organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-5-Acetyl-6-(4-nitro­phenyl)-6,7-di­hydro-5H-1,3-dioxolo­[4,5-g]­quinoline-8-one: chains of rings built from C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360 Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 May 2004; accepted 19 May 2004; online 22 May 2004)

Molecules of the title compound, C18H14N2O6, are linked into chains by a combination of one C—H⋯O and one C—H⋯π(arene) hydrogen bond, augmented by a dipolar carbonyl–carbonyl interaction.

Comment

The title compound, (I[link]), was prepared as an intermediate in the preparation of new bis-amides derived from tetra­hydro­quinolones, for use as model compounds for DNA intercalating agents (Gamage et al., 1999[Gamage, S. A., Spicer, J. A., Atwell, G. L., Finlay, G. J., Baguales, B. C. & Denny, W. A. (1999). J. Med. Chem. 42, 2383-2393.]; Chacón-García & Martínez, 2001[Chacón-García, L. & Martínez, R. (2001). Eur. J. Med. Chem. 36, 731-736.]; Deady et al., 2001[Deady, L. W., Desneves, J., Kaye, A. J., Findalay, G. J., Baguley, B. C. & Denny, W. A. (2001). Bioorg. Med. Chem. 9, 445-452.]).[link]

[Scheme 1]

Compound (I[link]) (Fig. 1[link]) crystallizes in the polar space group Pna21. The mol­ecule contains a stereogenic centre at C6, and the selected reference mol­ecule is of S configuration; however, the space group accommodates equal numbers of R and S enantiomers.

For the heterocyclic ring (N5/C4A/C8A/C8/C7/C6), the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for this atom sequence, θ = 124.7 (3)° and φ = 120.3 (4)°, indicate an almost pure envelope form (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). The inter-bond angles at N5 (Table 1[link]) indicate that this atom has effectively planar coordination, as expected for amidic N, but, unexpectedly, the nitro­phenyl substituent at C6 occupies an axial site. Within the fused-ring system, the bond lengths (Table 1[link]) show several unexpected features. In particular, the bonds C3A—C4 and C9—C9A are significantly shorter than the other bonds in the carbocyclic aromatic ring, and the bond C4A—N5 is very long for its type: the mean value for bonds of this type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) is 1.371 Å. It may also be noted that the two carbonyl C=O distances are identical, despite their different local environments.

The mol­ecules of (I[link]) are linked into chains by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds, augmented by a dipolar carbonyl–carbonyl interaction. Atoms C62 and C63 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to amidic atom O51 and to the ring C61—C66, both in the mol­ecule at ([1\over2] + x, [3\over2] − y, z), and propagation of these interactions produces a chain of rings running parallel to the [100] direction and generated by the a glide plane at y = 0.75 (Fig. 2[link]). In addition, carbonyl atom O51 in the mol­ecule at (x, y, z) forms a short contact with the carbonyl atom C51 in the mol­ecule at (x − [1\over2], [3\over2] − y, z): the O⋯C distance is 3.001 (3) Å, the C—O⋯C angle is 150 (4)° and the O⋯C—O angle is 87.4 (2)°, indicative of a type I interaction (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]), which reinforces the [100] chain.

Two antiparallel chains of this type pass through each unit cell, generated by the a glide planes at y = 0.25 and 0.75, but there are no direction-specific interactions between adjacent chains. In particular, there are no ππ stacking interaction and no C—H⋯O hydrogen bonds involving the nitro O atoms.

[Figure 1]
Figure 1
The S enantiomer of compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of compound (I[link]), showing the formation of a hydrogen-bonded chain along [100].

Experimental

A mixture of 6-(4-nitro­phenyl)-6,7-di­hydro-5H-[1,3]­dioxolo­[4,5-g]quinolin-8-one (250 mg, 0.71 mmol) (Donnelly & Farell, 1990[Donnelly, J. A. & Farell, D. F. (1990). Tetrahedron, 46, 885-894.]) and acetic anhydride (3 ml) was heated at 353 K for 90 min. After reaction was complete (as shown by thin-layer chromatography), the solvent was removed under vacuum and the resulting solid was washed with water and then purified by column chromatography on silica gel with chloro­form–ethyl acetate (9:1 v/v) as eluant, to give a pale yellow solid (60% yield, m.p. 483 K). MS (70 eV): m/e (%) 354 (40, M+), 312 (86), 190 (39), 43 (100). Crystals suitable for single-crystal X-ray diffraction were grown from a solution in 96% aqueous ethanol.

Crystal data
  • C18H14N2O6

  • Mr = 354.31

  • Orthorhombic, Pna21

  • a = 6.5253 (2) Å

  • b = 21.4286 (5) Å

  • c = 10.8198 (9) Å

  • V = 1512.91 (14) Å3

  • Z = 4

  • Dx = 1.556 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1952 reflections

  • θ = 3.3–27.1°

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.30 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.956, Tmax = 0.989

  • 15335 measured reflections

  • 1762 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.082

  • θmax = 27.1°

  • h = −8 → 7

  • k = −27 → 27

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.087

  • S = 1.06

  • 1762 reflections

  • 237 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0405P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0110 (18)

Table 1
Selected geometric parameters (Å, °)

O1—C2 1.431 (4)
C2—O3 1.440 (4)
O3—C3A 1.367 (3)
C3A—C4 1.369 (4)
C4—C4A 1.400 (4)
C4A—N5 1.425 (3)
N5—C6 1.472 (4)
C6—C7 1.527 (4)
C7—C8 1.506 (4)
C8—C8A 1.480 (4)
C8A—C9 1.407 (4)
C9—C9A 1.352 (4)
C9A—O1 1.381 (3)
C3A—C9A 1.385 (4)
C4A—C8A 1.403 (4)
N5—C51 1.388 (4)
C51—O51 1.223 (3)
C8—O8 1.223 (4)
C51—N5—C4A 125.0 (2)
C51—N5—C6 118.1 (2)
C4A—N5—C6 115.1 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C62—H62⋯O51i 0.95 2.48 3.358 (4) 153
C63—H63⋯Cg1i 0.95 2.98 3.693 (3) 132
Symmetry code: (i) [{\script{1\over 2}}+x,{\script{3\over 2}}-y,z]. Cg1 is the centroid of ring C61–C66

All H atoms were located in difference maps and subsequently treated as riding atoms, with distances C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group. The value of the Flack parameter [0.2 (13); Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]] was indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), and hence the correct orientation of the structure relative to the polar axis direction could not be established (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinement.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

rac-5-Acetyl-6-(4-nitrophenyl)-6,7-dihydro-5H-1,3-dioxolo[4,5-g]quinoline-8-one top
Crystal data top
C18H14N2O6F(000) = 736
Mr = 354.31Dx = 1.556 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1952 reflections
a = 6.5253 (2) Åθ = 3.3–27.1°
b = 21.4286 (5) ŵ = 0.12 mm1
c = 10.8198 (9) ÅT = 120 K
V = 1512.91 (14) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
1762 independent reflections
Radiation source: rotating anode1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ scans, and ω scans with κ offsetsθmax = 27.1°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 87
Tmin = 0.956, Tmax = 0.989k = 2727
15335 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0405P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1762 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.22 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0110 (18)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5209 (4)0.45991 (10)0.5921 (2)0.0450 (6)
C20.6518 (5)0.49285 (15)0.5084 (4)0.0429 (8)
O30.5919 (3)0.55753 (10)0.5100 (2)0.0383 (6)
C3A0.4110 (4)0.55944 (14)0.5736 (3)0.0278 (7)
C40.2903 (4)0.61069 (13)0.5940 (3)0.0265 (6)
C4A0.1148 (4)0.60062 (12)0.6658 (2)0.0237 (6)
N50.0191 (3)0.65140 (12)0.6922 (2)0.0262 (5)
C510.1005 (4)0.69175 (13)0.6047 (3)0.0291 (7)
O510.2149 (3)0.73380 (10)0.63757 (19)0.0426 (6)
C520.0541 (5)0.68171 (14)0.4710 (3)0.0313 (7)
C60.1136 (4)0.65011 (13)0.8158 (3)0.0278 (6)
C610.0432 (4)0.65684 (13)0.9186 (3)0.0249 (6)
C620.2377 (4)0.68212 (13)0.8979 (3)0.0268 (6)
C630.3740 (4)0.69024 (13)0.9951 (3)0.0273 (6)
C640.3144 (4)0.67328 (12)1.1127 (2)0.0246 (6)
N640.4578 (4)0.68102 (11)1.2154 (2)0.0298 (6)
O410.3963 (3)0.67045 (11)1.3207 (2)0.0451 (6)
O420.6331 (3)0.69795 (11)1.1920 (2)0.0410 (6)
C650.1243 (4)0.64875 (13)1.1358 (3)0.0292 (7)
C660.0106 (4)0.64056 (13)1.0388 (3)0.0306 (7)
C70.2388 (4)0.59007 (15)0.8248 (3)0.0358 (7)
C80.1070 (5)0.53365 (14)0.8006 (3)0.0347 (7)
O80.1483 (4)0.48271 (11)0.8451 (2)0.0578 (8)
C8A0.0733 (4)0.54239 (13)0.7194 (3)0.0278 (6)
C90.2061 (5)0.49165 (13)0.6998 (3)0.0327 (7)
C9A0.3695 (4)0.50171 (13)0.6255 (3)0.0307 (7)
H2A0.63750.47560.42390.051*
H2B0.79660.48860.53440.051*
H40.32350.65060.56140.032*
H52A0.17600.69130.42160.047*
H52B0.01450.63810.45770.047*
H52C0.05860.70920.44600.047*
H60.21060.68610.82150.033*
H620.27690.69390.81660.032*
H630.50640.70720.98070.033*
H650.08590.63751.21750.035*
H660.14250.62351.05440.037*
H7A0.29990.58680.90830.043*
H7B0.35190.59140.76390.043*
H90.18220.45220.73690.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0547 (14)0.0436 (13)0.0369 (12)0.0229 (12)0.0026 (11)0.0028 (11)
C20.0360 (17)0.046 (2)0.047 (2)0.0074 (15)0.0007 (16)0.0128 (17)
O30.0296 (11)0.0476 (13)0.0378 (13)0.0056 (9)0.0066 (10)0.0047 (10)
C3A0.0234 (15)0.0373 (17)0.0226 (16)0.0023 (12)0.0028 (11)0.0051 (12)
C40.0256 (14)0.0304 (15)0.0235 (15)0.0023 (12)0.0032 (11)0.0008 (12)
C4A0.0238 (14)0.0286 (14)0.0188 (14)0.0023 (12)0.0033 (11)0.0020 (11)
N50.0261 (12)0.0312 (12)0.0212 (12)0.0050 (10)0.0008 (10)0.0007 (10)
C510.0289 (16)0.0326 (16)0.0258 (16)0.0017 (13)0.0048 (12)0.0009 (13)
O510.0499 (13)0.0473 (13)0.0306 (12)0.0214 (11)0.0031 (11)0.0018 (11)
C520.0350 (18)0.0357 (17)0.0230 (15)0.0031 (13)0.0029 (12)0.0026 (13)
C60.0272 (15)0.0352 (15)0.0211 (14)0.0055 (12)0.0016 (12)0.0010 (13)
C610.0288 (16)0.0245 (14)0.0213 (15)0.0028 (12)0.0012 (12)0.0011 (12)
C620.0303 (16)0.0296 (15)0.0206 (13)0.0000 (12)0.0026 (11)0.0010 (12)
C630.0267 (15)0.0276 (15)0.0277 (16)0.0009 (12)0.0026 (12)0.0029 (12)
C640.0291 (15)0.0248 (14)0.0199 (15)0.0015 (11)0.0017 (12)0.0023 (12)
N640.0297 (14)0.0332 (14)0.0265 (14)0.0014 (11)0.0012 (11)0.0013 (11)
O410.0463 (14)0.0687 (16)0.0204 (12)0.0099 (11)0.0024 (11)0.0060 (11)
O420.0290 (12)0.0580 (14)0.0360 (13)0.0080 (10)0.0031 (10)0.0002 (11)
C650.0322 (16)0.0363 (16)0.0192 (15)0.0025 (13)0.0036 (13)0.0019 (13)
C660.0296 (16)0.0363 (17)0.0259 (15)0.0023 (12)0.0028 (12)0.0013 (13)
C70.0278 (15)0.058 (2)0.0216 (14)0.0085 (14)0.0020 (13)0.0019 (15)
C80.0430 (19)0.0398 (18)0.0214 (16)0.0138 (14)0.0013 (13)0.0032 (14)
O80.0848 (19)0.0412 (14)0.0474 (16)0.0206 (13)0.0283 (14)0.0019 (13)
C8A0.0324 (16)0.0309 (16)0.0201 (14)0.0057 (12)0.0012 (12)0.0024 (12)
C90.0469 (18)0.0242 (15)0.0270 (17)0.0016 (13)0.0005 (15)0.0001 (13)
C9A0.0389 (17)0.0291 (15)0.0242 (17)0.0080 (13)0.0068 (14)0.0056 (13)
Geometric parameters (Å, º) top
O1—C21.431 (4)C9—C9A1.352 (4)
C2—O31.440 (4)C9—H90.95
C2—H2A0.99C9A—O11.381 (3)
C2—H2B0.99C3A—C9A1.385 (4)
O3—C3A1.367 (3)C4A—C8A1.403 (4)
C3A—C41.369 (4)N5—C511.388 (4)
C4—C4A1.400 (4)C51—O511.223 (3)
C4—H40.95C8—O81.223 (4)
C4A—N51.425 (3)C61—C661.391 (4)
N5—C61.472 (4)C61—C621.398 (4)
C51—C521.493 (4)C62—C631.388 (4)
C52—H52A0.98C62—H620.95
C52—H52B0.98C63—C641.379 (4)
C52—H52C0.98C63—H630.95
C6—C611.519 (4)C64—C651.370 (4)
C6—C71.527 (4)C64—N641.463 (4)
C6—H61.00N64—O421.226 (3)
C7—C81.506 (4)N64—O411.229 (3)
C7—H7A0.99C65—C661.381 (4)
C7—H7B0.99C65—H650.95
C8—C8A1.480 (4)C66—H660.95
C8A—C91.407 (4)
C9A—O1—C2105.8 (2)C62—C61—C6122.1 (2)
O1—C2—O3107.8 (2)C63—C62—C61120.6 (3)
O1—C2—H2A110.2C63—C62—H62119.7
O3—C2—H2A110.2C61—C62—H62119.7
O1—C2—H2B110.2C64—C63—C62119.0 (3)
O3—C2—H2B110.2C64—C63—H63120.5
H2A—C2—H2B108.5C62—C63—H63120.5
C3A—O3—C2105.6 (2)C65—C64—C63121.7 (3)
O3—C3A—C4127.0 (3)C65—C64—N64118.9 (2)
O3—C3A—C9A110.2 (2)C63—C64—N64119.4 (2)
C4—C3A—C9A122.6 (3)O42—N64—O41123.4 (3)
C3A—C4—C4A115.8 (3)O42—N64—C64118.3 (2)
C3A—C4—H4122.1O41—N64—C64118.3 (2)
C4A—C4—H4122.1C64—C65—C66119.1 (2)
C4—C4A—C8A121.6 (2)C64—C65—H65120.4
C4—C4A—N5119.7 (2)C66—C65—H65120.4
C8A—C4A—N5118.5 (2)C65—C66—C61121.2 (3)
C51—N5—C4A125.0 (2)C65—C66—H66119.4
C51—N5—C6118.1 (2)C61—C66—H66119.4
C4A—N5—C6115.1 (2)C8—C7—C6111.1 (2)
O51—C51—N5119.6 (3)C8—C7—H7A109.4
O51—C51—C52120.8 (3)C6—C7—H7A109.4
N5—C51—C52119.6 (2)C8—C7—H7B109.4
C51—C52—H52A109.5C6—C7—H7B109.4
C51—C52—H52B109.5H7A—C7—H7B108.0
H52A—C52—H52B109.5O8—C8—C8A121.4 (3)
C51—C52—H52C109.5O8—C8—C7121.5 (3)
H52A—C52—H52C109.5C8A—C8—C7117.1 (2)
H52B—C52—H52C109.5C4A—C8A—C9120.4 (3)
N5—C6—C61112.4 (2)C4A—C8A—C8120.8 (3)
N5—C6—C7107.3 (2)C9—C8A—C8118.8 (3)
C61—C6—C7113.2 (2)C9A—C9—C8A116.9 (3)
N5—C6—H6107.9C9A—C9—H9121.6
C61—C6—H6107.9C8A—C9—H9121.6
C7—C6—H6107.9C9—C9A—O1128.0 (3)
C66—C61—C62118.4 (3)C9—C9A—C3A122.5 (3)
C66—C61—C6119.4 (2)O1—C9A—C3A109.5 (3)
C9A—O1—C2—O39.3 (3)C63—C64—N64—O425.6 (4)
O1—C2—O3—C3A10.7 (3)C65—C64—N64—O416.4 (4)
C2—O3—C3A—C4176.6 (3)C63—C64—N64—O41174.2 (3)
C2—O3—C3A—C9A8.0 (3)C63—C64—C65—C660.3 (4)
O3—C3A—C4—C4A178.0 (3)N64—C64—C65—C66179.1 (2)
C9A—C3A—C4—C4A3.1 (4)C64—C65—C66—C610.1 (4)
C3A—C4—C4A—C8A3.8 (4)C62—C61—C66—C650.3 (4)
C3A—C4—C4A—N5179.6 (2)C6—C61—C66—C65176.9 (3)
C4—C4A—N5—C5151.2 (4)N5—C6—C7—C856.7 (3)
C8A—C4A—N5—C51132.8 (3)C61—C6—C7—C867.9 (3)
C4—C4A—N5—C6144.3 (3)C6—C7—C8—O8152.7 (3)
C8A—C4A—N5—C631.7 (3)C6—C7—C8—C8A28.0 (4)
C4A—N5—C51—O51179.7 (3)C4—C4A—C8A—C91.5 (4)
C6—N5—C51—O5115.7 (4)N5—C4A—C8A—C9177.4 (3)
C4A—N5—C51—C522.2 (4)C4—C4A—C8A—C8176.6 (3)
C6—N5—C51—C52161.9 (3)N5—C4A—C8A—C80.7 (4)
C51—N5—C6—C61129.5 (3)O8—C8—C8A—C4A177.9 (3)
C4A—N5—C6—C6164.8 (3)C7—C8—C8A—C4A1.5 (4)
C51—N5—C6—C7105.4 (3)O8—C8—C8A—C93.9 (4)
C4A—N5—C6—C760.2 (3)C7—C8—C8A—C9176.7 (3)
N5—C6—C61—C66163.4 (2)C4A—C8A—C9—C9A1.5 (4)
C7—C6—C61—C6641.6 (4)C8—C8A—C9—C9A179.7 (3)
N5—C6—C61—C6220.1 (4)C8A—C9—C9A—O1179.9 (3)
C7—C6—C61—C62141.9 (3)C8A—C9—C9A—C3A2.2 (4)
C66—C61—C62—C630.5 (4)C2—O1—C9A—C9177.5 (3)
C6—C61—C62—C63177.0 (3)C2—O1—C9A—C3A4.5 (3)
C61—C62—C63—C640.3 (4)O3—C3A—C9A—C9175.8 (3)
C62—C63—C64—C650.1 (4)C4—C3A—C9A—C90.2 (4)
C62—C63—C64—N64179.3 (2)O3—C3A—C9A—O12.3 (3)
C65—C64—N64—O42173.8 (2)C4—C3A—C9A—O1177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C62—H62···O51i0.952.483.358 (4)153
C63—H63···Cg1i0.952.983.693 (3)132
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support; RA thanks Fundación para la Promoción de la Investigación y la Tecnología (Banco de la República) and Universidad del Valle for financial support. PC thanks COLCIENCIAS for a doctoral fellowship.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChacón-García, L. & Martínez, R. (2001). Eur. J. Med. Chem. 36, 731–736.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDeady, L. W., Desneves, J., Kaye, A. J., Findalay, G. J., Baguley, B. C. & Denny, W. A. (2001). Bioorg. Med. Chem. 9, 445–452.  Web of Science CrossRef PubMed Google Scholar
First citationDonnelly, J. A. & Farell, D. F. (1990). Tetrahedron, 46, 885–894.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGamage, S. A., Spicer, J. A., Atwell, G. L., Finlay, G. J., Baguales, B. C. & Denny, W. A. (1999). J. Med. Chem. 42, 2383–2393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds