organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-amino-4-iso­propyl-1,3-thia­zole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, and bDepartment of Pharmaceutical Sciences, University of Strathclyde, Glasgow G4 0NR, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 26 May 2004; accepted 9 June 2004; online 19 June 2004)

Both the molecular and the crystal structures of the title compound, C9H14N2O2S, are similar to those of its 4-phenyl analogue. The supramolecular network is based upon N—H⋯N hydrogen-bonded centrosymmetric dimers linked by N—H⋯O contacts.

Comment

The quest for bioactive compounds led us to the synthesis of a variety of heterocylic compounds, among them the title compound, (I[link]). There are many compounds in nature incorporating the thia­zole moiety in their structure (Ikemoto et al., 2003[Ikemoto, N., Liu, J., Brands, K. M. J., McNamara, J. M. & Reider, P. (2003). Tetrahedron, 59, 1317-1325.]; Kumar et al., 2002[Kumar, R., Rai, D., Ko, S. C. C. & Lown, J. W. (2002). Heterocycl. Commun. 8, 521-530.]; El-Meligie & El-Awady, 2002[El-Meligie, S. & El-Awady, R. A. (2002). J. Heterocycl. Chem. 39, 1133-1138.]), that have useful bioactivities. For example, Leuc­amide A was first extracted from the Australian marine sponge Leucetta microraphis and showed cytotoxicity toward several tumour cell lines (Wang & Nan, 2003[Wang, W. L. & Nan, F. (2003). J. Org. Chem. 68, 1636-1639.]). Thia­zoles containing an iso­propyl group were recently incorporated in the synthesis of minor-groove binders and this has led to a new class of potent antibacterial and antifungal compounds (Khalaf et al., 2004[Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133-2156.]; Antony et al., 2004[Antony, N. G., Fox, K. R., Johnston, B. F., Khalaf, A. I., Mackay, S. P., McGroarty, I. S., Parkinson, J. A., Skellern, G. G., Suckling, C. J. & Waigh, R. D. (2004). Bioorg. Med. Chem. Lett. 14, 1353-1356.]).[link]

[Scheme 1]

The molecular structure of (I[link]) is unexceptional, with all ring bond lengths and angles (Table 1[link]) close to the mean values obtained from 22 related fragments in the Cambridge Structural Database (Version 5.25, with updates to April 2004; Allen, 2002[Allen, F. A. (2002). Acta Cryst. B58, 380-388.]). Steric repulsion between the adjacent iso­propyl and ester groups causes the main deviation from ideal geometry, widening the angles C2—C3—C4 and C3—C2—C7 to 133.90 (14) and 127.20 (14)°, respectively. However, all geometric parameters are in excellent agreement with those found for the 4-phenyl analogue of (I[link]) (Lynch & McClen­aghan, 2000[Lynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.]). Indeed, the similarity of these two structures extends to their hydrogen-bonding motifs. Compound (I) mimics its analogue in forming hydrogen-bonded centrosymmetric dimers via near-linear N—H⋯N contacts (Table 2[link]), the supramolecular network being completed by N—H⋯O contacts.

[Figure 1]
Figure 1
The molecular structure of (I[link]), with 50% probability displacement ellipsoids.

Experimental

Bromine (10.5 g, 65.3 mmol) was added to a stirred suspension of ethyl 4-methyl-3-oxopentanoate (10.0 g, 63.2 mmol) in water (50 ml) at 273 K over a period of 45 min. After a further 30 min at 273 K, the reaction mixture was extracted with diethyl ether (150 ml). The organic layer was then dried over magnesium sulfate and filtered. The solvent was removed under reduced pressure to give ethyl 2-bromo-4-methyl-3-oxopentanoate as an oil (14.6 g, 61.1 mmol). This oil was added to a solution of thio­urea (4.7 g, 61.1 mmol) in ethanol (50 ml). The reaction mixture was kept under reflux for 1 h. Ice-water (250 ml) was added and the mixture was basified with 18 M aqueous ammonia with vigorous stirring. The insoluble material was filtered off, washed with water and dried under reduced pressure at 303 K overnight. This gave the desired product as a pale-yellow crystalline material [6.7 g, 49% yield; m.p. 449–451 K, literature m.p. 449–451 K (Barton et al., 1982[Barton, A., Breukelman, S. P., Kaye, P. T., Meakins, G. D. & Morgan, D. J. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 159-164.])]. 1H NMR (CDCl3): 1.25 (6H, d, J = 8.0 Hz), 1.33 (3H, t, J = 7.1 Hz), 3.88 (1H, hept, J = 6.9 Hz), 4.27 (2H, q, J = 7.1 Hz), 5.41 (2H, s). IR (KBr): 3393, 3112, 1665, 1531, 1509, 1466, 1307, 1134, 1034 cm−1.

Crystal data
  • C9H14N2O2S

  • Mr = 214.28

  • Monoclinic, P21/n

  • a = 7.8757 (10) Å

  • b = 9.1080 (11) Å

  • c = 15.8434 (12) Å

  • β = 100.853 (9)°

  • V = 1116.1 (2) Å3

  • Z = 4

  • Dx = 1.275 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 24 reflections

  • θ = 18.7–19.8°

  • μ = 0.27 mm−1

  • T = 295 (2) K

  • Plate, colourless

  • 0.65 × 0.40 × 0.18 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.760, Tmax = 0.950

  • 2849 measured reflections

  • 2674 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 28.0°

  • h = 0 → 10

  • k = 0 → 11

  • l = −20 → 19

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.03

  • 2674 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0493P)2 + 0.2832P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.7350 (15)
S1—C3 1.7468 (15)
O1—C4 1.2149 (19)
O2—C4 1.3357 (19)
N1—C1 1.3226 (18)
N1—C2 1.371 (2)
N2—C1 1.331 (2)
C2—C3 1.3707 (19)
C1—S1—C3 88.68 (7)
C1—N1—C2 111.26 (12)
N1—C1—N2 123.58 (14)
N1—C1—S1 114.78 (12)
N2—C1—S1 121.64 (12)
C3—C2—N1 115.18 (13)
C3—C2—C7 127.20 (14)
N1—C2—C7 117.60 (12)
C2—C3—C4 133.90 (14)
C2—C3—S1 110.09 (12)
C4—C3—S1 116.01 (11)
C2—N1—C1—S1 −1.08 (18)
C3—S1—C1—N1 1.13 (13)
C1—N1—C2—C3 0.4 (2)
N1—C2—C3—S1 0.45 (18)
C1—S1—C3—C2 −0.85 (12)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.85 (2) 2.08 (2) 2.902 (2) 163 (2)
N2—H2⋯N1ii 0.86 (2) 2.15 (2) 3.006 (2) 177 (2)
Symmetry codes: (i) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (ii) 1-x,1-y,1-z.

The amine H atoms were located in a difference map and refined isotropically; all other H atoms were constrained to idealized geometry with a riding model, with Uiso(H) = 1.5Ueq(C). C—H distances: CH3 = 0.96 Å, CH2 = 0.97 Å and CH = 0.98 Å.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molec­ular Structure Corporation, 1992[Molecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
C9H14N2O2SF(000) = 456
Mr = 214.28Dx = 1.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 7.8757 (10) ÅCell parameters from 24 reflections
b = 9.1080 (11) Åθ = 18.7–19.8°
c = 15.8434 (12) ŵ = 0.27 mm1
β = 100.853 (9)°T = 295 K
V = 1116.1 (2) Å3Plate, colourless
Z = 40.65 × 0.40 × 0.18 mm
Data collection top
Rigaku AFC-7S
diffractometer
2119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.0°, θmin = 2.6°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.760, Tmax = 0.950l = 2019
2849 measured reflections3 standard reflections every 150 reflections
2674 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.2832P]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35390 (5)0.22977 (5)0.31256 (2)0.04375 (14)
O10.47481 (17)0.03494 (16)0.23705 (8)0.0606 (4)
O20.70278 (16)0.08324 (14)0.34096 (8)0.0531 (3)
N10.55929 (16)0.32156 (15)0.44919 (8)0.0420 (3)
N20.3123 (2)0.46619 (18)0.40776 (11)0.0540 (4)
H10.222 (3)0.483 (2)0.3702 (13)0.056 (6)*
H20.345 (3)0.526 (2)0.4493 (14)0.061 (6)*
C10.41151 (19)0.35188 (17)0.39715 (10)0.0402 (3)
C20.63246 (18)0.19615 (17)0.42422 (9)0.0370 (3)
C30.54117 (18)0.12966 (17)0.35213 (9)0.0379 (3)
C40.5675 (2)0.00187 (19)0.30463 (10)0.0421 (3)
C50.7327 (3)0.2197 (2)0.29860 (13)0.0588 (5)
H5A0.85510.24270.31090.088*
H5B0.69750.20830.23690.088*
C60.6343 (4)0.3418 (3)0.3283 (2)0.0880 (8)
H6A0.65870.34540.39000.132*
H6B0.66780.43290.30570.132*
H6C0.51280.32610.30850.132*
C70.8035 (2)0.14796 (19)0.47675 (10)0.0446 (4)
H70.83880.05740.45140.067*
C80.9424 (2)0.2634 (3)0.47442 (16)0.0726 (6)
H8A0.95220.28190.41590.109*
H8B1.05110.22840.50580.109*
H8C0.91150.35250.50010.109*
C90.7856 (3)0.1150 (3)0.56843 (13)0.0739 (7)
H9A0.74980.20210.59430.111*
H9B0.89490.08260.60060.111*
H9C0.70080.03930.56850.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0385 (2)0.0470 (2)0.0396 (2)0.00162 (16)0.00809 (15)0.00464 (16)
O10.0576 (7)0.0646 (8)0.0504 (7)0.0054 (6)0.0135 (6)0.0192 (6)
O20.0550 (7)0.0518 (7)0.0471 (6)0.0117 (6)0.0041 (5)0.0141 (5)
N10.0384 (6)0.0419 (7)0.0405 (7)0.0034 (5)0.0062 (5)0.0049 (5)
N20.0453 (8)0.0508 (9)0.0565 (9)0.0124 (6)0.0141 (7)0.0123 (7)
C10.0366 (7)0.0402 (8)0.0402 (8)0.0005 (6)0.0021 (6)0.0012 (6)
C20.0340 (7)0.0391 (7)0.0355 (7)0.0006 (6)0.0006 (5)0.0009 (6)
C30.0348 (7)0.0413 (8)0.0350 (7)0.0008 (6)0.0004 (5)0.0003 (6)
C40.0401 (7)0.0461 (8)0.0386 (7)0.0031 (6)0.0031 (6)0.0049 (6)
C50.0586 (11)0.0555 (11)0.0601 (11)0.0114 (9)0.0052 (9)0.0196 (9)
C60.0876 (17)0.0597 (14)0.118 (2)0.0006 (13)0.0237 (16)0.0137 (14)
C70.0382 (8)0.0476 (9)0.0429 (8)0.0063 (6)0.0055 (6)0.0062 (7)
C80.0383 (9)0.0989 (17)0.0746 (14)0.0089 (10)0.0046 (9)0.0152 (12)
C90.0611 (12)0.0956 (17)0.0594 (12)0.0074 (12)0.0033 (9)0.0329 (12)
Geometric parameters (Å, º) top
S1—C11.7350 (15)C5—H5A0.970
S1—C31.7468 (15)C5—H5B0.970
O1—C41.2149 (19)C6—H6A0.960
O2—C41.3357 (19)C6—H6B0.960
O2—C51.453 (2)C6—H6C0.960
N1—C11.3226 (18)C7—C91.516 (3)
N1—C21.371 (2)C7—C81.522 (3)
N2—C11.331 (2)C7—H70.980
N2—H10.85 (2)C8—H8A0.960
N2—H20.86 (2)C8—H8B0.960
C2—C31.3707 (19)C8—H8C0.960
C2—C71.5093 (19)C9—H9A0.960
C3—C41.450 (2)C9—H9B0.960
C5—C61.482 (3)C9—H9C0.960
C1—S1—C388.68 (7)C5—C6—H6A109.5
C4—O2—C5117.46 (13)C5—C6—H6B109.5
C1—N1—C2111.26 (12)H6A—C6—H6B109.5
C1—N2—H1118.9 (14)C5—C6—H6C109.5
C1—N2—H2119.7 (14)H6A—C6—H6C109.5
H1—N2—H2121 (2)H6B—C6—H6C109.5
N1—C1—N2123.58 (14)C2—C7—C9110.59 (14)
N1—C1—S1114.78 (12)C2—C7—C8110.90 (15)
N2—C1—S1121.64 (12)C9—C7—C8110.91 (17)
C3—C2—N1115.18 (13)C2—C7—H7108.1
C3—C2—C7127.20 (14)C9—C7—H7108.1
N1—C2—C7117.60 (12)C8—C7—H7108.1
C2—C3—C4133.90 (14)C7—C8—H8A109.5
C2—C3—S1110.09 (12)C7—C8—H8B109.5
C4—C3—S1116.01 (11)H8A—C8—H8B109.5
O1—C4—O2122.72 (16)C7—C8—H8C109.5
O1—C4—C3122.75 (15)H8A—C8—H8C109.5
O2—C4—C3114.53 (13)H8B—C8—H8C109.5
O2—C5—C6110.80 (18)C7—C9—H9A109.5
O2—C5—H5A109.5C7—C9—H9B109.5
C6—C5—H5A109.5H9A—C9—H9B109.5
O2—C5—H5B109.5C7—C9—H9C109.5
C6—C5—H5B109.5H9A—C9—H9C109.5
H5A—C5—H5B108.1H9B—C9—H9C109.5
C2—N1—C1—N2178.68 (16)C5—O2—C4—O12.8 (3)
C2—N1—C1—S11.08 (18)C5—O2—C4—C3177.58 (15)
C3—S1—C1—N11.13 (13)C2—C3—C4—O1174.00 (18)
C3—S1—C1—N2178.64 (16)S1—C3—C4—O16.4 (2)
C1—N1—C2—C30.4 (2)C2—C3—C4—O25.6 (3)
C1—N1—C2—C7179.22 (14)S1—C3—C4—O2173.96 (11)
N1—C2—C3—C4179.14 (16)C4—O2—C5—C687.8 (2)
C7—C2—C3—C42.2 (3)C3—C2—C7—C9119.71 (19)
N1—C2—C3—S10.45 (18)N1—C2—C7—C961.6 (2)
C7—C2—C3—S1178.24 (13)C3—C2—C7—C8116.8 (2)
C1—S1—C3—C20.85 (12)N1—C2—C7—C861.8 (2)
C1—S1—C3—C4178.82 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.85 (2)2.08 (2)2.902 (2)163 (2)
N2—H2···N1ii0.86 (2)2.15 (2)3.006 (2)177 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

References

First citationAllen, F. A. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAntony, N. G., Fox, K. R., Johnston, B. F., Khalaf, A. I., Mackay, S. P., McGroarty, I. S., Parkinson, J. A., Skellern, G. G., Suckling, C. J. & Waigh, R. D. (2004). Bioorg. Med. Chem. Lett. 14, 1353–1356.  Web of Science CrossRef PubMed Google Scholar
First citationBarton, A., Breukelman, S. P., Kaye, P. T., Meakins, G. D. & Morgan, D. J. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 159–164.  Google Scholar
First citationEl-Meligie, S. & El-Awady, R. A. (2002). J. Heterocycl. Chem. 39, 1133–1138.  CAS Google Scholar
First citationIkemoto, N., Liu, J., Brands, K. M. J., McNamara, J. M. & Reider, P. (2003). Tetrahedron, 59, 1317–1325.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKhalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133–2156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R., Rai, D., Ko, S. C. C. & Lown, J. W. (2002). Heterocycl. Commun. 8, 521–530.  CrossRef CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationMolecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, W. L. & Nan, F. (2003). J. Org. Chem. 68, 1636–1639.  Web of Science CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds