metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­[bis­­(di­cyclo­hexyl­phosphino)­ethane-κ2P,P′]­gold(I) chloride chloro­form tetrasolvate

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, bInstitute of Organic Chemistry, University of Vienna, Waehringerstrasse 38, A-1090 Wien, Austria, and cDepartment of Chemistry, University of Durham, Durham DH1 3LE, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 8 June 2004; accepted 11 June 2004; online 19 June 2004)

In the title complex, [Au(C26H48P2)2]Cl·4CHCl3, the cation and anion lie on twofold rotation axes. The Au atom has a distorted tetrahedral coordination geometry, with two chelating diphosphine ligands, and lies far from the anion.

Comment

As part of a study of hydro­boration catalysis, the title compound, (I[link]), was prepared as a catalyst precursor. Although gold complexes with the ligands DCPE [bis­(di­cyclo­hexyl­phosphino)­ethane] and DPPB [bis­(di­phenyl­phosphino)­butane] are effective alkene diboration catalysts (Baker et al., 1995[Baker, R. T., Nguyen, P., Marder, T. B. & Westcott, S. A. (1995). Angew. Chem. Int. Ed. Engl. 34, 1336-1338.]), we found them to be ineffective for hydro­boration of vinyl­boronate esters. [link]

[Scheme 1]

The crystal structure of the chloro­form tetrasolvate has been determined. The complex consists of a bis­(diphosphine)­gold(I) cation, a chloride anion and four mol­ecules of chloro­form. The cation and anion lie on twofold rotation axes in space group C2/c and the asymmetric unit contains two solvent mol­ecules, one of which is disordered.

The Au atom is coordinated by two chelating diphosphine ligands in a distorted tetrahedral geometry (Fig. 1[link] and Table 1[link]), the main distortion being the small bite angles of the ligands. A similar geometry is found for nine other gold(I) complexes of diphosphinoethane ligands in the Cambridge Structural Database (CSD, Version 5.25 with one update, January 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), and is as expected. The CSD contains 103 structures of complexes of the DCPE ligand (the structure of the uncomplexed ligand has not been reported); almost all of these are with metals of the Fe/Ru/Os, Co/Rh/Ir and (especially) Ni/Pd/Pt transition-metal triads. There are two complexes with Cu, one with Al, and three with Au. In the vast majority of complexes, DCPE coordinates as a chelating ligand, and there are six incidences of DCPE as a bridging ligand, including all of the previously reported gold complexes. In [(DCPE)2Au2](PF6)2, two DCPE ligands bridge a pair of AuI atoms with a direct Au—Au bond (Schaefer et al., 1991[Schaefer, W. P., Marsh, R. E., McCleskey, T. M. & Gray, H. B. (1991). Acta Cryst. C47, 2553-2556.]). [BrAu(DCPE)AuCN] has a bridge between two well separated Au atoms (Schaefer et al., 1992[Schaefer, W. P., McCleskey, T. M. & Gray, H. B. (1992). Acta Cryst. C48, 1397-1399.]). [(DCPE)3Au2][Au(CN)2]2 contains one bridging and two chelating ligands (McCleskey et al., 1993[McCleskey, T. M., Henling, L. M., Flanagan, K. A. & Gray, H. B. (1993). Acta Cryst. C49, 1467-1469.]). Thus, there is considerably more variety in the coordination of DCPE to gold(I) than to other metals.

The ethyl­ene linkages in the two DCPE ligands are disordered over two positions each, with staggered conformations, as indicated by P—C—C—P torsion angles of −50 (2), 47 (2), 52 (2) and −52 (2)° (two disorder components of two ligands). There is probably unresolved disorder also in the cyclo­hexyl groups.

The chloride anion has no significant non-Coulombic interactions and is >6.9 Å from the closest Au atoms. One of the two independent chloro­form solvent mol­ecules is disordered over two orientations by rotation about its C—H bond, while no disorder was resolved for the other solvent mol­ecule.

[Figure 1]
Figure 1
The structure of the cation of (I[link]), shown with atom labels and 40% probability ellipsoids. H atoms and one of the disorder components have been omitted.
[Figure 2]
Figure 2
An alternative view of the cation, showing the conformation of the chelate rings.

Experimental

The title compound was prepared by the reaction of Au(PEt3)Cl with two equivalents of DCPE in THF solution. The reaction mixture was stirred for 5 h, then the solvent was removed in vacuo, leaving a fine white powder. This was recrystallized from chloro­form. 1HNMR (200 MHz): δ 1.28 (s, br, 22H), 1.85 (s, br, 22H). 31P{1H} NMR (81 MHz, CD2Cl2): δ 29.7.

Crystal data
  • [Au(C26H48P2)2]Cl·4CHCl3

  • Mr = 1555.06

  • Monoclinic, C2/c

  • a = 25.939 (4) Å

  • b = 13.938 (3) Å

  • c = 22.685 (4) Å

  • β = 114.050 (4)°

  • V = 7489 (2) Å3

  • Z = 4

  • Dx = 1.379 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 13280 reflections

  • θ = 1.7–27.8°

  • μ = 2.55 mm−1

  • T = 160 (2) K

  • Plate, colourless

  • 0.30 × 0.24 × 0.05 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.294, Tmax = 0.881

  • 19047 measured reflections

  • 6599 independent reflections

  • 4771 reflections with I > 2σ(I)

  • Rint = 0.077

  • θmax = 25.0°

  • h = −30 → 26

  • k = −16 → 16

  • l = −26 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.223

  • S = 1.01

  • 6599 reflections

  • 384 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1563P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 3.63 e Å−3

  • Δρmin = −3.76 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.00045 (13)

Table 1
Selected geometric parameters (Å, °)

Au—P1 2.434 (2)
Au—P2 2.470 (2)
P1—Au—P1i 85.97 (11)
P1—Au—P2 131.15 (9)
P1—Au—P2i 113.49 (9)
P2—Au—P2i 87.53 (12)
Symmetry code: (i) [-x,y,{\script{1\over 2}}-z].

H atoms were positioned geometrically and refined with a riding model, with C—H = 0.99–1.00 Å and with Uiso(H) = 1.2Ueq(C). Initial refinement produced highly anisotropic displacement parameters for the C atoms of the two ethyl­ene linkages, which had apparently eclipsed arrangements. Each of these C atoms was successfully refined as two disorder components, the twofold rotation symmetry being retained for each component. Refined occupancy factors for the two linkages were 0.47:0.53 (2) and 0.52:0.48 (3). Twofold disorder was also resolved and refined for one of the chloro­form mol­ecules, with occupancies of 0.489:0.511 (9). Restraints were applied to geometry and displacement parameters in the disordered groups. The largest positive and negative features of the final difference map lie close to Au and to the disordered solvent mol­ecule.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: local programs; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: local programs; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

(I) top
Crystal data top
[Au(C26H48P2)2]Cl·4CHCl3F(000) = 3184
Mr = 1555.06Dx = 1.379 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.939 (4) ÅCell parameters from 13280 reflections
b = 13.938 (3) Åθ = 1.7–27.8°
c = 22.685 (4) ŵ = 2.55 mm1
β = 114.050 (4)°T = 160 K
V = 7489 (2) Å3Block, colourless
Z = 40.30 × 0.24 × 0.05 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
6599 independent reflections
Radiation source: sealed tube4771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.7°
thin–slice ω scansh = 3026
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 1616
Tmin = 0.294, Tmax = 0.881l = 2621
19047 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.223 w = 1/[σ2(Fo2) + (0.1563P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6599 reflectionsΔρmax = 3.63 e Å3
384 parametersΔρmin = 3.76 e Å3
118 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00045 (13)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.00000.31327 (3)0.25000.0421 (3)
P10.00060 (12)0.18549 (15)0.17656 (12)0.0440 (6)
C10.0696 (5)0.1755 (7)0.1014 (5)0.051 (2)
H10.07060.23260.07430.062*
C20.0755 (5)0.0875 (9)0.0580 (5)0.067 (3)
H2A0.07600.02820.08180.081*
H2B0.04270.08420.04630.081*
C30.1306 (6)0.0946 (11)0.0040 (6)0.083 (4)
H3A0.13400.03730.03110.099*
H3B0.12860.15180.02890.099*
C40.1847 (6)0.1022 (11)0.0109 (6)0.089 (4)
H4A0.21860.11000.03000.107*
H4B0.18910.04260.03210.107*
C50.1792 (5)0.1888 (9)0.0553 (6)0.082 (4)
H5A0.18020.24890.03170.099*
H5B0.21150.18950.06800.099*
C60.1240 (5)0.1837 (8)0.1159 (6)0.064 (3)
H6A0.12550.12760.14190.077*
H6B0.12080.24200.14220.077*
C70.0577 (5)0.1598 (8)0.1469 (5)0.060 (3)
H70.05150.09340.12870.072*
C80.1185 (6)0.1628 (13)0.2034 (7)0.107 (6)
H8A0.12030.11710.23760.128*
H8B0.12600.22790.22250.128*
C90.1659 (6)0.1356 (14)0.1780 (7)0.105 (5)
H9A0.20370.14180.21390.126*
H9B0.16100.06800.16340.126*
C100.1626 (6)0.1994 (10)0.1234 (8)0.091 (5)
H10A0.19000.17740.10600.110*
H10B0.17260.26590.13930.110*
C110.1018 (5)0.1972 (8)0.0689 (7)0.068 (3)
H11A0.09350.13150.05100.082*
H11B0.10020.24070.03370.082*
C120.0548 (4)0.2284 (8)0.0932 (5)0.051 (2)
H12A0.06170.29510.10960.061*
H12B0.01700.22540.05710.061*
C13A0.0141 (9)0.0705 (10)0.2269 (8)0.043 (3)0.47 (2)
H13A0.00060.01470.19760.051*0.47 (2)
H13B0.05540.06340.25160.051*0.47 (2)
C13B0.0135 (7)0.0688 (8)0.2143 (5)0.033 (3)0.53 (2)
H13C0.05470.05950.20010.040*0.53 (2)
H13D0.00120.01390.19810.040*0.53 (2)
P20.06951 (10)0.44125 (18)0.30248 (13)0.0489 (6)
C140.1390 (4)0.4634 (8)0.2931 (5)0.059 (3)
H140.15190.52960.30950.070*
C150.1289 (5)0.4616 (13)0.2215 (6)0.103 (6)
H15A0.10000.50960.19710.124*
H15B0.11540.39740.20290.124*
C160.1880 (7)0.4862 (16)0.2171 (6)0.138 (8)
H16A0.18250.48370.17130.166*
H16B0.19930.55230.23280.166*
C170.2353 (6)0.4172 (12)0.2562 (6)0.110 (6)
H17A0.22550.35150.23860.132*
H17B0.27070.43630.25250.132*
C180.2444 (4)0.4179 (9)0.3253 (5)0.068 (3)
H18A0.25880.48140.34460.082*
H18B0.27260.36860.34940.082*
C190.1860 (4)0.3962 (8)0.3302 (5)0.058 (3)
H19A0.17420.33010.31460.070*
H19B0.19220.39850.37620.070*
C200.0932 (4)0.4494 (8)0.3901 (5)0.060 (3)
H200.11650.39070.40820.072*
C210.0405 (4)0.4426 (8)0.4103 (6)0.067 (3)
H21A0.01670.50070.39550.080*
H21B0.01710.38610.38940.080*
C220.0618 (5)0.4338 (10)0.4827 (6)0.093 (5)
H22A0.08360.37370.49710.112*
H22B0.02930.43100.49500.112*
C230.0997 (6)0.5203 (12)0.5164 (8)0.110 (6)
H23A0.11360.51250.56370.133*
H23B0.07690.57980.50420.133*
C240.1517 (6)0.5306 (11)0.4975 (7)0.092 (5)
H24A0.17340.58900.51770.110*
H24B0.17700.47440.51380.110*
C250.1314 (5)0.5368 (8)0.4254 (6)0.070 (3)
H25A0.16440.53940.41410.083*
H25B0.10970.59700.41010.083*
C26A0.0235 (7)0.5539 (10)0.2833 (7)0.052 (5)0.52 (3)
H26A0.00690.56010.31540.063*0.52 (3)
H26B0.04770.61070.28760.063*0.52 (3)
C26B0.0312 (5)0.5540 (11)0.2583 (12)0.051 (5)0.48 (3)
H26C0.04850.61060.28560.062*0.48 (3)
H26D0.03700.56070.21790.062*0.48 (3)
Cl10.00000.8143 (2)0.25000.0493 (8)
C270.1456 (5)0.1686 (8)0.1437 (6)0.068 (3)
H270.10480.16750.17390.081*
Cl20.1774 (2)0.2661 (3)0.1644 (3)0.1325 (19)
Cl30.1499 (4)0.1800 (3)0.0658 (2)0.154 (3)
Cl40.17644 (17)0.0626 (2)0.15392 (17)0.0848 (10)
C280.0570 (4)0.2082 (6)0.6405 (5)0.085 (3)
H280.04980.21640.68020.102*
Cl50.1106 (5)0.2996 (6)0.6464 (4)0.135 (5)0.489 (9)
Cl60.0023 (5)0.2262 (15)0.5816 (6)0.216 (9)0.489 (9)
Cl70.0923 (5)0.1022 (5)0.6504 (6)0.133 (5)0.489 (9)
Cl5X0.0274 (4)0.1082 (5)0.5850 (4)0.099 (3)0.511 (9)
Cl6X0.1247 (4)0.2007 (10)0.6789 (5)0.168 (7)0.511 (9)
Cl7X0.0286 (6)0.3084 (5)0.5905 (4)0.123 (4)0.511 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.0404 (3)0.0480 (4)0.0475 (3)0.0000.0279 (2)0.000
P10.0601 (15)0.0375 (13)0.0483 (13)0.0075 (10)0.0364 (12)0.0020 (10)
C10.064 (6)0.054 (6)0.058 (6)0.004 (5)0.047 (5)0.007 (5)
C20.072 (7)0.080 (8)0.069 (7)0.005 (6)0.048 (6)0.023 (6)
C30.097 (10)0.103 (10)0.065 (7)0.012 (8)0.050 (7)0.028 (7)
C40.087 (9)0.118 (11)0.075 (8)0.032 (8)0.046 (7)0.042 (8)
C50.056 (7)0.132 (13)0.076 (8)0.029 (6)0.045 (6)0.041 (7)
C60.068 (7)0.077 (8)0.070 (7)0.017 (5)0.052 (6)0.021 (6)
C70.068 (7)0.068 (7)0.058 (6)0.026 (5)0.041 (5)0.004 (5)
C80.073 (9)0.175 (15)0.071 (8)0.071 (9)0.028 (7)0.007 (9)
C90.074 (9)0.156 (14)0.087 (10)0.063 (10)0.036 (8)0.012 (10)
C100.058 (8)0.122 (12)0.104 (11)0.018 (7)0.043 (7)0.034 (9)
C110.063 (7)0.084 (9)0.085 (8)0.010 (5)0.058 (7)0.001 (6)
C120.054 (6)0.053 (6)0.057 (6)0.008 (5)0.035 (5)0.000 (5)
C13A0.043 (5)0.031 (4)0.045 (4)0.005 (4)0.009 (4)0.004 (3)
C13B0.033 (5)0.025 (4)0.046 (4)0.004 (4)0.021 (4)0.008 (3)
P20.0383 (13)0.0443 (14)0.0645 (15)0.0072 (10)0.0213 (11)0.0016 (12)
C140.053 (6)0.070 (7)0.050 (5)0.033 (5)0.019 (5)0.005 (5)
C150.069 (8)0.171 (15)0.060 (7)0.060 (9)0.017 (6)0.036 (8)
C160.112 (12)0.26 (2)0.043 (6)0.108 (14)0.031 (8)0.020 (10)
C170.103 (11)0.188 (17)0.077 (9)0.072 (12)0.076 (9)0.041 (10)
C180.052 (6)0.102 (9)0.072 (7)0.015 (6)0.046 (5)0.003 (6)
C190.053 (6)0.080 (8)0.053 (5)0.021 (5)0.034 (5)0.007 (5)
C200.046 (6)0.072 (7)0.071 (7)0.009 (5)0.033 (5)0.012 (6)
C210.046 (6)0.077 (8)0.090 (8)0.014 (5)0.040 (6)0.030 (6)
C220.075 (8)0.143 (13)0.086 (8)0.034 (8)0.058 (7)0.062 (9)
C230.083 (10)0.155 (15)0.110 (11)0.023 (9)0.057 (9)0.072 (11)
C240.074 (9)0.108 (11)0.096 (10)0.027 (8)0.037 (7)0.056 (9)
C250.066 (7)0.048 (6)0.096 (9)0.005 (5)0.034 (6)0.027 (6)
C26A0.054 (8)0.044 (6)0.057 (12)0.002 (5)0.020 (7)0.020 (8)
C26B0.050 (8)0.047 (6)0.061 (12)0.001 (5)0.027 (7)0.015 (8)
Cl10.0535 (19)0.052 (2)0.0602 (19)0.0000.0408 (16)0.000
C270.062 (7)0.093 (9)0.054 (6)0.010 (6)0.030 (5)0.003 (6)
Cl20.141 (4)0.079 (3)0.238 (6)0.001 (2)0.139 (4)0.020 (3)
Cl30.298 (9)0.107 (4)0.088 (3)0.040 (4)0.110 (4)0.000 (2)
Cl40.119 (3)0.073 (2)0.089 (2)0.0016 (18)0.069 (2)0.0029 (17)
C280.095 (7)0.115 (7)0.079 (7)0.011 (5)0.068 (6)0.004 (6)
Cl50.257 (13)0.086 (6)0.092 (6)0.058 (6)0.102 (7)0.009 (5)
Cl60.122 (8)0.41 (3)0.112 (9)0.032 (10)0.045 (6)0.101 (13)
Cl70.196 (11)0.068 (4)0.224 (13)0.002 (5)0.178 (11)0.001 (6)
Cl5X0.161 (8)0.069 (4)0.097 (5)0.008 (4)0.084 (5)0.002 (4)
Cl6X0.080 (5)0.32 (2)0.098 (7)0.021 (7)0.030 (5)0.027 (8)
Cl7X0.220 (12)0.062 (4)0.094 (5)0.002 (5)0.072 (7)0.002 (4)
Geometric parameters (Å, º) top
Au—P12.434 (2)C14—H141.000
Au—P1i2.434 (2)C14—C151.536 (15)
Au—P22.470 (2)C14—C191.496 (15)
Au—P2i2.470 (2)C15—H15A0.990
P1—C11.910 (12)C15—H15B0.990
P1—C71.922 (10)C15—C161.613 (18)
P1—C13A1.914 (13)C16—H16A0.990
P1—C13B1.930 (12)C16—H16B0.990
C1—H11.000C16—C171.53 (2)
C1—C21.541 (13)C17—H17A0.990
C1—C61.578 (14)C17—H17B0.990
C2—H2A0.990C17—C181.489 (15)
C2—H2B0.990C18—H18A0.990
C2—C31.547 (17)C18—H18B0.990
C3—H3A0.990C18—C191.590 (12)
C3—H3B0.990C19—H19A0.990
C3—C41.575 (17)C19—H19B0.990
C4—H4A0.990C20—H201.000
C4—H4B0.990C20—C211.612 (14)
C4—C51.541 (16)C20—C251.569 (14)
C5—H5A0.990C21—H21A0.990
C5—H5B0.990C21—H21B0.990
C5—C61.530 (18)C21—C221.509 (17)
C6—H6A0.990C22—H22A0.990
C6—H6B0.990C22—H22B0.990
C7—H71.000C22—C231.546 (17)
C7—C81.577 (18)C23—H23A0.990
C7—C121.529 (15)C23—H23B0.990
C8—H8A0.990C23—C241.580 (19)
C8—H8B0.990C24—H24A0.990
C8—C91.602 (18)C24—H24B0.990
C9—H9A0.990C24—C251.504 (19)
C9—H9B0.990C25—H25A0.990
C9—C101.50 (2)C25—H25B0.990
C10—H10A0.990C26A—C26Ai1.50 (2)
C10—H10B0.990C26A—H26A0.990
C10—C111.558 (19)C26A—H26B0.990
C11—H11A0.990C26B—C26Bi1.51 (2)
C11—H11B0.990C26B—H26C0.990
C11—C121.588 (13)C26B—H26D0.990
C12—H12A0.990C27—H271.000
C12—H12B0.990C27—Cl21.749 (12)
C13A—C13Ai1.50 (2)C27—Cl31.733 (12)
C13A—H13A0.990C27—Cl41.741 (13)
C13A—H13B0.990C28—H281.000
C13B—C13Bi1.48 (2)C28—Cl51.849 (11)
C13B—H13C0.990C28—Cl61.593 (11)
C13B—H13D0.990C28—Cl71.704 (10)
P2—C141.924 (10)C28—Cl5X1.824 (11)
P2—C201.829 (11)C28—Cl6X1.615 (11)
P2—C26A1.912 (14)C28—Cl7X1.760 (10)
P2—C26B1.911 (14)
P1—Au—P1i85.97 (11)C14—P2—C26B96.9 (6)
P1—Au—P2131.15 (9)C20—P2—C26A95.7 (6)
P1i—Au—P2113.49 (9)C20—P2—C26B113.1 (9)
P1—Au—P2i113.49 (9)P2—C14—H14107.2
P1i—Au—P2i131.15 (9)P2—C14—C15110.5 (7)
P2—Au—P2i87.53 (12)P2—C14—C19115.0 (6)
Au—P1—C1114.0 (3)H14—C14—C15107.2
Au—P1—C7126.1 (4)H14—C14—C19107.2
Au—P1—C13A105.1 (4)C15—C14—C19109.4 (11)
Au—P1—C13B105.5 (4)C14—C15—H15A110.1
C1—P1—C7105.0 (5)C14—C15—H15B110.1
C1—P1—C13A111.0 (7)C14—C15—C16107.8 (9)
C1—P1—C13B93.8 (5)H15A—C15—H15B108.5
C7—P1—C13A93.4 (5)H15A—C15—C16110.1
C7—P1—C13B107.5 (6)H15B—C15—C16110.1
P1—C1—H1105.7C15—C16—H16A109.0
P1—C1—C2116.1 (8)C15—C16—H16B109.0
P1—C1—C6113.6 (7)C15—C16—C17112.9 (12)
H1—C1—C2105.7H16A—C16—H16B107.8
H1—C1—C6105.7H16A—C16—C17109.0
C2—C1—C6109.1 (8)H16B—C16—C17109.0
C1—C2—H2A109.6C16—C17—H17A109.5
C1—C2—H2B109.6C16—C17—H17B109.5
C1—C2—C3110.1 (10)C16—C17—C18110.6 (12)
H2A—C2—H2B108.2H17A—C17—H17B108.1
H2A—C2—C3109.6H17A—C17—C18109.5
H2B—C2—C3109.6H17B—C17—C18109.5
C2—C3—H3A109.1C17—C18—H18A109.9
C2—C3—H3B109.1C17—C18—H18B109.9
C2—C3—C4112.6 (10)C17—C18—C19109.1 (9)
H3A—C3—H3B107.8H18A—C18—H18B108.3
H3A—C3—C4109.1H18A—C18—C19109.9
H3B—C3—C4109.1H18B—C18—C19109.9
C3—C4—H4A109.7C14—C19—C18115.0 (8)
C3—C4—H4B109.7C14—C19—H19A108.5
C3—C4—C5109.9 (10)C14—C19—H19B108.5
H4A—C4—H4B108.2C18—C19—H19A108.5
H4A—C4—C5109.7C18—C19—H19B108.5
H4B—C4—C5109.7H19A—C19—H19B107.5
C4—C5—H5A109.5P2—C20—H20106.0
C4—C5—H5B109.5P2—C20—C21111.0 (7)
C4—C5—C6110.8 (10)P2—C20—C25117.7 (8)
H5A—C5—H5B108.1H20—C20—C21106.0
H5A—C5—C6109.5H20—C20—C25106.0
H5B—C5—C6109.5C21—C20—C25109.4 (9)
C1—C6—C5113.9 (10)C20—C21—H21A109.7
C1—C6—H6A108.8C20—C21—H21B109.7
C1—C6—H6B108.8C20—C21—C22109.8 (9)
C5—C6—H6A108.8H21A—C21—H21B108.2
C5—C6—H6B108.8H21A—C21—C22109.7
H6A—C6—H6B107.7H21B—C21—C22109.7
P1—C7—H7107.5C21—C22—H22A109.5
P1—C7—C8112.4 (8)C21—C22—H22B109.5
P1—C7—C12111.9 (7)C21—C22—C23110.6 (12)
H7—C7—C8107.5H22A—C22—H22B108.1
H7—C7—C12107.5H22A—C22—C23109.5
C8—C7—C12109.8 (11)H22B—C22—C23109.5
C7—C8—H8A109.4C22—C23—H23A109.2
C7—C8—H8B109.4C22—C23—H23B109.2
C7—C8—C9111.3 (11)C22—C23—C24112.2 (10)
H8A—C8—H8B108.0H23A—C23—H23B107.9
H8A—C8—C9109.4H23A—C23—C24109.2
H8B—C8—C9109.4H23B—C23—C24109.2
C8—C9—H9A109.4C23—C24—H24A109.7
C8—C9—H9B109.4C23—C24—H24B109.7
C8—C9—C10111.3 (11)C23—C24—C25109.9 (11)
H9A—C9—H9B108.0H24A—C24—H24B108.2
H9A—C9—C10109.4H24A—C24—C25109.7
H9B—C9—C10109.4H24B—C24—C25109.7
C9—C10—H10A109.6C20—C25—C24112.3 (11)
C9—C10—H10B109.6C20—C25—H25A109.2
C9—C10—C11110.1 (12)C20—C25—H25B109.2
H10A—C10—H10B108.2C24—C25—H25A109.2
H10A—C10—C11109.6C24—C25—H25B109.2
H10B—C10—C11109.6H25A—C25—H25B107.9
C10—C11—H11A109.0P2—C26A—C26Ai113.8 (10)
C10—C11—H11B109.0P2—C26A—H26A108.8
C10—C11—C12113.0 (10)P2—C26A—H26B108.8
H11A—C11—H11B107.8C26Ai—C26A—H26A108.8
H11A—C11—C12109.0C26Ai—C26A—H26B108.8
H11B—C11—C12109.0H26A—C26A—H26B107.7
C7—C12—C11108.1 (8)P2—C26B—C26Bi114.0 (11)
C7—C12—H12A110.1P2—C26B—H26C108.8
C7—C12—H12B110.1P2—C26B—H26D108.8
C11—C12—H12A110.1C26Bi—C26B—H26C108.8
C11—C12—H12B110.1C26Bi—C26B—H26D108.8
H12A—C12—H12B108.4H26C—C26B—H26D107.6
P1—C13A—C13Ai112.4 (9)H27—C27—Cl2108.1
P1—C13A—H13A109.1H27—C27—Cl3108.1
P1—C13A—H13B109.1H27—C27—Cl4108.1
C13Ai—C13A—H13A109.1Cl2—C27—Cl3111.2 (7)
C13Ai—C13A—H13B109.1Cl2—C27—Cl4109.3 (7)
H13A—C13A—H13B107.9Cl3—C27—Cl4111.8 (7)
P1—C13B—C13Bi113.3 (7)H28—C28—Cl5105.5
P1—C13B—H13C108.9H28—C28—Cl6105.5
P1—C13B—H13D108.9H28—C28—Cl7105.5
C13Bi—C13B—H13C108.9H28—C28—Cl5X121.9
C13Bi—C13B—H13D108.9H28—C28—Cl6X94.7
H13C—C13B—H13D107.7H28—C28—Cl7X107.9
Au—P2—C14126.5 (3)Cl5—C28—Cl6113.1 (8)
Au—P2—C20115.1 (3)Cl5—C28—Cl7104.0 (6)
Au—P2—C26A102.6 (5)Cl6—C28—Cl7122.0 (9)
Au—P2—C26B102.7 (5)Cl5X—C28—Cl6X112.5 (7)
C14—P2—C20101.3 (4)Cl5X—C28—Cl7X102.4 (6)
C14—P2—C26A111.6 (8)Cl6X—C28—Cl7X118.5 (8)
P1i—Au—P1—C1111.1 (4)P1—Au—P2—C140.5 (4)
P1i—Au—P1—C7116.4 (4)P1i—Au—P2—C14106.6 (4)
P1i—Au—P1—C13A10.6 (6)P1—Au—P2—C20127.5 (4)
P1i—Au—P1—C13B9.7 (5)P1i—Au—P2—C2021.4 (4)
P2—Au—P1—C1130.9 (3)P1—Au—P2—C26A130.0 (7)
P2i—Au—P1—C122.4 (4)P1i—Au—P2—C26A123.9 (7)
P2—Au—P1—C71.6 (4)P1—Au—P2—C26B109.1 (8)
P2i—Au—P1—C7110.1 (4)P1i—Au—P2—C26B144.7 (8)
P2—Au—P1—C13A107.4 (6)P2i—Au—P2—C14119.0 (4)
P2i—Au—P1—C13A144.1 (6)P2i—Au—P2—C20113.0 (4)
P2—Au—P1—C13B127.7 (5)P2i—Au—P2—C26A10.5 (7)
P2i—Au—P1—C13B123.8 (5)P2i—Au—P2—C26B10.3 (7)
Au—P1—C1—C2171.8 (7)Au—P2—C14—C1547.7 (11)
Au—P1—C1—C644.0 (8)Au—P2—C14—C1976.9 (8)
C7—P1—C1—C246.3 (9)C20—P2—C14—C15179.0 (10)
C7—P1—C1—C6174.1 (7)C20—P2—C14—C1956.4 (9)
C13A—P1—C1—C253.4 (9)C26A—P2—C14—C1578.2 (11)
C13A—P1—C1—C674.4 (8)C26A—P2—C14—C19157.3 (8)
C13B—P1—C1—C263.0 (9)C26B—P2—C14—C1563.7 (12)
C13B—P1—C1—C664.8 (8)C26B—P2—C14—C19171.7 (11)
P1—C1—C2—C3174.3 (8)P2—C14—C15—C16177.0 (12)
C6—C1—C2—C355.7 (13)C19—C14—C15—C1655.3 (16)
C1—C2—C3—C458.2 (14)C14—C15—C16—C1757.3 (19)
C2—C3—C4—C556.5 (16)C15—C16—C17—C1858.0 (17)
C3—C4—C5—C653.7 (15)C16—C17—C18—C1954.2 (15)
C4—C5—C6—C155.4 (13)P2—C14—C19—C18177.0 (7)
P1—C1—C6—C5172.5 (8)C15—C14—C19—C1857.9 (12)
C2—C1—C6—C556.1 (12)C17—C18—C19—C1456.8 (14)
Au—P1—C7—C845.4 (11)Au—P2—C20—C2145.4 (9)
Au—P1—C7—C1278.7 (9)Au—P2—C20—C25172.5 (7)
C1—P1—C7—C8178.8 (10)C14—P2—C20—C21174.8 (8)
C1—P1—C7—C1257.1 (9)C14—P2—C20—C2547.7 (9)
C13A—P1—C7—C866.0 (12)C26A—P2—C20—C2161.4 (10)
C13A—P1—C7—C12169.9 (10)C26A—P2—C20—C2565.7 (10)
C13B—P1—C7—C879.8 (11)C26B—P2—C20—C2172.3 (9)
C13B—P1—C7—C12156.1 (8)C26B—P2—C20—C2554.9 (9)
P1—C7—C8—C9176.9 (12)P2—C20—C21—C22171.2 (9)
C12—C7—C8—C957.8 (16)C25—C20—C21—C2257.3 (13)
C7—C8—C9—C1055.7 (19)C20—C21—C22—C2358.1 (13)
C8—C9—C10—C1154.2 (17)C21—C22—C23—C2457.9 (17)
C9—C10—C11—C1257.5 (13)C22—C23—C24—C2555.6 (18)
P1—C7—C12—C11176.3 (8)C23—C24—C25—C2055.5 (15)
C8—C7—C12—C1158.2 (12)P2—C20—C25—C24175.3 (9)
C10—C11—C12—C759.3 (13)C21—C20—C25—C2456.8 (13)
Au—P1—C13A—C13Ai38 (2)Au—P2—C26A—C26Ai38 (2)
C1—P1—C13A—C13Ai86.0 (19)C14—P2—C26A—C26Ai100 (2)
C7—P1—C13A—C13Ai166.5 (19)C20—P2—C26A—C26Ai155 (2)
Au—P1—C13B—C13Bi35.3 (17)Au—P2—C26B—C26Bi37 (2)
C1—P1—C13B—C13Bi151.4 (16)C14—P2—C26B—C26Bi167 (2)
C7—P1—C13B—C13Bi101.5 (16)C20—P2—C26B—C26Bi87 (2)
Symmetry code: (i) x, y, z+1/2.
 

Footnotes

Formerly at Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Acknowledgements

We thank the EPSRC (UK) and NSERC (Canada) for financial support. CW thanks the Austrian Ministry of Education, Science and Culture for supporting his stay at the University of Waterloo, Canada.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaker, R. T., Nguyen, P., Marder, T. B. & Westcott, S. A. (1995). Angew. Chem. Int. Ed. Engl. 34, 1336–1338.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcCleskey, T. M., Henling, L. M., Flanagan, K. A. & Gray, H. B. (1993). Acta Cryst. C49, 1467–1469.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchaefer, W. P., McCleskey, T. M. & Gray, H. B. (1992). Acta Cryst. C48, 1397–1399.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchaefer, W. P., Marsh, R. E., McCleskey, T. M. & Gray, H. B. (1991). Acta Cryst. C47, 2553–2556.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds