organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{2-[4-(Tri­fluoro­methyl)­phenyl]­ethenyl}-1,3,2-benzodioxaborole

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, bInstitute of Organic Chemistry, University of Vienna, Waehringerstrasse 38, A-1090 Wien, Austria, and cDepartment of Chemistry, University of Durham, Durham DH1 3LE, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 8 June 2004; accepted 9 June 2004; online 12 June 2004)

Molecules of the twinned and disordered title compound, C15H10BF3O2, are essentially planar with a high degree of conjugation. The molecular geometry is similar to that of closely related analogues. Molecules pack parallel in the triclinic crystal structure, with some π-stacking interaction.

Comment

The title compound, (I[link]), is one of a series of 2-styryl­boronate esters prepared in a study of hydro­boration reactions of alkynes, with a variety of para substituents (Wiesauer, 1997[Wiesauer, C. (1997). Doctoral thesis, University of Vienna, Austria.]). We have previously reported the structure of the parent compound with no substituent in the para position (Clegg et al., 2001[Clegg, W., Marder, T. B., Scott, A. J., Wiesauer, C. & Weissensteiner, W. (2001). Acta Cryst. E57, o63-o65.]). The title compound is the tri­fluoro­methyl analogue. Structures have also been determined for the SMe (Yuan et al., 1990[Yuan, Z., Taylor, N. J., Marder, T. B., Williams, I. D., Kurtz, S. K. & Cheng, L.-T. (1990). J. Chem. Soc. Chem. Commun. pp. 1489-1492.]), OMe (Nguyen et al., 2002[Nguyen, P., Coapes, R. B., Woodward, A. D., Taylor, N. J., Burke, J. M., Howard, J. A. K. & Marder, T. B. (2002). J. Organomet. Chem. 652, 77-85.]) and Me (Clegg et al., 2004[Clegg, W., Scott, A. J., Marder, T. B., Wiesauer, C. & Weissensteiner, W. (2004). Acta Cryst. E60, o1172-o1174.]) derivatives.[link]

[Scheme 1]

The mol­ecule of the title compound (Fig. 1[link]) is approximately planar, except for the F atoms of the CF3 group (which is disordered), with a high degree of conjugation. The r.m.s. deviation of the ordered atoms from their mean plane is 0.147 Å; this is rather greater than for the corresponding methyl-substituted compound and the parent compound. All torsion angles for non–F atoms are close to 0 and 180°, the largest corresponding to twists of about 5 and 9° around the B—C and C—C bonds linking the alkene double bond to the benzodioxaborole (Bcat) group and the trifluoromethylphenyl group (Table 1[link]). As well as these small twisting distortions, the mol­ecule is slightly bowed along its length.

The molecular geometry of this series of compounds has been discussed in the previous paper (Clegg et al., 2004[Clegg, W., Scott, A. J., Marder, T. B., Wiesauer, C. & Weissensteiner, W. (2004). Acta Cryst. E60, o1172-o1174.]).

All the mol­ecules in the triclinic crystal structure are parallel, with a separation of about 3.66 Å between pairs of adjacent mol­ecules, indicating some π-stacking interaction (Figs. 2[link] and 3[link]). This is different from the herring-bone packing arrangement found in other compounds in this series and typical of many planar organic mol­ecules.

[Figure 1]
Figure 1
The molecular structure, with atom labels and 50% probability ellipsoids for non-H atoms. Minor disorder component atoms are not labelled.
[Figure 2]
Figure 2
The overlap of adjacent mol­ecules related by inversion symmetry, seen in projection normal to the mean plane of one mol­ecule. One molecule is shown with filled bonds, and the other with hollow bonds.
[Figure 3]
Figure 3
The crystal packing, viewed along the a axis.

Experimental

4–Tri­fluoro­methyl­phenyl­ethyne (0.371 g, 2.18 mmol) and catecholborane (0.288 g, 2.4 mmol) were heated at 353 K for 3 h in a vial under a nitro­gen atmosphere. The resulting yellow solid was recrystallized three times from diethyl ether/n-hexane, in a final yield of 380 mg (56%). Analysis calculated: C 62.12, H 3.47%; found: C 62.10, H 3.45%. Mass spectrum: 290 (M+, 100%), 264 (7.1%), 172 (10.8%), 151 (8.2%), 145 (8.1%), 120 (23.0%). 1H NMR (200 MHz): δ 6.56 (d, J = 18.4 Hz, 1H, H8), 7.12 (m, 2H, two of H3–H6), 7.27 (m, 2H, two of H3–H6), 7.67 (apparent s, 4H, H10–H14), 7.77 (d, J = 18.4 Hz, 1H, H7) (using the crystallographic numbering scheme of Fig. 1[link]). 13C{1H} NMR (50 MHz): δ 112.5 (2C, C3 and C6), 122.9 (4C, C4, C5 and two of C10, C11, C13, C14), 125.7 (1C, C15), 126.7 (1C, C9), 127.5 (2C, two of C10, C11, C13, C14), 140.2 (1C, C12), 148.2 (2C, C1 and C2), 150.1 (1C, C8), resonance of C7 too broad to be observed. 11B{1H} NMR (64 MHz): δ 31.3.

Crystal data
  • C15H10BF3O2

  • Mr = 290.04

  • Triclinic, [P\overline 1]

  • a = 6.757 (4) Å

  • b = 7.768 (4) Å

  • c = 12.578 (7) Å

  • α = 93.581 (12)°

  • β = 98.600 (16)°

  • γ = 91.084 (15)°

  • V = 651.2 (6) Å3

  • Z = 2

  • Dx = 1.479 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2228 reflections

  • θ = 1.6–27.1°

  • μ = 0.12 mm−1

  • T = 160 (2) K

  • Block, colourless

  • 0.45 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART 1 K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: none

  • 2252 measured reflections

  • 2252 independent reflections

  • 1352 reflections with I > 2σ(I)

  • θmax = 25.0°

  • h = −8 → 7

  • k = −9 → 9

  • l = −3 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.279

  • S = 1.02

  • 2252 reflections

  • 225 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1961P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.04 (2)

Table 1
Selected geometric parameters (Å, °)

B—O1 1.405 (6)
B—O2 1.394 (6)
B—C7 1.522 (7)
C7—C8 1.339 (6)
O1—B—O2 110.9 (4)
O1—B—C7 124.6 (4)
O2—B—C7 124.5 (4)
B—O1—C1 105.4 (3)
B—O2—C2 104.7 (4)
B—C7—C8 123.9 (4)
C7—C8—C9 126.5 (4)
O1—B—C7—C8 −5.2 (7)
O2—B—C7—C8 175.5 (5)
B—C7—C8—C9 −175.4 (4)
C7—C8—C9—C10 170.2 (4)
C7—C8—C9—C14 −8.2 (7)

H atoms were positioned geometrically and refined with a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The tri­fluoro­methyl group is disordered, the two components being rotated by about 60° from each other around the C—C bond, with occupancy factors that refined to 0.883 (9):0.117 (9); restraints were applied to the geometry and displacement parameters. The crystal was found to be non-merohedrally twinned by 180° rotation about the [001] reciprocal lattice vector, with approximately equal contributions of the two components. The twinning was resolved with the aid of the programs ROTAX (Cooper et al., 2002[Cooper, R. I., Gould, R. O., Parson, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]) and ROTWIN (Pink & Young, 2000[Pink, M. & Young, V. G., Jr. (2000). ROTWIN. University of Minnesota, USA.]), and involved the refinement of six twin-component parameters applied to groups of reflections with different degrees of overlap; because of the twinning, equivalent reflections could not be merged before the refinement. The combination of twinning and disorder leads to relatively high R factors.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: local programs; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and ROTWIN (Pink & Young, 2000[Pink, M. & Young, V. G., Jr. (2000). ROTWIN. University of Minnesota, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: local programs; data reduction: SAINT (Bruker, 1997) and ROTWIN (Pink & Young, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

(E)-2-[2-(4-trifluoromethylphenyl)ethenyl]-1,3,2-benzodioxaborole top
Crystal data top
C15H10BF3O2Z = 2
Mr = 290.04F(000) = 296
Triclinic, P1Dx = 1.479 Mg m3
a = 6.757 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.768 (4) ÅCell parameters from 2228 reflections
c = 12.578 (7) Åθ = 1.6–27.1°
α = 93.581 (12)°µ = 0.12 mm1
β = 98.600 (16)°T = 160 K
γ = 91.084 (15)°Block, colourless
V = 651.2 (6) Å30.45 × 0.40 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
1352 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
Detector resolution: 8.192 pixels mm-1h = 87
thin–slice ω scansk = 99
2252 measured reflectionsl = 314
2252 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H-atom parameters constrained
wR(F2) = 0.279 w = 1/[σ2(Fo2) + (0.1961P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2252 reflectionsΔρmax = 0.47 e Å3
225 parametersΔρmin = 0.40 e Å3
114 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.04 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B0.1954 (8)0.1947 (7)0.4681 (4)0.0454 (13)
O10.3266 (4)0.2942 (4)0.5465 (2)0.0465 (9)
O20.0021 (4)0.2099 (4)0.4863 (2)0.0461 (9)
C10.2049 (6)0.3745 (5)0.6139 (4)0.0423 (11)
C20.0086 (7)0.3250 (5)0.5764 (4)0.0418 (11)
C30.1482 (7)0.3849 (6)0.6264 (4)0.0483 (12)
H30.28340.35050.60060.058*
C40.0959 (7)0.4987 (6)0.7168 (4)0.0502 (12)
H40.19810.54390.75390.060*
C50.1016 (8)0.5473 (6)0.7539 (4)0.0514 (13)
H50.13220.62390.81630.062*
C60.2567 (7)0.4864 (6)0.7017 (4)0.0478 (12)
H60.39220.52130.72620.057*
C70.2603 (7)0.0836 (6)0.3761 (4)0.0455 (12)
H70.16120.01360.33070.055*
C80.4489 (6)0.0787 (5)0.3554 (4)0.0415 (11)
H80.54740.14270.40490.050*
C90.5190 (6)0.0160 (5)0.2636 (3)0.0401 (11)
C100.7156 (7)0.0144 (6)0.2453 (4)0.0439 (11)
H100.80300.08880.29480.053*
C110.7844 (7)0.0627 (6)0.1556 (4)0.0467 (12)
H110.91690.03860.14280.056*
C120.6584 (7)0.1756 (5)0.0844 (4)0.0438 (11)
C130.4648 (7)0.2103 (6)0.1034 (4)0.0487 (12)
H130.37920.28800.05520.058*
C140.3965 (7)0.1321 (6)0.1922 (4)0.0446 (11)
H140.26430.15770.20480.054*
C150.7339 (7)0.2619 (6)0.0099 (4)0.0502 (12)
F10.5875 (6)0.2947 (7)0.0955 (3)0.0810 (17)0.883 (9)
F20.8691 (9)0.1688 (6)0.0485 (4)0.092 (2)0.883 (9)
F30.8060 (8)0.4152 (5)0.0083 (3)0.0761 (16)0.883 (9)
F1X0.937 (2)0.277 (5)0.016 (2)0.085 (11)0.117 (9)
F2X0.675 (7)0.422 (3)0.038 (3)0.116 (14)0.117 (9)
F3X0.716 (6)0.178 (4)0.096 (2)0.092 (12)0.117 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B0.037 (3)0.046 (3)0.054 (3)0.007 (2)0.009 (2)0.001 (2)
O10.0338 (18)0.0529 (19)0.0534 (19)0.0065 (14)0.0102 (15)0.0030 (15)
O20.0317 (17)0.0528 (19)0.0540 (19)0.0039 (13)0.0119 (14)0.0092 (15)
C10.037 (3)0.038 (2)0.052 (3)0.0083 (19)0.008 (2)0.002 (2)
C20.038 (3)0.036 (2)0.053 (3)0.0053 (18)0.013 (2)0.000 (2)
C30.039 (3)0.052 (3)0.056 (3)0.002 (2)0.017 (2)0.000 (2)
C40.047 (3)0.048 (3)0.058 (3)0.010 (2)0.018 (2)0.000 (2)
C50.057 (3)0.049 (3)0.050 (3)0.006 (2)0.014 (2)0.002 (2)
C60.041 (3)0.050 (3)0.052 (3)0.003 (2)0.005 (2)0.002 (2)
C70.036 (3)0.044 (3)0.057 (3)0.0062 (19)0.009 (2)0.001 (2)
C80.035 (3)0.039 (2)0.050 (3)0.0041 (18)0.009 (2)0.001 (2)
C90.034 (2)0.041 (2)0.047 (2)0.0073 (18)0.009 (2)0.001 (2)
C100.034 (2)0.047 (3)0.051 (3)0.0015 (19)0.012 (2)0.002 (2)
C110.034 (3)0.045 (3)0.062 (3)0.0060 (19)0.012 (2)0.004 (2)
C120.047 (3)0.036 (2)0.051 (3)0.008 (2)0.017 (2)0.002 (2)
C130.043 (3)0.048 (3)0.057 (3)0.001 (2)0.014 (2)0.004 (2)
C140.035 (2)0.043 (2)0.057 (3)0.0015 (19)0.014 (2)0.002 (2)
C150.049 (3)0.046 (3)0.058 (3)0.001 (2)0.018 (2)0.002 (2)
F10.068 (3)0.111 (4)0.062 (2)0.022 (2)0.0093 (19)0.016 (2)
F20.112 (4)0.078 (3)0.099 (4)0.029 (3)0.074 (4)0.023 (3)
F30.104 (4)0.060 (3)0.069 (3)0.041 (2)0.025 (3)0.002 (2)
F1X0.061 (10)0.13 (3)0.065 (17)0.045 (14)0.017 (13)0.028 (17)
F2X0.16 (3)0.068 (14)0.13 (3)0.04 (2)0.07 (3)0.019 (16)
F3X0.11 (3)0.09 (2)0.087 (18)0.04 (2)0.032 (18)0.034 (16)
Geometric parameters (Å, º) top
B—O11.405 (6)C8—C91.472 (6)
B—O21.394 (6)C9—C101.400 (6)
B—C71.522 (7)C9—C141.398 (6)
O1—C11.395 (5)C10—H100.950
O2—C21.391 (5)C10—C111.390 (6)
C1—C21.378 (6)C11—H110.950
C1—C61.361 (6)C11—C121.393 (6)
C2—C31.384 (6)C12—C131.388 (6)
C3—H30.950C12—C151.486 (6)
C3—C41.395 (7)C13—H130.950
C4—H40.950C13—C141.382 (6)
C4—C51.383 (7)C14—H140.950
C5—H50.950C15—F11.357 (6)
C5—C61.392 (7)C15—F21.322 (5)
C6—H60.950C15—F31.316 (6)
C7—H70.950C15—F1X1.368 (14)
C7—C81.339 (6)C15—F2X1.308 (14)
C8—H80.950C15—F3X1.295 (14)
O1—B—O2110.9 (4)C8—C9—C14123.0 (4)
O1—B—C7124.6 (4)C10—C9—C14118.3 (4)
O2—B—C7124.5 (4)C9—C10—H10119.6
B—O1—C1105.4 (3)C9—C10—C11120.8 (4)
B—O2—C2104.7 (4)H10—C10—C11119.6
O1—C1—C2108.5 (4)C10—C11—H11120.1
O1—C1—C6129.3 (4)C10—C11—C12119.8 (4)
C2—C1—C6122.2 (4)H11—C11—C12120.1
O2—C2—C1110.4 (4)C11—C12—C13119.9 (4)
O2—C2—C3127.5 (4)C11—C12—C15119.7 (4)
C1—C2—C3122.1 (4)C13—C12—C15120.4 (4)
C2—C3—H3122.0C12—C13—H13119.9
C2—C3—C4116.0 (4)C12—C13—C14120.2 (4)
H3—C3—C4122.0H13—C13—C14119.9
C3—C4—H4119.3C9—C14—C13121.0 (4)
C3—C4—C5121.4 (5)C9—C14—H14119.5
H4—C4—C5119.3C13—C14—H14119.5
C4—C5—H5119.3C12—C15—F1112.6 (4)
C4—C5—C6121.5 (5)C12—C15—F2113.9 (4)
H5—C5—C6119.3C12—C15—F3113.7 (4)
C1—C6—C5116.8 (4)C12—C15—F1X108.1 (11)
C1—C6—H6121.6C12—C15—F2X117.9 (17)
C5—C6—H6121.6C12—C15—F3X116.2 (15)
B—C7—H7118.1F1—C15—F2103.8 (5)
B—C7—C8123.9 (4)F1—C15—F3103.2 (4)
H7—C7—C8118.1F2—C15—F3108.6 (5)
C7—C8—H8116.7F1X—C15—F2X101.8 (18)
C7—C8—C9126.5 (4)F1X—C15—F3X103.2 (17)
H8—C8—C9116.7F2X—C15—F3X107.6 (19)
C8—C9—C10118.7 (4)
O2—B—O1—C10.8 (5)C7—C8—C9—C148.2 (7)
C7—B—O1—C1179.8 (4)C8—C9—C10—C11175.6 (4)
O1—B—O2—C21.5 (5)C14—C9—C10—C112.9 (7)
C7—B—O2—C2179.0 (4)C9—C10—C11—C121.8 (7)
B—O1—C1—C20.3 (5)C10—C11—C12—C130.0 (7)
B—O1—C1—C6179.1 (4)C10—C11—C12—C15178.3 (4)
O1—C1—C2—O21.2 (5)C11—C12—C13—C140.5 (7)
O1—C1—C2—C3179.6 (4)C15—C12—C13—C14178.8 (4)
C6—C1—C2—O2179.8 (4)C12—C13—C14—C90.7 (7)
C6—C1—C2—C30.6 (7)C8—C9—C14—C13176.1 (4)
B—O2—C2—C11.7 (5)C10—C9—C14—C132.3 (7)
B—O2—C2—C3179.2 (5)C11—C12—C15—F1149.5 (5)
O2—C2—C3—C4179.2 (4)C11—C12—C15—F231.6 (7)
C1—C2—C3—C40.2 (6)C11—C12—C15—F393.5 (5)
C2—C3—C4—C50.3 (7)C11—C12—C15—F1X28 (2)
C3—C4—C5—C60.8 (7)C11—C12—C15—F2X142 (2)
O1—C1—C6—C5179.8 (4)C11—C12—C15—F3X88 (2)
C2—C1—C6—C51.1 (7)C13—C12—C15—F132.2 (6)
C4—C5—C6—C11.2 (7)C13—C12—C15—F2150.1 (5)
O1—B—C7—C85.2 (7)C13—C12—C15—F384.8 (6)
O2—B—C7—C8175.5 (5)C13—C12—C15—F1X151 (2)
B—C7—C8—C9175.4 (4)C13—C12—C15—F2X36 (3)
C7—C8—C9—C10170.2 (4)C13—C12—C15—F3X94 (2)
 

Footnotes

Formerly at Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Acknowledgements

We thank the EPSRC (UK) and NSERC (Canada) for financial support. CW thanks the Austrian Ministry of Education, Science and Culture for supporting his stay at the University of Waterloo, Canada.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Marder, T. B., Scott, A. J., Wiesauer, C. & Weissensteiner, W. (2001). Acta Cryst. E57, o63–o65.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W., Scott, A. J., Marder, T. B., Wiesauer, C. & Weissensteiner, W. (2004). Acta Cryst. E60, o1172–o1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Gould, R. O., Parson, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, P., Coapes, R. B., Woodward, A. D., Taylor, N. J., Burke, J. M., Howard, J. A. K. & Marder, T. B. (2002). J. Organomet. Chem. 652, 77–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationPink, M. & Young, V. G., Jr. (2000). ROTWIN. University of Minnesota, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWiesauer, C. (1997). Doctoral thesis, University of Vienna, Austria.  Google Scholar
First citationYuan, Z., Taylor, N. J., Marder, T. B., Williams, I. D., Kurtz, S. K. & Cheng, L.-T. (1990). J. Chem. Soc. Chem. Commun. pp. 1489–1492.  CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds