organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3,4,5-tri­meth­oxy­phenyl­methane: sheets built from N—H⋯N and N—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360 Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 7 May 2004; accepted 12 May 2004; online 22 May 2004)

In mol­ecules of the title compound, C30H32N6O3, there is an intramolecular N—H⋯N hydrogen bond [H⋯N = 2.28 Å, N⋯N = 3.194 (3) Å and N—H⋯N = 167°]. The mol­ecules are linked by an N—H⋯O hydrogen bond [H⋯O = 2.37 Å, N⋯O = 3.255 (3) Å and N—H⋯O = 154°] into C(10) chains along [100], and by an intermolecular N—H⋯N hydrogen bond [H⋯N = 2.06 Å, N⋯N = 2.958 (3) Å and N—H⋯N = 155°] into C(8) chains along [001]; these chains combine to generate (010) sheets.

Comment

The title compound, (I[link]) (Fig. 1[link]), was obtained by microwave heating of a 2:1 molar ratio of 5-amino-3-methyl-1-phenyl-1H-pyrazole and 3,4,5-tri­methoxy­benz­aldehyde in a solvent-free reaction (see scheme).[link]

[Scheme 1]

Although, in principle, mol­ecules of (I[link]) could adopt a conformation with mirror symmetry, in the event the key torsion angles (Table 1[link]) defining the orientations of the two pyrazole rings relative to that of the tri­methoxy­phenyl unit preclude the possibility of any molecular symmetry. In addition, the phenyl ring bonded to N23 is disordered over at least two sites, while that bonded to N13 is fully ordered. This disorder, and the orientations of these phenyl rings relative to the adjacent pyrazole rings, also rule out any internal mol­ecular symmetry. The mol­ecules of (I[link]) are accordingly chiral in the solid state, although this chirality probably has no chemical significance; however, the centrosymmetric space group accommodates equal numbers of the two enantiomers.

Within the tri­methoxy­phenyl unit, the methoxy groups based on O33 and O35 are almost coplanar with the adjacent benzene ring, whereas the C34—O34—C341 unit is nearly orthogonal to this ring. Associated with this difference, the exocyclic bond angles at C33 and C35 show the usual pattern of differences between the angles cisoid and transoid to the methyl group (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]; Patterson et al., 1998[Patterson, I. L. J., Glidewell, C. & Ferguson, G. (1998). Acta Cryst. C54, 1970-1974..]; Abonia et al., 2003[Abonia, R., Glidewell, C., Low, J. N., Nogueras, M. & Quiroga, J. (2003). Acta Cryst. C59, o237-o239.]), while the two exocyclic angles at C34 are nearly identical. In addition, the bond O34—C34 is marginally longer than the bonds O33—C33 and O35—C35, again a stereoelectronic consequence of the different conformations of the methoxy substituents.

The corresponding bond distances within the two independent pyrazole units are very similar, and all are typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]): the C—C bonds connecting the central atom C1 to the pyrazole units are markedly shorter than that to the tri­methoxy­phenyl ring.

The amino atoms N12 and N22 act respectively as double and single donors of hydrogen bonds, while N22 in addition acts as a single acceptor (Table 2[link]). Within the mol­ecule, N12 acts as hydrogen-bond donor, via H12A, to atom N22, forming an S(8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Two intermolecular hydrogen bonds link the mol­ecules into sheets, and the formation of the sheet is most readily analysed in terms of two simple one-dimensional substructures.

Amino atom N12 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via H12B, to methoxy atom O34 in the mol­ecule at (1 + x, y, z), generating by translation a C(10) chain running parallel to the [100] direction (Fig. 2[link]). In the second substructure, amino atom N22 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via H22A, to ring atom N14 in the mol­ecule at (x, y, 1 + z), thus generating by translation a C(8) chain running parallel to the [001] direction (Fig. 3[link]). Atom N22 acts only as a single donor of hydrogen bonds, and three are no other potential acceptors within hydrogen-bonding distance. It may be noted here, firstly, that the intramolecular N—H⋯N hydrogen bond is likely to be an important influence on the overall molecular conformation and, secondly, that the pattern of the intermolecular hydrogen bonds is itself sufficient to preclude the possibility of any intramolecular symmetry.

The combination of the [100] and [001] chains generates a (010) sheet in the form of a (4,4)-net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). Four sheets of this type pass through each unit cell, in the domains 0 < y < 0.25, 0.25 < y < 0.50, 0.50 < y < 0.75 and 0.75 < 1.00, but there are no direction-specific interactions between adjacent sheets. In particular, despite the large number of O and N atoms available as potential acceptors of hydrogen bonds, there are no significant C—H⋯O or C—H⋯N interactions in the structure and, despite the presence of three independent aryl rings, there are neither X—H⋯π(arene) hydrogen bonds (X = C or N) nor aromatic ππ stacking interactions.

[Figure 1]
Figure 1
The mol­ecule of compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, only one orientation of the disordered phenyl ring is shown.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I[link]), showing the formation of a C(10) chain along [100]. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively. For the sake of clarity, H atoms bonded to C atoms have been omitted and only one orientation of the disordered phenyl ring is shown.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I[link]), showing the formation of a C(8) chain along [001]. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, z − 1) and (x, y, 1 + z), respectively. For the sake of clarity, H atoms bonded to C atoms have been omitted and only one orientation of the disordered phenyl ring is shown.
[Figure 4]
Figure 4
Stereoview of part of the crystal structure of compound (I[link]), showing the formation of a (010) sheet by combination of the [100] and [001] chains. For the sake of clarity, H atoms bonded to C atoms have been omitted and only one orientation of the disordered phenyl ring is shown.

Experimental

A mixture of 5-amino-3-methyl-1-phenyl-1H-pyrazole (1.16 mmol) and 3,4,5-tri­methoxy­benz­aldehyde (0.58 mmol) was placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 90 s at 600 W. The crude reaction product was crystallized from ethanol, yielding crystals of (I[link]) suitable for single-crystal X-ray diffraction (yield 84%, m.p. 593 K). Analysis found: C 68.6, H 6.1, N 16.1%; C30H32N6O3 requires C 68.7, H 6.1, N 16.0%.

Crystal data
  • C30H32N6O3

  • Mr = 524.62

  • Monoclinic, P21/c

  • a = 9.7540 (2) Å

  • b = 33.4646 (7) Å

  • c = 8.9010 (1) Å

  • β = 103.6020 (9)°

  • V = 2823.92 (9) Å3

  • Z = 4

  • Dx = 1.234 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5973 reflections

  • θ = 2.8–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Lath, orange

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (DENZO–SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.977, Tmax = 0.996

  • 25 815 measured reflections

  • 4968 independent reflections

  • 3683 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 25.0°

  • h = −11 → 11

  • k = −39 → 39

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.04

  • 4968 reflections

  • 388 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0488P)2 + 1.5741P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

O33—C33 1.370 (2)
O34—C34 1.383 (3)
O35—C35 1.370 (3)
C11—C12 1.387 (3)
C12—N13 1.366 (3)
N13—N14 1.387 (3)
N14—C15 1.327 (3)
C15—C11 1.403 (3)
C12—N12 1.378 (3)
C1—C11 1.508 (3)
C1—C21 1.510 (3)
C1—C31 1.530 (3)
C21—C22 1.377 (3)
C22—N23 1.368 (3)
N23—N24 1.384 (3)
N24—C25 1.329 (3)
C25—C21 1.412 (3)
C22—N22 1.388 (3)
O33—C33—C32 124.6 (2)
O34—C34—C33 120.1 (2)
O35—C35—C34 116.0 (2)
O33—C33—C34 114.9 (2)
O34—C34—C35 119.8 (2)
O35—C35—C36 124.3 (2)
C31—C1—C11—C12 83.3 (3)
C331—O33—C33—C32 8.6 (3)
C341—O34—C34—C33 85.8 (3)
C22—N23—C231—C232 −35.9 (5)
C31—C1—C21—C22 −37.3 (3)
C351—O35—C35—C36 −6.5 (4)
C12—N13—C131—C132 45.9 (3)
C22—N23—C23A—C23B −63.5 (4)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯N22 0.93 2.28 3.194 (3) 167
N12—H12B⋯O34i 0.95 2.37 3.255 (3) 154
N22—H22A⋯N14ii 0.96 2.06 2.958 (3) 155
Symmetry codes: (i) 1+x,y,z; (ii) x,y,1+z.

All H atoms were located in difference maps and those bonded to carbon were then treated as riding atoms, with distances C—H = 0.95 (aromatic), 0.98 (methyl) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. The H atoms bonded to nitro­gen were allowed to ride on their parent atoms at the distances deduced from the difference maps, with Uiso(H) = 1.2Ueq(N); the N—H distances were in the range 0.93–0.96 Å. It became apparent at an early stage that the phenyl ring bonded to N23 was disordered. When this was modelled using two sets of atom sites, the refined occupancies of the two sets were identical within experimental uncertainty, and hence they were subsequently fixed at 0.50. There is some indication from the displacement parameters that this ring might, indeed, be disordered over more than two sites, although no static disorder model could be found which was superior to the two-site model. Nonetheless, it was found desirable to treat both components of this disordered ring as planar rigid hexagons.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Bis-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3,4,5-trimethoxyphenylmethane top
Crystal data top
C30H32N6O3F(000) = 1112
Mr = 524.62Dx = 1.234 Mg m3
Monoclinic, P21/cMelting point: 593 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7540 (2) ÅCell parameters from 5973 reflections
b = 33.4646 (7) Åθ = 2.8–27.5°
c = 8.9010 (1) ŵ = 0.08 mm1
β = 103.6020 (9)°T = 120 K
V = 2823.92 (9) Å3Lath, orange
Z = 40.15 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4968 independent reflections
Radiation source: rotating anode3683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.977, Tmax = 0.996k = 3939
25815 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.5741P]
where P = (Fo2 + 2Fc2)/3
4968 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O330.03953 (16)0.09322 (5)0.5362 (2)0.0423 (4)
O340.04151 (17)0.17261 (5)0.5385 (2)0.0441 (4)
O350.24759 (18)0.21453 (5)0.4570 (2)0.0491 (5)
N120.71208 (19)0.15462 (5)0.3757 (2)0.0325 (4)
N130.66203 (18)0.14985 (5)0.0989 (2)0.0294 (4)
N140.5663 (2)0.13217 (6)0.0230 (2)0.0343 (5)
N220.6063 (2)0.11891 (5)0.6615 (2)0.0349 (5)
N230.70756 (19)0.05277 (6)0.6710 (2)0.0347 (5)
N240.70871 (19)0.01969 (6)0.5780 (2)0.0360 (5)
C10.4606 (2)0.08836 (6)0.3166 (2)0.0253 (5)
C110.5289 (2)0.11103 (6)0.2071 (2)0.0264 (5)
C120.6408 (2)0.13773 (6)0.2382 (2)0.0262 (5)
C150.4885 (2)0.10902 (7)0.0452 (3)0.0309 (5)
C210.5644 (2)0.06829 (6)0.4476 (2)0.0239 (5)
C220.6207 (2)0.08213 (6)0.5949 (2)0.0277 (5)
C250.6227 (2)0.02975 (6)0.4442 (3)0.0295 (5)
C310.3494 (2)0.11207 (6)0.3750 (2)0.0269 (5)
C320.2484 (2)0.09063 (7)0.4297 (2)0.0288 (5)
C330.1475 (2)0.11103 (7)0.4867 (3)0.0313 (5)
C340.1481 (2)0.15240 (7)0.4919 (3)0.0338 (5)
C350.2520 (2)0.17385 (7)0.4420 (3)0.0361 (6)
C360.3510 (2)0.15350 (6)0.3804 (3)0.0322 (5)
C1310.7540 (2)0.17951 (7)0.0627 (3)0.0319 (5)
C1320.8928 (3)0.18194 (8)0.1436 (3)0.0425 (6)
C1330.9790 (3)0.21110 (9)0.1029 (3)0.0551 (8)
C1340.9294 (3)0.23626 (8)0.0186 (3)0.0564 (8)
C1350.7919 (3)0.23328 (8)0.1006 (3)0.0529 (7)
C1360.7026 (3)0.20502 (7)0.0603 (3)0.0412 (6)
C1510.3733 (3)0.08398 (8)0.0526 (3)0.0454 (6)
C2310.7982 (6)0.04803 (13)0.8170 (4)0.0372 (19)0.50
C2320.8746 (7)0.08097 (11)0.8860 (5)0.0348 (15)0.50
C2330.9671 (6)0.07720 (11)1.0301 (5)0.057 (2)0.50
C2340.9833 (5)0.04048 (12)1.1053 (4)0.091 (3)0.50
C2350.9069 (5)0.00754 (10)1.0363 (5)0.085 (2)0.50
C2360.8144 (5)0.01132 (11)0.8921 (4)0.0482 (14)0.50
C23A0.7905 (5)0.06105 (18)0.8283 (4)0.044 (2)0.50
C23B0.8921 (5)0.09100 (16)0.8521 (4)0.0352 (17)0.50
C23C0.9711 (4)0.09902 (14)1.0005 (5)0.0516 (16)0.50
C23D0.9485 (4)0.07710 (19)1.1251 (4)0.086 (3)0.50
C23E0.8469 (5)0.0471 (2)1.1013 (4)0.122 (4)0.50
C23F0.7679 (5)0.03912 (17)0.9529 (5)0.096 (3)0.50
C2510.5960 (3)0.00183 (7)0.3102 (3)0.0405 (6)
C3310.0416 (3)0.05079 (7)0.5491 (4)0.0530 (8)
C3410.0653 (3)0.17745 (9)0.7018 (3)0.0571 (8)
C3510.3606 (3)0.23690 (8)0.4213 (4)0.0611 (9)
H12A0.69620.14350.46570.039*
H12B0.81100.15850.39000.039*
H22A0.62020.11930.77200.042*
H22B0.52060.13090.61120.042*
H10.40770.06600.25390.030*
H320.24870.06220.42790.035*
H360.41930.16800.34230.039*
H1320.92900.16400.22590.051*
H1331.07390.21360.16040.066*
H1340.98990.25580.04630.068*
H1350.75750.25070.18540.064*
H1360.60720.20320.11660.049*
H15A0.36620.08980.16210.068*
H15B0.28340.09020.02670.068*
H15C0.39530.05560.03280.068*
H2320.86360.10610.83460.042*0.50
H2331.01930.09971.07730.069*0.50
H2341.04650.03791.20380.109*0.50
H2350.91790.01751.08760.102*0.50
H2360.76220.01120.84490.058*0.50
H23B0.90750.10600.76690.042*0.50
H23C1.04050.11951.01680.062*0.50
H23D1.00240.08261.22650.104*0.50
H23E0.83150.03221.18640.147*0.50
H23F0.69850.01860.93660.115*0.50
H25A0.64150.01210.23090.061*
H25B0.49420.00050.26700.061*
H25C0.63480.02450.34450.061*
H33A0.04390.03890.44910.080*
H33B0.04320.04180.58030.080*
H33C0.12560.04250.62690.080*
H34A0.08440.15130.75220.086*
H34B0.01860.18920.72690.086*
H34C0.14640.19510.73850.086*
H35A0.45090.22610.47970.092*
H35B0.35250.26500.44930.092*
H35C0.35590.23490.31040.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O330.0339 (9)0.0427 (10)0.0588 (11)0.0050 (7)0.0281 (8)0.0045 (8)
O340.0378 (10)0.0453 (10)0.0562 (12)0.0108 (8)0.0250 (8)0.0010 (8)
O350.0523 (11)0.0278 (9)0.0767 (13)0.0074 (7)0.0342 (10)0.0052 (9)
N120.0359 (11)0.0383 (11)0.0250 (10)0.0092 (8)0.0105 (8)0.0009 (8)
N130.0324 (10)0.0342 (10)0.0242 (10)0.0066 (8)0.0120 (8)0.0007 (8)
N140.0373 (11)0.0433 (12)0.0241 (10)0.0075 (9)0.0106 (8)0.0014 (8)
N220.0467 (12)0.0354 (11)0.0246 (10)0.0078 (9)0.0123 (9)0.0042 (8)
N230.0304 (10)0.0406 (12)0.0310 (11)0.0073 (8)0.0031 (8)0.0094 (9)
N240.0275 (10)0.0328 (11)0.0491 (13)0.0001 (8)0.0120 (9)0.0065 (9)
C10.0261 (11)0.0283 (11)0.0235 (11)0.0027 (9)0.0099 (9)0.0015 (9)
C110.0277 (11)0.0287 (11)0.0250 (11)0.0018 (9)0.0106 (9)0.0005 (9)
C120.0285 (11)0.0301 (12)0.0226 (11)0.0004 (9)0.0111 (9)0.0000 (9)
C150.0325 (12)0.0363 (13)0.0262 (12)0.0039 (9)0.0114 (10)0.0022 (10)
C210.0237 (10)0.0258 (11)0.0249 (11)0.0023 (8)0.0108 (9)0.0003 (9)
C220.0304 (11)0.0289 (12)0.0258 (12)0.0058 (9)0.0107 (9)0.0027 (9)
C250.0249 (11)0.0275 (12)0.0402 (13)0.0024 (9)0.0161 (10)0.0009 (10)
C310.0254 (11)0.0321 (12)0.0244 (11)0.0014 (9)0.0083 (9)0.0029 (9)
C320.0272 (11)0.0301 (12)0.0311 (12)0.0022 (9)0.0107 (9)0.0023 (9)
C330.0244 (11)0.0386 (13)0.0334 (13)0.0011 (9)0.0120 (10)0.0018 (10)
C340.0295 (12)0.0362 (13)0.0397 (14)0.0086 (10)0.0165 (10)0.0023 (11)
C350.0361 (13)0.0280 (12)0.0475 (15)0.0053 (10)0.0165 (11)0.0056 (11)
C360.0312 (12)0.0307 (12)0.0387 (13)0.0014 (9)0.0165 (10)0.0070 (10)
C1310.0402 (13)0.0294 (12)0.0319 (13)0.0042 (10)0.0203 (11)0.0027 (10)
C1320.0430 (15)0.0496 (15)0.0382 (14)0.0127 (12)0.0159 (12)0.0012 (12)
C1330.0533 (17)0.0670 (19)0.0497 (17)0.0277 (14)0.0213 (14)0.0066 (15)
C1340.083 (2)0.0428 (16)0.0548 (18)0.0276 (15)0.0383 (17)0.0081 (14)
C1350.084 (2)0.0310 (14)0.0529 (17)0.0026 (14)0.0341 (16)0.0074 (12)
C1360.0510 (15)0.0329 (13)0.0456 (15)0.0042 (11)0.0230 (12)0.0075 (11)
C1510.0459 (15)0.0613 (17)0.0289 (13)0.0173 (13)0.0087 (11)0.0030 (12)
C2310.036 (4)0.040 (4)0.031 (4)0.010 (3)0.001 (3)0.005 (2)
C2320.033 (3)0.040 (4)0.032 (3)0.012 (3)0.010 (3)0.000 (3)
C2330.067 (4)0.044 (4)0.044 (4)0.021 (3)0.021 (3)0.008 (3)
C2340.110 (7)0.070 (5)0.058 (4)0.021 (4)0.047 (4)0.013 (4)
C2350.107 (6)0.058 (4)0.060 (4)0.027 (4)0.041 (4)0.022 (3)
C2360.059 (4)0.036 (3)0.037 (3)0.011 (3)0.014 (3)0.006 (2)
C23A0.024 (4)0.073 (5)0.034 (4)0.004 (3)0.005 (3)0.023 (3)
C23B0.026 (3)0.046 (4)0.035 (4)0.001 (3)0.011 (3)0.001 (3)
C23C0.039 (3)0.072 (5)0.042 (4)0.005 (3)0.006 (3)0.000 (4)
C23D0.044 (4)0.174 (9)0.038 (4)0.003 (5)0.001 (3)0.021 (5)
C23E0.066 (5)0.242 (12)0.047 (4)0.055 (6)0.009 (4)0.075 (6)
C23F0.043 (4)0.171 (9)0.061 (5)0.042 (5)0.014 (3)0.066 (5)
C2510.0435 (14)0.0307 (13)0.0548 (16)0.0000 (10)0.0265 (12)0.0058 (11)
C3310.0547 (17)0.0386 (15)0.080 (2)0.0166 (12)0.0436 (16)0.0132 (14)
C3410.069 (2)0.0523 (17)0.0603 (19)0.0059 (14)0.0357 (16)0.0078 (14)
C3510.0636 (19)0.0286 (14)0.103 (3)0.0032 (12)0.0444 (18)0.0042 (15)
Geometric parameters (Å, º) top
O33—C331.370 (2)C133—H1330.95
O33—C3311.424 (3)C134—C1351.371 (4)
O34—C341.383 (3)C134—H1340.95
O34—C3411.426 (3)C135—C1361.388 (4)
O35—C351.370 (3)C135—H1350.95
O35—C3511.428 (3)C136—H1360.95
C11—C121.387 (3)C151—H15A0.98
C12—N131.366 (3)C151—H15B0.98
N13—N141.387 (3)C151—H15C0.98
N14—C151.327 (3)C231—C2321.39
C15—C111.403 (3)C231—C2361.39
C12—N121.378 (3)C232—C2331.39
C1—C111.508 (3)C232—H2320.95
C1—C211.510 (3)C233—C2341.39
C1—C311.530 (3)C233—H2330.95
C21—C221.377 (3)C234—C2351.39
C22—N231.368 (3)C234—H2340.95
N23—N241.384 (3)C235—C2361.39
N24—C251.329 (3)C235—H2350.95
C25—C211.412 (3)C236—H2360.95
C22—N221.388 (3)C23A—C23B1.39
N12—H12A0.9293C23A—C23F1.39
N12—H12B0.9514C23B—C23C1.39
N13—C1311.425 (3)C23B—H23B0.95
N22—H22A0.9611C23C—C23D1.39
N22—H22B0.9399C23C—H23C0.95
N23—C2311.398 (3)C23D—C23E1.39
N23—C23A1.469 (4)C23D—H23D0.95
C1—H11.00C23E—C23F1.39
C15—C1511.504 (3)C23E—H23E0.95
C25—C2511.489 (3)C23F—H23F0.95
C31—C361.387 (3)C251—H25A0.98
C31—C321.396 (3)C251—H25B0.98
C32—C331.388 (3)C251—H25C0.98
C32—H320.95C331—H33A0.98
C33—C341.385 (3)C331—H33B0.98
C34—C351.397 (3)C331—H33C0.98
C35—C361.395 (3)C341—H34A0.98
C36—H360.95C341—H34B0.98
C131—C1321.378 (3)C341—H34C0.98
C131—C1361.386 (3)C351—H35A0.98
C132—C1331.391 (3)C351—H35B0.98
C132—H1320.95C351—H35C0.98
C133—C1341.366 (4)
C33—O33—C331117.52 (17)C134—C135—C136120.4 (3)
C34—O34—C341114.03 (19)C134—C135—H135119.8
C35—O35—C351117.12 (18)C136—C135—H135119.8
C12—N12—H12A116.7C131—C136—C135119.4 (3)
C12—N12—H12B117.2C131—C136—H136120.3
H12A—N12—H12B108.0C135—C136—H136120.3
C12—N13—N14111.46 (16)C15—C151—H15A109.5
C12—N13—C131130.57 (18)C15—C151—H15B109.5
N14—N13—C131117.64 (17)H15A—C151—H15B109.5
C15—N14—N13104.07 (17)C15—C151—H15C109.5
C22—N22—H22A116.4H15A—C151—H15C109.5
C22—N22—H22B110.0H15B—C151—H15C109.5
H22A—N22—H22B112.2C232—C231—C236120.0
C22—N23—N24111.67 (18)C232—C231—N23118.5 (3)
C22—N23—C231136.4 (3)C236—C231—N23121.5 (3)
N24—N23—C231111.9 (3)C233—C232—C231120.0
C22—N23—C23A118.3 (3)C233—C232—H232120.0
N24—N23—C23A129.9 (3)C231—C232—H232120.0
C25—N24—N23103.97 (17)C232—C233—C234120.0
C11—C1—C21113.88 (16)C232—C233—H233120.0
C11—C1—C31114.53 (17)C234—C233—H233120.0
C21—C1—C31111.59 (16)C235—C234—C233120.0
C11—C1—H1105.3C235—C234—H234120.0
C21—C1—H1105.3C233—C234—H234120.0
C31—C1—H1105.3C234—C235—C236120.0
C12—C11—C15104.73 (18)C234—C235—H235120.0
C12—C11—C1129.87 (19)C236—C235—H235120.0
C15—C11—C1125.40 (19)C235—C236—C231120.0
N13—C12—N12122.13 (18)C235—C236—H236120.0
N13—C12—C11106.84 (18)C231—C236—H236120.0
N12—C12—C11130.57 (19)C23B—C23A—C23F120.0
N14—C15—C11112.89 (19)C23B—C23A—N23119.6 (3)
N14—C15—C151119.31 (19)C23F—C23A—N23120.4 (3)
C11—C15—C151127.79 (19)C23C—C23B—C23A120.0
C22—C21—C25104.81 (19)C23C—C23B—H23B120.0
C22—C21—C1129.08 (19)C23A—C23B—H23B120.0
C25—C21—C1126.09 (19)C23D—C23C—C23B120.0
N23—C22—C21106.96 (19)C23D—C23C—H23C120.0
N23—C22—N22122.6 (2)C23B—C23C—H23C120.0
C21—C22—N22130.3 (2)C23C—C23D—C23E120.0
N24—C25—C21112.59 (19)C23C—C23D—H23D120.0
N24—C25—C251120.9 (2)C23E—C23D—H23D120.0
C21—C25—C251126.5 (2)C23F—C23E—C23D120.0
C36—C31—C32120.30 (19)C23F—C23E—H23E120.0
C36—C31—C1121.82 (18)C23D—C23E—H23E120.0
C32—C31—C1117.83 (18)C23E—C23F—C23A120.0
C33—C32—C31119.6 (2)C23E—C23F—H23F120.0
C33—C32—H32120.2C23A—C23F—H23F120.0
C31—C32—H32120.2C25—C251—H25A109.5
O33—C33—C32124.6 (2)C25—C251—H25B109.5
O34—C34—C33120.1 (2)H25A—C251—H25B109.5
O35—C35—C34116.0 (2)C25—C251—H25C109.5
O33—C33—C34114.9 (2)H25A—C251—H25C109.5
O34—C34—C35119.8 (2)H25B—C251—H25C109.5
O35—C35—C36124.3 (2)O33—C331—H33A109.5
C34—C33—C32120.39 (19)O33—C331—H33B109.5
C33—C34—C35120.04 (19)H33A—C331—H33B109.5
C36—C35—C34119.7 (2)O33—C331—H33C109.5
C31—C36—C35119.92 (19)H33A—C331—H33C109.5
C31—C36—H36120.0H33B—C331—H33C109.5
C35—C36—H36120.0O34—C341—H34A109.5
C132—C131—C136120.3 (2)O34—C341—H34B109.5
C132—C131—N13121.1 (2)H34A—C341—H34B109.5
C136—C131—N13118.6 (2)O34—C341—H34C109.5
C131—C132—C133119.0 (3)H34A—C341—H34C109.5
C131—C132—H132120.5H34B—C341—H34C109.5
C133—C132—H132120.5O35—C351—H35A109.5
C134—C133—C132121.0 (3)O35—C351—H35B109.5
C134—C133—H133119.5H35A—C351—H35B109.5
C132—C133—H133119.5O35—C351—H35C109.5
C133—C134—C135119.8 (2)H35A—C351—H35C109.5
C133—C134—H134120.1H35B—C351—H35C109.5
C135—C134—H134120.1
C31—C1—C11—C1283.3 (3)C331—O33—C33—C34173.5 (2)
C331—O33—C33—C328.6 (3)C31—C32—C33—O33176.7 (2)
C341—O34—C34—C3385.8 (3)C31—C32—C33—C341.1 (3)
C22—N23—C231—C23235.9 (5)C341—O34—C34—C3597.8 (3)
C31—C1—C21—C2237.3 (3)O33—C33—C34—O342.6 (3)
C351—O35—C35—C366.5 (4)C32—C33—C34—O34175.4 (2)
C12—N13—C131—C13245.9 (3)O33—C33—C34—C35179.0 (2)
C22—N23—C23A—C23B63.5 (4)C32—C33—C34—C351.0 (4)
C12—N13—N14—C150.6 (2)C351—O35—C35—C34173.9 (2)
C131—N13—N14—C15174.70 (19)O34—C34—C35—O356.0 (3)
C22—N23—N24—C250.7 (2)C33—C34—C35—O35177.5 (2)
C231—N23—N24—C25177.6 (3)O34—C34—C35—C36173.5 (2)
C23A—N23—N24—C25174.6 (3)C33—C34—C35—C362.9 (4)
C21—C1—C11—C1246.8 (3)C32—C31—C36—C350.6 (3)
C21—C1—C11—C15133.5 (2)C1—C31—C36—C35176.7 (2)
C31—C1—C11—C1596.4 (2)O35—C35—C36—C31177.8 (2)
N14—N13—C12—N12172.41 (18)C34—C35—C36—C312.7 (4)
C131—N13—C12—N120.7 (3)N14—N13—C131—C132141.4 (2)
N14—N13—C12—C110.6 (2)C12—N13—C131—C136136.7 (2)
C131—N13—C12—C11173.7 (2)N14—N13—C131—C13636.1 (3)
C15—C11—C12—N130.3 (2)C136—C131—C132—C1331.9 (4)
C1—C11—C12—N13179.9 (2)N13—C131—C132—C133179.3 (2)
C15—C11—C12—N12171.9 (2)C131—C132—C133—C1342.2 (4)
C1—C11—C12—N127.9 (4)C132—C133—C134—C1351.1 (4)
N13—N14—C15—C110.4 (2)C133—C134—C135—C1360.4 (4)
N13—N14—C15—C151178.7 (2)C132—C131—C136—C1350.5 (4)
C12—C11—C15—N140.0 (3)N13—C131—C136—C135178.0 (2)
C1—C11—C15—N14179.78 (19)C134—C135—C136—C1310.7 (4)
C12—C11—C15—C151178.9 (2)N24—N23—C231—C232141.9 (3)
C1—C11—C15—C1511.3 (4)C23A—N23—C231—C23230.6 (11)
C11—C1—C21—C2294.3 (2)C22—N23—C231—C236145.0 (3)
C11—C1—C21—C2587.3 (2)N24—N23—C231—C23637.2 (5)
C31—C1—C21—C25141.10 (19)C23A—N23—C231—C236150.2 (15)
N24—N23—C22—C210.7 (2)C236—C231—C232—C2330.0
C231—N23—C22—C21177.1 (4)N23—C231—C232—C233179.2 (5)
C23A—N23—C22—C21175.3 (3)C231—C232—C233—C2340.0
N24—N23—C22—N22177.18 (17)C232—C233—C234—C2350.0
C231—N23—C22—N220.6 (5)C233—C234—C235—C2360.0
C23A—N23—C22—N221.2 (3)C234—C235—C236—C2310.0
C25—C21—C22—N230.3 (2)C232—C231—C236—C2350.0
C1—C21—C22—N23178.96 (18)N23—C231—C236—C235179.1 (5)
C25—C21—C22—N22176.5 (2)N24—N23—C23A—C23B111.6 (3)
C1—C21—C22—N224.9 (4)C231—N23—C23A—C23B120.6 (14)
N23—N24—C25—C210.5 (2)C22—N23—C23A—C23F116.5 (3)
N23—N24—C25—C251179.36 (18)N24—N23—C23A—C23F68.4 (5)
C22—C21—C25—N240.1 (2)C231—N23—C23A—C23F59.4 (11)
C1—C21—C25—N24178.55 (17)C23F—C23A—C23B—C23C0.0
C22—C21—C25—C251179.7 (2)N23—C23A—C23B—C23C180.0 (5)
C1—C21—C25—C2511.6 (3)C23A—C23B—C23C—C23D0.0
C11—C1—C31—C3624.8 (3)C23B—C23C—C23D—C23E0.0
C21—C1—C31—C36106.5 (2)C23C—C23D—C23E—C23F0.0
C11—C1—C31—C32157.90 (19)C23D—C23E—C23F—C23A0.0
C21—C1—C31—C3270.9 (2)C23B—C23A—C23F—C23E0.0
C36—C31—C32—C331.3 (3)N23—C23A—C23F—C23E180.0 (5)
C1—C31—C32—C33178.68 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···N220.932.283.194 (3)167
N12—H12B···O34i0.952.373.255 (3)154
N22—H22A···N14ii0.962.062.958 (3)155
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JP and JQ thank COLCIENCIAS and the Universidad de Valle for financial support.

References

First citationAbonia, R., Glidewell, C., Low, J. N., Nogueras, M. & Quiroga, J. (2003). Acta Cryst. C59, o237–o239.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatterson, I. L. J., Glidewell, C. & Ferguson, G. (1998). Acta Cryst. C54, 1970–1974..  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds