organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(4-Methyl­phenyl)­ethenyl]-1,3,2-benzodioxaborole

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, bInstitute of Organic Chemistry, University of Vienna, Waehringerstrasse 38, A-1090 Wien, Austria, and cDepartment of Chemistry, University of Durham, Durham DH1 3LE, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 8 June 2004; accepted 9 June 2004; online 12 June 2004)

Molecules of the title compound, C15H13BO2, are essentially planar with a high degree of conjugation. Pairs of mol­ecules related by inversion symmetry show π-stacking interactions, and the overall packing is a herring-bone pattern. The molecular geometry is similar to that of closely related analogues.

Comment

The title compound, (I[link]), is one of a series of 2-styryl­boronate esters prepared in a study of hydro­boration reactions of alkynes, with a variety of para substituents (Wiesauer, 1997[Wiesauer, C. (1997). Doctoral thesis, University of Vienna, Austria.]). We have previously reported the structure of the parent compound with no substituent in the para position (Clegg et al., 2001[Clegg, W., Marder, T. B., Scott, A. J., Wiesauer, C. & Weissensteiner, W. (2001). Acta Cryst. E57, o63-o65.]). The title compound is the methyl analogue. Structures have also been determined for the SMe (Yuan et al., 1990[Yuan, Z., Taylor, N. J., Marder, T. B., Williams, I. D., Kurtz, S. K. & Cheng, L.-T. (1990). J. Chem. Soc. Chem. Commun. pp. 1489-1492.]), OMe (Nguyen et al., 2002[Nguyen, P., Coapes, R. B., Woodward, A. D., Taylor, N. J., Burke, J. M., Howard, J. A. K. & Marder, T. B. (2002). J. Organomet. Chem. 652, 77-85.]) and CF3 (Clegg et al., 2004[Clegg, W., Scott, A. J., Marder, T. B., Wiesauer, C. & Weissensteiner, W. (2004). Acta Cryst. E60, o1175-o1177.]) derivatives.[link]

[Scheme 1]

The mol­ecule of the title compound (Fig. 1[link]) is essentially completely planar except for the H atoms of the methyl group, with a high degree of conjugation. The r.m.s. deviation of all non-H atoms from their mean plane is 0.071 Å. All torsion angles for non-H atoms are close to 0 and 180°, the largest corresponding to a twist of about 7° around the B—C bond linking the alkene double bond to the benzodioxaborole (Bcat) group (Table 1[link]). This almost completely planar arrangement is found also for the other derivatives mentioned above.

Bond lengths and angles are typical of compounds in which Bcat is attached to an alkene double bond; these include not only the derivatives with different para substituents, but also the compounds (Bcat)CH=C(R)(Cl), where R is either Me or Et (Bayer et al., 2002[Bayer, M. J., Pritzkow, H. & Siebert, W. (2002). Z. Naturforsch. Teil B, 57, 295-300.]), the symmetrically substituted alkene (Bcat)2C=C(Bcat)2 (Gu et al., 2001[Gu, Y., Pritzkow, H. & Siebert, W. (2001). Eur. J. Inorg. Chem. pp. 373-379.]), two Bcat-substituted cyclo­penta­dienes (Avent et al., 2003[Avent, A. G., Davies, M. J., Hitchcock, P. B. & Lappert, M. F. (2003). Z. Anorg. Allg. Chem. 629, 1358-1366.]), and several alkenes and dialkenes with two or more Bcat groups (Lesley et al., 1996[Lesley, G., Nguyen, P., Taylor, N. J., Marder, T. B., Scott, A. J., Clegg, W. & Norman, N. C. (1996). Organometallics, 15, 5137-5154.]; Clegg et al., 1996[Clegg, W., Scott, A. J., Lesley, G., Marder, T. B. & Norman, N. C. (1996). Acta Cryst. C52, 1991-1995.]). Steric interaction, particularly between Bcat groups, forces some of these mol­ecules to adopt non-planar forms, which has minor effects on the degree of conjugation and hence on some bond lengths.

Centrosymmetric pairs of mol­ecules of the title compound show extensive overlap (Fig. 2[link]) and a separation of about 3.57 Å, indicating some π-stacking interaction. These dimeric units are further assembled into a herring-bone pattern in the overall crystal packing (Fig. 3[link]), as is commonly found for planar organic mol­ecules.

[Figure 1]
Figure 1
The molecular structure, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The overlap of two parallel mol­ecules related by inversion symmetry, seen (a) from above and (b) from the side. One molecule is shown with filled bonds, and the other with hollow bonds.
[Figure 3]
Figure 3
The crystal packing, viewed along the a axis.

Experimental

4-Methyl­phenyl­ethyne (0.565 g, 4.86 mmol) and catecholborane (0.643 g, 5.36 mmol) were heated at 343 K for 2 h in a scintillation vial under a nitro­gen atmosphere. The resulting yellow solid was recrystallized twice from n-hexane, in a final yield of 67%. Analysis calculated: C 76.32, H 5.55%; found: C 76.78, H 5.41%. Mass spectrum: 236 (M+, 100%), 221 (12.7%), 209 (6.3%), 143 (7.7%), 118 (27.6%), 117 (29.2%), 116 (26.3%), 115 (29.3%), 105 (10.6%), 91 (27.8%). 1H NMR (200 MHz): δ 2.36 (s, 3H, CH3), 6.41 (d, J = 18.5 Hz, 1H, H2), 7.07 (m, 2H, two of H13–H16), 7.18 (d, J = 7.9 Hz, 2H, H23 and H25), 7.24 (m, 2H, two of H13–H16), 7.47 (d, J = 7.9 Hz, 2H, H22 and H26), 7.74 (d, J = 18.5 Hz, 1H, H1) (using the crystallographic numbering scheme of Fig. 1[link]). 13C{1H} NMR (50 MHz): δ 21.4 (1C, C27), 112.3 (2C, C13 and C16), 122.6 (2C, C14 and C15), 127.4 and 129.5 (2 × 2C, C22, C23, C25, C26), 134.3 (1C, C24), 139.9 (1C, C21), 148.4 (2C, C11 and C12), 152.0 (1C, C2), resonance of C1 too broad to be observed. 11B{1H} NMR (64 MHz): δ 31.7.

Crystal data
  • C15H13BO2

  • Mr = 236.06

  • Monoclinic, P21/n

  • a = 6.4402 (9) Å

  • b = 18.455 (3) Å

  • c = 10.2790 (14) Å

  • β = 96.901 (3)°

  • V = 1212.8 (3) Å3

  • Z = 4

  • Dx = 1.293 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5025 reflections

  • θ = 2.0–28.4°

  • μ = 0.08 mm−1

  • T = 160 (2) K

  • Block, colourless

  • 0.60 × 0.58 × 0.40 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: none

  • 6815 measured reflections

  • 2697 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 28.6°

  • h = −8 → 6

  • k = −14 → 24

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.06

  • 2697 reflections

  • 165 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.042P)2 + 0.4808P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.0146 (18)

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.3370 (19)
C1—B 1.5343 (19)
C2—C21 1.4709 (17)
B—O1 1.3911 (17)
B—O2 1.3907 (17)
C2—C1—B 122.11 (12)
C1—C2—C21 127.71 (12)
C1—B—O1 123.97 (12)
C1—B—O2 124.75 (12)
O1—B—O2 111.27 (11)
B—O1—C11 105.17 (10)
B—O2—C12 105.16 (10)
B—C1—C2—C21 177.86 (12)
C2—C1—B—O1 6.1 (2)
C2—C1—B—O2 −172.12 (12)
C1—C2—C21—C22 −177.24 (13)
C1—C2—C21—C26 3.2 (2)

H atoms were positioned geometrically and refined with a riding model, including torsional freedom around the C—C bond, with C—H = 0.95 (aromatic and olefinic) or 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C) (1.5Ueq for methyl groups).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: local programs; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: local programs; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

(E)-2-[2-(4-methylphenyl)ethenyl]-1,3,2-benzodioxaborole top
Crystal data top
C15H13BO2F(000) = 496
Mr = 236.06Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.4402 (9) ÅCell parameters from 5025 reflections
b = 18.455 (3) Åθ = 2.0–28.4°
c = 10.2790 (14) ŵ = 0.08 mm1
β = 96.901 (3)°T = 160 K
V = 1212.8 (3) Å3Block, colourless
Z = 40.60 × 0.58 × 0.40 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2420 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.6°, θmin = 2.2°
Detector resolution: 8.192 pixels mm-1h = 86
thin–slice ω scansk = 1424
6815 measured reflectionsl = 1313
2697 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2697 reflectionsΔρmax = 0.24 e Å3
165 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0146 (18)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7050 (2)0.04966 (7)0.89091 (13)0.0313 (3)
H10.80300.06170.96430.038*
C20.5083 (2)0.07351 (7)0.88687 (12)0.0297 (3)
H20.41440.05880.81330.036*
B0.7775 (2)0.00340 (7)0.78084 (14)0.0284 (3)
O10.64428 (14)0.02313 (5)0.67502 (9)0.0307 (2)
O20.98406 (14)0.01587 (5)0.77180 (8)0.0297 (2)
C110.77191 (19)0.06104 (6)0.60009 (12)0.0266 (3)
C120.9775 (2)0.05603 (6)0.65746 (11)0.0260 (3)
C131.1399 (2)0.08712 (7)0.60257 (13)0.0319 (3)
H131.28100.08210.64060.038*
C141.0856 (2)0.12663 (7)0.48735 (13)0.0335 (3)
H141.19250.14980.44650.040*
C150.8799 (2)0.13274 (7)0.43139 (13)0.0353 (3)
H150.84860.16050.35370.042*
C160.7173 (2)0.09903 (8)0.48652 (13)0.0343 (3)
H160.57620.10220.44740.041*
C210.4201 (2)0.11989 (6)0.98286 (12)0.0278 (3)
C220.2122 (2)0.14172 (7)0.95868 (13)0.0341 (3)
H220.13050.12670.88020.041*
C230.1217 (2)0.18513 (8)1.04736 (14)0.0357 (3)
H230.02030.19961.02800.043*
C240.2356 (2)0.20760 (6)1.16357 (12)0.0311 (3)
C250.4438 (2)0.18621 (7)1.18733 (13)0.0340 (3)
H250.52520.20141.26580.041*
C260.5356 (2)0.14312 (7)1.09922 (13)0.0324 (3)
H260.67810.12931.11820.039*
C270.1371 (3)0.25333 (8)1.26094 (14)0.0412 (4)
H27A0.22510.29581.28440.062*
H27B0.00180.26931.22200.062*
H27C0.12370.22471.33980.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (7)0.0277 (6)0.0306 (6)0.0024 (5)0.0087 (5)0.0021 (5)
C20.0373 (7)0.0260 (6)0.0273 (6)0.0028 (5)0.0095 (5)0.0003 (5)
B0.0313 (7)0.0243 (6)0.0306 (7)0.0007 (5)0.0074 (6)0.0024 (5)
O10.0265 (5)0.0326 (5)0.0339 (5)0.0018 (3)0.0071 (4)0.0049 (4)
O20.0302 (5)0.0315 (5)0.0276 (4)0.0005 (4)0.0040 (4)0.0055 (3)
C110.0254 (6)0.0264 (6)0.0290 (6)0.0017 (4)0.0076 (5)0.0008 (5)
C120.0292 (6)0.0243 (5)0.0245 (6)0.0012 (4)0.0038 (5)0.0001 (4)
C130.0270 (6)0.0342 (6)0.0345 (7)0.0024 (5)0.0040 (5)0.0014 (5)
C140.0347 (7)0.0332 (7)0.0346 (7)0.0054 (5)0.0125 (6)0.0026 (5)
C150.0427 (8)0.0344 (7)0.0292 (6)0.0013 (6)0.0061 (6)0.0060 (5)
C160.0304 (7)0.0392 (7)0.0325 (7)0.0012 (5)0.0004 (5)0.0046 (5)
C210.0346 (7)0.0235 (6)0.0271 (6)0.0018 (5)0.0105 (5)0.0015 (4)
C220.0339 (7)0.0378 (7)0.0310 (6)0.0032 (5)0.0059 (5)0.0047 (5)
C230.0334 (7)0.0377 (7)0.0370 (7)0.0035 (5)0.0090 (6)0.0016 (5)
C240.0438 (8)0.0218 (6)0.0296 (6)0.0020 (5)0.0118 (5)0.0024 (5)
C250.0428 (8)0.0311 (6)0.0282 (6)0.0026 (5)0.0039 (6)0.0025 (5)
C260.0353 (7)0.0323 (6)0.0300 (6)0.0045 (5)0.0058 (5)0.0004 (5)
C270.0561 (10)0.0327 (7)0.0369 (7)0.0111 (6)0.0144 (7)0.0027 (6)
Geometric parameters (Å, º) top
C1—H10.950C15—C161.395 (2)
C1—C21.3370 (19)C16—H160.950
C1—B1.5343 (19)C21—C221.3913 (19)
C2—H20.950C21—C261.3979 (18)
C2—C211.4709 (17)C22—H220.950
B—O11.3911 (17)C22—C231.3931 (19)
B—O21.3907 (17)C23—H230.950
O1—C111.3822 (14)C23—C241.3882 (19)
O2—C121.3857 (14)C24—C251.390 (2)
C11—C121.3863 (17)C24—C271.5065 (18)
C11—C161.3710 (18)C25—H250.950
C12—C131.3723 (18)C25—C261.3898 (18)
C13—H130.950C26—H260.950
C13—C141.3990 (19)C27—H27A0.980
C14—H140.950C27—H27B0.980
C14—C151.384 (2)C27—H27C0.980
C15—H150.950
H1—C1—C2118.9C11—C16—H16121.8
H1—C1—B118.9C15—C16—H16121.8
C2—C1—B122.11 (12)C2—C21—C22119.31 (12)
C1—C2—H2116.1C2—C21—C26122.93 (12)
C1—C2—C21127.71 (12)C22—C21—C26117.76 (12)
H2—C2—C21116.1C21—C22—H22119.4
C1—B—O1123.97 (12)C21—C22—C23121.27 (12)
C1—B—O2124.75 (12)H22—C22—C23119.4
O1—B—O2111.27 (11)C22—C23—H23119.5
B—O1—C11105.17 (10)C22—C23—C24121.01 (13)
B—O2—C12105.16 (10)H23—C23—C24119.5
O1—C11—C12109.31 (10)C23—C24—C25117.73 (12)
O1—C11—C16128.64 (11)C23—C24—C27121.17 (13)
C12—C11—C16122.05 (12)C25—C24—C27121.10 (12)
O2—C12—C11109.07 (10)C24—C25—H25119.2
O2—C12—C13128.70 (11)C24—C25—C26121.65 (12)
C11—C12—C13122.23 (11)H25—C25—C26119.2
C12—C13—H13121.9C21—C26—C25120.58 (12)
C12—C13—C14116.15 (12)C21—C26—H26119.7
H13—C13—C14121.9C25—C26—H26119.7
C13—C14—H14119.2C24—C27—H27A109.5
C13—C14—C15121.58 (12)C24—C27—H27B109.5
H14—C14—C15119.2C24—C27—H27C109.5
C14—C15—H15119.3H27A—C27—H27B109.5
C14—C15—C16121.49 (12)H27A—C27—H27C109.5
H15—C15—C16119.3H27B—C27—H27C109.5
C11—C16—C15116.46 (12)
B—C1—C2—C21177.86 (12)C12—C13—C14—C151.0 (2)
C2—C1—B—O16.1 (2)C13—C14—C15—C160.8 (2)
C2—C1—B—O2172.12 (12)O1—C11—C16—C15179.70 (12)
C1—B—O1—C11179.67 (12)C12—C11—C16—C150.1 (2)
O2—B—O1—C111.20 (13)C14—C15—C16—C111.4 (2)
C1—B—O2—C12178.97 (12)C1—C2—C21—C22177.24 (13)
O1—B—O2—C120.51 (13)C1—C2—C21—C263.2 (2)
B—O1—C11—C121.42 (13)C2—C21—C22—C23179.45 (12)
B—O1—C11—C16178.44 (13)C26—C21—C22—C230.15 (19)
B—O2—C12—C110.40 (13)C21—C22—C23—C240.5 (2)
B—O2—C12—C13179.13 (13)C22—C23—C24—C250.9 (2)
O1—C11—C12—O21.17 (14)C22—C23—C24—C27178.79 (13)
O1—C11—C12—C13178.40 (11)C23—C24—C25—C260.73 (19)
C16—C11—C12—O2178.70 (11)C27—C24—C25—C26179.00 (12)
C16—C11—C12—C131.7 (2)C24—C25—C26—C210.1 (2)
O2—C12—C13—C14178.27 (12)C2—C21—C26—C25179.22 (12)
C11—C12—C13—C142.26 (19)C22—C21—C26—C250.36 (19)
 

Footnotes

Formerly at Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Acknowledgements

We thank the EPSRC (UK) and NSERC (Canada) for financial support. CW thanks the Austrian Ministry of Education, Science and Culture for supporting his stay at the University of Waterloo, Canada.

References

First citationAvent, A. G., Davies, M. J., Hitchcock, P. B. & Lappert, M. F. (2003). Z. Anorg. Allg. Chem. 629, 1358–1366.  Web of Science CSD CrossRef CAS Google Scholar
First citationBayer, M. J., Pritzkow, H. & Siebert, W. (2002). Z. Naturforsch. Teil B, 57, 295–300.  CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Marder, T. B., Scott, A. J., Wiesauer, C. & Weissensteiner, W. (2001). Acta Cryst. E57, o63–o65.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W., Scott, A. J., Lesley, G., Marder, T. B. & Norman, N. C. (1996). Acta Cryst. C52, 1991–1995.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Scott, A. J., Marder, T. B., Wiesauer, C. & Weissensteiner, W. (2004). Acta Cryst. E60, o1175–o1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, Y., Pritzkow, H. & Siebert, W. (2001). Eur. J. Inorg. Chem. pp. 373–379.  CSD CrossRef Google Scholar
First citationLesley, G., Nguyen, P., Taylor, N. J., Marder, T. B., Scott, A. J., Clegg, W. & Norman, N. C. (1996). Organometallics, 15, 5137–5154.  CSD CrossRef CAS Web of Science Google Scholar
First citationNguyen, P., Coapes, R. B., Woodward, A. D., Taylor, N. J., Burke, J. M., Howard, J. A. K. & Marder, T. B. (2002). J. Organomet. Chem. 652, 77–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWiesauer, C. (1997). Doctoral thesis, University of Vienna, Austria.  Google Scholar
First citationYuan, Z., Taylor, N. J., Marder, T. B., Williams, I. D., Kurtz, S. K. & Cheng, L.-T. (1990). J. Chem. Soc. Chem. Commun. pp. 1489–1492.  CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds