organic compounds
Dimethylammonium tetrahydropentaborate
aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: jon.charmant@bris.ac.uk
The title compound [systematic name: dimethylammonium 1,1′-spiro-bis(3,5,-dihydroxy-2,4,6-trioxa-1,3,5-triboracyclohexane)borate], C2H8N+·B5H4O10−, contains the [B5O6(OH)4]− tetrahydropentaborate anion, which possesses typical geometrical parameters, accompanied by dimethylammonium cations. The packing of these species is influenced by cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds.
Comment
The tetrahydropentaborate anion, [B5O6(OH)4]−, has been crystallized with a variety of ammonium cations: [NH4]+ (Loboda et al., 1993); [H2NC5H10]+, [NMe4]+ and [NEt4]+ (Wiebcke et al., 1993); [HNEt3]+ (Loboda et al., 1994); [HNBun3]+ (Turdybekov et al., 1992) and [NPrn4]+ (Freyhardt et al., 1994). In this paper, we report the of a dimethylammonium salt of this anion, [H2NMe2]+[B5O6(OH)4]−, (I) (Fig. 1).
The anion consists of a central BO4 tetrahedron fused to four trigonal planar BO2(OH) units and shows normal geometrical parameters (Table 1). Hydrogen bonding (Table 2) between adjacent [B5O6(OH)4]− units results in R22(8) (Etter, 1990) dimers (Fig. 2). This anion-to-anion hydrogen-bonding framework is supplemented by the formation of two hydrogen bonds from each dimethylammonium cation to two adjacent [B5O6(OH)4]− anions.
Experimental
A large excess of B(OH)3 (55.6 mmol, 3.44 g, dried by the Dean–Stark method) was added to a stirred solution of B2(NMe2)4 (1 ml, 5.56 mmol) in tetrahydrofuran (25 ml), and the solution left to stir overnight. After removal of the solvent in vacuo, a white solid remained, which was shown to contain some B2(OH)4 and a majority of B(OH)3 by 11B{1H} NMR spectroscopy. Dissolution of this solid in degassed water followed by slow evaporation over several days afforded a small crop of thin needle-like crystals approximately 5 mm long, a fragment of one of which was shown to be [H2NMe2][B5O6(OH)4].
Crystal data
|
Refinement
|
|
The methyl H atoms of the cation were located using a rotating group Ueq of their parent C atom. The remaining H atoms of the cation were constrained to ideal geometries (Table 2) and refined with displacement parameters equal to 1.2 times Ueq(N). All hydroxyl H atoms were located in Fourier difference maps, assigned displacement parameters equal to 1.5Ueq(O) and refined with a distance restraint of 0.84 (3) Å on the O—H bonds.
with C—H bond lengths constrained to 0.96 Å and displacement parameters equal to 1.5 timesData collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT and SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536804012371/hb6049sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock final. DOI: https://doi.org/10.1107/S1600536804012371/hb6049Isup2.hkl
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.C2H8N+·B5H4O10− | F(000) = 1088 |
Mr = 264.18 | Dx = 1.444 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 4393 reflections |
a = 13.3664 (3) Å | θ = 5.3–70.2° |
b = 11.4709 (3) Å | µ = 1.19 mm−1 |
c = 17.1147 (4) Å | T = 100 K |
β = 112.160 (1)° | Block, colourless |
V = 2430.27 (10) Å3 | 0.18 × 0.10 × 0.10 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 2225 independent reflections |
Radiation source: MAC Science M06X CE Rotating anode | 1847 reflections with I > 2σ(I) |
Osmic CMF12-38Cu6 (blue) optics monochromator | Rint = 0.026 |
Detector resolution: 5.6 pixels mm-1 | θmax = 70.2°, θmin = 5.3° |
ω scans | h = −15→16 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −13→13 |
Tmin = 0.792, Tmax = 0.886 | l = −20→20 |
9127 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: difmap (O-H) and geom (C-H and N-H) |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0624P)2] where P = (Fo2 + 2Fc2)/3 |
2225 reflections | (Δ/σ)max = 0.001 |
177 parameters | Δρmax = 0.25 e Å−3 |
4 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.81860 (12) | 0.90832 (12) | 0.31606 (9) | 0.0166 (3) | |
B2 | 0.93003 (12) | 0.87280 (12) | 0.46759 (9) | 0.0180 (3) | |
B3 | 1.01942 (12) | 0.89925 (12) | 0.37177 (9) | 0.0181 (3) | |
B4 | 0.66922 (12) | 0.80519 (13) | 0.20378 (9) | 0.0204 (3) | |
B5 | 0.65759 (12) | 1.01176 (13) | 0.21409 (9) | 0.0197 (3) | |
O1 | 0.83319 (7) | 0.89692 (7) | 0.40480 (5) | 0.0176 (2) | |
O2 | 0.93013 (8) | 0.85132 (8) | 0.54521 (6) | 0.0224 (2) | |
H2A | 0.9918 (12) | 0.8304 (16) | 0.5797 (10) | 0.034* | |
O3 | 1.02458 (7) | 0.87224 (8) | 0.45206 (5) | 0.0195 (2) | |
O4 | 1.11499 (7) | 0.90211 (8) | 0.36063 (6) | 0.0221 (2) | |
H4A | 1.1035 (15) | 0.9148 (15) | 0.3112 (10) | 0.033* | |
O5 | 0.92372 (7) | 0.92038 (7) | 0.30757 (5) | 0.0177 (2) | |
O6 | 0.76559 (7) | 0.80361 (7) | 0.26945 (5) | 0.0180 (2) | |
O7 | 0.62507 (8) | 0.70632 (8) | 0.16148 (6) | 0.0300 (3) | |
H7A | 0.6629 (15) | 0.6470 (15) | 0.1818 (12) | 0.045* | |
O8 | 0.61277 (8) | 0.90800 (8) | 0.17587 (6) | 0.0261 (2) | |
O9 | 0.60298 (8) | 1.11071 (8) | 0.18115 (6) | 0.0257 (2) | |
H9A | 0.6414 (14) | 1.1673 (15) | 0.2022 (12) | 0.039* | |
O10 | 0.75402 (7) | 1.01298 (7) | 0.28109 (5) | 0.0178 (2) | |
N1 | 0.28012 (9) | 0.01583 (10) | 0.01395 (7) | 0.0234 (3) | |
H1A | 0.2448 | −0.0171 | 0.0454 | 0.028* | |
H1B | 0.2287 | 0.0366 | −0.0374 | 0.028* | |
C1 | 0.33666 (14) | 0.12213 (15) | 0.05735 (11) | 0.0417 (4) | |
H1C | 0.2854 | 0.1734 | 0.0691 | 0.063* | |
H1D | 0.3672 | 0.1630 | 0.0212 | 0.063* | |
H1E | 0.3949 | 0.1004 | 0.1105 | 0.063* | |
C2 | 0.35208 (15) | −0.07212 (17) | 0.00023 (11) | 0.0435 (4) | |
H2B | 0.3096 | −0.1404 | −0.0278 | 0.065* | |
H2C | 0.4067 | −0.0955 | 0.0547 | 0.065* | |
H2D | 0.3878 | −0.0390 | −0.0353 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0141 (7) | 0.0157 (7) | 0.0165 (7) | −0.0001 (5) | 0.0018 (6) | 0.0000 (5) |
B2 | 0.0174 (7) | 0.0131 (7) | 0.0195 (7) | −0.0003 (5) | 0.0025 (6) | −0.0016 (5) |
B3 | 0.0167 (7) | 0.0158 (7) | 0.0184 (7) | −0.0003 (5) | 0.0027 (6) | −0.0027 (5) |
B4 | 0.0177 (7) | 0.0193 (8) | 0.0186 (7) | −0.0003 (6) | 0.0006 (6) | 0.0002 (5) |
B5 | 0.0157 (7) | 0.0190 (8) | 0.0209 (8) | 0.0000 (6) | 0.0029 (6) | 0.0001 (5) |
O1 | 0.0135 (4) | 0.0203 (5) | 0.0159 (5) | 0.0004 (3) | 0.0020 (4) | −0.0002 (3) |
O2 | 0.0174 (5) | 0.0275 (6) | 0.0180 (5) | 0.0019 (4) | 0.0018 (4) | 0.0037 (4) |
O3 | 0.0137 (4) | 0.0233 (5) | 0.0173 (5) | 0.0018 (4) | 0.0011 (4) | 0.0010 (3) |
O4 | 0.0148 (5) | 0.0319 (6) | 0.0164 (5) | 0.0005 (4) | 0.0024 (4) | −0.0010 (4) |
O5 | 0.0140 (4) | 0.0201 (5) | 0.0161 (5) | 0.0001 (3) | 0.0023 (4) | 0.0003 (3) |
O6 | 0.0154 (5) | 0.0152 (5) | 0.0189 (5) | 0.0010 (3) | 0.0012 (4) | −0.0004 (3) |
O7 | 0.0257 (5) | 0.0164 (5) | 0.0301 (6) | 0.0026 (4) | −0.0097 (4) | −0.0019 (4) |
O8 | 0.0194 (5) | 0.0176 (5) | 0.0268 (5) | 0.0004 (4) | −0.0077 (4) | −0.0003 (4) |
O9 | 0.0189 (5) | 0.0165 (5) | 0.0290 (5) | −0.0001 (4) | −0.0055 (4) | 0.0003 (4) |
O10 | 0.0149 (4) | 0.0155 (5) | 0.0181 (5) | 0.0001 (3) | 0.0006 (4) | −0.0004 (3) |
N1 | 0.0162 (5) | 0.0291 (6) | 0.0211 (6) | −0.0007 (5) | 0.0026 (5) | 0.0052 (4) |
C1 | 0.0343 (9) | 0.0355 (9) | 0.0417 (10) | −0.0121 (7) | −0.0011 (8) | 0.0030 (7) |
C2 | 0.0373 (9) | 0.0534 (12) | 0.0407 (10) | 0.0168 (8) | 0.0158 (8) | 0.0065 (7) |
B1—O1 | 1.4623 (16) | B5—O8 | 1.3813 (17) |
B1—O6 | 1.4679 (16) | O2—H2A | 0.848 (14) |
B1—O10 | 1.4680 (16) | O4—H4A | 0.814 (14) |
B1—O5 | 1.4726 (18) | O7—H7A | 0.841 (15) |
B2—O2 | 1.3506 (18) | O9—H9A | 0.822 (15) |
B2—O1 | 1.3628 (18) | N1—C2 | 1.473 (2) |
B2—O3 | 1.3860 (18) | N1—C1 | 1.479 (2) |
B3—O5 | 1.3571 (18) | N1—H1A | 0.9200 |
B3—O4 | 1.3612 (18) | N1—H1B | 0.9200 |
B3—O3 | 1.3849 (17) | C1—H1C | 0.9800 |
B4—O6 | 1.3530 (18) | C1—H1D | 0.9800 |
B4—O7 | 1.3550 (17) | C1—H1E | 0.9800 |
B4—O8 | 1.3843 (17) | C2—H2B | 0.9800 |
B5—O9 | 1.3522 (17) | C2—H2C | 0.9800 |
B5—O10 | 1.3643 (18) | C2—H2D | 0.9800 |
O1—B1—O6 | 109.83 (10) | B4—O6—B1 | 123.62 (10) |
O1—B1—O10 | 108.91 (10) | B4—O7—H7A | 112.5 (14) |
O6—B1—O10 | 111.01 (10) | B5—O8—B4 | 119.22 (11) |
O1—B1—O5 | 110.64 (10) | B5—O9—H9A | 109.3 (14) |
O6—B1—O5 | 107.83 (10) | B5—O10—B1 | 123.93 (10) |
O10—B1—O5 | 108.62 (10) | C2—N1—C1 | 113.84 (13) |
O2—B2—O1 | 117.44 (13) | C2—N1—H1A | 108.8 |
O2—B2—O3 | 121.67 (12) | C1—N1—H1A | 108.8 |
O1—B2—O3 | 120.89 (12) | C2—N1—H1B | 108.8 |
O5—B3—O4 | 122.01 (12) | C1—N1—H1B | 108.8 |
O5—B3—O3 | 121.49 (13) | H1A—N1—H1B | 107.7 |
O4—B3—O3 | 116.50 (12) | N1—C1—H1C | 109.5 |
O6—B4—O7 | 121.26 (12) | N1—C1—H1D | 109.5 |
O6—B4—O8 | 121.48 (12) | H1C—C1—H1D | 109.5 |
O7—B4—O8 | 117.24 (12) | N1—C1—H1E | 109.5 |
O9—B5—O10 | 122.15 (12) | H1C—C1—H1E | 109.5 |
O9—B5—O8 | 117.16 (12) | H1D—C1—H1E | 109.5 |
O10—B5—O8 | 120.69 (12) | N1—C2—H2B | 109.5 |
B2—O1—B1 | 123.50 (11) | N1—C2—H2C | 109.5 |
B2—O2—H2A | 112.2 (12) | H2B—C2—H2C | 109.5 |
B3—O3—B2 | 118.78 (11) | N1—C2—H2D | 109.5 |
B3—O4—H4A | 109.3 (14) | H2B—C2—H2D | 109.5 |
B3—O5—B1 | 123.11 (10) | H2C—C2—H2D | 109.5 |
O2—B2—O1—B1 | −172.54 (11) | O7—B4—O6—B1 | 178.29 (12) |
O3—B2—O1—B1 | 8.38 (19) | O8—B4—O6—B1 | −0.3 (2) |
O6—B1—O1—B2 | 104.43 (13) | O1—B1—O6—B4 | 119.72 (13) |
O10—B1—O1—B2 | −133.81 (11) | O10—B1—O6—B4 | −0.78 (17) |
O5—B1—O1—B2 | −14.49 (16) | O5—B1—O6—B4 | −119.64 (13) |
O5—B3—O3—B2 | −3.31 (18) | O9—B5—O8—B4 | 175.72 (13) |
O4—B3—O3—B2 | 177.43 (11) | O10—B5—O8—B4 | −3.0 (2) |
O2—B2—O3—B3 | −177.60 (12) | O6—B4—O8—B5 | 2.2 (2) |
O1—B2—O3—B3 | 1.43 (19) | O7—B4—O8—B5 | −176.43 (13) |
O4—B3—O5—B1 | 174.74 (11) | O9—B5—O10—B1 | −176.76 (12) |
O3—B3—O5—B1 | −4.48 (19) | O8—B5—O10—B1 | 1.9 (2) |
O1—B1—O5—B3 | 12.53 (16) | O1—B1—O10—B5 | −121.03 (13) |
O6—B1—O5—B3 | −107.59 (12) | O6—B1—O10—B5 | 0.01 (17) |
O10—B1—O5—B3 | 132.03 (11) | O5—B1—O10—B5 | 118.39 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.92 | 1.86 | 2.7707 (15) | 170 |
N1—H1B···O4ii | 0.92 | 1.96 | 2.8765 (15) | 173 |
O2—H2A···O7iii | 0.85 (2) | 1.85 (2) | 2.6972 (15) | 175 (2) |
O4—H4A···O5iv | 0.81 (2) | 1.93 (2) | 2.7340 (12) | 172 (2) |
O7—H7A···O10v | 0.84 (2) | 1.86 (2) | 2.7015 (13) | 176 (2) |
O9—H9A···O6vi | 0.82 (2) | 1.94 (2) | 2.7526 (13) | 169 (2) |
Symmetry codes: (i) −x+1, y−1, −z+1/2; (ii) x−1, −y+1, z−1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+2, y, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2. |
References
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Freyhardt, C. C., Wiebcke, M., Felsche, J. & Engelhardt, G. (1994). J. Inclusion Phenom. Macrocycl. Chem. 18, 161–175. CrossRef CAS Google Scholar
Loboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu T., Petrova, O. V. & Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960–1962. Google Scholar
Loboda, N. V., Antipin, M. Yu, Struchkov, Yu T., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547–549. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Turdybekov, K. M., Struchkov, Yu. T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250–1254. CAS Google Scholar
Wiebcke, M., Freyhardt, C. C., Felsche, J. & Engelhardt, G. (1993). Z. Naturforsch, Teil B, 48, 978–985. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.