organic compounds
Diethyl 9,10-endo-ethano-9,10-dihydroanthracene-11,11-dicarboxylate
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, C22H22O4, possesses normal geometrical parameters and the dihedral angle between the two benzene ring planes is 57.62 (5)°. The crystal packing is controlled by and a possible C—H⋯O interaction, the latter resulting in a supramolecular C(6) motif.
Comment
The title compound, (I) (Fig. 1), was created as an intermediate in the synthesis of 2-methylene malonic acid diethyl ester, (II). The alkene produced in the absence of anthracene is very unstable and polymerizes easily. The presence of the anthracene acts to trap the monomer in a Diels–Alder reaction and purification of (I) prior to thermolysis allows the generation of (II) (by a retro-Diels–Alder reaction) in a much more stable form. The presence of excess maleic anhydride in this reaction ensures that the released anthracene is consumed by the formation of an anthracene-maleic anhydride adduct and is not free to regenerate (I). Thus, this type of reaction may be useful in the trapping of and allow for easier purification.
The geometrical parameters for (I) are broadly similar to those of related 9,10-bridged anthracene derivatives (Table 1) (Gable et al., 1996; Karolak-Wojciechowska et al., 1998; Burrows et al., 1999). The two benzene rings in (I) (atoms C2–C7 and C9–C14) are both essentially planar (r.m.s. deviations from the least-squares planes are 0.010 and 0.001 Å, respectively). The dihedral angle between these rings is 57.62 (5)°, which is typical for these 9,10-bridged anthracene systems, e.g. the corresponding dihedral angle in 11,12-bis(N,N-dimethylaminomethyl)-9,10-dihydro-9,10-ethanoanthracene (Karolak-Wojciechowska et al., 1998) is 58.8 (2)°. The three six-membered rings of the bicyclic core of (I) (C1/C2/C7/C8/C9/C14, C1/C2/C7/C8/C15/C16 and C1/C14/C9/C8/C15/C16; see Fig. 1) are all forced into boat forms. The ester substituents show no unusual features.
The only significant intermolecular interaction in (I), as identified in a PLATON (Spek, 2003) analysis of the structure, is a C8—H8⋯O3i bond (Table 2). This bridgehead H8 atom attached to an sp3-hybridized C atom may be slightly activated due to ring strain (Desiraju & Steiner, 1999). This connectivity results in C(6) chains (Bernstein et al., 1995), generated by n-glide symmetry (Fig. 2). Otherwise, the crystal packing is controlled by van der Waals forces.
Experimental
A round-bottomed flask was fitted with a still head and condenser and diethyl malonate (9.70 g, 9.2 ml, 61 mmol), anthracene (12.00 g, 67 mmol), paraformaldehyde (3.64 g, 0.12 mol), copper(II) acetate monohydrate (0.60 g, 3.0 mmol), acetic acid (50 ml) and xylene (50 ml) were quickly added. The reaction mixture was heated at 383 K for 15 h and a clear dark-green solution resulted. The temperature was increased in order to distil off the acetic acid, then the reaction mixture was cooled to room temperature and filtered under suction. The filtrate was retained and the xylene evaporated on a rotary evaporator to yield a green oil which was left to crystallize. Purification was carried out by recrystallization from hot hexane. Filtration and washing with ice-cold hexane (25 ml) resulted in the pure anthracene adduct (I) (14.72 g, 69%) as colourless plates [m.p. 404.5–405 K; literature (De Keyser et al., 1988) 403–404 K from EtOH]; RF(hexane–propan-2-ol 50:1) 0.13; νmax (KBr disc)/cm−1: 2974 (C—H), 1732 (C=O), 1460–1446 (aromatic C=C) and 757 (4 adjacent Ar-H); δH (250 MHz; CDCl3): 1.15 (6H, t, J = 7.0 Hz, 2 × CH3), 2.47 [2H, d, J = 2.4 Hz, (EtO2C)2CCH2], 3.95–4.09 (4H, m, 2 × OCH2), 4.33 (1H, poorly resolved t, J = 2.4 Hz, Ar2CHCH2), 4.97 [1H, s, Ar2CHC(CO2Et)2] and 7.07–7.33 (8H, m, Ar-H); δC (CDCl3): 14.0, 36.4, 43.9, 49.6, 60.0, 61.7, 123.3, 125.7, [De Keyser et al. (1988) give 125.68 and 125.74], 126.4, 139.8, 144.0 and 170.2.
Crystal data
|
Refinement
|
|
All H atoms were geometrically placed in idealized locations and refined as riding on their carrier C atoms with C—H distances set to 0.95, 0.98, 0.99 and 1.00 Å for aromatic, sp2, terminal sp3 and bridgehead sp3 hybrid C atoms, respectively. The constraint Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C) was applied as appropriate.
Data collection: COLLECT (Nonius, 1998); cell COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804012279/hg6050sup1.cif
contains datablocks I, ms01. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804012279/hg6050Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C22H22O4 | F(000) = 744 |
Mr = 350.40 | Dx = 1.294 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 21198 reflections |
a = 9.2424 (2) Å | θ = 2.9–27.5° |
b = 16.5210 (5) Å | µ = 0.09 mm−1 |
c = 11.9154 (4) Å | T = 120 K |
β = 98.631 (2)° | Plate, colourless |
V = 1798.80 (9) Å3 | 0.28 × 0.20 × 0.03 mm |
Z = 4 |
Enraf–Nonius KappaCCD diffractometer | 3538 independent reflections |
Radiation source: fine-focus sealed tube | 2750 reflections with I > 2σ(I)' |
Graphite monochromator | Rint = 0.120 |
ω and φ scans | θmax = 26.0°, θmin = 3.0° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −11→11 |
Tmin = 0.976, Tmax = 0.999 | k = −20→20 |
21237 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.8446P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3538 reflections | Δρmax = 0.30 e Å−3 |
238 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.012 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0216 (2) | 0.24941 (11) | 0.79618 (16) | 0.0207 (4) | |
H1 | 0.0063 | 0.2266 | 0.7176 | 0.025* | |
C2 | 0.1800 (2) | 0.27254 (11) | 0.83512 (16) | 0.0221 (4) | |
C3 | 0.2947 (2) | 0.26234 (12) | 0.77362 (17) | 0.0267 (5) | |
H3 | 0.2785 | 0.2375 | 0.7009 | 0.032* | |
C4 | 0.4342 (2) | 0.28899 (13) | 0.81988 (18) | 0.0303 (5) | |
H4 | 0.5134 | 0.2828 | 0.7782 | 0.036* | |
C5 | 0.4574 (2) | 0.32439 (13) | 0.92616 (18) | 0.0306 (5) | |
H5 | 0.5526 | 0.3426 | 0.9568 | 0.037* | |
C6 | 0.3427 (2) | 0.33370 (12) | 0.98894 (17) | 0.0272 (5) | |
H6 | 0.3596 | 0.3572 | 1.0625 | 0.033* | |
C7 | 0.2032 (2) | 0.30808 (12) | 0.94241 (16) | 0.0237 (4) | |
C8 | 0.0657 (2) | 0.31482 (12) | 0.99611 (16) | 0.0234 (4) | |
H8 | 0.0844 | 0.3424 | 1.0716 | 0.028* | |
C9 | −0.0462 (2) | 0.35975 (12) | 0.91330 (16) | 0.0233 (4) | |
C10 | −0.1241 (2) | 0.42843 (12) | 0.93459 (18) | 0.0279 (5) | |
H10 | −0.1088 | 0.4528 | 1.0076 | 0.033* | |
C11 | −0.2248 (2) | 0.46132 (13) | 0.84820 (19) | 0.0314 (5) | |
H11 | −0.2782 | 0.5084 | 0.8622 | 0.038* | |
C12 | −0.2475 (2) | 0.42579 (13) | 0.74195 (18) | 0.0305 (5) | |
H12 | −0.3166 | 0.4487 | 0.6835 | 0.037* | |
C13 | −0.1706 (2) | 0.35706 (12) | 0.71985 (17) | 0.0247 (4) | |
H13 | −0.1866 | 0.3328 | 0.6467 | 0.030* | |
C14 | −0.0703 (2) | 0.32413 (11) | 0.80559 (16) | 0.0217 (4) | |
C15 | 0.0035 (2) | 0.22833 (12) | 1.00520 (16) | 0.0238 (4) | |
H15A | −0.0908 | 0.2312 | 1.0349 | 0.029* | |
H15B | 0.0725 | 0.1958 | 1.0587 | 0.029* | |
C16 | −0.0199 (2) | 0.18699 (11) | 0.88621 (15) | 0.0210 (4) | |
C17 | 0.0766 (2) | 0.11174 (12) | 0.88462 (15) | 0.0220 (4) | |
C18 | 0.1230 (2) | −0.00151 (13) | 0.77158 (19) | 0.0327 (5) | |
H18A | 0.0615 | −0.0390 | 0.7201 | 0.039* | |
H18B | 0.1501 | −0.0290 | 0.8456 | 0.039* | |
C19 | 0.2581 (3) | 0.01865 (16) | 0.7228 (2) | 0.0473 (6) | |
H19A | 0.3088 | −0.0314 | 0.7079 | 0.071* | |
H19B | 0.3227 | 0.0521 | 0.7767 | 0.071* | |
H19C | 0.2314 | 0.0485 | 0.6516 | 0.071* | |
C20 | −0.1775 (2) | 0.15905 (12) | 0.85190 (16) | 0.0219 (4) | |
C21 | −0.3694 (2) | 0.08520 (17) | 0.9188 (2) | 0.0441 (6) | |
H21A | −0.3710 | 0.0253 | 0.9166 | 0.053* | |
H21B | −0.4223 | 0.1056 | 0.8458 | 0.053* | |
C22 | −0.4421 (3) | 0.11405 (15) | 1.0129 (2) | 0.0402 (6) | |
H22A | −0.5432 | 0.0944 | 1.0026 | 0.060* | |
H22B | −0.4419 | 0.1734 | 1.0139 | 0.060* | |
H22C | −0.3895 | 0.0937 | 1.0849 | 0.060* | |
O1 | 0.03986 (15) | 0.07194 (8) | 0.78719 (12) | 0.0287 (4) | |
O2 | 0.17203 (16) | 0.09130 (9) | 0.95894 (12) | 0.0321 (4) | |
O3 | −0.25370 (15) | 0.17464 (9) | 0.76424 (12) | 0.0333 (4) | |
O4 | −0.21870 (16) | 0.11370 (10) | 0.93410 (12) | 0.0366 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0227 (9) | 0.0208 (10) | 0.0182 (9) | −0.0013 (8) | 0.0025 (7) | −0.0005 (7) |
C2 | 0.0247 (10) | 0.0175 (10) | 0.0242 (10) | −0.0001 (8) | 0.0043 (8) | 0.0042 (8) |
C3 | 0.0307 (11) | 0.0228 (11) | 0.0270 (11) | 0.0004 (8) | 0.0062 (8) | 0.0043 (8) |
C4 | 0.0245 (10) | 0.0291 (12) | 0.0387 (12) | 0.0025 (9) | 0.0092 (9) | 0.0099 (9) |
C5 | 0.0236 (10) | 0.0271 (12) | 0.0396 (12) | −0.0024 (8) | 0.0000 (9) | 0.0078 (9) |
C6 | 0.0293 (11) | 0.0217 (10) | 0.0284 (11) | −0.0013 (8) | −0.0032 (8) | 0.0022 (8) |
C7 | 0.0245 (10) | 0.0199 (10) | 0.0258 (10) | 0.0004 (8) | 0.0014 (8) | 0.0019 (8) |
C8 | 0.0244 (10) | 0.0248 (10) | 0.0205 (10) | −0.0030 (8) | 0.0020 (8) | −0.0038 (8) |
C9 | 0.0230 (10) | 0.0233 (10) | 0.0239 (10) | −0.0035 (8) | 0.0047 (7) | −0.0001 (8) |
C10 | 0.0272 (11) | 0.0248 (11) | 0.0325 (11) | −0.0048 (8) | 0.0068 (8) | −0.0069 (9) |
C11 | 0.0277 (11) | 0.0226 (11) | 0.0446 (13) | 0.0022 (9) | 0.0078 (9) | −0.0013 (9) |
C12 | 0.0275 (11) | 0.0268 (12) | 0.0368 (12) | 0.0011 (9) | 0.0034 (9) | 0.0064 (9) |
C13 | 0.0244 (10) | 0.0236 (11) | 0.0257 (10) | −0.0036 (8) | 0.0020 (8) | 0.0014 (8) |
C14 | 0.0214 (10) | 0.0193 (10) | 0.0248 (10) | −0.0044 (8) | 0.0049 (8) | −0.0007 (8) |
C15 | 0.0257 (10) | 0.0266 (11) | 0.0193 (10) | −0.0003 (8) | 0.0036 (8) | 0.0001 (8) |
C16 | 0.0221 (10) | 0.0209 (10) | 0.0196 (9) | −0.0001 (7) | 0.0022 (7) | −0.0006 (7) |
C17 | 0.0213 (9) | 0.0221 (10) | 0.0229 (10) | −0.0035 (8) | 0.0044 (8) | 0.0012 (8) |
C18 | 0.0334 (12) | 0.0214 (11) | 0.0428 (13) | 0.0066 (9) | 0.0039 (10) | −0.0087 (9) |
C19 | 0.0495 (15) | 0.0438 (15) | 0.0524 (15) | 0.0110 (12) | 0.0203 (12) | 0.0001 (12) |
C20 | 0.0232 (10) | 0.0199 (10) | 0.0232 (10) | 0.0018 (8) | 0.0053 (8) | −0.0031 (8) |
C21 | 0.0316 (13) | 0.0571 (16) | 0.0457 (14) | −0.0259 (11) | 0.0128 (10) | −0.0100 (12) |
C22 | 0.0332 (12) | 0.0418 (14) | 0.0464 (14) | 0.0044 (10) | 0.0083 (10) | 0.0025 (11) |
O1 | 0.0286 (8) | 0.0245 (8) | 0.0319 (8) | 0.0049 (6) | 0.0005 (6) | −0.0079 (6) |
O2 | 0.0312 (8) | 0.0340 (9) | 0.0294 (8) | 0.0072 (6) | −0.0010 (6) | 0.0024 (6) |
O3 | 0.0283 (8) | 0.0345 (9) | 0.0339 (8) | −0.0054 (6) | −0.0065 (6) | 0.0042 (6) |
O4 | 0.0305 (8) | 0.0487 (10) | 0.0306 (8) | −0.0174 (7) | 0.0043 (6) | 0.0057 (7) |
C1—C14 | 1.512 (3) | C13—C14 | 1.384 (3) |
C1—C2 | 1.516 (3) | C13—H13 | 0.9500 |
C1—C16 | 1.576 (3) | C15—C16 | 1.559 (3) |
C1—H1 | 1.0000 | C15—H15A | 0.9900 |
C2—C3 | 1.387 (3) | C15—H15B | 0.9900 |
C2—C7 | 1.394 (3) | C16—C20 | 1.524 (3) |
C3—C4 | 1.395 (3) | C16—C17 | 1.532 (3) |
C3—H3 | 0.9500 | C17—O2 | 1.201 (2) |
C4—C5 | 1.382 (3) | C17—O1 | 1.333 (2) |
C4—H4 | 0.9500 | C18—O1 | 1.463 (2) |
C5—C6 | 1.395 (3) | C18—C19 | 1.492 (3) |
C5—H5 | 0.9500 | C18—H18A | 0.9900 |
C6—C7 | 1.391 (3) | C18—H18B | 0.9900 |
C6—H6 | 0.9500 | C19—H19A | 0.9800 |
C7—C8 | 1.510 (3) | C19—H19B | 0.9800 |
C8—C9 | 1.513 (3) | C19—H19C | 0.9800 |
C8—C15 | 1.550 (3) | C20—O3 | 1.197 (2) |
C8—H8 | 1.0000 | C20—O4 | 1.333 (2) |
C9—C10 | 1.387 (3) | C21—O4 | 1.455 (2) |
C9—C14 | 1.399 (3) | C21—C22 | 1.470 (3) |
C10—C11 | 1.390 (3) | C21—H21A | 0.9900 |
C10—H10 | 0.9500 | C21—H21B | 0.9900 |
C11—C12 | 1.383 (3) | C22—H22A | 0.9800 |
C11—H11 | 0.9500 | C22—H22B | 0.9800 |
C12—C13 | 1.386 (3) | C22—H22C | 0.9800 |
C12—H12 | 0.9500 | ||
C14—C1—C2 | 107.37 (15) | C13—C14—C1 | 126.00 (17) |
C14—C1—C16 | 106.66 (15) | C9—C14—C1 | 113.45 (16) |
C2—C1—C16 | 106.21 (14) | C8—C15—C16 | 110.04 (15) |
C14—C1—H1 | 112.1 | C8—C15—H15A | 109.7 |
C2—C1—H1 | 112.1 | C16—C15—H15A | 109.7 |
C16—C1—H1 | 112.1 | C8—C15—H15B | 109.7 |
C3—C2—C7 | 120.74 (18) | C16—C15—H15B | 109.7 |
C3—C2—C1 | 125.96 (18) | H15A—C15—H15B | 108.2 |
C7—C2—C1 | 113.29 (16) | C20—C16—C17 | 106.61 (15) |
C2—C3—C4 | 119.17 (19) | C20—C16—C15 | 111.94 (15) |
C2—C3—H3 | 120.4 | C17—C16—C15 | 111.39 (15) |
C4—C3—H3 | 120.4 | C20—C16—C1 | 109.64 (15) |
C5—C4—C3 | 120.18 (19) | C17—C16—C1 | 108.70 (15) |
C5—C4—H4 | 119.9 | C15—C16—C1 | 108.50 (15) |
C3—C4—H4 | 119.9 | O2—C17—O1 | 124.51 (18) |
C4—C5—C6 | 120.81 (19) | O2—C17—C16 | 125.72 (17) |
C4—C5—H5 | 119.6 | O1—C17—C16 | 109.77 (15) |
C6—C5—H5 | 119.6 | O1—C18—C19 | 110.52 (18) |
C7—C6—C5 | 119.10 (19) | O1—C18—H18A | 109.5 |
C7—C6—H6 | 120.4 | C19—C18—H18A | 109.5 |
C5—C6—H6 | 120.4 | O1—C18—H18B | 109.5 |
C6—C7—C2 | 119.98 (18) | C19—C18—H18B | 109.5 |
C6—C7—C8 | 126.67 (18) | H18A—C18—H18B | 108.1 |
C2—C7—C8 | 113.34 (16) | C18—C19—H19A | 109.5 |
C7—C8—C9 | 107.23 (15) | C18—C19—H19B | 109.5 |
C7—C8—C15 | 107.81 (16) | H19A—C19—H19B | 109.5 |
C9—C8—C15 | 105.88 (15) | C18—C19—H19C | 109.5 |
C7—C8—H8 | 111.9 | H19A—C19—H19C | 109.5 |
C9—C8—H8 | 111.9 | H19B—C19—H19C | 109.5 |
C15—C8—H8 | 111.9 | O3—C20—O4 | 124.48 (18) |
C10—C9—C14 | 119.77 (18) | O3—C20—C16 | 125.63 (18) |
C10—C9—C8 | 127.21 (18) | O4—C20—C16 | 109.88 (16) |
C14—C9—C8 | 113.00 (17) | O4—C21—C22 | 109.74 (19) |
C9—C10—C11 | 119.48 (19) | O4—C21—H21A | 109.7 |
C9—C10—H10 | 120.3 | C22—C21—H21A | 109.7 |
C11—C10—H10 | 120.3 | O4—C21—H21B | 109.7 |
C12—C11—C10 | 120.33 (19) | C22—C21—H21B | 109.7 |
C12—C11—H11 | 119.8 | H21A—C21—H21B | 108.2 |
C10—C11—H11 | 119.8 | C21—C22—H22A | 109.5 |
C11—C12—C13 | 120.67 (19) | C21—C22—H22B | 109.5 |
C11—C12—H12 | 119.7 | H22A—C22—H22B | 109.5 |
C13—C12—H12 | 119.7 | C21—C22—H22C | 109.5 |
C14—C13—C12 | 119.20 (18) | H22A—C22—H22C | 109.5 |
C14—C13—H13 | 120.4 | H22B—C22—H22C | 109.5 |
C12—C13—H13 | 120.4 | C17—O1—C18 | 116.73 (15) |
C13—C14—C9 | 120.55 (18) | C20—O4—C21 | 117.59 (17) |
C14—C1—C2—C3 | −125.2 (2) | C2—C1—C14—C13 | 126.6 (2) |
C16—C1—C2—C3 | 121.0 (2) | C16—C1—C14—C13 | −119.9 (2) |
C14—C1—C2—C7 | 53.7 (2) | C2—C1—C14—C9 | −53.7 (2) |
C16—C1—C2—C7 | −60.1 (2) | C16—C1—C14—C9 | 59.8 (2) |
C7—C2—C3—C4 | −0.7 (3) | C7—C8—C15—C16 | −55.1 (2) |
C1—C2—C3—C4 | 178.10 (18) | C9—C8—C15—C16 | 59.4 (2) |
C2—C3—C4—C5 | 0.6 (3) | C8—C15—C16—C20 | −123.56 (17) |
C3—C4—C5—C6 | 0.3 (3) | C8—C15—C16—C17 | 117.18 (17) |
C4—C5—C6—C7 | −1.1 (3) | C8—C15—C16—C1 | −2.4 (2) |
C5—C6—C7—C2 | 1.0 (3) | C14—C1—C16—C20 | 66.91 (18) |
C5—C6—C7—C8 | −178.54 (18) | C2—C1—C16—C20 | −178.79 (15) |
C3—C2—C7—C6 | −0.1 (3) | C14—C1—C16—C17 | −176.91 (14) |
C1—C2—C7—C6 | −179.02 (17) | C2—C1—C16—C17 | −62.61 (18) |
C3—C2—C7—C8 | 179.51 (17) | C14—C1—C16—C15 | −55.63 (19) |
C1—C2—C7—C8 | 0.5 (2) | C2—C1—C16—C15 | 58.68 (19) |
C6—C7—C8—C9 | 124.7 (2) | C20—C16—C17—O2 | −131.2 (2) |
C2—C7—C8—C9 | −54.8 (2) | C15—C16—C17—O2 | −8.8 (3) |
C6—C7—C8—C15 | −121.7 (2) | C1—C16—C17—O2 | 110.7 (2) |
C2—C7—C8—C15 | 58.8 (2) | C20—C16—C17—O1 | 49.30 (19) |
C7—C8—C9—C10 | −126.4 (2) | C15—C16—C17—O1 | 171.68 (15) |
C15—C8—C9—C10 | 118.7 (2) | C1—C16—C17—O1 | −68.82 (19) |
C7—C8—C9—C14 | 54.7 (2) | C17—C16—C20—O3 | −109.9 (2) |
C15—C8—C9—C14 | −60.2 (2) | C15—C16—C20—O3 | 128.1 (2) |
C14—C9—C10—C11 | −0.3 (3) | C1—C16—C20—O3 | 7.6 (3) |
C8—C9—C10—C11 | −179.15 (19) | C17—C16—C20—O4 | 69.68 (19) |
C9—C10—C11—C12 | 0.2 (3) | C15—C16—C20—O4 | −52.4 (2) |
C10—C11—C12—C13 | 0.0 (3) | C1—C16—C20—O4 | −172.83 (15) |
C11—C12—C13—C14 | 0.0 (3) | O2—C17—O1—C18 | 0.0 (3) |
C12—C13—C14—C9 | −0.2 (3) | C16—C17—O1—C18 | 179.50 (16) |
C12—C13—C14—C1 | 179.54 (18) | C19—C18—O1—C17 | −86.8 (2) |
C10—C9—C14—C13 | 0.3 (3) | O3—C20—O4—C21 | −3.8 (3) |
C8—C9—C14—C13 | 179.30 (17) | C16—C20—O4—C21 | 176.68 (17) |
C10—C9—C14—C1 | −179.41 (17) | C22—C21—O4—C20 | −121.4 (2) |
C8—C9—C14—C1 | −0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 1.00 | 2.56 | 3.380 (2) | 139 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Burrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236–239. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
De Keyser, J.-L., De Cock, C. J. C., Poupaert, J. H. & Dumont, P. (1988). J. Org. Chem. 53, 4859–4862. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford: IUCr/OUP. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674–675. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Karolak-Wojciechowska, J., Trzeźwińska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905–911. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr andR. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.