan, Al-Mandhary, Al-Suti, Hisahm et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441-2448.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Mahon et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Mahon, M., Male, L., Boothby, C. E. & Köhler, A. (2003). Dalton Trans. pp. 74-84.]; Khan, Al-Mandhary, Al-Suti, Raithby, Ahrens, Male et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler A. & Wilson, J. S., (2003). Dalton Trans. pp. 65-73.]). The platinum square plane makes dihedral angles of 79.3 (1)° with the adjacent pyridine ring [73.4 (1)° in mol­ecule 2], and 88.6 (1)° with the terminal phenyl ring [83.1 (1)° in mol­ecule 2]. The two pyridine rings in each independent mol­ecule are precisely coplanar by crystallographic symmetry. There are no significant short intermolecular contacts within the structure.

[Figure 1]
Figure 1
View of mol­ecule 1 of (I[link]) (50% probability displacement ellipsoids). The suffix A denotes symmetry position 1 − x, 1 − y, −z.
[Figure 2]
Figure 2
View of mol­ecule 2 of (I[link]) (50% probability displacement ellipsoids). The suffix A denotes symmetry position 1 − x, 2 − y, −z.

Experimental

The title compound was synthesized according to the procedure of Khan, Al-Mandhary, Al-Suti, Hisahm et al. (2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]). To a stirred solution of trans-[(PEt3)2(Ph)PtCl] (0.543 g, 1.0 mmol) and 5,5′-bisethynyl-2,2′-bi­pyridine (0.102 g, 0.50 mmol) in CH2Cl2/iPr2NH (50 ml, 1:1 v/v) under nitro­gen was added a catalytic amount (approximately 5 mg) of CuI. The yellow solution was stirred at room temperature for 15 h, after which all volatile components were removed under reduced pressure. The residue was dissolved in CH2Cl2 and passed through a silica column, eluting with hexane–CH2Cl2 (1:1 v/v). Removal of the solvents in vacuo gave the title complex as a pale-yellow solid (0.43 g, 70%). Further purification was accomplished by triturating the complex in methanol.

Crystal data
  • [Pt2(C6H5)2(C14H6N2)(C6H15P)4]

  • Mr = 1219.19

  • Triclinic, [P\overline 1]

  • a = 9.2651 (7) Å

  • b = 16.6840 (14) Å

  • c = 16.8258 (14) Å

  • α = 92.130 (2)°

  • β = 90.032 (2)°

  • γ = 94.958 (2)°

  • V = 2589.4 (4) Å3

  • Z = 2

  • Dx = 1.564 Mg m−3

  • Synchrotron radiation, λ = 0.6941 Å

  • Cell parameters from 25942 reflections

  • θ = 21.7–29.3°

  • μ = 5.55 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.02 × 0.01 × 0.01 mm

Data collection
  • Bruker AXS SMART 1K CCD diffractometer

  • Narrow frame ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.946

  • 25942 measured reflections

  • 13587 independent reflections

  • 11103 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 29.3°

  • h = −12 → 12

  • k = −23 → 23

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 1.00

  • 13587 reflections

  • 535 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.004

  • Δρmax = 1.63 e Å−3

  • Δρmin = −1.86 e Å−3

Aromatic, methyl­ene and methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distances of 0.95, 0.99 and 0.98 Å, respectively. The isotropic displacement parameters were fixed to 120% of those of the parent atoms for aromatic and methyl­ene H atoms and 150% for methyl H atoms. The high residual electron density peaks were located close to the positions of the two unique Pt atoms.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
[Pt2(C6H5)2(C14H6N2)(C6H15P)4]Z = 2
Mr = 1219.19F(000) = 1212
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6941 Å
a = 9.2651 (7) ÅCell parameters from 25942 reflections
b = 16.6840 (14) Åθ = 21.7–29.3°
c = 16.8258 (14) ŵ = 5.55 mm1
α = 92.130 (2)°T = 150 K
β = 90.032 (2)°Block, yellow
γ = 94.958 (2)°0.02 × 0.01 × 0.01 mm
V = 2589.4 (4) Å3
Data collection top
Bruker AXS SMART 1K CCD
diffractometer
13587 independent reflections
Radiation source: Daresbury SRS, Station 9.811103 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.024
ω rotation with narrow frames scansθmax = 29.3°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.895, Tmax = 0.946k = 2323
25942 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
13587 reflections(Δ/σ)max = 0.004
535 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 1.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.056171 (12)0.219787 (7)0.268849 (7)0.02461 (4)
C10.0782 (4)0.2933 (2)0.2043 (2)0.0328 (8)
C20.1591 (4)0.3341 (2)0.1640 (2)0.0335 (8)
C30.2565 (3)0.37971 (19)0.1128 (2)0.0275 (7)
C40.3556 (4)0.4404 (2)0.1445 (2)0.0299 (7)
H4A0.35610.44980.20050.036*
C50.4487 (3)0.47315 (18)0.02252 (19)0.0234 (6)
N10.4496 (3)0.48608 (17)0.10188 (17)0.0278 (6)
C60.3565 (3)0.4135 (2)0.0147 (2)0.0288 (7)
H6A0.35920.40490.07080.035*
C70.2603 (4)0.3665 (2)0.0307 (2)0.0308 (7)
H7A0.19690.32520.00580.037*
C80.1940 (3)0.1404 (2)0.3286 (2)0.0282 (7)
C90.1909 (5)0.1335 (3)0.4111 (2)0.0459 (10)
H9A0.12450.16840.44190.055*
C100.2828 (6)0.0764 (3)0.4496 (3)0.0652 (15)
H10A0.27810.07310.50580.078*
C110.3796 (5)0.0253 (3)0.4065 (4)0.0647 (15)
H11A0.44170.01370.43250.078*
C120.3856 (4)0.0311 (3)0.3263 (3)0.0539 (12)
H12A0.45230.00440.29620.065*
C130.2961 (4)0.0878 (2)0.2879 (2)0.0360 (8)
H13A0.30430.09110.23190.043*
P10.11175 (9)0.12746 (5)0.25446 (5)0.02818 (18)
C140.0654 (4)0.0264 (2)0.2895 (3)0.0411 (9)
H14A0.02550.03130.34390.049*
H14B0.01230.00020.25490.049*
C150.1892 (5)0.0279 (3)0.2915 (3)0.0506 (11)
H15A0.14960.08400.29550.076*
H15B0.25150.01240.33760.076*
H15C0.24620.02230.24270.076*
C160.2827 (4)0.1622 (3)0.3029 (2)0.0390 (8)
H16A0.35520.12360.28940.047*
H16B0.31810.21490.28180.047*
C170.2708 (5)0.1708 (3)0.3926 (3)0.0560 (12)
H17A0.36580.18950.41520.084*
H17B0.23790.11860.41400.084*
H17C0.20100.21000.40640.084*
C180.1658 (4)0.1120 (2)0.1522 (2)0.0347 (8)
H18A0.21940.16190.13430.042*
H18B0.23270.06880.14940.042*
C190.0395 (4)0.0892 (3)0.0957 (3)0.0486 (10)
H19A0.07620.08130.04160.073*
H19B0.02580.13250.09660.073*
H19C0.01350.03930.11230.073*
P20.20890 (9)0.31932 (5)0.28326 (5)0.02622 (17)
C200.3695 (4)0.2985 (2)0.3437 (2)0.0345 (8)
H20A0.42570.25030.32010.041*
H20B0.33770.28470.39730.041*
C210.4704 (5)0.3651 (3)0.3535 (3)0.0542 (12)
H21A0.54790.34880.39070.081*
H21B0.51270.37510.30180.081*
H21C0.41580.41430.37430.081*
C220.1162 (4)0.4095 (2)0.3288 (2)0.0369 (8)
H22A0.03810.43020.29290.044*
H22B0.18560.45130.33500.044*
C230.0512 (5)0.3957 (3)0.4094 (2)0.0474 (10)
H23A0.00120.44570.42990.071*
H23B0.01590.35360.40390.071*
H23C0.12880.37890.44630.071*
C240.2759 (4)0.3526 (2)0.1890 (2)0.0358 (8)
H24A0.33230.39960.19940.043*
H24B0.19250.37000.15510.043*
Pt21.032188 (11)0.724753 (7)0.232281 (7)0.02203 (4)
C250.3718 (5)0.2862 (3)0.1442 (3)0.0526 (11)
H25A0.40190.30600.09310.079*
H25B0.45780.27120.17600.079*
H25C0.31720.23910.13470.079*
C260.8978 (3)0.7826 (2)0.1645 (2)0.0270 (7)
C270.8145 (3)0.8179 (2)0.1275 (2)0.0282 (7)
C280.7191 (3)0.8674 (2)0.0884 (2)0.0267 (7)
C290.6389 (3)0.8430 (2)0.0203 (2)0.0303 (7)
H29A0.64360.79010.00200.036*
C300.5535 (3)0.8948 (2)0.0145 (2)0.0265 (6)
H30A0.49990.87810.06130.032*
C310.5454 (3)0.97124 (19)0.01828 (19)0.0230 (6)
N20.6194 (3)0.99657 (18)0.08523 (18)0.0312 (6)
C320.7027 (4)0.9459 (2)0.1183 (2)0.0317 (7)
H32A0.75460.96390.16530.038*
C331.1639 (3)0.6651 (2)0.30475 (19)0.0295 (7)
C341.2448 (4)0.7037 (3)0.3676 (2)0.0368 (8)
H34A1.24250.76010.37630.044*
C351.3285 (4)0.6618 (3)0.4177 (2)0.0469 (11)
H35A1.38190.68990.45980.056*
C361.3346 (4)0.5799 (3)0.4068 (3)0.0515 (12)
H36A1.39160.55150.44120.062*
C371.2575 (4)0.5400 (3)0.3457 (3)0.0456 (10)
H37A1.26070.48350.33780.055*
C381.1744 (4)0.5820 (2)0.2952 (2)0.0353 (8)
H38A1.12300.55330.25270.042*
P31.21085 (8)0.73062 (5)0.13842 (5)0.02451 (17)
C391.2266 (4)0.6336 (2)0.0875 (2)0.0389 (9)
H39A1.30600.63990.04830.047*
H39B1.25490.59530.12710.047*
C401.0923 (5)0.5972 (3)0.0450 (3)0.0650 (14)
H40A1.10600.54160.02770.098*
H40B1.07420.62870.00140.098*
H40C1.00940.59750.08120.098*
C411.1923 (4)0.7976 (2)0.0561 (2)0.0333 (8)
H41A1.27400.79180.01910.040*
H41B1.10180.77960.02690.040*
C421.1889 (4)0.8867 (2)0.0799 (2)0.0385 (8)
H42A1.17490.91730.03230.058*
H42B1.28070.90650.10560.058*
H42C1.10890.89350.11690.058*
C431.3961 (3)0.7501 (2)0.1757 (2)0.0338 (8)
H43A1.41830.70420.20790.041*
H43B1.46230.75120.12950.041*
C441.4305 (4)0.8267 (2)0.2254 (2)0.0396 (9)
H44A1.52740.82670.24870.059*
H44B1.35880.83000.26800.059*
H44C1.42740.87330.19170.059*
P40.84663 (8)0.71218 (5)0.32216 (5)0.02637 (17)
C450.8725 (4)0.6497 (3)0.4062 (2)0.0354 (8)
H45A0.90290.59730.38590.042*
H45B0.95260.67590.43950.042*
C460.7398 (4)0.6336 (3)0.4590 (2)0.0475 (11)
H46A0.76370.59940.50240.071*
H46B0.66010.60630.42730.071*
H46C0.71030.68480.48120.071*
C470.6787 (3)0.6703 (2)0.2762 (2)0.0333 (8)
H47A0.59930.67370.31520.040*
H47B0.65680.70320.23070.040*
C480.6822 (5)0.5840 (3)0.2472 (3)0.0496 (10)
H48A0.59580.56790.21490.074*
H48B0.68410.54930.29290.074*
H48C0.76910.57850.21490.074*
C490.7969 (4)0.8093 (3)0.3636 (2)0.0415 (9)
H49A0.77350.84340.31930.050*
H49B0.70840.79990.39610.050*
C500.9137 (5)0.8542 (3)0.4143 (3)0.0583 (12)
H50A0.88470.90780.42930.087*
H50B1.00440.85960.38430.087*
H50C0.92800.82450.46250.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01776 (6)0.02830 (7)0.02832 (7)0.00233 (4)0.00581 (4)0.00743 (5)
C10.0240 (15)0.0351 (19)0.041 (2)0.0112 (13)0.0085 (14)0.0094 (15)
C20.0276 (16)0.0296 (18)0.045 (2)0.0072 (13)0.0094 (14)0.0095 (15)
C30.0205 (14)0.0255 (16)0.0383 (19)0.0063 (12)0.0093 (13)0.0118 (13)
C40.0306 (16)0.0310 (18)0.0287 (17)0.0048 (13)0.0070 (13)0.0044 (13)
C50.0207 (14)0.0231 (15)0.0274 (16)0.0050 (11)0.0055 (11)0.0062 (12)
N10.0241 (13)0.0306 (15)0.0291 (15)0.0020 (11)0.0042 (11)0.0066 (11)
C60.0293 (16)0.0288 (17)0.0284 (17)0.0016 (13)0.0040 (13)0.0034 (13)
C70.0250 (15)0.0257 (17)0.041 (2)0.0017 (13)0.0037 (14)0.0066 (14)
C80.0223 (14)0.0296 (17)0.0336 (18)0.0059 (12)0.0067 (13)0.0033 (13)
C90.042 (2)0.059 (3)0.037 (2)0.0003 (19)0.0080 (17)0.0130 (19)
C100.068 (3)0.076 (4)0.053 (3)0.005 (3)0.029 (2)0.028 (3)
C110.052 (3)0.051 (3)0.091 (4)0.005 (2)0.038 (3)0.018 (3)
C120.033 (2)0.036 (2)0.091 (4)0.0046 (17)0.017 (2)0.001 (2)
C130.0265 (16)0.0332 (19)0.048 (2)0.0030 (14)0.0058 (15)0.0004 (16)
P10.0195 (4)0.0325 (5)0.0336 (5)0.0047 (3)0.0069 (3)0.0086 (4)
C140.0306 (18)0.039 (2)0.056 (3)0.0089 (15)0.0111 (17)0.0190 (18)
C150.046 (2)0.043 (2)0.067 (3)0.0178 (19)0.015 (2)0.019 (2)
C160.0248 (16)0.049 (2)0.044 (2)0.0063 (15)0.0023 (15)0.0028 (17)
C170.047 (2)0.078 (3)0.043 (3)0.006 (2)0.0042 (19)0.003 (2)
C180.0323 (17)0.0358 (19)0.037 (2)0.0055 (14)0.0094 (14)0.0039 (15)
C190.040 (2)0.062 (3)0.043 (2)0.008 (2)0.0008 (18)0.000 (2)
P20.0217 (4)0.0297 (4)0.0279 (4)0.0044 (3)0.0016 (3)0.0039 (3)
C200.0258 (16)0.042 (2)0.0359 (19)0.0055 (14)0.0086 (14)0.0046 (16)
C210.043 (2)0.063 (3)0.061 (3)0.025 (2)0.021 (2)0.012 (2)
C220.0351 (18)0.0288 (18)0.047 (2)0.0029 (14)0.0061 (16)0.0025 (15)
C230.042 (2)0.056 (3)0.043 (2)0.0017 (19)0.0080 (18)0.002 (2)
C240.0339 (18)0.046 (2)0.0302 (18)0.0140 (16)0.0011 (14)0.0070 (15)
Pt20.01533 (5)0.02664 (7)0.02528 (7)0.00658 (4)0.00191 (4)0.00544 (5)
C250.055 (3)0.066 (3)0.038 (2)0.014 (2)0.0137 (19)0.008 (2)
C260.0188 (14)0.0328 (17)0.0306 (17)0.0067 (12)0.0015 (12)0.0059 (13)
C270.0234 (15)0.0324 (18)0.0302 (17)0.0075 (13)0.0024 (12)0.0085 (13)
C280.0175 (13)0.0324 (17)0.0319 (17)0.0063 (12)0.0027 (12)0.0135 (13)
C290.0265 (15)0.0297 (17)0.0362 (19)0.0087 (13)0.0009 (13)0.0082 (14)
C300.0235 (14)0.0301 (17)0.0271 (16)0.0070 (12)0.0030 (12)0.0045 (13)
C310.0161 (12)0.0275 (16)0.0263 (16)0.0041 (11)0.0002 (11)0.0077 (12)
N20.0280 (14)0.0314 (15)0.0351 (16)0.0065 (11)0.0079 (12)0.0054 (12)
C320.0256 (15)0.0357 (19)0.0346 (18)0.0059 (13)0.0056 (13)0.0060 (14)
C330.0192 (14)0.047 (2)0.0248 (16)0.0104 (13)0.0017 (12)0.0117 (14)
C340.0233 (16)0.055 (2)0.0328 (19)0.0051 (15)0.0020 (13)0.0094 (16)
C350.0223 (16)0.090 (3)0.029 (2)0.0064 (18)0.0018 (14)0.017 (2)
C360.0309 (19)0.087 (4)0.043 (2)0.027 (2)0.0070 (17)0.035 (2)
C370.038 (2)0.056 (3)0.049 (2)0.0227 (18)0.0151 (18)0.028 (2)
C380.0279 (16)0.042 (2)0.038 (2)0.0118 (15)0.0052 (14)0.0163 (16)
P30.0196 (3)0.0260 (4)0.0291 (4)0.0075 (3)0.0006 (3)0.0048 (3)
C390.0360 (19)0.036 (2)0.046 (2)0.0126 (15)0.0051 (16)0.0046 (16)
C400.055 (3)0.051 (3)0.086 (4)0.006 (2)0.003 (3)0.031 (3)
C410.0318 (17)0.041 (2)0.0284 (18)0.0096 (15)0.0007 (14)0.0079 (15)
C420.0324 (18)0.039 (2)0.046 (2)0.0063 (15)0.0006 (16)0.0133 (17)
C430.0167 (14)0.043 (2)0.043 (2)0.0081 (13)0.0003 (13)0.0104 (16)
C440.0275 (17)0.042 (2)0.050 (2)0.0054 (15)0.0065 (16)0.0063 (17)
P40.0184 (4)0.0327 (5)0.0287 (4)0.0048 (3)0.0009 (3)0.0036 (3)
C450.0218 (15)0.054 (2)0.0302 (18)0.0009 (15)0.0013 (13)0.0116 (16)
C460.0310 (19)0.076 (3)0.035 (2)0.0025 (19)0.0045 (16)0.016 (2)
C470.0161 (14)0.045 (2)0.040 (2)0.0029 (13)0.0051 (13)0.0150 (16)
C480.045 (2)0.054 (3)0.048 (3)0.0032 (19)0.0167 (19)0.001 (2)
C490.0351 (19)0.047 (2)0.043 (2)0.0101 (17)0.0104 (16)0.0008 (18)
C500.057 (3)0.054 (3)0.060 (3)0.008 (2)0.013 (2)0.009 (2)
Geometric parameters (Å, º) top
Pt1—C12.017 (4)Pt2—P42.2914 (9)
Pt1—C82.051 (3)C25—H25A0.9800
Pt1—P22.2794 (8)C25—H25B0.9800
Pt1—P12.2889 (8)C25—H25C0.9800
C1—C21.197 (5)C26—C271.199 (4)
C2—C31.438 (4)C27—C281.436 (4)
C3—C71.391 (5)C28—C291.393 (5)
C3—C41.397 (5)C28—C321.405 (5)
C4—N11.334 (4)C29—C301.368 (4)
C4—H4A0.9500C29—H29A0.9500
C5—N11.344 (4)C30—C311.380 (5)
C5—C61.386 (5)C30—H30A0.9500
C5—C5i1.478 (6)C31—N21.354 (4)
C6—C71.385 (5)C31—C31ii1.480 (5)
C6—H6A0.9500N2—C321.330 (4)
C7—H7A0.9500C32—H32A0.9500
C8—C131.394 (5)C33—C341.400 (5)
C8—C91.397 (5)C33—C381.401 (5)
C9—C101.399 (6)C34—C351.392 (5)
C9—H9A0.9500C34—H34A0.9500
C10—C111.370 (8)C35—C361.377 (7)
C10—H10A0.9500C35—H35A0.9500
C11—C121.358 (7)C36—C371.370 (6)
C11—H11A0.9500C36—H36A0.9500
C12—C131.383 (6)C37—C381.394 (5)
C12—H12A0.9500C37—H37A0.9500
C13—H13A0.9500C38—H38A0.9500
P1—C181.808 (4)P3—C391.819 (4)
P1—C161.820 (4)P3—C431.826 (3)
P1—C141.823 (4)P3—C411.828 (3)
C14—C151.524 (5)C39—C401.505 (6)
C14—H14A0.9900C39—H39A0.9900
C14—H14B0.9900C39—H39B0.9900
C15—H15A0.9800C40—H40A0.9800
C15—H15B0.9800C40—H40B0.9800
C15—H15C0.9800C40—H40C0.9800
C16—C171.516 (6)C41—C421.528 (5)
C16—H16A0.9900C41—H41A0.9900
C16—H16B0.9900C41—H41B0.9900
C17—H17A0.9800C42—H42A0.9800
C17—H17B0.9800C42—H42B0.9800
C17—H17C0.9800C42—H42C0.9800
C18—C191.521 (5)C43—C441.511 (5)
C18—H18A0.9900C43—H43A0.9900
C18—H18B0.9900C43—H43B0.9900
C19—H19A0.9800C44—H44A0.9800
C19—H19B0.9800C44—H44B0.9800
C19—H19C0.9800C44—H44C0.9800
P2—C221.811 (4)P4—C471.811 (3)
P2—C201.818 (3)P4—C451.816 (4)
P2—C241.826 (3)P4—C491.836 (4)
C20—C211.517 (5)C45—C461.528 (5)
C20—H20A0.9900C45—H45A0.9900
C20—H20B0.9900C45—H45B0.9900
C21—H21A0.9800C46—H46A0.9800
C21—H21B0.9800C46—H46B0.9800
C21—H21C0.9800C46—H46C0.9800
C22—C231.517 (5)C47—C481.506 (6)
C22—H22A0.9900C47—H47A0.9900
C22—H22B0.9900C47—H47B0.9900
C23—H23A0.9800C48—H48A0.9800
C23—H23B0.9800C48—H48B0.9800
C23—H23C0.9800C48—H48C0.9800
C24—C251.534 (6)C49—C501.508 (6)
C24—H24A0.9900C49—H49A0.9900
C24—H24B0.9900C49—H49B0.9900
Pt2—C262.017 (3)C50—H50A0.9800
Pt2—C332.066 (3)C50—H50B0.9800
Pt2—P32.2869 (8)C50—H50C0.9800
C1—Pt1—C8176.58 (14)C24—C25—H25A109.5
C1—Pt1—P289.53 (9)C24—C25—H25B109.5
C8—Pt1—P292.15 (9)H25A—C25—H25B109.5
C1—Pt1—P186.75 (9)C24—C25—H25C109.5
C8—Pt1—P191.69 (9)H25A—C25—H25C109.5
P2—Pt1—P1175.56 (3)H25B—C25—H25C109.5
C2—C1—Pt1177.2 (3)C27—C26—Pt2176.8 (3)
C1—C2—C3177.1 (4)C26—C27—C28174.1 (4)
C7—C3—C4116.1 (3)C29—C28—C32115.9 (3)
C7—C3—C2123.4 (3)C29—C28—C27124.0 (3)
C4—C3—C2120.4 (3)C32—C28—C27120.1 (3)
N1—C4—C3124.8 (3)C30—C29—C28120.3 (3)
N1—C4—H4A117.6C30—C29—H29A119.8
C3—C4—H4A117.6C28—C29—H29A119.8
N1—C5—C6122.0 (3)C29—C30—C31119.9 (3)
N1—C5—C5i115.9 (4)C29—C30—H30A120.1
C6—C5—C5i122.1 (4)C31—C30—H30A120.1
C4—N1—C5117.8 (3)N2—C31—C30121.5 (3)
C7—C6—C5119.3 (3)N2—C31—C31ii117.4 (4)
C7—C6—H6A120.4C30—C31—C31ii121.2 (4)
C5—C6—H6A120.4C32—N2—C31118.1 (3)
C6—C7—C3120.0 (3)N2—C32—C28124.3 (3)
C6—C7—H7A120.0N2—C32—H32A117.8
C3—C7—H7A120.0C28—C32—H32A117.8
C13—C8—C9115.6 (3)C34—C33—C38115.6 (3)
C13—C8—Pt1121.0 (3)C34—C33—Pt2122.9 (3)
C9—C8—Pt1123.4 (3)C38—C33—Pt2121.6 (3)
C8—C9—C10121.8 (4)C35—C34—C33122.0 (4)
C8—C9—H9A119.1C35—C34—H34A119.0
C10—C9—H9A119.1C33—C34—H34A119.0
C11—C10—C9120.2 (5)C36—C35—C34120.6 (4)
C11—C10—H10A119.9C36—C35—H35A119.7
C9—C10—H10A119.9C34—C35—H35A119.7
C12—C11—C10119.2 (4)C37—C36—C35119.2 (3)
C12—C11—H11A120.4C37—C36—H36A120.4
C10—C11—H11A120.4C35—C36—H36A120.4
C11—C12—C13120.9 (4)C36—C37—C38120.2 (4)
C11—C12—H12A119.6C36—C37—H37A119.9
C13—C12—H12A119.6C38—C37—H37A119.9
C12—C13—C8122.3 (4)C37—C38—C33122.5 (4)
C12—C13—H13A118.9C37—C38—H38A118.8
C8—C13—H13A118.9C33—C38—H38A118.8
C18—P1—C16102.32 (17)C39—P3—C4399.16 (17)
C18—P1—C14104.65 (19)C39—P3—C41102.75 (18)
C16—P1—C14105.48 (19)C43—P3—C41106.87 (17)
C18—P1—Pt1112.68 (12)C39—P3—Pt2112.23 (13)
C16—P1—Pt1111.98 (13)C43—P3—Pt2116.15 (12)
C14—P1—Pt1118.23 (12)C41—P3—Pt2117.39 (12)
C15—C14—P1115.9 (3)C40—C39—P3115.7 (3)
C15—C14—H14A108.3C40—C39—H39A108.4
P1—C14—H14A108.3P3—C39—H39A108.4
C15—C14—H14B108.3C40—C39—H39B108.4
P1—C14—H14B108.3P3—C39—H39B108.4
H14A—C14—H14B107.4H39A—C39—H39B107.4
C14—C15—H15A109.5C39—C40—H40A109.5
C14—C15—H15B109.5C39—C40—H40B109.5
H15A—C15—H15B109.5H40A—C40—H40B109.5
C14—C15—H15C109.5C39—C40—H40C109.5
H15A—C15—H15C109.5H40A—C40—H40C109.5
H15B—C15—H15C109.5H40B—C40—H40C109.5
C17—C16—P1113.2 (3)C42—C41—P3115.4 (3)
C17—C16—H16A108.9C42—C41—H41A108.4
P1—C16—H16A108.9P3—C41—H41A108.4
C17—C16—H16B108.9C42—C41—H41B108.4
P1—C16—H16B108.9P3—C41—H41B108.4
H16A—C16—H16B107.8H41A—C41—H41B107.5
C16—C17—H17A109.5C41—C42—H42A109.5
C16—C17—H17B109.5C41—C42—H42B109.5
H17A—C17—H17B109.5H42A—C42—H42B109.5
C16—C17—H17C109.5C41—C42—H42C109.5
H17A—C17—H17C109.5H42A—C42—H42C109.5
H17B—C17—H17C109.5H42B—C42—H42C109.5
C19—C18—P1113.7 (3)C44—C43—P3116.9 (2)
C19—C18—H18A108.8C44—C43—H43A108.1
P1—C18—H18A108.8P3—C43—H43A108.1
C19—C18—H18B108.8C44—C43—H43B108.1
P1—C18—H18B108.8P3—C43—H43B108.1
H18A—C18—H18B107.7H43A—C43—H43B107.3
C18—C19—H19A109.5C43—C44—H44A109.5
C18—C19—H19B109.5C43—C44—H44B109.5
H19A—C19—H19B109.5H44A—C44—H44B109.5
C18—C19—H19C109.5C43—C44—H44C109.5
H19A—C19—H19C109.5H44A—C44—H44C109.5
H19B—C19—H19C109.5H44B—C44—H44C109.5
C22—P2—C20104.96 (19)C47—P4—C45105.07 (17)
C22—P2—C24103.97 (18)C47—P4—C49102.16 (18)
C20—P2—C24105.21 (17)C45—P4—C49106.49 (19)
C22—P2—Pt1110.87 (12)C47—P4—Pt2112.00 (13)
C20—P2—Pt1117.09 (12)C45—P4—Pt2116.65 (12)
C24—P2—Pt1113.58 (12)C49—P4—Pt2113.16 (14)
C21—C20—P2116.9 (3)C46—C45—P4115.3 (3)
C21—C20—H20A108.1C46—C45—H45A108.5
P2—C20—H20A108.1P4—C45—H45A108.5
C21—C20—H20B108.1C46—C45—H45B108.5
P2—C20—H20B108.1P4—C45—H45B108.5
H20A—C20—H20B107.3H45A—C45—H45B107.5
C20—C21—H21A109.5C45—C46—H46A109.5
C20—C21—H21B109.5C45—C46—H46B109.5
H21A—C21—H21B109.5H46A—C46—H46B109.5
C20—C21—H21C109.5C45—C46—H46C109.5
H21A—C21—H21C109.5H46A—C46—H46C109.5
H21B—C21—H21C109.5H46B—C46—H46C109.5
C23—C22—P2113.1 (3)C48—C47—P4113.5 (2)
C23—C22—H22A109.0C48—C47—H47A108.9
P2—C22—H22A109.0P4—C47—H47A108.9
C23—C22—H22B109.0C48—C47—H47B108.9
P2—C22—H22B109.0P4—C47—H47B108.9
H22A—C22—H22B107.8H47A—C47—H47B107.7
C22—C23—H23A109.5C47—C48—H48A109.5
C22—C23—H23B109.5C47—C48—H48B109.5
H23A—C23—H23B109.5H48A—C48—H48B109.5
C22—C23—H23C109.5C47—C48—H48C109.5
H23A—C23—H23C109.5H48A—C48—H48C109.5
H23B—C23—H23C109.5H48B—C48—H48C109.5
C25—C24—P2112.4 (3)C50—C49—P4113.8 (3)
C25—C24—H24A109.1C50—C49—H49A108.8
P2—C24—H24A109.1P4—C49—H49A108.8
C25—C24—H24B109.1C50—C49—H49B108.8
P2—C24—H24B109.1P4—C49—H49B108.8
H24A—C24—H24B107.9H49A—C49—H49B107.7
C26—Pt2—C33177.92 (12)C49—C50—H50A109.5
C26—Pt2—P392.89 (9)C49—C50—H50B109.5
C33—Pt2—P389.19 (9)H50A—C50—H50B109.5
C26—Pt2—P486.63 (9)C49—C50—H50C109.5
C33—Pt2—P491.28 (9)H50A—C50—H50C109.5
P3—Pt2—P4176.53 (3)H50B—C50—H50C109.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.
 

Acknowledgements

We thank the Sultan Qaboos University, Oman, the Royal Society, England, the EPSRC, England, and the DAAD, Germany, for financial support.

References

First citationBeljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868–3877.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963–4970.  Web of Science CrossRef CAS Google Scholar
First citationChawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). Macromol­ecules, 31, 722–727.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2004). Acta Cryst. E60, o915–o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441–2448.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358–1368.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Mahon, M., Male, L., Boothby, C. E. & Köhler, A. (2003). Dalton Trans. pp. 74–84.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler A. & Wilson, J. S., (2003). Dalton Trans. pp. 65–73.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTakahashi, S., Takay, Y., Morimoto, H. & Sonogashira, K. (1984). J. Chem. Soc. Chem. Commun. pp. 3–4.  CrossRef Web of Science Google Scholar
First citationWilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 123, 9412–9417.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627–7634.  Web of Science CrossRef CAS Google Scholar
First citationWilson, J. S., Wilson, R. J., Friend, R. H., Köhler, A., Al-Suti, M. K. Al-Mandhary, M. R. A. & Khan, M. S. (2003). Phys. Rev. B, 67, 125206–125208  Web of Science CrossRef Google Scholar
First citationWittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693–2698.  CrossRef CAS Web of Science Google Scholar
First citationYounus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. Engl. 37, 3036–3039.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds