organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium tetra­hydro­pentaborate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: jon.charmant@bris.ac.uk

(Received 19 May 2004; accepted 20 May 2004; online 29 May 2004)

The title compound [systematic name: di­methyl­ammonium 1,1′-spiro-bis(3,5,-di­hydroxy-2,4,6-trioxa-1,3,5-tribora­cyclo­hexane)­borate], C2H8N+·B5H4O10, contains the [B5O6(OH)4] tetra­hydro­pentaborate anion, which possesses typical geometrical parameters, accompanied by di­methyl­ammonium cations. The packing of these species is influenced by cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds.

Comment

The tetra­hydro­pentaborate anion, [B5O6(OH)4], has been crystallized with a variety of ammonium cations: [NH4]+ (Loboda et al., 1993[Loboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu T., Petrova, O. V. & Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960-1962.]); [H2NC5H10]+, [NMe4]+ and [NEt4]+ (Wiebcke et al., 1993[Wiebcke, M., Freyhardt, C. C., Felsche, J. & Engelhardt, G. (1993). Z. Naturforsch, Teil B, 48, 978-985.]); [HNEt3]+ (Loboda et al., 1994[Loboda, N. V., Antipin, M. Yu, Struchkov, Yu T., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547-549.]); [HNBun3]+ (Turdybekov et al., 1992[Turdybekov, K. M., Struchkov, Yu. T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250-1254.]) and [NPrn4]+ (Freyhardt et al., 1994[Freyhardt, C. C., Wiebcke, M., Felsche, J. & Engelhardt, G. (1994). J. Inclusion Phenom. Macrocycl. Chem. 18, 161-175.]). In this paper, we report the crystal structure of a di­methyl­ammonium salt of this anion, [H2NMe2]+[B5O6(OH)4], (I[link]) (Fig. 1[link]).[link]

[Scheme 1]

The anion consists of a central BO4 tetrahedron fused to four trigonal planar BO2(OH) units and shows normal geometrical parameters (Table 1[link]). Hydro­gen bonding (Table 2[link]) between adjacent [B5O6(OH)4] units results in R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) dimers (Fig. 2[link]). This anion-to-anion hydrogen-bonding framework is supplemented by the formation of two hydrogen bonds from each di­methyl­ammonium cation to two adjacent [B5O6(OH)4] anions.

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing the atom labelling scheme (50% displacement ellipsoids).
[Figure 2]
Figure 2
Detail of (I[link]) in stick representation (key: B pink, O red and H white) illustrating the dimeric R22(8) hydrogen-bonding motif linking adjacent [B5O6(OH)4] anions.

Experimental

A large excess of B(OH)3 (55.6 mmol, 3.44 g, dried by the Dean–Stark method) was added to a stirred solution of B2(NMe2)4 (1 ml, 5.56 mmol) in tetra­hydro­furan (25 ml), and the solution left to stir overnight. After removal of the solvent in vacuo, a white solid remained, which was shown to contain some B2(OH)4 and a majority of B(OH)3 by 11B{1H} NMR spectroscopy. Dissolution of this solid in degassed water followed by slow evaporation over several days afforded a small crop of thin needle-like crystals approximately 5 mm long, a fragment of one of which was shown to be [H2NMe2][B5O6(OH)4].

Crystal data
  • C2H8N+·B5H4O10

  • Mr = 264.18

  • Monoclinic, C2/c

  • a = 13.3664 (3) Å

  • b = 11.4709 (3) Å

  • c = 17.1147 (4) Å

  • β = 112.160 (1)°

  • V = 2430.27 (10) Å3

  • Z = 8

  • Dx = 1.444 Mg m−3

  • Cu Kα radiation

  • Cell parameters from 4393 reflections

  • θ = 5.3–70.2°

  • μ = 1.19 mm−1

  • T = 100 (2) K

  • Block, colourless

  • 0.18 × 0.10 × 0.10 mm

Data collection
  • Bruker Proteum CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.792, Tmax = 0.886

  • 9127 measured reflections

  • 2225 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 70.2°

  • h = −15 → 16

  • k = −13 → 13

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 0.99

  • 2225 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0624P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

B1—O1 1.4623 (16)
B1—O6 1.4679 (16)
B1—O10 1.4680 (16)
B1—O5 1.4726 (18)
B2—O2 1.3506 (18)
B2—O1 1.3628 (18)
B2—O3 1.3860 (18)
B3—O5 1.3571 (18)
B3—O4 1.3612 (18)
B3—O3 1.3849 (17)
B4—O6 1.3530 (18)
B4—O7 1.3550 (17)
B4—O8 1.3843 (17)
B5—O9 1.3522 (17)
B5—O10 1.3643 (18)
B5—O8 1.3813 (17)
B3—O3—B2 118.78 (11)
B3—O5—B1 123.11 (10)
B4—O6—B1 123.62 (10)
B5—O8—B4 119.22 (11)
B5—O10—B1 123.93 (10)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.92 1.86 2.7707 (15) 170
N1—H1B⋯O4ii 0.92 1.96 2.8765 (15) 173
O2—H2A⋯O7iii 0.848 (17) 1.852 (17) 2.6972 (15) 175.1 (16)
O4—H4A⋯O5iv 0.814 (16) 1.926 (16) 2.7340 (12) 171.6 (17)
O7—H7A⋯O10v 0.841 (19) 1.862 (18) 2.7015 (13) 175.8 (18)
O9—H9A⋯O6vi 0.822 (18) 1.942 (18) 2.7526 (13) 168.8 (19)
Symmetry codes: (i) [1-x,y-1,{\script{1\over 2}}-z]; (ii) [x-1,1-y,z-{\script{1\over 2}}]; (iii) [{\script{1\over 2}}+x,{\script{3\over 2}}-y,{\script{1\over 2}}+z]; (iv) [2-x,y,{\script{1\over 2}}-z]; (v) [{\script{3\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (vi) [{\script{3\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z].

The methyl H atoms of the cation were located using a rotating group refinement, with C—H bond lengths constrained to 0.96 Å and displacement parameters equal to 1.5 times Ueq of their parent C atom. The remaining H atoms of the cation were constrained to ideal geometries (Table 2[link]) and refined with displacement parameters equal to 1.2 times Ueq(N). All hydroxyl H atoms were located in Fourier difference maps, assigned displacement parameters equal to 1.5Ueq(O) and refined with a distance restraint of 0.84 (3) Å on the O—H bonds.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

dimethylammonium 1,1'-spiro-bis(3,5,-dihydroxy-2,4,6-trioxa-1,3,5-triboracyclohexane)borate top
Crystal data top
C2H8N+·B5H4O10F(000) = 1088
Mr = 264.18Dx = 1.444 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 4393 reflections
a = 13.3664 (3) Åθ = 5.3–70.2°
b = 11.4709 (3) ŵ = 1.19 mm1
c = 17.1147 (4) ÅT = 100 K
β = 112.160 (1)°Block, colourless
V = 2430.27 (10) Å30.18 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2225 independent reflections
Radiation source: MAC Science M06X CE Rotating anode1847 reflections with I > 2σ(I)
Osmic CMF12-38Cu6 (blue) optics monochromatorRint = 0.026
Detector resolution: 5.6 pixels mm-1θmax = 70.2°, θmin = 5.3°
ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.792, Tmax = 0.886l = 2020
9127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difmap (O-H) and geom (C-H and N-H)
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0624P)2]
where P = (Fo2 + 2Fc2)/3
2225 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.81860 (12)0.90832 (12)0.31606 (9)0.0166 (3)
B20.93003 (12)0.87280 (12)0.46759 (9)0.0180 (3)
B31.01942 (12)0.89925 (12)0.37177 (9)0.0181 (3)
B40.66922 (12)0.80519 (13)0.20378 (9)0.0204 (3)
B50.65759 (12)1.01176 (13)0.21409 (9)0.0197 (3)
O10.83319 (7)0.89692 (7)0.40480 (5)0.0176 (2)
O20.93013 (8)0.85132 (8)0.54521 (6)0.0224 (2)
H2A0.9918 (12)0.8304 (16)0.5797 (10)0.034*
O31.02458 (7)0.87224 (8)0.45206 (5)0.0195 (2)
O41.11499 (7)0.90211 (8)0.36063 (6)0.0221 (2)
H4A1.1035 (15)0.9148 (15)0.3112 (10)0.033*
O50.92372 (7)0.92038 (7)0.30757 (5)0.0177 (2)
O60.76559 (7)0.80361 (7)0.26945 (5)0.0180 (2)
O70.62507 (8)0.70632 (8)0.16148 (6)0.0300 (3)
H7A0.6629 (15)0.6470 (15)0.1818 (12)0.045*
O80.61277 (8)0.90800 (8)0.17587 (6)0.0261 (2)
O90.60298 (8)1.11071 (8)0.18115 (6)0.0257 (2)
H9A0.6414 (14)1.1673 (15)0.2022 (12)0.039*
O100.75402 (7)1.01298 (7)0.28109 (5)0.0178 (2)
N10.28012 (9)0.01583 (10)0.01395 (7)0.0234 (3)
H1A0.24480.01710.04540.028*
H1B0.22870.03660.03740.028*
C10.33666 (14)0.12213 (15)0.05735 (11)0.0417 (4)
H1C0.28540.17340.06910.063*
H1D0.36720.16300.02120.063*
H1E0.39490.10040.11050.063*
C20.35208 (15)0.07212 (17)0.00023 (11)0.0435 (4)
H2B0.30960.14040.02780.065*
H2C0.40670.09550.05470.065*
H2D0.38780.03900.03530.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0141 (7)0.0157 (7)0.0165 (7)0.0001 (5)0.0018 (6)0.0000 (5)
B20.0174 (7)0.0131 (7)0.0195 (7)0.0003 (5)0.0025 (6)0.0016 (5)
B30.0167 (7)0.0158 (7)0.0184 (7)0.0003 (5)0.0027 (6)0.0027 (5)
B40.0177 (7)0.0193 (8)0.0186 (7)0.0003 (6)0.0006 (6)0.0002 (5)
B50.0157 (7)0.0190 (8)0.0209 (8)0.0000 (6)0.0029 (6)0.0001 (5)
O10.0135 (4)0.0203 (5)0.0159 (5)0.0004 (3)0.0020 (4)0.0002 (3)
O20.0174 (5)0.0275 (6)0.0180 (5)0.0019 (4)0.0018 (4)0.0037 (4)
O30.0137 (4)0.0233 (5)0.0173 (5)0.0018 (4)0.0011 (4)0.0010 (3)
O40.0148 (5)0.0319 (6)0.0164 (5)0.0005 (4)0.0024 (4)0.0010 (4)
O50.0140 (4)0.0201 (5)0.0161 (5)0.0001 (3)0.0023 (4)0.0003 (3)
O60.0154 (5)0.0152 (5)0.0189 (5)0.0010 (3)0.0012 (4)0.0004 (3)
O70.0257 (5)0.0164 (5)0.0301 (6)0.0026 (4)0.0097 (4)0.0019 (4)
O80.0194 (5)0.0176 (5)0.0268 (5)0.0004 (4)0.0077 (4)0.0003 (4)
O90.0189 (5)0.0165 (5)0.0290 (5)0.0001 (4)0.0055 (4)0.0003 (4)
O100.0149 (4)0.0155 (5)0.0181 (5)0.0001 (3)0.0006 (4)0.0004 (3)
N10.0162 (5)0.0291 (6)0.0211 (6)0.0007 (5)0.0026 (5)0.0052 (4)
C10.0343 (9)0.0355 (9)0.0417 (10)0.0121 (7)0.0011 (8)0.0030 (7)
C20.0373 (9)0.0534 (12)0.0407 (10)0.0168 (8)0.0158 (8)0.0065 (7)
Geometric parameters (Å, º) top
B1—O11.4623 (16)B5—O81.3813 (17)
B1—O61.4679 (16)O2—H2A0.848 (14)
B1—O101.4680 (16)O4—H4A0.814 (14)
B1—O51.4726 (18)O7—H7A0.841 (15)
B2—O21.3506 (18)O9—H9A0.822 (15)
B2—O11.3628 (18)N1—C21.473 (2)
B2—O31.3860 (18)N1—C11.479 (2)
B3—O51.3571 (18)N1—H1A0.9200
B3—O41.3612 (18)N1—H1B0.9200
B3—O31.3849 (17)C1—H1C0.9800
B4—O61.3530 (18)C1—H1D0.9800
B4—O71.3550 (17)C1—H1E0.9800
B4—O81.3843 (17)C2—H2B0.9800
B5—O91.3522 (17)C2—H2C0.9800
B5—O101.3643 (18)C2—H2D0.9800
O1—B1—O6109.83 (10)B4—O6—B1123.62 (10)
O1—B1—O10108.91 (10)B4—O7—H7A112.5 (14)
O6—B1—O10111.01 (10)B5—O8—B4119.22 (11)
O1—B1—O5110.64 (10)B5—O9—H9A109.3 (14)
O6—B1—O5107.83 (10)B5—O10—B1123.93 (10)
O10—B1—O5108.62 (10)C2—N1—C1113.84 (13)
O2—B2—O1117.44 (13)C2—N1—H1A108.8
O2—B2—O3121.67 (12)C1—N1—H1A108.8
O1—B2—O3120.89 (12)C2—N1—H1B108.8
O5—B3—O4122.01 (12)C1—N1—H1B108.8
O5—B3—O3121.49 (13)H1A—N1—H1B107.7
O4—B3—O3116.50 (12)N1—C1—H1C109.5
O6—B4—O7121.26 (12)N1—C1—H1D109.5
O6—B4—O8121.48 (12)H1C—C1—H1D109.5
O7—B4—O8117.24 (12)N1—C1—H1E109.5
O9—B5—O10122.15 (12)H1C—C1—H1E109.5
O9—B5—O8117.16 (12)H1D—C1—H1E109.5
O10—B5—O8120.69 (12)N1—C2—H2B109.5
B2—O1—B1123.50 (11)N1—C2—H2C109.5
B2—O2—H2A112.2 (12)H2B—C2—H2C109.5
B3—O3—B2118.78 (11)N1—C2—H2D109.5
B3—O4—H4A109.3 (14)H2B—C2—H2D109.5
B3—O5—B1123.11 (10)H2C—C2—H2D109.5
O2—B2—O1—B1172.54 (11)O7—B4—O6—B1178.29 (12)
O3—B2—O1—B18.38 (19)O8—B4—O6—B10.3 (2)
O6—B1—O1—B2104.43 (13)O1—B1—O6—B4119.72 (13)
O10—B1—O1—B2133.81 (11)O10—B1—O6—B40.78 (17)
O5—B1—O1—B214.49 (16)O5—B1—O6—B4119.64 (13)
O5—B3—O3—B23.31 (18)O9—B5—O8—B4175.72 (13)
O4—B3—O3—B2177.43 (11)O10—B5—O8—B43.0 (2)
O2—B2—O3—B3177.60 (12)O6—B4—O8—B52.2 (2)
O1—B2—O3—B31.43 (19)O7—B4—O8—B5176.43 (13)
O4—B3—O5—B1174.74 (11)O9—B5—O10—B1176.76 (12)
O3—B3—O5—B14.48 (19)O8—B5—O10—B11.9 (2)
O1—B1—O5—B312.53 (16)O1—B1—O10—B5121.03 (13)
O6—B1—O5—B3107.59 (12)O6—B1—O10—B50.01 (17)
O10—B1—O5—B3132.03 (11)O5—B1—O10—B5118.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.921.862.7707 (15)170
N1—H1B···O4ii0.921.962.8765 (15)173
O2—H2A···O7iii0.85 (2)1.85 (2)2.6972 (15)175 (2)
O4—H4A···O5iv0.81 (2)1.93 (2)2.7340 (12)172 (2)
O7—H7A···O10v0.84 (2)1.86 (2)2.7015 (13)176 (2)
O9—H9A···O6vi0.82 (2)1.94 (2)2.7526 (13)169 (2)
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x1, y+1, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2.
 

References

First citationBruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFreyhardt, C. C., Wiebcke, M., Felsche, J. & Engelhardt, G. (1994). J. Inclusion Phenom. Macrocycl. Chem. 18, 161–175.  CrossRef CAS Google Scholar
First citationLoboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu T., Petrova, O. V. & Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960–1962.  Google Scholar
First citationLoboda, N. V., Antipin, M. Yu, Struchkov, Yu T., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547–549.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTurdybekov, K. M., Struchkov, Yu. T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250–1254.  CAS Google Scholar
First citationWiebcke, M., Freyhardt, C. C., Felsche, J. & Engelhardt, G. (1993). Z. Naturforsch, Teil B, 48, 978–985.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds