metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis­(di­phenyl­thio­arsinoyl)­ethane

CROSSMARK_Color_square_no_text.svg

aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk

(Received 2 April 2004; accepted 7 May 2004; online 15 May 2004)

The structure of the title compound, [As2S2(C2H4)(C6H5)4], which has twofold symmetry, features an As=S bond distance of 2.0674 (13) Å.

Comment

The title compound, (I[link]), was prepared for use as a ligand in novel nickel complexes (Smith, 2002[Smith, M. C. (2002). PhD thesis, University of East Anglia, England.]) as part of a wider study to prepare synthetic compounds with features similar to those of the active sites of the nickel-containing enzymes: hydrog­enase, carbon monoxide de­hydrogenase and acetyl-CoA synthase (Smith et al., 2003[Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147-4151.]; Evans & Pickett, 2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]).[link]

[Scheme 1]

The structure of (I[link]) (Fig. 1[link] and Table 1[link]) lies about a twofold rotation axis which bisects the ethane bond. The As atom is tetrahedrally coordinated, with S—As—C angles lying in the range 111.51 (13)–114.04 (12)° and C—As—C angles lying in the range 105.60 (17)–106.92 (15)°. Bond lengths within the mol­ecule are as expected, with As—C lengths lying in the range 1.924 (4)–1.946 (3) Å and As—S being 2.0674 (13) Å. The torsion angle for the ethane bridge [As—C—Ci—Asi; symmetry code (i) 1 − x, y, ½ − z] is 156.4 (2)°.

The mol­ecules, separated by normal van der Waals contacts, are arranged so that circular channels run parallel to the crystallographic a axis (bounded by four mol­ecules) and rectangular channels run parallel to the c axis (bounded by eight mol­ecules), as highlighted in the two views of Fig. 2[link].

[Figure 1]
Figure 1
A view of (I[link]). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (i) 1 − x, y, ½ − z
[Figure 2]
Figure 2
Packing diagrams for (I[link]) showing (a) a view in the direction of the crystallographic [100] vector and (b) a view in the direction of the crystallographic [001] vector.

Experimental

Under an N2 atmosphere, solid elemental S (0.153 g, 4.77 mmol) was added to a slurry of [(Ph)2AsCH2CH2As(Ph)2] (1.16 g, 2.39 mmol; Aldrich) in ethanol (50 ml). The mixture was refluxed for 5 h, giving a light-coloured orange–brown solution. Upon cooling and standing overnight, large colourless needles formed that were collected by filtration and dried in vacuo (0.21 g, 16%). Expected for C26H24As2S2: C 56.7, H 4.4, S 11.6%; found: C 56.8, H 4.3, S 12.8%.

Crystal data
  • [As2S2(C2H4)(C6H5)4]

  • Mr = 550.43

  • Monoclinic, C2/c

  • a = 15.976 (3) Å

  • b = 9.168 (4) Å

  • c = 17.635 (3) Å

  • β = 107.213 (13)°

  • V = 2467.3 (13) Å3

  • Z = 4

  • Dx = 1.482 Mg m−3

  • Mo–Kα radiation

  • Cell parameters from 25 reflections

  • θ = 10–11°

  • μ = 2.89 mm−1

  • T = 293 (2) K

  • Needle, colourless

  • 0.52 × 0.12 × 0.06 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: ψ scan (EMPABS; Sheldrick et al., 1977[Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.]) Tmin = 0.713, Tmax = 0.841

  • 3937 measured reflections

  • 3573 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 30.0°

  • h = −22 → 21

  • k = −1 → 12

  • l = −1 → 24

  • 3 standard reflections frequency: 167 min intensity decay: 13.2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.097

  • S = 1.01

  • 3573 reflections

  • 148 parameters

  • Only H-atom U's refined

  • w = 1/[σ2(Fo2) + (0.0218P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

As1—S1 2.0674 (13)
As1—C12 1.946 (3)
As1—C111 1.928 (3)
As1—C121 1.924 (4)
C12—C12i 1.511 (7)
C12—As1—S1 111.51 (13)
C111—As1—S1 114.04 (12)
C121—As1—S1 112.53 (12)
C111—As1—C12 105.64 (14)
C121—As1—C12 105.60 (17)
C121—As1—C111 106.92 (15)
C12i—C12—As1 110.4 (3)
As1—C12—C12i—As1i 156.4 (2)
Symmetry code: (i) [1-x,y,{\script{1\over 2}}-z].

All H atoms were positioned geometrically and allowed to ride on the parent atoms, with C—H distances of 0.93 Å for phenyl H atoms and 0.97 Å for methyl H atoms; isotropic displacement parameters were refined freely.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD-4. Queen Mary College, London, England.]) and BAYES (French & Wilson, 1978[French, S. & Wilson, K. (1978). Acta Cryst. A34, 517-525.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD4 (Hursthouse, 1976); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
[As2S2(C2H4)(C6H5)4]F(000) = 1112
Mr = 550.43Dx = 1.482 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.976 (3) Åθ = 10–11°
b = 9.168 (4) ŵ = 2.89 mm1
c = 17.635 (3) ÅT = 293 K
β = 107.213 (13)°Needles, colourless
V = 2467.3 (13) Å30.52 × 0.12 × 0.06 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1815 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 1.5°
scintillation counter; ω/θ scansh = 2221
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
k = 112
Tmin = 0.713, Tmax = 0.841l = 124
3937 measured reflections3 standard reflections every 167 min
3573 independent reflections intensity decay: 13.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.37035 (2)0.58646 (4)0.14995 (2)0.03721 (13)
S10.40216 (7)0.77551 (12)0.10081 (6)0.0570 (3)
C1110.2570 (2)0.5915 (4)0.16775 (19)0.0390 (8)
C1120.1942 (2)0.6818 (5)0.1219 (2)0.0473 (10)
H1120.20780.74420.08560.041 (10)*
C1130.1104 (3)0.6804 (6)0.1295 (3)0.0629 (13)
H1130.06780.74190.09810.072 (14)*
C1140.0901 (3)0.5901 (6)0.1823 (3)0.0664 (13)
H1140.03350.58870.18660.075 (14)*
C1150.1530 (3)0.5010 (6)0.2293 (3)0.0695 (14)
H1150.13930.44020.26620.067 (14)*
C1160.2362 (3)0.5010 (5)0.2223 (2)0.0585 (12)
H1160.27870.44000.25420.060 (13)*
C1210.3719 (2)0.4171 (4)0.0860 (2)0.0409 (9)
C1220.3939 (3)0.4326 (6)0.0164 (2)0.0576 (12)
H1220.40730.52430.00060.064 (14)*
C1230.3960 (3)0.3125 (7)0.0295 (3)0.0819 (17)
H1230.41140.32280.07610.087 (16)*
C1240.3756 (3)0.1787 (7)0.0071 (4)0.0835 (18)
H1240.37650.09790.03870.108 (19)*
C1250.3540 (3)0.1624 (6)0.0614 (4)0.0762 (15)
H1250.34070.07030.07670.060 (14)*
C1260.3516 (3)0.2815 (5)0.1081 (3)0.0552 (11)
H1260.33610.27000.15470.080 (16)*
C120.4538 (2)0.5458 (5)0.2530 (2)0.0460 (10)
H12A0.44850.61920.29090.067 (14)*
H12B0.44090.45160.27190.062 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0383 (2)0.0374 (2)0.0347 (2)0.0010 (2)0.00898 (14)0.0018 (2)
S10.0718 (7)0.0420 (6)0.0622 (7)0.0013 (6)0.0276 (6)0.0087 (6)
C1110.0395 (19)0.044 (2)0.0336 (18)0.001 (2)0.0108 (15)0.0002 (19)
C1120.046 (2)0.051 (3)0.043 (2)0.005 (2)0.0104 (18)0.007 (2)
C1130.044 (3)0.079 (4)0.061 (3)0.010 (3)0.010 (2)0.003 (3)
C1140.045 (3)0.087 (4)0.073 (3)0.003 (3)0.027 (2)0.011 (3)
C1150.075 (3)0.081 (4)0.067 (3)0.005 (3)0.044 (3)0.008 (3)
C1160.054 (3)0.070 (3)0.057 (3)0.012 (3)0.024 (2)0.020 (3)
C1210.0349 (19)0.040 (2)0.044 (2)0.000 (2)0.0056 (16)0.007 (2)
C1220.053 (3)0.066 (3)0.059 (3)0.006 (2)0.025 (2)0.008 (3)
C1230.070 (3)0.109 (5)0.071 (3)0.005 (3)0.027 (3)0.045 (4)
C1240.058 (3)0.077 (4)0.105 (5)0.006 (3)0.007 (3)0.051 (4)
C1250.063 (3)0.046 (3)0.111 (5)0.004 (3)0.011 (3)0.008 (3)
C1260.057 (3)0.038 (3)0.068 (3)0.002 (2)0.016 (2)0.003 (2)
C120.041 (2)0.059 (3)0.0325 (19)0.0008 (19)0.0027 (17)0.005 (2)
Geometric parameters (Å, º) top
As1—S12.0674 (13)C115—C1161.371 (5)
As1—C121.946 (3)C115—H1150.9300
As1—C1111.928 (3)C116—H1160.9300
As1—C1211.924 (4)C121—C1261.372 (5)
C12—C12i1.511 (7)C121—C1221.380 (5)
C12—H12A0.9700C122—C1231.373 (6)
C12—H12B0.9700C122—H1220.9300
C111—C1121.366 (5)C123—C1241.357 (7)
C111—C1161.383 (5)C123—H1230.9300
C112—C1131.384 (5)C124—C1251.359 (7)
C112—H1120.9300C124—H1240.9300
C113—C1141.356 (6)C125—C1261.376 (6)
C113—H1130.9300C125—H1250.9300
C114—C1151.368 (6)C126—H1260.9300
C114—H1140.9300
C12—As1—S1111.51 (13)C114—C115—C116120.2 (4)
C111—As1—S1114.04 (12)C114—C115—H115119.9
C121—As1—S1112.53 (12)C116—C115—H115119.9
C111—As1—C12105.64 (14)C115—C116—C111120.1 (4)
C121—As1—C12105.60 (17)C115—C116—H116119.9
C121—As1—C111106.92 (15)C111—C116—H116119.9
C12i—C12—As1110.4 (3)C126—C121—C122119.4 (4)
As1—C12—H12A109.6C126—C121—As1121.3 (3)
As1—C12—H12B109.6C122—C121—As1119.3 (3)
C12i—C12—H12A109.6C123—C122—C121119.9 (5)
C12i—C12—H12B109.6C123—C122—H122120.1
H12A—C12—H12B108.1C121—C122—H122120.1
C112—C111—C116119.4 (4)C124—C123—C122120.3 (5)
C112—C111—As1118.6 (3)C124—C123—H123119.9
C116—C111—As1121.9 (3)C122—C123—H123119.9
C111—C112—C113119.9 (4)C123—C124—C125120.3 (5)
C111—C112—H112120.1C123—C124—H124119.9
C113—C112—H112120.1C125—C124—H124119.9
C114—C113—C112120.5 (4)C124—C125—C126120.3 (5)
C114—C113—H113119.8C124—C125—H125119.8
C112—C113—H113119.8C126—C125—H125119.8
C113—C114—C115119.9 (4)C121—C126—C125119.9 (4)
C113—C114—H114120.0C121—C126—H126120.1
C115—C114—H114120.0C125—C126—H126120.1
C121—As1—C111—C11299.4 (3)S1—As1—C121—C126179.2 (3)
C12—As1—C111—C112148.4 (3)C111—As1—C121—C122126.7 (3)
S1—As1—C111—C11225.6 (3)C12—As1—C121—C122121.1 (3)
C121—As1—C111—C11677.0 (3)S1—As1—C121—C1220.7 (3)
C12—As1—C111—C11635.2 (4)C126—C121—C122—C1230.6 (6)
S1—As1—C111—C116158.0 (3)As1—C121—C122—C123179.5 (3)
C116—C111—C112—C1131.0 (6)C121—C122—C123—C1240.7 (7)
As1—C111—C112—C113175.5 (3)C122—C123—C124—C1250.7 (8)
C111—C112—C113—C1140.1 (7)C123—C124—C125—C1260.7 (8)
C112—C113—C114—C1150.9 (7)C122—C121—C126—C1250.6 (6)
C113—C114—C115—C1161.1 (7)As1—C121—C126—C125179.5 (3)
C114—C115—C116—C1110.2 (7)C124—C125—C126—C1210.6 (7)
C112—C111—C116—C1150.8 (6)C121—As1—C12—C12i69.40 (15)
As1—C111—C116—C115175.6 (3)C111—As1—C12—C12i177.52 (13)
C111—As1—C121—C12653.2 (3)S1—As1—C12—C12i53.11 (13)
C12—As1—C121—C12658.9 (3)As1—C12—C12i—As1i156.4 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The Biotechnology and Biological Sciences Research Council is thanked for funding.

References

First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrench, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHursthouse, M. B. (1976). CAD-4. Queen Mary College, London, England.  Google Scholar
First citationSheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSmith, M. C. (2002). PhD thesis, University of East Anglia, England.  Google Scholar
First citationSmith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147–4151.  Web of Science CSD CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds